
Energy Economics 87 (2020) 104705

Contents lists available at ScienceDirect

Energy Economics

j ourna l homepage: www.e lsev ie r .com/ locate /eneeco
Pricing reliability options under different electricity price regimes
Luisa Andreis a, Maria Flora b, Fulvio Fontini c,e,⁎, Tiziano Vargiolu d,e

a WIAS-Weierstrass Institute, Berlin, Germany
b Department of Economics, University of Verona, Italy
c Department of Economics and Management “Marco Fanno”, University of Padua, Italy
d Department of Mathematics “Tullio Levi Civita”, University of Padua, Italy
e Interdepartmental Centre for Energy Economics and Technology “Giorgio Levi-Cases”, University of Padua, Italy
⁎ Corresponding author.
E-mail addresses: andreis@wias-berlin.de (L. Andreis),

fulvio.fontini@unipd.it (F. Fontini), vargiolu@math.unipd.i

https://doi.org/10.1016/j.eneco.2020.104705
0140-9883/© 2020 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 27 August 2018
Received in revised form 25 January 2020
Accepted 30 January 2020
Available online 11 February 2020
Reliability Options are capacity remuneration mechanisms aimed at enhancing security of supply in electricity
systems. They can be framed as call options on electricity sold by power producers to System Operators. This
paper provides a comprehensive mathematical treatment of Reliability Options. Their value is first derived by
means of closed-form pricing formulae, which are obtained under several assumptions about the dynamics of
electricity prices and strike prices. Then, the value of the Reliability Option is simulated under a real-market cal-
ibration, using data of the Italian powermarket. We perform sensitivity analyses to highlight the role of the level
and volatility of both power and strike price, of the mean reversion speeds and of the correlation coefficient on
the Reliability Options' value. Finally, we calculate the parameter model risk to quantify the impact that a
model misspecification has on the equilibrium value of the RO.
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1. Introduction

In several electricity markets worldwide there is an explicit remu-
neration of power through some Capacity Remuneration Mechanisms
(CRMs). There exist different types of CRMs: capacity payments are ex-
plicit payments to power producers that are set administratively; capac-
ity auctions are procurement auctions through which the System
Operator (SO) remunerates a targeted amount of generation capacity;
capacity obligation is the obligation for load serving entities to hold
enough capacity to serve the load; strategic reserves is capacity that is
withdrawn from the market and attributed to the SO in exchange for a
predetermined remuneration. Interesting new CRMs that are gaining
momentum are reliability options (ROs). Originally proposed by
(Vázquez et al., 2002; Bidwell, 2005; Oren, 2005) and firstly imple-
mented in Colombia (Cramton and Stoft, 2007), ROs are also adopted
in ISO-New England (Federal Energy Regulatory Commission, 2014),
in Ireland (Single Electricity Market Committee, SEM, 2015; Single
Electricity Market Committee, SEM, 2016a; Single Electricity Market
Committee, SEM, 2016b) and in Italy (Mastropietro et al., 2018;
TERNA, 2019). ROs are call options on power capacity, which are sold
by power producers to the SO in exchange of a premium. By selling
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ROs, power producers commit to supply energy to the market and re-
turn to the SO the extra revenues that they would obtain when electric-
ity prices rise above a predetermined level called strike price. The
obligation of returning these extra revenues, which is termed implicit
penalty, discourages any opportunistic behavior on the producers' side
who might otherwise be tempted to withdraw capacity from the mar-
ket in an attempt to benefit from price spikes. The aim of this paper is
to propose a quantitative framework to evaluate ROs. We do so by fol-
lowing the financial approach, which requires identifying the stochastic
property of the asset under evaluation and assuming that a continuous
hedging between the financial derivative and the underlying asset is
possible. At a first glance, this assumption seems quite hard to be met
in the electricity sector, given that the underlying asset of the option is
electricity, which is not a storable good.1 However, there are cases of de-
rivatives written on several underlying assets which are not liquidly
traded, such as interest rates or temperatures. What is needed for the
application of the risk-neutral pricing based on hedging is the existence
of liquid assets that are traded and that correlate with the underlying of
the derivative, such as forwards. This is our working assumption.

TheRO is in its essence a contract for differences, inwhich the issuers
give up some ex-post risky return in exchange for a known ex-ante pre-
mium. Therefore, a RO allows hedging price risk in the electricity
1 At least as long as storage of electric energy by means of conversion into a different
form of energy, such as kinetic energy of water in power dams or as chemical energy in
batteries, is limited because of its cost or for technical reasons.
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market.2 In markets where ROs are traded an explicit penalty for un-
availability can also be introduced. For instance, in the Italian case the
ROs issuers face an extra penalty that arises whenever they do not sub-
mit bids to the energy market (TERNA, 2019). The value of ROs should
include also the expected value of such a penalty, calculated using
some measure of expected power unavailability. We do not include
such a value here and neglect the hedging against such an explicit pen-
alty for two reasons: i) the latter is limited by the capacity derating that
is calculated by the SO taking into account the average available capacity
of a supplier, andwe do notmodel here the quantity supplied by ROs is-
suers but just its value. ii) In general, the expected level of explicit pen-
alty is rather low; for instance, in the Italian RO auctions, the expected
amount of explicit penalty for power producers can be estimated as
being not greater than 10% of the implicit penalty.3

We formulate different possible assumptions for the dynamics of the
stochastic processes onwhich the ROdepends, and estimate the relative
RO value. ROs are complex options on power supplywhich can have dif-
ferent maturities and can be exercised several times at different, and
possibly random, strike prices. Therefore, we provide a comprehensive
mathematical treatment of all their aspects, and show how their fair
value depends on the electricity price and the strike price definition
and behavior.

Several authors have evaluated various exotic options on electricity.4

However, to the best of our knowledge, our paper is the first one to eval-
uate ROs under different assumptions on the electricity price process.
We choose a set of simple and significant models for electricity prices
and present semi-explicit pricing formulae for ROs that have clear eco-
nomic interpretations.We first start from the simplest possible assump-
tion about electricity prices and strike prices, increasing then the level of
complexity of the RO design, to allow for a mean reverting underlying,
for stochastic strike prices and for possibly negative (but bounded
from below) electricity prices. Furthermore, we simulate the RO value
under different possible assumptions on the parameters. To provide a
realistic example and gain further insights on their value, we calibrate
the RO parameters against real electricity market data obtained from
the Italian Power Exchange. The availability of longhourly price time se-
ries and the recent introduction of ROs in the Italianmarket both justify
the choice.

We show how the ROs' value depends on the value of the parame-
ters. We calculate the ROs' fair value before they are issued, as well as
fine-tune their design with respect to the role and the impact that the
strike price has on their value. Finally, we calculate the impact that a
model misspecification has on the equilibrium value of the RO.

The paper is structured as follows. Section 2 places this paper in the
relevant literature on the subject. Section 3 describes ROs andpresents a
general pricing formula under realistic assumptions. Section 4 provides
semi-explicit solutions to the general pricing formula, for different elec-
tricity and strike price models. We start by defining the arbitrage-free
boundaries of RO's evaluation. We then move from the simplistic
model of geometric Brownian motion (GBM) with deterministic strike,
to correlated GBMs with stochastic strike, and, by increasing realism on
the model, to the case when both electricity and strike prices are sea-
sonal and mean-reverting. For all these models, we present semi-
explicit pricing formulae. Finally, we provide some insights for the
case of negative prices. In Section 5, we showcase a simulation of the
RO evaluation and perform a sensitivity analysis, using data of the Ital-
ian Power market for estimates and calibration. In Section 6 we present
an analysis of parametric model risk, which allows quantifying how
much a possible parameter misspecification affects the equilibrium RO
2 This explains why in the RO literature (Mastropietro et al., 2016), the implicit penalty
is also termed implicit covered penalty, highlighting that ROs allow hedging against elec-
tricity price volatility.

3 Source: own calculation based on Italian market data of year 2018.
4 See the literature review section below for a discussion of these contributions.
price that we derive here. Section 7 draws conclusions, while all the
proofs of the mathematical results are in the Appendix A.

2. Literature review

ROs are a specific type of CRMs, aimed at enhancing security of sup-
ply. An introduction and an analysis of Capacity Remuneration Mecha-
nisms can be found e.g. in [Creti and Fontini, 2019, Chapters 22 and
23]. Among the different CRMs, ROs, were introduced by (Bidwell,
2005; Vázquez et al., 2002) and further discussed by (Batlle et al.,
2015; Cramton and Stoft, 2007; Bhagwat and Meeus, 2019). Interest-
ingly enough, all these papers discuss ROs qualitatively and present ex-
amples showing how they can increase the security of supply. None of
them present a quantitative analysis of ROs, as we do here.

The financial approach that we follow in this paper is the standard
approach to price financial derivatives (see for instance (Hull, 2005)).
It has been widely used in the literature to price derivatives on several
underlying assets that are not liquidly traded, as it occurs in the present
paper, such as interest rates or temperatures (see for instance [Bjork,
1998, Chapter 15] for financial products and (Deng et al., 2001;
McDonald and Siegel, 1985; Sezgen et al., 2007) for industrial applica-
tions). The assumption that there exists a liquid asset highly correlated
with the price of electricity was questioned in the seminal paper
(Bessembinder and Lemmon, 2002), which considered the relationship
between derivative (future) prices and spot prices in markets with lim-
ited liquidity and risk adverse agents. However, we believe that even if
the assumption of limited liquidity was justified at the beginning of the
liberalization process of the power market, this concern is less justified
now, after several years of functioning of liberalized electricity markets.
In fact, our approach is shared without concerns by other scholars who
have evaluated other exotic options on electricity, such as spark-spread
options (options on the differential between power prices and the heat
content of the fuel, (Deng et al., 2001; Hikspoors and Jaimungal, 2007)),
Asian options (options written on average prices, (Clewlow and
Strickland, 1999)), and options which are implicit in demand response
mechanisms, (Sezgen et al., 2007). Our approach is also justified by
utility-based arguments, see [Callegaro et al., 2017, Remark 3.6] for
structured products in energymarkets like that in Eq. (1) and the subse-
quent ones.

The nearest proxy of our analysis is (Burger et al., 2004), which eval-
uates, through a Monte Carlo approach, a contract composed of a port-
folio of 4344 call options on hourly prices, all with the same strike
price. This corresponds to a discrete-time version of the option we con-
sider in Proposition 4.1. With respect to this paper, we provide a full
mathematical treatment of ROs.

Finally, our work is also related to the analysis of arbitrage-free
bounds of (Deng et al., 2001). We start here by deriving model-free
no-arbitrage bounds to the value of the ROs; similar no-arbitrage
bounds have been derived by (Deng et al., 2001) for analogous con-
tracts. However, the setting of that paper is different from ours: in
(Deng et al., 2001), it is assumed that a continuum of forward contracts
is traded, both for electricity and for the relevant fuel (whose spot price
here would be regarded as equivalent to K), which deliver at any given
date t. However, forward contracts on electricity guarantee the delivery
of power over a period rather than on a single date t; therefore, the no-
arbitrage bounds available in (Deng et al., 2001) cannot be directly
applied.

3. Reliability options

We start by describing in general what ROs are. These contracts are
sold in an auction, typically once a year, and they aim to deliver electric-
ity with a given T1-length period in advance (lead time), for a pre-
defined period of delivery, with length (T2 − T1). The rules of the RO
specify that the capacity provider, the subject who sells the option,
must commit to deliver a certain capacity to the subject buying the



7 (Cramton et al., 2013) have explicitly commented the problem for a RO issuer of not
being able to produce the energy when called by the SO.We take this aspect into account
here by interpreting Q as the available capacity, as described by (Joskow and Tirole, 2007;
Cramton et al., 2013). This is coherent with the real-world application of RO, in which
available capacity is computed bymeasuring the average availability of a power plant over
a given time span (usually a year) and derating the nominal capacity accordingly (see
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option, in general the SO. Such a commitment is made effective by pre-
scribing that the seller must offer in themarket an amount of electricity
equal to the committed capacity, and return any positive difference be-
tween the reference market price and a previously set strike price K.
Each RO contract scheme specifies what the reference market is. In a
first approximation, the reference market can be a convex combination
of different markets, such as the day-ahead and the balancing or real-
time ones. In practice, different RO schemes can have different reference
markets. For instance, in Ireland, the reference is exclusively the day-
ahead market, while in NE-ISO it is the real-time one. If we call P the
day-ahead market price and P(b) the price in the balancing market (or
in the real-time market), we can define the reference market price R
as the following convex combination

R ¼ aP þ 1−að ÞP bð Þ;

where, a ∈ [0,1] depends on the country: a = 0 for ISO New England;
a = 1 for Colombia and Ireland; a ∈ [0,1] in the case of Italy (see
(Mastropietro et al., 2018) for a description of the forthcoming Italian
market).

The strike price is in general determined by taking into account the
variable costs of the reference peak technology, that is, the dispatchable
technology that would be included in the optimal generation mix with
the lowest unitary investment cost. In actual RO markets, the rule for
the strike price is communicated to potential sellers of ROs before the
auction takes place. Thus, in some implementations it can be treated
as a deterministic and constant parameter. However, it is also possible
that the strike price changes over time during the life span of the RO.
This is the case e.g. of the Italian scheme, where it is established that
the rule linking the strike price to a reference marginal technology is
set before the auction, but the marginal cost of such a technology is
computed every given period during the life span of the RO.5 This im-
plies that the strike price can also be conceived as a stochastic process.
We shall first derive the RO value starting with the simplest case, and
then increase the level of complexity, to derive a general representation
of the value of the RO.

3.1. A simple mathematical model for reliability options

The mathematical modeling of the general RO is quite complex, as
many auctions and prices are involved. We simplify it by defining a
mathematical model for the case when the reference price is simply
the day-ahead price P, i.e. a = 1, as it is in the Colombian or the Irish
CRM.6 In this way, only one state variable is needed for the reference
market price R, and it is indeed P.

We start by computing the fair price of a RO, written only on the ref-
erence price P and based on a generation capacity, i.e. for a power plant
that is already in place. As said at the beginning of this section, the RO is
sold in an auction at a certain time, but it becomes active in a subse-
quent time period. Let us denote by t = 0 the auction time and by
[T1,T2], with T1 N 0, the time period when capacity has to be committed.
It is assumed that the power plant will be productive at least until T2.
The idea of pricing the RO is to compute the expected operational profits
at time t = 0 (auction time) of the power plant over the period [T1,T2],
both in the case when the capacity provider enters a RO scheme, and in
the case it does not. The difference between these two operational
profits will be the fair price of the RO.

We work on a filtered probability space (Ω,ℱ, {ℱt}t≥0,ℚ) such that
the probability measure ℚ is the risk-neutral pricing measure used by
the market, and the day-ahead electricity price P = (Pt)t≥0 is a ℚ-
5 See (Mastropietro et al., 2018; TERNA, 2017).
6 Moreover, we do not consider congestion in the transmission network, and therefore

we implicitly assume that the market for ROs have the same size of the electricity market,
namely, that there are no differences between the pricing zones of the electricity and the
capacity markets.
semimartingale. We consider the simple case of a thermal plant, with
total capacity Q N 0,7 that converts a fuel, for example oil, gas or coal,
into electricity. The cost C = (Ct)t≥0 of running the thermal plant sum-
marizes the fuel price, CO2 price, operational and other costs. The
power plant sells the electricity at time t ≥ 0 when it wins the day-
ahead auction, i.e. when its bid bt is less than or equal to Pt. We adopt
the usual simplifications, continuous time instead of hourly granularity
and no ramping penalties/constraints. The plant can decide its bid pro-
cess b = (bt)t≥0 to maximize its revenues.

We first evaluate the expected operational profits of the power plant
over [T1,T2] in the case when a RO scheme is not in place. This is the
value of the power plant V(T1,T2) at t = 0 and it depends on the power
plant's income over [T1,T2]. It can be defined as

V T1; T2ð Þ ¼ sup
b∈B

Eℚ
Z T2

T1

e−rtQ 1bt ≤Pt Pt−Ctð Þdt
����F 0

� �
; ð1Þ

where ℬ is the set of adapted processes on [T1,T2], r is the instanta-
neous risk-free rate of return and Eℚ is the expectation with respect to
ℚ.

Remark 3.1. In this setting, we assume that the investor is risk-
neutral. Although here we are not evaluating financial assets, but
rather incomes coming from industrial activity, this is in line with
all the related literature, and it is justified by the following financial
argument. The underlying assets P and C could be in principle not
storable, or even not traded in some markets. However, even in
such a situation, the risk-neutral evaluation in Eq. (1) can be applied
as long as one can find hedging instruments that can be storable and
liquidly traded, and that are correlated with P and C: for the mathe-
matical derivation of such a result, see e.g. [Bjork, 1998,
Chapter 15] for vanilla products like call and put options (as we
will end up to have), and [Callegaro et al., 2017, Remark 3.6] for
structured products like that in Eq. (1) and the subsequent ones.8

Here, we indeed have such suitable hedging instruments, i.e. forward
contracts on power and fuel (for P and C, respectively), which are liq-
uidly traded on financial markets, as they are basically equivalent to
any other financial asset up to few days before physical delivery.
When physical delivery approaches, in order to maintain the hedg-
ing position it is sufficient to liquidate the position on the maturing
future(s) and open an equivalent new one on another future with a
physical delivery further in time. This is a standard practice in energy
markets, called rolled-over portfolios, see e.g. (Alexander, 2008;
Edoli et al., 2013) for two applications.

Going back to Eq. (1), it is optimal to choose b such that 1bt ≤Pt ¼ 1 if
and only if Pt N Ct, i.e. the optimal bidding process is bt= Ct∀ t ∈ [T1,T2].
Thus, the final payoff for a thermal plant is

V T1; T2ð Þ ¼ Eℚ Q
Z T2

T1

e−rt Pt−Ctð Þþdt
����ℱ 0

� �
:

We now consider the case when the thermal plant writes a ROwith
strike price K = (Kt)t≥0. The plant must now pay back (Pt − Kt)+.
(TERNA, 2019) for the Italian scheme, and in (Single Electricity Market Committee, SEM,
2016c) for Ireland). As an example, consider a 100 MW plant with a maintenance period
of onemonth per year. Its capacity factor is equal to 0.91; this figure can be used to de-rate
the relevant capacity of the plant for the RO, which would amount to 91 MW.

8 This is exactly the same argument used to evaluate derivative assets written on non-
tradable quantities like interest rates, temperature, etc.



9 This is alternatively referred to as flow forward or swap, see e.g. (Benth et al., 2008).
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Therefore, the value Vro(T1,T2) of the thermal plant with a RO scheme in
place is

Vro T1; T2ð Þ ¼ sup
b∈B

Eℚ
Z T2

T1

e−rtQ 1bt ≤Pt Pt−Ctð Þ− Pt−Ktð Þþ� �
dt
����F 0

� �
:

The bidding strategy bt = Ct is again optimal for all t ∈ [T1,T2]. Thus,

Vro T1; T2ð Þ ¼ V T1; T2ð Þ−Eℚ
Z T2

T1

e−rtQ Pt−Ktð Þþdt
����ℱ 0

� �
:

In a risk-neutral world, the value RO(T1,T2) of a RO written on the
time interval [T1,T2] should make the investor indifferent between hav-
ing the original plant without the RO, and having it with the ROwritten
on it plus the price of the option, i.e. V(T1,T2) = Vro(T1,T2) + RO(T1,T2).
Therefore, the final result is

RO T1; T2ð Þ ¼ V T1; T2ð Þ−Vro T1; T2ð Þ
¼ Eℚ

Z T2

T1

e−rtQ Pt−Ktð Þþdt
����ℱ 0

� �
ð2Þ

Thus, the value of a reliability option issued by a thermal plant is
equivalent to the price of an insurance contract against price peaks. In-
terestingly enough, notice that the operating strategy of the power
plants does not change. In electricity markets, it is well known that per-
fectly competitive markets without CRMs, the so called energy only
markets, provide enough incentives to investment, and the same is
true for optimally designed CRMs, since the latter simply anticipate ex
ante the supermarginal profits that investors would gain in energy
only markets. In other words, the amount of remuneration of capacity
accruing from perfectly competitive markets for CRMs equals the ex-
pected discounted value of the supermarginal profits gained in electric-
ity markets; in a world without market failures, the two levels coincide
(see [Creti and Fontini, 2019, Chapter 22]). This is confirmed in our
framework: without market power, the value of operating the plant is
independent of the form of remuneration of power production, i.e. if
revenues accrue ex-ante from the CRM or ex-post from selling electric-
ity in the market.

4. Pricing of reliability options

4.1. Model-free no-arbitrage bounds

It is worth noticing that Eq. (2) already allows us to produce model-
free no-arbitrage bounds on the price of the RO. These model-free
bounds do not require any assumption on the electricity price apart
from P being bounded from below by a constant price floor −P ∗, with
P ∗ ≥ 0. This is consistent with those electricity markets in which nega-
tive prices are allowed with a lower bound (as for instance in the Ger-
man and French markets).

We start from the identity

Pt−Ktð Þþ ¼ Kt−Ptð Þþ þ Pt−Kt :

Since 0 ≤ (Kt − Pt)+ ≤ Kt + P ∗, we have

Pt−Kt ≤ Pt−Ktð Þþ ≤Pt þ P�:

Bymultiplying the inequalities by e−rt, integrating and taking the ex-
pectation, we have that

QEℚ
Z T2

T1

e−rt Pt−Ktð Þ dt
����ℱ 0

� �
≤RO T1; T2ð Þ≤QEℚ

Z T2

T1

e−rt Pt þ P�ð Þ dt
����ℱ 0

� �
:

The right-hand side represents the forward price of delivering the
quantity Q of electricity over the period [T1,T2]9 with an additional con-

stant QP�e−rT1−e−rT2

r , depending on the price floor. We label

FP 0; T1; T2ð Þ≔Eℚ
Z T2

T1

e−rtPt dt
����ℱ 0

� �

the (unitary) forward price. Then, since RO(T1,T2) ≥ 0, when Kt ≡ K, i.e.
with fixed strike, we can rewrite the no-arbitrage relation above as

Q FP 0; T1; T2ð Þ−K
e−rT1−e−rT2

r

 !þ
≤RO T1; T2ð Þ≤QFP 0; T1; T2ð Þ

þ QP� e
−rT1−e−rT2

r
: ð3Þ

Thus, the value of a reliability option written on a total capacity Q
over the period [T1,T2] lies between the intrinsic value of Q call options

on the forward FP(0;T1,T2) and the modified strike Ke−rT1−e−rT2

r , and Q
forwards FP(0;T1,T2) adjusted by an additional constant proportional to
the price floor P ∗.

Conversely, when K follows itself a stochastic process, we define

FK 0; T1; T2ð Þ≔Eℚ
Z T2

T1

e−rtKt dt
����ℱ 0

� �
;

and obtain

Q FP 0; T1; T2ð Þ−FKð0; T1; T2Þð Þþ ≤RO T1; T2ð Þ≤QFP 0; T1; T2ð Þ
þ QP� e

−rT1−e−rT2

r
: ð4Þ

Note that, even with a stochastic strike price K, the upper bound is
unaffected. On the other hand, the lower bound is now the intrinsic
value of Q exchange options on the forward FP(0;T1,T2) for the forward
FK(0;T1,T2).

The no-arbitrage bounds above are model-free, in the sense that
they hold for any no-arbitrage model that one can specify for the dy-
namics of P, and possibly of K, the only assumption needed being the ex-
istence of a price floor for P. However, to evaluate the RO as a financial
contract, it is necessary to specify the stochastic process modeling elec-
tricity prices, as we shall do further below. Let us stress that electricity
price have some peculiarities such as strong seasonality and mean-
reversion; several processes have been adopted to reproduce its dy-
namics. For this reason, in the following sections we provide an over-
view on semi-explicit formulae to price a RO over [T1,T2] under
different price dynamics. We start with the simplest of the hypothesis,
that serves us to build a reference model to better illustrate the key fea-
tures of the pricing formula.We then increase the complexity of the dy-
namics in order to get a closer approximation to real price dynamics. In
particular, notice that the price models generally used to evaluate op-
tions do not allow for negative prices, while we suggest a model of
this kind in Section 4.6 below. In order to have a paper which is fully
self-contained, we write in the Appendix A all the proofs of the deriva-
tion of the pricing formulae.

4.2. Electricity spot price as a geometric Brownian motion

Let us start with the simplest assumption, i.e. that the price of elec-
tricity P evolves as a GBM, and that the option's strike price K is a
fixed deterministic value. We stress that the former is an assumption
that we regard as unreasonable, in the sense that it does not provide a
realistic representation of the electricity price dynamics. However, it is
the simplest possible assumption that is used to derive explicit pricing
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formulae for call options and we treat it as a first simplified approach to
help us presenting themain features of themodel. In this case, the price
P, under the risk-neutralmeasureℚ, is assumed to be the solution of the
following SDE:

dPt ¼ μPtdt þ σPtdBt ; ð5Þ

where B is a one-dimensionalℚ-Brownianmotion and μ is an appropri-
ate yield, obtained by taking into account factors like risk-free rate of re-
turn and risk premium (which typically occurs in electricitymarkets, as
shown, for instance by (Bessembinder and Lemmon, 2002), given that P
is typically a non-traded asset).

The price of a RO in this case is equivalent to the time integral over
the interval [T1,T2] of a European call optionwith strike price K andma-
turity ranging in [T1,T2]. In the following proposition, we provide a
semi-explicit formula to price the RO, under the assumptions above.

Proposition 4.1. Let the reference market price P follow the dynamics
(5). The price of a reliability option over the time interval [T1,T2] with
fixed strike price K ≥ 0 is given by the following formula:

RO T1; T2ð Þ ¼
Z T2

T1

Q P0e− r−μð ÞtN d1 K; P0; tð Þð Þ−e−rtKNðd2ðK; P0; tÞÞ
h i

dt;

ð6Þ

where N is the cumulative distribution function (CDF) of a standard
Gaussian random variable and

d1 K; P0; tð Þ≔ 1
σ

ffiffi
t

p ln
P0

K

� 	
þ μ þ σ2

2

� 	
t

� �
;d2 K; P0; tð Þ≔d1 K; P0; tð Þ−σ

ffiffi
t

p
:

Proposition 4.1 simply uses the Black and Scholes formula with div-
idends, since RO(T1,T2) can be defined as the time integral of a family of
call options with the same underlying and strike price, indexed by their
maturity in [T1,T2].10 Thus, it provides a formula that can be applied to
compute the value of the RO, once the parameters upon which the call
depends on have been set; namely, the risk-free interest rate r, the
starting price P0 and the electricity price volatility σ.

4.3. Electricity price and strike price as correlated geometric Brownian
motions

A first step to increase the level of complexity consists in modeling
the strike price as a stochastic process. Recall that, in ROs, the strike
price is the marginal cost of the marginal technology. Complex RO
schemes can allow it to change over time, according to a predefined
rule. For instance, it can be assumed that the strike price is given by
the fuel cost of a predefined marginal technology, such as Combined
Cycle Gas Turbines. In such a way, the strike pricewill be linked to a ref-
erence fuel price. Alternatively, it can be established that the reference
price changes at fixed regular dates according to a given indexing
formula.11 Both cases imply that the strike price is a stochastic process
(typically non-traded, in analogy with P). Thus, a first extension of the
model defined in Section 4.2 is to model K and P as two (possibly corre-
lated) geometric Brownianmotions. Thismeans that the prices (Kt,Pt)t≥0
follow a risk-neutral dynamics of the following type:

dKt ¼ μkKtdt þ σkKtdB
1
t ;

dPt ¼ μpPtdt þ σpPtdB
2
t ;

(
ð7Þ

where (B1,B2) are correlated ℚ-Brownian motions, with correlation
10 Interestingly enough, this result solves also a problem firstly posed in (McDonald and
Siegel, 1985), in the framework of firms' evaluations.
11 As mentioned, this is the case of the Italian RO scheme.
ρ ∈ [−1, 1]. Notice that the correlation of the two stochastic pro-
cesses depends on the rules defining the strike price and on the
strike price nature. For instance, if the variable strike price is set to
be equal to the marginal cost of the marginal technology, and if the
electricity market is perfectly competitive, the system marginal
price will be equal to the marginal cost of the marginal technology.
Thus, the correlation coefficient would be equal to 1. If, on the con-
trary, the stochastic strike price equals some weighted average of
different marginal costs at different hours, for instance at peak and
off-peak hours, then the correlation coefficient would be positive
but strictly less than 1, since the electricity price P would be more
volatile than the strike price K. Finally, even if this possibility is
rather unlikely, it may be that the strike price is negatively correlated
with the electricity price, depending on how the strike price is de-
fined and on what reference basket it is linked to.

The following proposition provides the value of the RO with two
GBMs:

Proposition 4.2. Let the reference market price P and the RO strike
price K follow the dynamics (7). Then the price of a reliability option
over the time interval [T1,T2] is given by

RO T1; T2ð Þ ¼ Q
Z T2

T1

ðP0e− r−μpð ÞtN a1 K0; P0; tð Þð Þ

−K0e− r−μkð ÞtNða2ðK0; P0; tÞÞÞdt;

ð8Þ

where N is the CDF of a standard normal random variable, and

a1 K0; P0; tð Þ : ¼
ln

P0

K0

� 	
þ μp−μk


 �
t

σ
ffiffi
t

p þ 1
2
σ

ffiffi
t

p
;

a2 K0; P0; tð Þ : ¼ a1 K0; P0; tð Þ−σ
ffiffi
t

p
;

σ : ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

k þ σ2
p−2ρσk

q
σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σk−σp
� �2 þ 2 1−ρð Þσk

q
σp:

In analogy to Proposition 4.1, in Proposition 4.2 we used the
Margrabe formula with dividends (see, for instance, (Carmona and
Durrleman, 2003)). Here, the RO(T1,T2) value is equal to the time in-
tegral of a family of options to exchange the (random) electricity
price P with the (random) strike price K, again indexed by their ma-
turity. As usual in the Margrabe formula, the relevant volatility is σ,
that can be interpreted as the volatility of the ratio P/K (i.e. of the
electricity price expressed in units of the strike price), which is de-
creasing with respect to the correlation ρ. In particular, for ρ → 1
(i.e. when the strike price is highly correlated with the electricity
price), we have σ → ∣ σk − σp∣. In this case, when also σk = σp, the
volatility vanishes, and the value of the option is determined just
by its intrinsic value. Instead, for ρ → − 1 (i.e. when the strike
price is highly negatively correlated with the electricity price), we
have σ → σk + σp, i.e. volatility is maximized. However, we stress
that this latter case is rather unlikely for the case of RO, as typically
a stochastic strike price K is defined in terms of quantities related
to electricity generation (as e.g. the marginal price of the marginal
technology, or some related market index), so that we should expect
a positive correlation.

4.4. Mean-reverting electricity price with seasonality

As mentioned, a GBM does not capture typical stylized facts of elec-
tricity prices, namely seasonality and mean-reversion. A natural exten-
sion is thus to price the RO when the dynamics of the reference price
reflects the aforementioned features. In particular, we model the log-
spot price of electricity as a mean-reverting process encoding different
types of seasonality by means of a time-dependent function, an
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approach that has been widely adopted in energy markets.12 We first
assume a deterministic strike price. In the next section,we shall remove
this assumption.

We define the function describing seasonality trends for all t ≥ 0 as

μ tð Þ ¼ α þ
X12
i¼1

βi monthi tð Þ þ
X4
i¼1

δi dayi tð Þ þ
X24
i¼1

γi houri tð Þ; ð9Þ

where monthi(t), dayi(t) and houri(t) are dummies for month, day of
week and hour, used to capture different types of seasonality. Specifi-
cally, we assume that day can take 4 values: ‘Friday’, ‘Weekend’, ‘Mon-
day’, and ‘other working day’. This captures the differences between
working days and weekend as well as possible first- or end-of-the-
working-week effect.

We then consider the day-ahead price P as

Pt ¼ eμ tð ÞeXt ; ð10Þ

where Xt, under the risk-neutral measure ℚ, is the solution of the SDE

dXt ¼ −λXtdt þ σdWt ; ð11Þ

whereW is a one dimensionalℚ-Brownianmotion,σ stands for the vol-
atility and λ N 0 is the mean-reversion speed.

We have the following.

Proposition 4.3. Let the reference market price P follow the dynamics
(9)–(10)–(11). Then the price of a reliability option over the time inter-
val [T1,T2] with fixed strike price K ≥ 0 is given by

RO T1; T2ð Þ ¼ Q
Z T2

T1

e−rt f 0; tð ÞNðd1ðK; P0; tÞÞ−KNðd2ðK; P0; tÞÞ½ �dt; ð12Þ

where N is the CDF of a standard normal random variable, P0 = eμ(0)+X0

and

f 0; tð Þ≔E Pt jℱ 0½ � ¼ exp μ tð Þ þ X0e−λt þ 1
2
Var tð Þ

� 	

¼ Pe−λt

0 exp μ tð Þ−μ 0ð Þe−λt þ 1
2
Var tð Þ

� 	
;

Var tð Þ≔σ2

2λ
1−e−2λt� �

;d1;2 K; P0; tð Þ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var tð Þp log

f 0; tð Þ
K

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var tð Þ

p
;

where, by abuse of notationwemean that thedefinition of d1(K,P0, t) in-
volves the + sign and the definition of d2(K,P0,t) involves the− sign.

Remark 4.1. Eq. (12) is a generalization of Eq. (6): in fact, if we let μðtÞ
≔ðμ−1

2
σ2Þt and λ → 0, then we reobtain at the limit the model of the

previous section. In fact, we have that mt ≡ X0, Var(t) → σ2t,

e−rt f 0; tð Þ→eμtþX0 ;

and

d1 K; P0; tð Þ→ 1
σ

ffiffi
t

p X0 þ μt−
1
2
σ2t− lnK

� 	
¼ 1

σ
ffiffi
t

p ln
eX0 þ μt

K
−
1
2
σ

ffiffi
t

p
:

Thus, the pricing formula in Eq. (12) collapses into that of Eq. (6).
12 For a presentation and critical discussion of various models for electricity prices pro-
posed in the literature, see e.g. (Benth and Koekebakker, 2008; Borovkova and Schmeck,
2015; Clewlow and Strickland, 1999; Geman and Roncoroni, 2006; Hikspoors and
Jaimungal, 2007; Paraschiv et al., 2015; Vehvilainen, 2002) and (Benth et al., 2008).
4.5. Allowing for mean-reverting strike price with seasonality

As a natural extension of the model in Section 4.4, we now consider
the case when the strike K is a mean-reverting process (with seasonal-
ity) as well. The dynamics of the state variables then becomes

Pt ¼ eμ tð ÞeXt ;

Kt ¼ eν tð ÞeYt :

8<
: ð13Þ

Here, μ is given by Eq. (9) and ν is a seasonality function for K of the
same form, while the processes X and Y are solution to

dXt ¼ −λxXtdt þ σ xdW
1
t ;

dYt ¼ −λyYtdt þ σydW
2
t ;

8<
: ð14Þ

where (W1,W2) are correlated ℚ-Brownian motions, with correlation
ρ ∈ [−1,1].

Proposition 4.4. Let the reference market price P and the RO strike
price K follow the dynamics (13); then the price of a reliability option
over the time interval [T1,T2] is given by

RO T1; T2ð Þ ¼ Q
Z T2

T1

e−rtð f P 0; tð ÞN d2 K0; P0; tð Þð Þ

− f Kð0; tÞN d1 K0; P0; tð Þð ÞÞdt;

ð15Þ

where N is the CDF of a normal random variable, P0 = eμ(0)+X0,
K0 = eν(0)+Y0 and

f P 0; tð Þ≔E Pt jℱ 0½ � ¼ exp μ tð Þ þ X0e−λx t þ σ2
x

2λx
1−e−2λx t
� �� 	

¼ Pe−λx t
0 exp μ tð Þ−μ 0ð Þe−λx t þ σ2

x

2λx
1−e−2λx t
� �� 	

;

ð16Þ

f K 0; tð Þ≔E Kt jℱ 0½ � ¼ exp ν tð Þ þ Y0e−λy t þ σ2
y

2λy
1−e−2λy t
� � !

¼ Ke−λy t
0 exp ν tð Þ−ν 0ð Þe−λy t þ σ2

y

2λy
1−e−2λy t
� � !

;

ð17Þ

d1;2 K0; P0; tð Þ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var tð Þ

q log
f P 0; tð Þ

f K
0; tð Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var tð Þ

q
; ð18Þ

Var tð Þ≔σ2
x
1−e−2λx t

2λx
þ σ2

y
1−e−2λy t

2λy
−2ρσ xσy

1−e− λxþλyð Þt
λx þ λy

: ð19Þ

This result resembles that of Proposition 4.3 in the same sense as
Proposition 4.2 is similar to Proposition 4.1: here RO(T1,T2) can be again
defined as the time integral of a family of options to exchange the electric-
ity price Pwith the strike price K. Here too, the relevant volatility isVarðtÞ,
which can again be interpreted as the volatility of the ratio P/K (i.e., the
electricity price expressed in units of the strike price: this is made explicit
in the proof in the Appendix A), which is again decreasingwith respect to
the correlation ρ. In particular, for ρ → 1 (i.e. when the strike price is
highly correlated with the electricity price), and λx = λy ≕ λ (i.e. when

the twomean-reversion speeds are the same), we have VarðtÞ→1−e−2λt

2λ
ðσx−σyÞ2. In this case, when σx = σy, the volatility vanishes, and the
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value of the option is given just by its intrinsic value. Instead, in the un-
likely case (see the discussion at the end of Section 4.3) when ρ → − 1

and λx = λy ≕ λ, we have VarðtÞ→1−e−2λt

2λ
ðσx þ σyÞ2, i.e., the volatility

is maximized.

4.6. Possible extension to negative day-ahead and strike prices

In principle, it is possible to allow for negative power prices, sincewe
know this is a possibility in energy markets (see (Edoli et al., 2017) and
references therein). An analogous extension can be also envisaged for
strike prices, especially when these are linked to power prices. A possi-
ble approach tomodel negative prices is to set negative values−P ∗ and
−K ∗, for certain P ∗, K ∗ ≥ 0, as pricefloors for P and K, respectively, and to
consider the following shifted dynamics

Pt ¼ eμ tð ÞeXt−P�

 �

;

Kt ¼ eν tð ÞeYt−K�

 �

:

8><
>: ð20Þ

where μ and ν are again seasonality functions for P and K and the pro-
cesses X and Y are solution of Eq. (14), in analogy with the previous
section.
Fig. 1. Seasonality function in (9) (solid red line, upper panel) calibrated on historical 2016
interpretation of the references to color in this figure legend, the reader is referred to the web
By setting C ≔ P ∗ − K ∗, one can prove that the price of the reliability
option is now given by the following expression:

RO T1; T2ð Þ ¼ Q
Z T2

T1

e−rtEℚ eμ tð ÞeXt−eν tð ÞeYt−C

 �þ ���ℱ 0

� �
dt: ð21Þ

The above formula is the time integral of a family of spread options
with a fixed strike price C and indexed by their expiration date in
[T1,T2]. Therefore, considering dynamics of type (20) relates the prob-
lem of pricing a Reliability Option to the problem of pricing a spread op-
tion (see (Carmona and Durrleman, 2003) for a survey of classical
frameworks and methods for spread options). Unfortunately, a general
closed formula for the pricing of spread options is not available. How-
ever, since the RO is in principle a quite illiquid product, one can use a
numerical method to price it in this general case, for example Monte
Carlo.

5. Simulation and sensitivity analysis

In this section we simulate the value of the RO under realistic as-
sumptions on the parameter values. To do so, we fit the parameters of
the electricity price dynamics to a real market, using data of the Italian
market. For simplicity, we consider day-ahead prices only, and use the
PUN electricity data (solid blue line, upper panel) and residuals (bottom panel). (For
version of this article.)



Table 1

Estimated yearly parameters σ̂ and λ̂ for each pricing model (electricity price following a
Geometric Brownian motion (GBM), electricity price following a mean-reverting
Ornstein-Uhlenbeck process (1-OU), correlated electricity and strike prices following
mean-reverting Ornstein-Uhlenbeck processes (2-OU)). Standard errors are in parenthe-
ses; all the estimated parameters are statistically significant, with P (largely) below 0.001
for all the parameters.

GBM 1-OU 2-OU

σ̂ 5.3033 6.8780 6.8780
(0.041) (0.056) (0.056)

λ̂ – 1302.89 1302.89
(−) (61.52) (61.52)
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weighted average of Italian zonal prices, called PUN (Prezzo Unico
Nazionale), ranging from January 1 to December 31, 2016.

As previously explained, we used dummies to capture monthly,
daily and hourly seasonality, as defined in Eq. (9). We chose ‘January’,
‘Friday’ and ‘hour 1’ as reference groups, against which the comparisons
are made. Fig. 1 shows the calibrated seasonality function, plotted
against the historical PUN data. In line with the PUN mean price,
which is equal to 42.77 €/MWh, when the strike price is supposed to
be a constant K is arbitrarily chosen equal to 40 €/MWh. Furthermore,
we considered an annual risk-free rate r = 0.01. According to the
Table 2
Linear regression estimates, standard errors and p-values obtained using the specification
in (9). The base group categories for each dummy variable are month1, friday and hour1.

Estimate S.E. pValue Estimate S.E. pValue

Intercept 3.79 0.01 b0.001 hour6 −0.13 0.01 b0.001
month2 −0.22 0.01 b0.001 hour7 −0.01 0.01 0.497
month3 −0.27 0.01 b0.001 hour8 0.1 0.01 b0.001
month4 −0.36 0.01 b0.001 hour9 0.18 0.01 b0.001
month5 −0.28 0.01 b0.001 hour10 0.16 0.01 b0.001
month6 −0.23 0.01 b0.001 hour11 0.12 0.01 b0.001
month7 −0.07 0.01 b0.001 hour12 0.07 0.01 b0.001
month8 −0.21 0.01 b0.001 hour13 0 0.01 0.800
month9 −0.07 0.01 b0.001 hour14 −0.05 0.01 b0.001
month10 0.14 0.01 b0.001 hour15 −0.02 0.01 0.130
month11 0.23 0.01 b0.001 hour16 0.04 0.01 0.002
month12 0.21 0.01 b0.001 hour17 0.09 0.01 b0.001
Monday −0.01 0.01 0.045 hour18 0.15 0.01 b0.001
Weekend −0.14 0.01 b0.001 hour19 0.22 0.01 b0.001
Working_day 0.02 0.01 0.002 hour20 0.28 0.01 b0.001
hour2 −0.08 0.01 b0.001 hour21 0.27 0.01 b0.001
hour3 −0.15 0.01 b0.001 hour22 0.2 0.01 b0.001
hour4 −0.18 0.01 b0.001 hour23 0.12 0.01 b0.001
hour5 −0.18 0.01 b0.001 hour24 0.03 0.01 0.013

Fig. 2. Sensitivity analysis of the results using a yearlyσ in the rangeð0; 2σ̂ �with a strike priceK i

range ð100;2λ̂� (right panel). The RO value is expressed in €/MWh.
scheme to be implemented in Italy, the pricing of the RO starts 4 years
from now, and the option has a maturity of 3 years (T1 = 4, T2 = 7).

The starting point X0 is taken equal to 0. Table 1 reports the esti-
mated parameters for each differentmodel, while Table 2 shows the es-
timated seasonality parameters.

As is evident from Table 1, where λ is statistically significant with
P ≪ 0.001, real electricity prices do not follow GBMs. Therefore, in the
simulation, we restrict to the model defined in Section 4.4.

5.1. Mean reverting electricity price with seasonality, fixed strike

We simulate the value of the RO using the Monte Carlo methodol-
ogy. Specifically, we compute the RO value using 10,000 simulations
of the price path of the underlying.

Fig. 2 shows the comparative statics for different ranges for the pa-
rameters σ and λ and strike price K. As expected, the higher the strike
price, the lower the value of the reliability option for each value of σ
(left panel). On the other hand, both the left and right panels show
that, when σ increases, the RO value rises as well. Moreover, when λ
is low, the relative increase in the RO value is high (right panel). This
is consistent with the fact that a low λ allows fluctuations of the under-
lying that are far from the long term mean to be more persistent.

5.2. Electricity spot price and RO strike price as correlated OU with
seasonality

We simulate now the value of the RO using the model described in
Section 4.5, again by means of a Monte Carlo method (with 10,000
runs). For the reason mentioned above, consistently with the PUN
mean price, K0 is arbitrarily chosen equal to 40 €/MWh, so that, after
de-seasonalizing (using the same estimated seasonality parameters of
the PUN price), we obtain Y0 = − 0.21, while X0 = 0. If no otherwise
stated, we consider a fixed correlation coefficient ρ = 0.5. In Fig. 3 we
plot the results of the simulations when the parameters of the strike
price λK and σK are assumed to be equal to the ones estimated for the
electricity price, while in Fig. 4 the parameters of K and of P are
decoupled.

As mentioned, Fig. 3 shows the results of the simulations depending
on σp, assuming the strike price process to have the same parameters
estimated for the electricity price P. The upper left panel shows that
the initial level of the strike price K0 has no influence on the value of
the reliability option, the reason for this lies in themagnitude of the es-
timated λP, and thus of λK: a mean reversion speed as high as that esti-
mated makes the strike price process return to its mean level in an
amount of time negligible with respect to the maturity. This implies
that the starting point of the process has no relevant impact on the RO
value.
n the range [20;60] (left panel), and a yearlyσ in the rangeð0;2σ̂ �with and a yearlyλ in the



Fig. 3. Sensitivity analysis of the results using a yearlyσP in the range ð0; 2σ̂P �with an initial strikeK0 in the range [20;100] (upper left panel), with a yearly λP in the range ð100;2λ̂P �(upper
right panel), with a correlation ρ in the range [−1;1] (left bottom panel) and with a yearly risk free rate r in the range [0;0.2] (right bottom panel).
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The upper right panel of Fig. 3 instead shows how sensitive the RO
value is to changes in the electricity price parameters λP and σP (and
thus in turn in λK and σK). Similarly to what we have observed before,
the higher the volatility of the underlying (and, in this case, of the strike
price), the higher the RO value. This relationship increases proportion-
ally to the decrease of the speed of mean reversion, since it takes
more time to return to themean, and thus volatility has a higher impact.

The role of the correlation factor ρ is instead investigated in the bot-
tom left panel, where we assess how different correlation factors in the
range [−1;1] affect the price of the RO. When the two assets are
Fig. 4. Sensitivity analysis of the results using a yearly λK in the range ð0; λ̂P � with an initial str
panel) and with and a scaled down yearly σK (upper right panel), and with a correlation ρ in t
perfectly correlated (ρ = 1), the RO value is zero for all levels of σP. In
fact, as seen in Section 4.3, the volatility is minimized and the RO can
be interpreted as an integral of calls, with maturity ranging in the inter-
val [T1,T2], being exactly at themoney at the time of expiration, and thus
having zero value. Instead, as shown, when the two processes are un-
correlated, the level of risk increases, and it reaches its maximum
when they are perfectly negatively correlated. In this case, the volatil-
ities of the two Brownian motions sum up, increasing the volatility of
the option payoff and minimizing the risk of having the calls at the
money. Finally, the bottom right panel shows that the RO price is
ike price K0 in the range [20;100], both with a yearly σK equal to the yearly σP (upper left
he range [−1;1] (bottom panel) (here σK = σP). The RO value is expressed in €/MWh.
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negatively correlated with the risk free rate r: a higher r decreases the
option value as it lowers the discounted cash flows.

In Figs. 4 and 5we show simulations' results when the parameters of
the strike price's dynamics differ from the ones of the electricity price's.
In the case of volatilities σP ¼ σK ¼ σ̂P , the left panel of Fig. 4 reports

the results for a variation in λK (in the range ð0;2λ̂P � and shown in

log10 scale) independent from the value of λP (which is instead fixed λP
Fig. 5. Sensitivity analysis of the RO value to a disjoint variation in the two volatilities, with a yea
variation in the correlation coefficient ρ affects the RO value: when the two processes are indep
when the correlation is positive (middle right and bottompanels), the higher the correlation, an
expressed in €/MWh.
¼ λ̂P). The graph shows how K0 hardly affects the RO value, as it has an
impact only when both σK and λK are sufficiently small. This confirms
the result shown above that the initial value of the prices matters only
when it takes a sufficient amount of time for them (i.e., for the strike
price in this case) to return to their long term value. The right panel in-
stead shows the sensitivity of the RO value to changes in the yearly λK
(again in the range ð0; λ̂P �) independent from the value of λP, and in
rly σP and σK in the range ð0;2σ̂P � (here λK= λP). In the different panels, we can see how a
endent or negatively correlated, higherσP and σK result in a higher option value. However,
d themore the two volatilities are similar, the lower the value of the option. The ROvalue is
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the correlation factor ρ (in the range [−1;1]). Here, the ρ valuematters
the most when both λK = λP and σK = σP. In fact, ρ (negatively) affects
the RO value only when it tends to−1 and λK is closer to the value of λP
(note that, in the figure,λK∈ð0; λ̂P �, where λ̂P corresponds to the value of
2.47 in log10 scale). This confirms our intuition that, when the initial
value of the electricity price and the strike price are close and the two
random variables follow the same dynamics, the RO has a negligible
value since it is likely that it will be always at-the-money. Conversely,
if the two random variables are not perfectly correlated or the two var-
iables follow different dynamics, it is unlikely that at every point in time
Pt and Kt coincide, and this adds value to the RO.

Finally, Fig. 5 shows the effect of a disjoint variation in the two vola-
tilities,with a yearlyσP andσK in the rangeð0;2σ̂P �, for different levels of
ρ (in these graphs,λK ¼ λP ¼ λ̂P). As expected, when ρ ≤ 0, the RO price
is always increasing in both the electricity price volatility σP and the
strike price's one σK, since volatility adds value to the call options. In-
stead, when ρ N 0, the fact that the two processes are somehow coupled
can lower the aggregate risk, since the spread between the electricity
price and the strike price reduces. This translates into a negative effect
on the option value. The RO value is therefore minimized when σP =
σK. In Fig. 5, panel ρ= 0.5, we can see that the option value is still pos-
itive; in the panel ρ=1, the RO value becomes null forσP=σK, since, as
mentioned, if the two processes are perfectly positively correlated, the
RO value coincides with its intrinsic value. Thus, there is a non-
monotone effect of the volatility increase of one process, depending
on the amount of volatility of the other process, and on the level of
the correlation coefficient. The inflection is maximum when the two
processes are perfectly positively correlated.

6. Parametric model risk

The fact that we have (semi-)closed formulae for the price of the RO
allows us to investigate how the price depends on the parameters. This
was partially done in the previous section, where a numerical price sen-
sitivity with respect to various parameters was presented. Amore accu-
rate way to treat this involves parametric model risk, following the
approach of (Bannör et al., 2016), i.e. assessingwhich of the parameters
would have the highest impact on the price in case of misspecification.

Indeed, the standard methodology to derive parameters in electric-
ity markets (and that we followed in the previous section), lacking suf-
ficiently liquid derivative products, is based on time series analysis. This
allows estimating parameters and it makes use of their point estimates
into the pricing formulae, but it completely disregards the information
contained in the estimators' distribution (e.g. their biases and/or vari-
ances). This problem is known, among the various types of model risk,
as parameter risk, i.e. the risk of picking the wrong parameter value
(s) for the pricing formula.

The approach used in (Bannör et al., 2016) to deal with parameter
risk is the following: assume thatwe estimate a distributionR on the pa-
rameter space Θ, which expresses the trustworthiness that we give to
the different parameters inΘ. Then, each parameter θ ∈Θ implies an ex-
pected derivative priceEθ[X],whereX is thepayoff of our derivative con-
tract (in our case, the RO). Since trustworthiness of parameters is
unknown, a convex riskmeasure ρ is used to average the pricingmech-
anism θ → Eθ[X].

As in (Bannör et al., 2016), as convex riskmeasurewe choose theAv-
erage-Value-at-Risk (AVaR), defined at significance level α ∈ (0,1) as:

AVaRα Xð Þ≔1
α

Z α

0
q1−β Xð Þ dβ;

where qβ(X) is the (lower) β-quantile of the random payoff X. The stan-
dard interpretation is that AVaRα(X) is the average of all quantiles of X
above the chosen confidence level 1 − α.
This approach can be implement in our case by identifying that our
multidimensional parameter is

θ ¼ α;β1;…;β12; δ1;…; δ4;γ1;…;γ24;λ;σð Þ

in the case of the mean-reverting model of Section 4.4, and

θ ¼ ðαP ;βP
1;…;βP

12; δ
P
1;…; δP4;γ

P
1;…;γP

24;λx;σx;

αK ;βK
1 ;…;βK

12; δ
K
1 ;…; δK4 ;γ

K
1 ;…;γK

24;λy;σy;ρÞ

in the case of the two-dimensionalmean-revertingmodel of Section 4.5.
However thewhole parameter distribution is very complex and difficult
to obtain, see (Bunn et al., 2015). Therefore, in analogy with (Bannör
et al., 2016), we reduce the problem by considering the distributions
of treatable subsets of parameters separately, disregarding the remain-
ing parameter risk by considering the rest of parameters as fixed and
known. In what follows we sketch the procedure.

1. Each individual parameter, or a group of parameters, θj is estimated

by a maximum likelihood estimator (MLE) θ̂ jðP1;…; PnÞ, where n is
the length of the time series used for the estimation.

2. Since θ̂ j is a MLE, its distribution R is asymptotically Gaussian, i.e.
ffiffiffi
n

p

ðθ̂ jðP1;…; PnÞ−θ0Þ→Nð0;ΣÞ, where θ0 is the true parameter value
and Σ is the parameter's covariance matrix and the distribution R

can be approximated by Nðθ0;1nΣÞ.
3. The AVaR can be computed explicitly in the case of a Gaussian distri-

bution, therefore, with the approximation of the previous step, we
obtain

AVaRα Xð Þ≃Eθ X½ � þ
ϕ N−1 1−αð Þ

 �

α
ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇Eθ X½ �ð Þ0Σ ∇Eθ X½ �ð Þ

q ������
θ¼θ̂ j P1 ;…;Pnð Þ

;ð22Þ

where ϕ is the density of a standard normal random variable and ∇ is
the gradient with respect to θj.

This procedure is well-suited to a situation in which the parameters
are estimated from time series of market data (as it is for our case). In
Section 5 we estimated the seasonality parameters for the power price
P, using time series from the Italian market, together with the mean-
reversion and volatility parameters for the stochastic factor. Instead, pa-
rameters for the strike price K, even when this was assumed stochastic,
were assumed to be equivalent to those of P. This would occur, for in-
stance, when power price depends on an underling fuel cost, and the
strike price is defined as an indexed formula of such a fuel cost (this is
what happens in the Italian RO (TERNA, 2019)). In any case, the lack
of a proper time series of the strike price does not allow us to estimate
its distribution and compare it with the estimate distribution of P. For
this reason an accurate model risk procedure currently makes sense
only for the single-factor model, allowing us to provide realistic results.
Notice however that the procedure is general enough to be applied also
to the two-factor model, provided that a time series exists for K, making
its estimation possible.

The closed-form expression for the normal AVaR in Eq. (22) allows
computing risk-captured prices efficiently with the model in
Section 4.4. The second term in the right-hand side of Eq. (22) is the
risk adjustment value, i.e. when subtracted or added to the RO value
Eθ[X] it provides the ask or bid prices for the RO, respectively. As a mea-
sure of model risk, we can thus define the relative width of the bid-ask
spread as

Δ ¼ bidPrice−askPrice
midPrice

: ð23Þ



Table 3
Relative width of the bid-ask spread (Δ, in percentage) as a measure of model risk for dif-
ferent significance levels α and for different risk sources.

α = 0.001 α = 0.01 α = 0.05 α = 0.10

Δ Total 5.196% 4.113% 3.183% 2.708%
Seasonality 5.099% 4.035% 3.123% 2.657%
Speed of mean
reversion

0.161% 0.128% 0.099% 0.084%

Volatility 1.068% 0.845% 0.654% 0.556%
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Table 3 shows the relative bid-ask spread as defined in Eq. (23) for
different significance levels of the underlying risk measure, and for dif-
ferent treatable subsets of parameters, i.e. for different model risk
sources. The table shows that themajor source of risk lies in the season-
ality parameters distribution, which has the larger impact on the RO
price, while volatility also has a significant impact on the total risk
(though five times less than the seasonality). Notice however that sea-
sonality contains 37 distinct parameters while volatility is a single
one; thus, the latter is the parameter that has the largest impact on
model risk. On the contrary, the analysis shows a negligible model risk
due to the speed of mean reversion. Since these results depend on the
estimated variances of the estimators the reason why the model risk
due to a misspecification of λ is negligible with respect to the other
ones, originates in the low variance of th estimator of λ. Finally, the
model risk is quite small also because of a high n (equal to
24 × 366 = 8784), which is the same for all group of parameters.13

7. Conclusions

In this paper, we have studied the value of the RO from a financial
perspective. The financial approach to option pricing relies on the as-
sumption that themarket prices financial products by risk-neutralmea-
sure exists. This is not a problem for pricing options on electricity prices,
as long as they can be written on electricity futures that can be rolled
over the delivery period of the RO. Nevertheless, it must be kept into ac-
count that such an approach does require that RO markets are compet-
itive and that forward markets are liquid. Therefore, our analysis
provides a benchmark value for the RO under the assumption that the
market for the derivative is liquid enough to bring about competition.14

In this framework, the simplifiedmathematicalmodel thatwe proposed
can be seen as a starting point in the analysis of ROs. We obtain semi-
explicit formulae for the value of the RO, under a set of different as-
sumptionswith increasing realism and complexity.Wemove from sim-
ple integrals of call options written on GBMs to correlated mean
reverting processes that capture the behavior of realistic electricity
price time series, on the one hand, and complex rules for RO, on the
other. Moreover, we simulate the RO value through a real-market cali-
bration of the parameters.

Our results are important from two different point of views. From a
theoretical perspective, we provide a mathematical treatment that al-
lows to show how the value of the RO depends on the values of its pa-
rameters. The results are consistent with expectations from option
theory: a rise in the strike price lowers the RO value, which depends
positively on the volatility of the electricity price, as well as on the vol-
atility of the strike price itself. The mean reversion speed of the process
reduces the impact of the starting point, which was another expected
result. However, when both the strike price and the electricity price
13 If Kwas traded on a time-basiswith a smaller frequency (for instance on a daily basis)
the n for this time series would be reduced by a factor 24. This would be the case if Kwas a
gas-linked index. As a consequence, also the impact of n in Eq. (22) would be smaller by a
factor

ffiffiffiffiffiffi
24

p
≃5. This effect was also noticed in (Bannör et al., 2016), where some parameters

had to be estimated on amuch smaller dataset and thus carried the highest significant pa-
rameter risk.
14 Note that, according to (Bidwell, 2005; Cramton et al., 2013), ROs are instruments that
enhance competition in the electricity market.
are assumed to be stochastic processes, the value of the ROdepends cru-
cially on their correlation coefficient ρ. In particular, a positive correla-
tion reduces the value of the RO. Moreover, there is a non-monotone
impact of the volatility of one process, depending on the level of volatil-
ity of the other process and on a positive correlation. We also provide a
parametric model risk analysis, which revealed that themost important
risk source is the seasonality, while the single parameter carrying the
most risk is the volatility. The parametric model risk we use here allows
us to quantifies themagnitude of these combined effects. To show it, we
calculate them with regards to the value of the RO we estimate using
Italian market data.

Our results are also relevant to support a proper design of ROs, in
particular avoiding undesired outcomes. For instance, our analysis
shows that ROs might not contribute to deliver security of supply, pro-
viding very little remuneration to capacity. This is the outcome pre-
dicted by our study when the strike price of the ROs is defined as a
mark-up on themarginal cost of power production, as it is for the Italian
case. In this case, the electricity price and the strike price of the RO co-
variate positively and this implies that ROs have a low value, for every
possible starting value of the state variables P andK. The limited revenue
raised by ROs might even hinder security of supply, which is the oppo-
site of what CRMs are designed for.

More in general, our results show that a careful estimate of the pa-
rameters is needed to calculate the value of the ROs. Ceteris paribus,
the RO value will be lower as the volatility of the electricity price de-
creases, the strike price increases, the speed of mean reversion in-
creases, the correlation of the electricity price with the strike price
increases (if the strike price is allowed to change over time), and the
two volatilities are closer. These are all factors that need to be taken
into account when designing the market for ROs and calculating the
equilibrium value.
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Appendix AA.1. Proofs of pricing formulae

Proof of Proposition 4.1. The quantity f(s,ω) : = e−rsQ(Ps
(ω) − K)+ in Eq. (2) is non-negative.

Then, if we set

A K; P0; sð Þ≔e−rsEℚ Ps−Kð Þþ��ℱ 0
� 

; ðA:1Þ
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by Tonelli's theorem, we get

RO T1; T2ð Þ ¼ Q
Z T2

T1

A K; P0; sð Þds: ðA:2Þ

A(K,P0, s) is clearly the price of a European call option with strike
price K and maturity s, thus Eq. (6) is simply obtained with the Black
and Scholes formula.

Proof of Proposition 4.2. As in the proof of Proposition 4.1, if we write

A K0; P0; sð Þ≔e−rsEℚ Ps−Ksð Þþ��ℱ 0
� 

; ðA:3Þ

then, by Tonelli's theorem, we have

RO T1; T2ð Þ ¼ Q
Z T2

T1

A K0; P0; sð Þds:

Here, A(K,P0,s) is the price of an exchange option between the elec-
tricity price P and the strike price K, with maturity s, thus Eq. (8) is sim-
ply obtained with the Margrabe formula with dividends (see (Carmona
and Durrleman, 2003)).

Proof of Proposition 4.3. As in the previous proofs, we write A(K,P0,
s) ≔ e−rsEℚ[(Ps − K)+|ℱ0] and apply Tonelli's theorem to obtain

RO T1; T2ð Þ ¼ Q
Z T2

T1

A K; P0; sð Þds:

We now notice that

A K; P0; sð Þ ¼ e−rsEℚ f s; sð Þ−Kð Þþ��ℱ 0
� 

where f(t,s), t ∈ [0,s], has the dynamics

df t; sð Þ ¼ f t; sð Þσe−λ s−tð Þ dWt

The result then follows from the Black-Scholes formula with time-
dependent (deterministic) volatility, which enters into the formula via
the integral of its square, here equal to

Z s

0
σe−λ s−tð Þ

 �2

dt ¼ σ2

2λ
1−e−2λs� � ¼ Var sð Þ

Eq. (12) follows.

Proof of Proposition 4.4. As before, we write A(P0,K0,s) ≔ e−rsEℚ

[(Ps − Ks)+ |ℱ0], we use Tonelli's theorem and obtain

RO T1; T2ð Þ ¼ Q
Z T2

T1

A P0;K0; sð Þds:

Now, as in the proof of Proposition 4.3, we now notice that

A P0;K0; sð Þ ¼ e−rsEℚ f P s; sð Þ− f K ðs; sÞð Þþ��ℱ 0
� 

where fi(t,s), t ∈ [0,s], I = P, K, have the dynamics

df P t; sð Þ ¼ f P t; sð Þσ xe−λx s−tð Þ dW1
t ; df K t; sð Þ

¼ f K t; sð Þσye−λy s−tð Þ dW2
t ;

The result then follows from the Margrabe formula with time-
dependent (deterministic) volatilities, which now enters into the
formula via the integral of the squared volatility of fp(⋅,s)/fK(⋅,s) (see
e.g. (Deng et al., 2001)), here equal to

Z s

0
σ2

xe
−2λx s−tð Þ þ σ2

ye
−2λy s−tð Þ−2ρσ xσye− λxþλyð Þ s−tð Þ


 �
dt ¼ Var sð Þ

Eq. (15) follows.
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