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The algorithms used for the optimal management of an ambulance fleet
require an accurate description of the spatiotemporal evolution of the emer-
gency events. In the last years, several authors have proposed sophisticated
statistical approaches to forecast ambulance dispatches, typically modelling
the data as a point pattern occurring on a planar region. Nevertheless, ambu-
lance interventions can be more appropriately modelled as a realisation of a
point process occurring on a linear network. The constrained spatial domain
raises specific challenges and unique methodological problems that cannot be
ignored when developing a proper statistical approach. Hence, this paper pro-
poses a spatiotemporal model to analyse ambulance dispatches focusing on
the interventions that occurred in the road network of Milan (Italy) from 2015
to 2017. We adopt a nonseparable first-order intensity function with spatial
and temporal terms. The temporal dimension is estimated semiparametrically
using a Poisson regression model, while the spatial dimension is estimated
nonparametrically using a network kernel function. A set of weights is in-
cluded in the spatial term to capture space-time interactions, inducing non-
separability in the intensity function. A series of tests show that our approach
successfully models the ambulance interventions and captures the space-time
patterns more accurately than planar or separable point process models.

1. Introduction. The proper management of an ambulance fleet is of vital importance
for the timely assistance of medical emergencies, particularly when, as the latest COVID-
19 pandemic has demonstrated, healthcare operations are stressed by long-standing critical
events, such as epidemics or natural and man-made disasters. Relevant efforts are devoted
by local agencies to allocate limited human and instrumental resources, while managing an
increasing demand for services, guaranteeing high levels of geographical coverage and a
constant improvement of key performance metrics such as rapid responses to potentially life-
threatening emergencies (Vile et al. (2012)).

Policymakers require qualitative and quantitative approaches and evidence-based studies
to tackle these challenging issues. In fact, the management of an emergency medical system
(EMS) is an extremely difficult task, considering the complex spatial and temporal dynamics
that govern ambulance interventions, especially for large and highly populated metropoli-
tan areas. Advanced operational research algorithms have been developed in the past years
to manage the fleet size and locate the dispatch centres (Blackwell and Kaufman (2002),
Henderson (2011)). However, these algorithms depend upon ad hoc inputs regarding the dis-
tribution of emergency events, and the adoption of inaccurate predictions can lead to poor
deployment decisions, high response times, and, in general, low performances. Therefore,
in the past years, several authors (see, e.g., Zhou and Matteson (2015), Zhou et al. (2015),
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Bayisa et al. (2020)) proposed complex spatiotemporal models to carefully forecast the inter-
ventions.

Typically, in the aforementioned papers, the ambulance dispatches were modelled as point
processes occurring on a planar surface (e.g., a polygon delimiting a city). Nevertheless, we
believe that the emergency interventions can be more appropriately considered as a realisation
of a point process occurring on a linear network, that is, a graph object whose nodes and
edges are embedded in a space (Barthélemy (2011), Baddeley et al. (2021)). Street networks
represent a particular case of linear networks where nodes and edges correspond to road
junctions and street segments, respectively.

The analysis of spatial data occurring on a linear network raises geometrical, computa-
tional, and statistical complexities (Okabe and Sugihara (2012)). First, ignoring the network
constraint may lead to spurious results and false positive detections (Yamada and Thill (2004),
Lu and Chen (2007)). Second, the readaptation of the classical planar techniques (such as the
K-function or the kernel density estimator) presents unique methodological problems due to
the nonhomogeneous nature of the spatial domain.1 Third, the length of the spatial network
and volume of the data typically create additional computational problems that require ad hoc
solutions (Rakshit et al. (2019), Rakshit, Baddeley and Nair (2019)). We refer to Baddeley
et al. (2021) and the references therein for more details.

The goal of this paper is to analyse all ambulance interventions that occurred in Milan
(Italy) from 2015 to 2017, using a spatiotemporal point pattern model developed at the road
network level. Starting from the assumption that the emergency events can be modelled by
a nonhomogeneous Poisson Process, we propose a nonseparable structure for the first-order
intensity function with spatial and temporal terms. The temporal component is modelled
semiparametrically using a Poisson regression with deterministic covariates, while the spatial
dimension is modelled using a nonparametric kernel estimator. The nonseparability of the
intensity function is induced by a set of weights that are included in the spatial component
to capture space-time interactions. To the best of our knowledge, this paper represents the
first attempt to model EMS data on an extensive road network via a nonseparable intensity
function.

The rest of the paper is organised as follows. Section 2 examines the ambulance interven-
tions data and presents the procedures used to build the computational representation of the
street network. We introduce the spatiotemporal framework and the first-order nonseparable
intensity function in Section 3, providing an overview of the spatial and temporal statistical
models. The main results are presented in Section 4; while in Section 5, we validate the per-
formances of the proposed methodology. Section 6 compares the suggested approach with
alternative specifications that include planar or separable approaches, discusses the scalabil-
ity of our model to large linear networks, and exemplifies a real-world application. Finally,
Section 7 concludes the article summarising the most important findings and the main con-
tributions.

2. Data: Ambulance interventions. In this section we describe the characteristics of the
data, its peculiarities, and the procedures used to transform the raw data into a computational
structure suitable for fitting the proposed model, which is detailed in Section 3.

The dataset was provided by the official regional EMS and included all ambulance dis-
patches in the city of Milan from 2015-01-01 to 2017-12-31. Milan is the second largest city
in Italy, after Rome, with a total population of 1,386,235 in 2021 and an area of about 183
square kilometres. It represents one of the most important Italian metropolitan areas where

1A street network is not a homogeneous spatial domain since each edge (i.e., each road segment) is surrounded
by different configurations of the neighboring streets.
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hundreds of thousands of people pass through every day. For this reason the management of
the ambulances in Milan requires ad hoc modelling and planning. The dataset includes four
fields recording the day, the hour, and the GPS coordinates of the ambulance interventions
(stored using an official Italian coordinate reference system named Gauss–Boaga projection).
These columns provided the necessary information to estimate the spatiotemporal model in-
troduced below.

Approximately 50,000 observations representing errors, outliers, and spurious or dupli-
cated ambulance dispatches were excluded from the raw data. More precisely:

1. We did not consider 10,000 outlier interventions that occurred during EXPO 2015, the
World Expo hosted in Milan from May 1 to October 31 and dedicated to food and life themes.
The event attracted about 2.15 million visitors from all around the world, and the emergency
interventions that occurred in the area where EXPO took place were handled in a different
way than usual.

2. We ignored 11,500 erroneous calls (i.e., situations where someone requested an ambu-
lance but an error was recorded in the EMS database).

3. We removed 30,000 records linked to multiple ambulance dispatches. These situations
typically occur in particular circumstances, like serious or life-threatening emergencies (e.g.,
heart failures or severe car crashes). In these cases duplicated observations are recorded for
the same event, but we retained only the first ambulance dispatch.

4. We filtered out 7000 observations linked to ambulance reroutings (i.e., an ambulance
going to location A gets redirected to another, typically more pressing, emergency at location
B), and we considered only those records that correspond to the actual interventions.

Similar preprocessing steps were also implemented in Matteson et al. (2011), Zhou and
Matteson (2015). The remaining sample included 494,614 interventions, 163,075 occurred
in 2015, 164,871 in 2016, and 166,668 in 2017.

The spatial distribution of the EMS events is depicted in Figures 1a–1c. The spatial patterns
look stable among the three years, and the interventions clearly mirror the skeleton of a road
network (see Figure 1d), highlighting the city ring road and some of the most important
arterial thoroughfares. Most of the white areas represent nonurban places, mainly located in
southern and western parts of the municipality. Given the spatial distribution of the emergency
interventions, we believe that a network-approach is more appropriate than a planar approach
since it takes into account the nature of the data and the particular constrains of their geo-
locations.

We also explored the temporal dimension of the data, examining the daily and weekly dy-
namics that govern the total number of emergency interventions. Figure 2 shows the daily
number of ambulance dispatches. The data exhibit a clear trend, with a global minimum
registered in August, the typical period for summer holidays in Italy. Other local peaks and
minima could be linked with the most important religious holidays (such as Christmas or
Easter), national celebrations (New Year’s Eve), or other occasional events (such as the heat-
wave in July 2015 or the ice storms in January 2017). The three years are characterised by
similar temporal patterns.

Figure 3 displays the temporal dynamics of the emergency interventions within a day.
The panel summarises the average number of hourly ambulance interventions split by the
hour of the day and the day of the week. A similar pattern is found in the three years: after
rapidly increasing in the early morning, the time series peaks around 10:00, slowly falls until
15:00, and remains stable until 20:00 when it rapidly drops until the next day. The hourly
seasonalities are different between weekends and weekdays. In fact, possibly due to the city’s
nightlife, the regional EMS registers, on average, more interventions during the first hours of
the day at the weekend with respect to the rest of the week. Instead, lower frequencies are
detected during the rest of the day.
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FIG. 1. (a) to (c): Locations of ambulance interventions that occurred in Milan from 2015-01-01 to 2017-12-31.
Each map represents one year. (d): Milan’s road network. The empty square symbol denotes Stazione Centrale
(i.e., the Central Station), the empty circle denotes the Duomo of Milan, the triangle denotes an important square,
and the diamond denotes a famous retirement house.

FIG. 2. Daily number of ambulance interventions that occurred in Milan from 2015-01-01 to 2017-12-31.



A NONSEPARABLE FIRST-ORDER INTENSITY FOR EVENTS ON NETWORKS 533

FIG. 3. Average number of hourly ambulance interventions divided by the day of the week. There are clear
seasonal patterns that characterise weekends and weekdays.

We completed the temporal exploratory analysis examining the autocorrelation function
(ACF) of the hourly number of EMS interventions. A graphical output, considering two
weeks of lagged counts, is reported in Figure 4. The plot clearly highlights hourly, daily,
and weekly seasonalities. We can also notice that the ACF is negative when considering lags

FIG. 4. Autocorrelation function of the hourly number of EMS interventions occurred in the street network of
Milan from 2015 to 2017. It clearly displays daily and weekly seasonalities.
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that are multiples of 12, pointing out an opposite behaviour during mornings, afternoons, and
nights. The statistical model, proposed in Section 3, takes into account the temporal patterns
detected in the data.

As already mentioned, we analysed the ambulance interventions as a spatial point process
occurring on a restricted one-dimensional spatial domain, which represents Milan’s road net-
work. More generally, a linear network, denoted hereinafter by L, is defined as the union of
a finite set of segments, say li , lying in a planar region S (Ang, Baddeley and Nair (2012),
Baddeley et al. (2021))

li = [ui ,vi] = {
s : s = tui + (1 − t)vi;0 ≤ t ≤ 1

}
,

where ui and vi denote the endpoints of li stored using an appropriate coordinate reference
system (CRS). In this paper we adopt a projected CRS (EPSG code: 3003)2 that expresses
the units in metres.

The computational representation of Milan’s road network adopted in this paper was cre-
ated using data downloaded from Open Street Map (OSM) servers, and, in particular, we
used the openstreetmap.fr3 provider via the R package osmextract (R Core Team (2020),
Gilardi and Lovelace (2021)). OSM is a project that aims to build an open and editable map of
the world (OpenStreetMap contributors (2017), Barrington-Leigh and Millard-Ball (2017)).
The basic components of OSM data are called elements, and they are divided into nodes,
which represent points on the earth’s surface, ways, which are ordered lists of nodes, and re-
lations, which are lists of nodes, ways, and other relations where each member has additional
information that describes its relationship with the other elements.

We downloaded OSM road data for Lombardia (the region of Northern Italy where Mi-
lan is located), and using a spatial operation, we retained only the OSM elements that lay
inside Milan’s polygonal boundary. Then we selected only those segments that correspond to
the most important streets of Milan, focusing on the following classes4 (listed in descending
order of importance): motorways, trunks, primary, secondary, tertiary, unclassified, and res-
idential. We created a road network with 20,064 segments that longs approximately 194 km,
including the majority of the most important streets in Milan.

The road network spreads all around the city and is depicted in Figure 1d. The white areas
clearly identify suburb/nonurban places and some of the most iconic locations in Milan, like
Parco Sempione, Giardini Indro Montanelli, or City Life.

After creating the road network, we excluded all emergency calls whose GPS locations
were found farther than 50 meters away from the closest segment of the network,5 since they
probably occurred on other minor streets not included in the considered network. Approxi-
mately 14,000 events were discarded, and the remaining interventions were projected to their
nearest point of the network. The final sample included 480,252 events.

Finally, we explored the spatiotemporal dynamics, testing the presence of space-time in-
teractions. First, we split all EMS interventions into 12 two-hours classes according to their
occurrence times. Then we calculated (independently for each class) a smoothed intensity
surface using the convolution kernel estimator detailed in Rakshit et al. (2019). The result is
reported in Figure 5. We notice that, from 10 a.m. to 6 p.m., the smoothed intensity peaks in
the proximity of Duomo and the city centre, whereas during the night hours, the interventions

2See https://epsg.io/3003 for more details. Last access: 2023-03-06.
3See http://download.openstreetmap.fr/. Last access: 2021-12-09.
4We refer to https://wiki.openstreetmap.org/wiki/Highways for a comprehensive description of road network

data in Open Street Map and guidelines for its classification system. We also refer to https://wiki.openstreetmap.
org/wiki/IT:Key:highway for a comparison between the Italian classification system and the classes defined by
OSM.

5The distance between a point and a segment was measured using the shortest euclidean perpendicular distance.

https://epsg.io/3003
http://download.openstreetmap.fr/
https://wiki.openstreetmap.org/wiki/Highways
https://wiki.openstreetmap.org/wiki/IT:Key:highway
https://wiki.openstreetmap.org/wiki/IT:Key:highway
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FIG. 5. Smoothed intensity functions of EMS interventions in Milan estimated after classifying the events into
two-hours classes.

are concentrated in the proximity of night-life areas. In both scenarios there are some clear
hot spots near the main train station (i.e., Milano Centrale) and several nursing homes. The
spatial model detailed in Section 3 also includes these potential space-time interactions.

3. Statistical model. Let L be a continuous one-dimensional spatial region and T =
{1,2, . . . , T } a discrete temporal dimension divided into intervals of one hour. As mentioned
before, in this paper L represents the street network of Milan while T is equal to 26,304, that
is, the number of hours from 2015-01-01 00:00 to 2018-01-01 00:00.

Let yt denote the number of ambulance interventions that occurred in the network L at time
t ∈ T , and let st,i , i = 1, . . . , yt , denote the location of the ith event. We assume that, for each
t ∈ T , {st,i : i = 1, . . . , yt } is a realisation of a nonhomogeneous Poisson Process (NHPP) on
a linear network with intensity function λt (s) (Okabe and Sugihara (2012), Diggle (2014),
Baddeley et al. (2021)). A NHPP on a linear network satisfies the following two properties:

• The number of events occurring in L′ ⊆ L, which is denoted by N(L′), follows a Pois-
son distribution with parameter

∫
L′ λt (s)d1s, where L′ represents a finite portion of the

network L and d1s denotes integration with respect to arc-length measure;
• Let N(L) = yt ; then the yt events represent a random sample from a distribution whose

probability density function is proportional to λt (s).

We assume that the intensity function of the process can be decomposed as

(1) λt (s) = μtgt (s) for s ∈ L,

where μt and gt (s) represent the temporal and spatial dimension at time t , respectively. We
also assume that gt (s) satisfies the following two conditions:

• gt (s) > 0 ∀t ∈ T and ∀s ∈ L,
• ∫

L gt (s)d1s = 1 ∀t ∈ T ,

which imply μt = ∫
L λt (s)d1s. Therefore, considering the NHPP hypothesis, we notice that

yt |λt ∼ Poisson(μt ) ∀t ∈ T , where μt represents the total volume of ambulance dispatches at
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time t . Moreover, under the same assumptions, we have st,i |λt , yt
i.i.d.∼ gt (s) for i = 1, . . . , yt ,

highlighting that gt (s) denotes the spatial density of ambulance interventions at time t . Fi-
nally, we remark that our modelling scheme entails a temporal correlation among the inter-
ventions, but it assumes that, for a fixed period t , the spatial locations are independent, given
λt (s), and conform to an inhomogeneous Poisson process.

Equation (1), despite being similar to the classical separability assumption for spatiotem-
poral point processes (Møller and Waagepetersen (2004), Diggle (2014)), suggests that the
spatial component evolves over time. This particular functional form is motivated by the
space-time interactions observed in the hourly evolution of ambulance interventions that were
displayed in Figure 5. In fact, as reported by several authors (see, e.g., González et al. (2016)
and references therein), the separability of the first-order intensity function is usually taken
as a working assumption in order to simplify the estimation process. However, given the ex-
ploratory analysis detailed before, we believe that this is not appropriate for our case. There-
fore, following the ideas in Zhou and Matteson (2015), in this paper we propose adopting a
nonseparable first-order intensity function readapted to analyse ambulance interventions as a
point pattern on a linear network. As explained in Section 3.2, the space-time interactions are
modelled using an appropriate set of weights.

Hereinafter, we introduce two statistical models for μt and gt (s), respectively. The tempo-
ral component is modelled using a semiparametric Poisson regression with smoothed deter-
ministic calendar covariates, namely, the hour of the day, the day of the week, the week of the
year, and an additional term allowing yearly fluctuations in the expected EMS counts. The
spatial dimension is modelled nonparametrically using a network readaptation of a weighted
kernel density estimator (KDE).

3.1. The temporal model. As mentioned above, the term μt represents the expected num-
ber of interventions that occurred over the network L at time t ∈ T . Following the suggestions
in Diggle, Rowlingson and Su (2005), Bayisa et al. (2020), we model yt using a Poisson re-
gression. To incorporate smoothness into the model, generalized additive models (GAMs)
are used in the estimation of μt (Wood (2011)). GAMs extend generalized linear models,
allowing for nonlinear relationships between the response variable and the covariates.

Being yt the observed number of emergency interventions in the linear network L at time
t , under a Poisson distribution assumption one has μt = E(yt ), and the log-linear Poisson
additive regression model is given by

log(μt ) = β0 + β1 · yeart + β2(hourt ) + β3(weekt ),

where β0 denotes the intercept and yeart = 0,1,2 represents the year of the event occurred
at time t with respect to 2015. In addition, hourt represents the hour of the day (taking values
from 0 to 23), while weekt represents the week of the year (taking values from 1 to 53). The

notation βj (x), j = 2,3 represent a spline transformation, that is, βj (x) = ∑kj

r=1 bjrγjr(x),
where γjr(x), r = 1, . . . , kj are the basis functions and bjr the unknown coefficients. In par-
ticular, a cyclic cubic regression spline is adopted since in our context it is appropriate to
assume a smooth transition between the last hour of one day and the first hour of the next day
as well as between the last week of one year and the first week of the next year (see Figures 2
and 3).

To account for potential different impacts among the days of the week (see Figure 3), an
interaction term was also included in the linear predictor. Hence, the final model fitted to the
data writes as follows:

(2) logμt = β0 + β1 · yeart + dowt + dowt × β2(hourt ) + β3(weekt ).

The term dowt is a factor variable that represents the day of the week.
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3.2. The spatial model. The spatial component of the intensity function, previously de-
noted by gt (s), is modelled nonparametrically using a network readaptation of a Jones–
Diggle corrected weighted kernel density estimator (Diggle (1985), Jones (1993), Rakshit
et al. (2019)). The weights are computed using a weight function that takes into account the
space-time interactions described in Section 2.

More precisely, given a set of observed time periods T , an hour u, and a location s on the
network, the weighted kernel estimator can be written as

(3) ĝu(s) =
∑

t∈T
∑yt

i=1 w(t, u)KN(s, st,i;h)∑
t∈T

∑yt

i=1 w(t, u)
,

where w(t, u) represents the weight associated to the st,i ambulance intervention and
KN(s, st,i;h) denotes the Jones–Diggle corrected network kernel function. Following the
proposal in Rakshit et al. (2019), the kernel function is defined as

(4) KN(s, st,i;h) = K(s − st,i;h)

cL(si,t )
,

where K(s − st,i;h) denotes a planar Gaussian kernel with bandwidth h and cL(si,t ) =∫
L K(s − si,t , h)d1s represents the convolution of kernel K with arc-length measure on the

network.
The KDE in equation (4) is one of the most relevant examples of statistical estimators for

spatial network data that is based on euclidean distances instead of shortest path distances.
For this reason, it can be expressed in terms of convolutions of two-dimensional planar ker-
nels and can be computed extremely efficiently using the fast Fourier transformation (FFT)
(Silverman (1982)). More precisely, the numerator in (4) can be expressed as the convolution
of a kernel K with respect to the counting measure on the data points, whereas the denomi-
nator can be expressed as a convolution with respect to arc-length measure on the network. In
both cases the estimators can be computed rapidly using the FFT after discretising the point
pattern and the linear network via a fine pixel grid.

We end this section observing that, although the suggested kernel approach does not con-
sider shortest-path distances computed on the network, the structure of the spatial domain
is still taken into account by the denominator in equation (4). Moreover, as discussed in
Rakshit et al. (2019), the proposed technique consistently estimates the intensity function of
a point process on a linear network, and its statistical efficiency is only slightly suboptimal
with respect to other approaches (see, e.g., McSwiggan, Baddeley and Nair (2017)), whereas
the computational advantages are enormous for large networks as the one considered in this
paper.

3.2.1. Defining the weight function. The weight function w(t, u) is used to capture the
contribution of each past observation to predict the future ambulance demand by taking ad-
vantage of EMS data temporal patterns to improve the forecasting of future interventions. It
incorporates space-time interactions into the weighted kernel estimator, creating a nonsepa-
rable structure in the spatiotemporal intensity λt (s). In particular, we assumed that w(t, u)

can be modelled as a function of the time lag between u and t , say m = u − t . The following
functional form, first proposed by Zhou and Matteson (2015), was adopted:

(5) w(t, u) = w(u − t) = w(m) = ρ
(m)
1 + ρ

(m)
2 ρ

sin2( πm
24 )

3 ρ
sin2( πm

168 )

4 .

Equation (5) includes a separate coefficient for each seasonal pattern displayed in Figure 4:
ρ1 captures the short-term dependence while ρ3 and ρ4 measure the daily and weekly sea-
sonalities with a periodicity equal to 24 and 24 × 7 = 168 hours, respectively. The coefficient
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ρ2 represents a discount factor added to fade out the product of daily and seasonal terms,
whereas the term π denotes the constant value 3.1415. . . . The four parameters are bounded
between 0 and 1 to avoid (unrealistic) exponential growths. Consequently, w(m) takes val-
ues in (0,2), which also prevents negative weights that would potentially result in a negative
kernel estimate of the density function.

Unfortunately, estimating ρ1, . . . , ρ4 in a full likelihood-based approach entails a non-
trivial computational burden. Consequently, we implemented an algorithm first suggested in
Zhou and Matteson (2015). As mentioned above, the weight function aims to grasp the time
regularities of EMS interventions (also displayed in Figure 5), giving more importance to
those events that occurred in the proximity of the seasonality peaks. Therefore, w(m) should
reflect the temporal dependency depicted by the ACF of the hourly number of EMS inter-
ventions, mirroring the behaviour displayed in Figure 4 and assigning a negligible weight to
those observations that, from a temporal perspective, are unlikely to be important for future
predictions.

For this reason and after calculating the empirical hourly ACF up to lag M and taking its
positive part, denoted by ACF+ = max(0,ACF), the parameters ρ1, . . . , ρ4 were estimated
by minimising the following loss function

(6)
1

M

M∑
m=1

(
ACF+(m) − ρ0w(m)

)2 s.t. 0 < ρj < 1 ∀j = 0, . . . ,4.

The coefficient ρ0 represents a further discount factor without any practical interpretation. It
is used to scale w(·) between 0 and 1, in order to make it consistent with the ordinate range of
ACF+. In this paper we choose M = 672, which represents four weeks of historical temporal
data, whereas the minimisation problem was solved using the box-constrained method im-
plemented in the R function optim(), initialising all parameters at a random value between
0 and 1 (Byrd et al. (1995), R Core Team (2020)).

4. Results. We now present the results obtained when estimating the spatial and tem-
poral models described in Sections 3.1 and 3.2. All procedures were implemented using
the software R (R Core Team (2020)) and several contributed packages. More precisely, the
smooth temporal components were estimated using the package mgcv (Wood (2017)), while
the network-version of the Gaussian weighted kernel is implemented in the package spat-
stat (Baddeley (2015)). We fitted the temporal model, the weight function, and the spatial
kernel using a laptop with an AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz
processor, four cores and eight GB of RAM. After downloading the OSM data, it took ap-
proximately five minutes to build the computational representation of the point pattern on the
street network, two minutes to estimate the temporal model and the parameters in the weight
function, and three minutes to compute the spatial kernel estimator considering two different
future time periods.

4.1. The temporal component. As detailed in Section 3.1, the temporal component was
estimated using a GAM with deterministic predictors representing yearly fluctuations and
hourly, daily, and weekly seasonal components. The cyclic cubic spline terms are included
to capture the smooth intraday dynamics and the weekly temporal trends. The daily effects
are taken into account by considering an interaction term and a set of dummy variables. The
observed counts originally presented five missing values from 2015-04-01 at 00:00 to 2015-
04-01 at 04:00. These values were imputed using a GAM as in equation (2) that was trained
using the interventions until 2015-03-31 at 23:00.

The estimates of β0, β1, and dowt coefficients for the complete model are summarised in
Table 1. The intercept represents the (logarithm of) the mean number of interventions per
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TABLE 1
Estimates of the effects obtained after fitting the model described in equation (2). The reference category for the

daily seasonal term is Sunday

Estimate Standard error z-value p-value

(Intercept) 2.8333 0.0044 648.9070 <0.001
Year 0.0116 0.0018 6.5792 <0.001
Monday 0.0193 0.0057 3.3835 <0.001
Tuesday −0.0244 0.0058 −4.2161 <0.001
Wednesday −0.0177 0.0058 −3.0807 0.002
Thursday −0.0137 0.0057 −2.3937 0.017
Friday 0.0024 0.0057 0.4292 0.668
Saturday −0.0052 0.0057 −0.9218 0.357

hour, β1 is the annual variation in the EMS counts with respect to 2015, and the remaining
set of coefficients represents the deviation from the reference level, that is, Sunday. The es-
timates highlight the presence of a tiny but significant and positively increasing trend in the
hourly number of interventions per year. Moreover, we can notice that the behaviour of the
ambulance interventions during the weekend looks quite different from the first days of the
week (e.g., Monday to Thursday), with Monday being the day when the majority of interven-
tions take place, whereas Friday and Saturday are found to be not significantly different from
Sunday at the usual significance levels.

The smooth seasonal terms are depicted in Figure 6. In particular, Figure 6a reports the
(smoothed) daily effects for each day of the week. The seven curves mirror the shapes dis-
played in Figure 3, and a clear distinction exists between weekends and weekdays. In all cases
we found a peak around 10 a.m. Figure 6b shows the smoothed weekly effects, which look
similar to the patterns displayed in Figure 2. We observe a drop in the expected number of
ambulance dispatches around August. In both cases the cyclic cubic regression splines were
fitted using K = 10 knots evenly placed throughout the values of the covariates.

Finally, we explored the predictive accuracy of the GAM using the following strategy.
First, we trained the model considering all ambulance interventions up to 2017-10-01 at
00:00, and then we forecasted the EMS counts until the end of the year. We compared the
observed counts with the out-of-sample fitted values, and the result is displayed in Figure 7
that suggests a good agreement between the two time series.

FIG. 6. Estimates of the smooth seasonal terms obtained after fitting the model described in Equation (2). Figure
(a) represents the intraday effects divided by the day of the week. Figure (b) displays the weekly temporal trends.
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FIG. 7. Graphical comparison between observed counts (in grey) and out-of-sample fitted values (in black)
considering EMS data from 2017-10-01 to 2017-12-31.

4.2. The spatial component. As introduced in Section 3.2, the spatial component was
estimated combining a network readaptation of a Gaussian smoothing kernel with a weight
function that measures the predictive importance of each past EMS intervention. The weights
are used to mimic the interactions between two ambulance dispatches separated by l temporal
lags, replicating the hourly, daily, and weekly seasonalities in the ACF displayed in Figure 4.

4.2.1. Estimating the weight function. As reported in equation (5), the weight function
depends on four parameters that represent the three seasonal components plus a discount
factor. They were estimated solving the minimisation problem detailed in equation (6). We
found ρ1 as big as 0.213, pointing out a mildly strong short-term correlation in the EMS
counts. The second seasonal parameter, that is, ρ3, was found equal to 0.002, which means
that the effects related to the daily component range between 0.002 and 1. Given the periodic

behaviour of the sinusoid function, the maximum value of ρ̂
sin2( πl

24 )

3 is obtained when the lag
l is approximately a multiple of 24, while the minimum is reached when the time difference
is close to 12 or its odd multiples. The value of ρ̂4 was found equal to 0.927, pointing out
that the weekly effects are smoother and oscillate between 0.927 and 1. Finally, the fitted
values of ρ0 and ρ2, that is, the two discount factors, were found equal to 0.695 and 0.999,
respectively, meaning that daily and weekly seasonality vanish slowly.

We display in Figure 8 a graphical comparison between the observed positive part of the
hourly ACF and the estimates of the weight function. Figure 8a shows one week of lagged
counts, while Figure 8b shows the complete set of lags up to four weeks. In both cases the
weight function successfully fits the ACF.

4.3. Spatial and spatiotemporal component. After estimating the weight function, we
applied equation (3) to obtain the predicted spatial density ĝu(s) for a time period u. In
particular, considering that the data at hand included the EMS interventions from 2015-01-
01 at 00:00 to 2017-12-31 at 23:59, we decided to forecast ĝu(s) considering two randomly
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FIG. 8. The observed positive part of ACF (grey solid line) and the estimated weight function (black dashed
line) considering lagged counts for (a) one week and (b) four weeks.

selected future time periods: 2018-01-03 at 03:00 and 2018-01-03 at 15:00. The first one
falls at night, while the other one falls in the early afternoon. In both cases the value of
the bandwidth h was chosen using the rule of thumb suggested by Rakshit et al. ((2019),
Section 8). The bandwidth is given by

(7) h = (3n)−1/5s̄,

where s̄ =
√

s2
1 + s2

2 and sj , j = 1,2, denote the sample standard deviation of the j th Carte-
sian coordinate values for the locations of the ambulance interventions. Equation (7) adapts
the rule of thumb proposed by Scott ((1992), page 152) in kernel density estimation to the
analysis of spatial data lying on a one-dimensional domain.

The results are reported in Figure 9. Figure 9a shows that during the night the EMS in-
terventions are spread in several parts of the municipality and highlights some roads of the
network nearby night-life areas. Figure 9b underlines that ambulance dispatches are concen-
trated in the areas close to Duomo and other relevant working places during daytime, whereas
nightlife areas are no longer highlighted by the model. In both cases the central station, a pop-
ular square (Piazzale Corvetto), and several retirement houses (such as Pio Albergo Trivulzio)
are pointed out.

The values of ĝu(s), displayed in Figure 9, represent only the spatial dimension of the
data. Hence, to compare and visualise the spatiotemporal evolution of λu(s), we estimated

FIG. 9. Estimates of spatial density function ĝu(s) considering two future time periods: 2018-01-03 at 03:00
(a) and 2018-01-03 at 15:00 (b). The unit for the color scale is 1/m.
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FIG. 10. Estimates of the intensity function λ̂u(s) considering two future time periods: 2018-01-03 at 03:00 (a)
and 2018-01-03 at 15:00 (b). The two maps highlight the temporal patterns in spatial locations of emergency in-
terventions. The unit for the color scale is 1/m. The values represent the expected number of ambulance dispatches
occurring in a small linear neighbourhood around a point of the network.

the expected number of interventions at time u and calculated λ̂u(s) by multiplying the spa-
tial and the temporal components. The results are depicted in Figure 10. Although the two
maps highlight areas similar to those displayed in Figure 9, they now account for the tempo-
ral patterns of EMS interventions. In particular, considering that the majority of ambulance
dispatches occur between 8 a.m. and 6 p.m., the intensity function at 15:00 was found higher
than in the other scenario.

Finally, using the approach described in Rakshit et al. ((2019), Section 6.2), we estimated
the pointwise standard errors of the spatial density function ĝu(s) considering the same two
future time periods. The results are reported in Figure 11. In both cases the two maps high-
light certain areas of the municipality in the proximity of nightlife neighbourhoods or train
and metro stations. We can also clearly recognise the shape of some arterial thoroughfares
(e.g., the A51 motorway located on the rightmost part of the maps and far from any resi-
dential neighbourhood) passing through the city. Unsurprisingly, the standard error estimates
generally increase in the proximity of the city boundary since they are based on fewer data
points.

FIG. 11. Estimates of the standard errors of the spatial density function ĝu(s) considering two future time
periods: 2018-01-03 at 03:00 (a) and 2018-01-03 at 15:00 (b). The values were obtained using the formulas
described in Rakshit et al. ((2019), Section 6.2).
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5. Spatial validation. Section 4 presented the results obtained when fitting the spatial
and temporal components of λt (s) and omitted any consideration on the spatial predictive
accuracy. Nevertheless, as mentioned in the Introduction, the algorithms used to minimise
the ambulance response times require a model that can produce reliable forecasts of the spa-
tial distribution of the EMS events at the road network level. In this section we discuss the
procedure adopted to validate our proposal.

The predictive accuracy of ĝt (s) was first inspected graphically by comparing observed
and predicted EMS interventions at different levels of temporal aggregation via a network-
readaptation of the relative-risk function (McSwiggan, Baddeley and Nair (2020)). More
precisely, given two point patterns A and B that occur on the same network L and a point
s ∈ L, we define the (normalised) relative-risk function (also named probability distribution
of one type in Baddeley ((2015), Chapter 14)) as

ρ(s) = gA(s)

gA(s) + gB(s)
,

where gA(s) and gB(s) denote the spatial densities of A and B , respectively. The plug-in
estimator of ρ(s) is given by

(8) ρ̂(s) = ĝA(s)

ĝA(s) + ĝB(s)
,

where ĝA(s) and ĝB(s) are kernel estimates of gA(s) and gB(s), respectively. The value
of ρ̂(s) represents the probability that a point s ∈ L belongs to A instead of B . Values of
ρ̂(s) around 0.5 highlight that the relative risk function cannot discern the two processes. We
refer to McSwiggan, Baddeley and Nair (2020) for more details and extensive theoretical and
computational considerations regarding the estimation of the relative risk for point patterns
on linear networks.

As mentioned before, the forecasting accuracy of ĝt (s) was tested by comparing observed
points and (out-of-sample) predictions. More precisely, we first selected the EMS interven-
tions that occurred before the end of September 2017 and trained the weight function to
estimate ρ0, . . . , ρ4. Then, considering the temporal evolution of the weights, we derived the
spatial KDE ĝu(s) for each hour u of a given (out-of-sample) time period U , and finally, we
obtained an out-of-sample prediction of the emergency events by sampling yu points from
each density ĝu(s), u ∈ U . Finally, we aggregated observed occurrences and predicted points
over U and compared the two types of events by means of the relative risk function. The
pseudo-code that summarises this procedure is reported in Algorithm 1.

In the analysis reported below, we tested the spatial accuracy considering four days placed
farther and farther in time from the end of the training period, namely, 2017-10-01, 2017-10-
08, 2017-10-15, and 2017-10-22. We decided to focus on several days spread over a month
close to the end of the training set since that represents a realistic scenario to organise the
ambulance shifts.

After simulating the ambulance interventions for each time period and extracting the cor-
responding observed EMS events, the relative risk function was computed as in McSwiggan,
Baddeley and Nair (2020). The same bandwidth h was used when applying equation (3) to
the two types of points, and its value was estimated using a readaptation of Scott’s rule of
thumb for one-dimensional coordinates data, as suggested in McSwiggan, Baddeley and Nair
((2020), page 5). We did not explore the other techniques for bandwidth selection due to the
prohibitive computational costs of applying leave-one-out cross-validation to large road net-
works with hundreds of thousands of points and time-consuming out-of-sample simulations.

The relative risk functions ρ̂(s) for the four days under analysis are depicted in Figure 12.
Following the notation adopted in equation (8), the object A denotes the observed EMS
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Algorithm 1: Pseudocode describing the procedure used to simulate future events for a
nonseparable model. The algorithm can be adapted to sample from a separable model
(see Section 6) skipping steps 2 and 3. In both cases, after the for loop, we aggregate all
predicted events collapsing the temporal dimension

Input: data: ambulance interventions data; U : set of future time periods.
Output: An estimate of the normalised relative risk function.
/* 1. subset EMS data that occurred before 2017-10-01 at

00:00. */
train ← subset(data, date-occurrence < 2017-10-01 00:00);
/* 2. estimate ρ0, . . . , ρ4 using the methods described in

Section 3.2.1 */
{ρ̂0, . . . , ρ̂4} ← estimate_coefs(train);
for each u ∈ U do

/* 3. Estimate the weights w(t, u) given ρ̂0, . . . , ρ̂4. See
equation (5). */

w ← estimate_weights(u, ρ̂0, . . . , ρ̂4);
/* 4. Estimate ĝu(s) using equation (3). */
ĝu ← estimate_KDE(ems_train, w);
/* 5. Simulate yu events sampling from a probability

density function on a linear network equal to gu */
pred_events(u) ← simulate_points(ĝu, yu)

end

FIG. 12. Spatial representations of the (normalised) relative risk function considering four different days.



A NONSEPARABLE FIRST-ORDER INTENSITY FOR EVENTS ON NETWORKS 545

FIG. 13. Density curves representing 50 simulations of the (normalised) relative risk function considering four
days.

events, while B represents the predicted points. A spatiotemporal EMS model successfully
predicts future emergency events, when ρ̂(s) is close to 0.5, since that implies the relative
risk function cannot distinguish between observed and predicted cases. Figure 12 shows that,
in the four cases, the relative risk functions are always concentrated around 0.5 but for a few
parts in the suburban areas, suggesting that our approach can be employed for EMS events
forecasting.

We repeated the procedure listed in Algorithm 1 50 times obtaining, for each pixel com-
posing the road network, several estimates of the relative risk function. The smoothed curves
displayed in Figure 13 represent the distribution of ρ̂(s) for each time period and for each
simulation. In all cases these curves are concentrated around 0.5 and the value of ρ̂(s) lies
between 0.4 and 0.6 for approximately 80% of all road pixels. Moreover, the Supplementary
Material (Gilardi, Borgoni and Mateu (2024)) reports the results obtained when testing the
spatial accuracy for different time periods and training sets. In particular, the procedure de-
tailed above was replicated by considering two alternative time intervals of six and twelve
hours, respectively. We also tested the sensitivity of our results by shifting the training and
test sets ahead of one and two months, respectively. We found that the suggested approach
successfully predicts future events in all scenarios under consideration.

To conclude, we readapted the ideas in Kelsall and Diggle (1998, 1995) to our context by
constructing a procedure that investigates the spatial variation of ρ(s) and tests whether two
processes, defined on a common network L (e.g., observed and simulated future emergency
interventions), have the same intensity function. More formally, given two point patterns
A and B with, respectively, nA and nB observations, the aforementioned papers proposed
a Monte Carlo test for departure from a null hypothesis of random labelling, that is, H0 :
ρ̃(s) = log{gA(s)/gB(s)} = 0 or, equivalently, H0 : ρ(s) = gA(s)

gA(s)+gB (s) = 0.5. The test was
implemented by generating m new datasets which are consistent with H0 but, otherwise, have
similar characteristics with respect to the original processes. The authors used the following
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test statistics:

(9) tj =
∫

log
{

ĝj,A(s)

ĝj,B(s)

}2
d(s), j = 1, . . . ,m,

where ĝj,A(s) and ĝj,B(s), respectively, represent kernel estimates of the density function of
the two processes A and B for the j th simulated dataset and tO is the observed value of the
test statistics on the original point patterns. The p-value can be computed as p = k+1

m+1 , where
k is the number of times that tj > tO .

Conditional on the location of the points, the null hypothesis states that the probability
that a given event belongs to A instead of B does not depend on the spatial location and is
constant over the region. Therefore, the generation of datasets under H0 can be performed by
combining the two original point patterns into a unique object and randomly labelling nA of
them as coming from process A and the remaining ones as type B .

The algorithm described in the previous paragraphs was adjusted for the comparison of
observed and simulated EMS data on a linear network, as performed in this paper, by adopting
the following two modifications:

1. The integral in equation (9) is computed over the network L with arc-length measure,
and the density estimates are derived applying the weighted kernel approach described in
Section 3.2;

2. Considering the intrinsic variation of simulated future ambulance interventions, the
Monte Carlo test was repeated ñ times, and for each simulation, the p-value was derived
generating m̃ datasets under the null hypothesis of random labelling using the technique
described before.

The results are reported in Figure 14. The four boxplots summarise the p-values obtained
by comparing observed and predicted EMS data considering the same four time periods as
before. For each time period, we generated ñ = 64 possible future scenarios, using the pro-
cedure described in Algorithm 1, and for each scenario, we simulated m̃ = 96 datasets under
the random labelling hypothesis. We can clearly notice that, in all four cases, the relative
risk function cannot distinguish between observed and predicted future interventions, and we
cannot reject the null hypothesis of random labelling. Therefore, this test highlights that the
proposed model can successfully predict the future distribution of emergency data.

FIG. 14. Boxplots displaying the p-values of Monte Carlo tests exploring the spatial variation of the relative risk
function that compares observed and depicted EMS events. The dashed horizontal black line denotes the α = 0.05
level.
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6. Additional comparisons with separable and planar models and further considera-
tions. As mentioned in Section 1, this paper represents the first attempt to model ambulance
interventions on a linear network considering an NHPP with a nonseparable first-order inten-
sity function. Although the proposed approach was found to perform reasonably well, a few
aspects deserve further consideration. First, some comparisons to the previously proposed
methods should be considered in order to appreciate how the conceptual improvement pro-
vided by our methodology translates into a practical improvement in a real-world application.
Second, although our model efficiently deals with the considered network (which includes
the most important roads of Milan), we should also test whether this methodology effectively
scales to larger networks, such as the complete road network of cities like Milan which can
be composed by hundreds of thousands of road segments. Third, some evaluations are in or-
der regarding how much of a difference the methodological improvements of the proposed
approach make for the ultimate application and how they translate into practical interventions
on ambulance dispatch policy. These three points are discussed in the rest of this section.

6.1. Comparison with separable and planar models. Sections 6.1.1 and 6.1.2 highlight
the importance of the extensions considered in this paper, namely, modelling the spatiotem-
poral intensity in a nonseparable manner while explicitly accounting for the network structure
of the spatial domain. Hereinafter, the suggested methodology is compared to two different
approaches adopted in previous papers dealing with EMS data: (a) assuming separability of
the first-order intensity function and (b) ignoring the network structure of the road system
and using a planar spatial support instead.

6.1.1. Separable first-order network-based intensity function. The impact of the nonsep-
arability assumption was tested by comparing our proposal to a simpler model that assumes a
separable first-order intensity function and estimates the spatial dimension of the process via
equation (3), assigning a unitary weight to each past observation. To sample from the simpler
model, we implemented a strategy analogous to the one described in the previous section,
and we compared the discrepancies between observed and predicted events at different levels
of temporal aggregation. More precisely, the two models were trained using the events that
occurred before 2017-10-01 at 00:00, and we predicted yu observations for each hour u of a
set U of future time periods, as described in Algorithm 1. Then the predicted and observed
point patterns were aggregated in the considered temporal period, and the predictive perfor-
mances of the two strategies were evaluated by computing the integrated squared error (ISE),
defined by

(10) ISE =
∫
L

(
η̂pred(s) − η̂obs(s)

)2 d1(s),

where η̂pred(s) and η̂obs(s) denote the smoothed spatial density at location s ∈ L obtained by
the network convolution kernel (Rakshit et al. (2019)).

The procedure was repeated 150 times, obtaining several estimates of the ISE for the sepa-
rable and nonseparable strategy. Figure 15 reports the empirical cumulative distribution func-
tion (ECDF) of ISE criterion considering three time windows of seven days located farther
and farther from the end of the training set. The black curve denotes the nonseparable model,
whereas the grey curve represents the separable one. We notice that, in all cases, the non-
separable approach has superior predictive performances exhibiting lower ISE values and
pointing out that the nonseparability assumption plays a key role in the prediction of EMS
events.

In the Supplementary Material (Gilardi, Borgoni and Mateu (2024)), we have reported the
results obtained when applying the same procedure to temporal windows of five and 14 days.
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FIG. 15. Comparison of separable and nonseparable approaches for three different time periods. The three
figures represent the ECDF of ISE obtained using 150 simulations.

In all cases the ECDFs show the same behaviour as in Figure 15, highlighting the stability of
our findings. Furthermore, we compared each pair of curves using a Kolmogorov–Smirnov
test, and the nonseparable model always outperformed the separable counterpart in all tested
scenarios but one where the Kolmogorov–Smirnov was not significant.

6.1.2. Planar intensity function. Hereinafter, we evaluate the importance of taking the
street network into account. To this end, we compared the approach suggested in this pa-
per to another model developed using the same statistical structure but on a planar spatial
domain (i.e., the polygon delimiting the city of Milan). Following the procedure detailed in
Algorithm 1 and adopting the same time windows considered in Section 6.1.1, we trained the
two models and sampled yu points for each hour u of the future time period U . Finally, after
aggregating the points, we compared predicted and observed interventions using the relative
integrated squared error (rISE) criterion that reads

(11) rISEnet =
∫
L

(
η̂pred(s) − η̂obs(s)

η̂obs(s)

)2
d1(s),

in case of point patterns defined on network support and

(12) rISEplanar =
∫
W

(
η̂pred(s) − η̂obs(s)

η̂obs(s)

)2
d(s)

in case of a planar domain.
The quantities in equation (11) have been introduced before, whereas the terms η̂pred(s)

and η̂obs(s) in equation (12), respectively, denote the planar smoothed spatial density at lo-
cation s ∈ W (where W denotes the two-dimensional domain) for predicted and observed in-
terventions obtained via a classical planar kernel with Jones–Diggle’s edge correction (Jones
(1993)). We adopted the relative ISE criterion to compare the network and planar estimates
since the two processes are defined on incompatible spatial domains, implying that the cor-
responding density functions have different orders of magnitude and making a direct com-
parison unfeasible. More precisely, the intensity function on a linear network has dimensions
1/m while its planar counterpart has dimensions 1/m2. Therefore, the ISE criterion, as de-
fined in equation (10) would compare two quantities having dimensions 1/m2 and 1/m4,
respectively. On the other hand, as we can see from equations (11) and (12), the rISE crite-
rion includes an additional term at the denominator of the two equations that creates a unitless
ratio of intensities and removes the effects due to the different natures of the corresponding
spatial domains.

We repeated the procedure described above 150 times, obtaining several values of the
rISE index for each time window. The results are summarised in Table 2. We can clearly
notice that the average rISE for the network approach is several times smaller than its planar
counterpart, highlighting that the analysis of EMS interventions always requires appropriate
considerations regarding the spatial support of the events. The same procedure was repeated
for different time intervals of five and 14 days, obtaining similar conclusions. The results are
summarised in the Supplementary Material (Gilardi, Borgoni and Mateu (2024)).
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TABLE 2
Numerical summary of the comparisons between network and planar approaches using the rISE criterion

defined in equations (11) and (12) considering three time-windows of seven days

Time window Type Mean Std. Dev. 0.25 Quantile 0.75 Quantile

Oct. 1st to Oct. 7th Network 1.0 × 105 4.0 × 104 7.3 × 104 1.2 × 105

Planar 1.7 × 107 1.2 × 107 1.1 × 107 1.9 × 107

Nov. 1st to Nov. 7th Network 2.1 × 105 6.3 × 104 1.7 × 105 2.4 × 105

Planar 3.0 × 107 1.4 × 107 2.1 × 107 3.5 × 107

Dec. 1st to Dec. 7th Network 1.9 × 105 1.2 × 105 1.2 × 105 2.2 × 105

Planar 2.4 × 107 1.1 × 107 1.7 × 107 2.7 × 107

6.2. Scalability. As already mentioned in Section 2, the analyses reported in this pa-
per are based on a subset of Milan’s street network that includes the most important road
types, since the majority of ambulance interventions were georeferenced on their proximity.
This may rise some concerns about the scalability of the proposed methodology, that is, the
ability of our procedure to maintain effectiveness when applied to a larger network if this
would be necessary under different circumstances. In the Supplementary Material (Gilardi,
Borgoni and Mateu (2024)), we summarise the results obtained when applying the statisti-
cal model detailed in Section 3 to a larger spatial network composed by 118,720 segments
covering 4636 km. It was created considering all road segments located in Milan that are
available from OSM servers. These additional analyses allow us to assess the robustness to
different spatial networks of the approach proposed in this paper for EMS data modelling
and prove the excellent scalability of the suggested methodology with large spatial domains.
More precisely, after downloading the network data from OSM servers, it took approximately
17 minutes to estimate the temporal model, the weight function, and the KDE in equation (3)
on the extended network. Although the extended network is more than two times longer than
the original one, the computational time required to perform the statistical analysis was def-
initely reasonable, as compared to the time requested, 10 minutes in total, to analyse the
data on the restricted network considered in the previous sections of this paper. In particular,
thanks to the fast Fourier transform algorithm adopted in the kernel estimator, fitting the sta-
tistical model on the two networks requires roughly the same computational effort. Further
details on these comparisons are reported in the Supplementary Material (Gilardi, Borgoni
and Mateu (2024)).

6.3. Use for policy interventions. Ambulance dispatch planning requires careful consid-
eration of a number of different factors, and the model proposed in this paper can support this
activity by providing an estimate of the potential demand for interventions in different parts
of the city network.

Hereinafter, we have considered how the analysis described in the previous sections may
help local EMS agencies to manage the ambulance rescue points. In fact, in the city of Milan
there are 42 locations (such as dedicated squares or parking spots) where the ambulances can
park during the day or the night while waiting for a request of intervention. As shown in
Figure 16, these rescue points are placed in strategic areas of the city network identified to
optimise access time to patients and provide good coverage of the territory of the city.

Using the model described in the previous sections, we are able to anticipate the pressure
that each of these stations would suffer in terms of requests for intervention on a given day.
We exemplified this point using the data collected between 2015-01-01 and 2017-12-31. We
fitted our model to the data and used it to simulate the locations of the ambulance inter-
ventions a few days ahead. We then calculated the minimum distance on the road network
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FIG. 16. Predicted pressure on the 42 ambulance stations of Milan for January 3, 2018.

between each simulated event and the closest ambulance station, assuming that this station
would be the one to be activated in order to provide the most efficient reaction. In this way we
were in the position to estimate the potential pressure on each station that is expected on the
considered day, where the potential pressure is calculated as the percentage of interventions
that are closer to this station than to any other station in the city. In order to compensate for the
simulation variability, we simulated 150 point patterns, using the fitted model, and averaged
the percentage over the performed simulations. The results are reported in Figure 16.

This information may allow the authorities to allocate some extra ambulance crews, if
available, to those stations that are expected to be exposed to high pressure or move ambu-
lances stationed on low-stress points there. Given the low computational time (the previous
simulations take only a few minutes), this analysis can be conducted on a daily basis to main-
tain an up-to-date intervention units system or at least to have a benchmark to compare the
spatial allocation of ambulance crews.

In addition, the model developed in this paper can be potentially adopted to evaluate how
efficient ambulance dispatches have been on a given day by comparing, retrospectively, the
actual pressure observed in the considered day to the one estimated using the approach de-
scribed above. We performed this analysis on October 1, 2017, finding only a mild agreement
between the two quantities: only eight of the top 15 stressed stations were in the top 15 pre-
dicted pressures. Although several other factors may impact on the observed pressure of a
given station in a certain day (e.g., rerouting of ambulances from/to other parts of the city or
temporary traffic jams occurring nearby the ambulance point or the location of intervention),
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discrepancies between potential and actual pressure may suggest a rethinking of the criteria
adopted for ambulance dispatches in order to speed up the service and improve its efficiency.

7. Conclusions. In this paper, we investigated the spatiotemporal distribution of approx-
imately 480,000 ambulance interventions that occurred in the City of Milan from 2015-01-01
to 2017-12-31. Unlike several previous approaches, we assumed that the emergency events
represent a realisation of a spatiotemporal point process occurring on a road network, that is,
a geolocated graph structure representing road segments and street junctions.

A preliminary exploratory analysis, summarised in Section 2, revealed that the temporal
evolution of the events presents several types of seasonalities due to hourly, daily, and weekly
patterns. We also observed the presence of space-time interactions in the hourly distribution
of the events, which motivated the adoption of a nonseparable statistical model. More pre-
cisely, after dividing the interventions into one-hour intervals, we assumed that, for each time
period, the ambulance dispatches represented a realisation of an NHPP on a linear network
with a nonseparable first-order intensity function. The temporal component was modelled via
a semiparametric Poisson regression with deterministic temporal covariates. Considering the
results of the exploratory analysis, the annual patterns were included with a linear term, while
the hourly and weekly trends were smoothed using cyclic cubic regression splines, whereas
the daily effects are included using dummy variables. The spatiotemporal component was
modelled by a weighted kernel estimator. The weights were used to capture the space-time
interactions of EMS data, trying to grasp the temporal regularities in the emergency interven-
tions and induce nonseparability into the spatiotemporal intensity.

We found that the temporal Poisson model fits the EMS counts well and the deterministic
temporal components successfully approximate the hourly, daily, and weekly patterns. The
weight function also adequately mirrors the temporal seasonalities displayed by the ACF
of EMS counts. The spatial and spatiotemporal dynamics were exemplified considering two
future time periods: 2018-01-03 at 03:00 and 2018-01-03 at 15:00. Our results highlight that
ambulance interventions are more spread in the municipality during the night, whereas they
tend to cluster in the city centre during working hours. In both cases the main train station, a
few popular squares, and a retirement house stand out.

The predictive accuracy of our proposal was tested using the relative risk function by com-
paring observed and predicted ambulance interventions for four different days. In all cases
the relative risk is concentrated around 0.5, implying that the model successfully predicts
future events. A series of Monte Carlo tests confirmed that conclusion.

Finally, we demonstrated that the approach proposed in this paper improves over the
methodologies previously adopted for modelling EMS data, taking into account both the
network structure of the spatial domain and the nonseparability of the spatiotemporal inten-
sity function. We also found that this approach scales well to very large networks, hence it
proves to be particularly suitable to manage real-world applications.

To conclude, we remark that the main challenges in this paper stem from the spatiotem-
poral dynamics and the specific spatial support of our data. First, the exploratory analysis
suggested an interaction in the spatial and temporal components, requiring a nonseparable
structure when modelling the ambulance intervention process. Second, the spatial nature of
the data also suggested that linear networks are the most appropriate spatial domain for mod-
elling EMS data. Third, the geographic region represents a large metropolitan area, and the
huge number of interventions required the adoption of fast statistical techniques. This latter
point may also imply that the spatial and temporal variability can be impacted by secondary
variables possibly measured both at the areal level (e.g., population density) and at the net-
work level (e.g., road types, traffic flows, commuting patterns, or other variables representing
specific anthropic activities at a given point of the network). However, the main purpose of
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this paper is the spatial and short-term temporal prediction of ambulance interventions, and
according to our experience, regionalised time-varying covariates are difficult to obtain at the
desired spatial and temporal levels, and their inclusion is scarcely impactful. Nevertheless, in
future works it might be desirable to develop parametric or semiparametric models that allow
the introduction of such explanatory spatial covariates in the intensity function. Furthermore,
it should be pointed out that some of the aforementioned variables are typically recorded only
at the areal level (e.g., census wards or traffic zones), and their inclusion in a network model
presents several layers of complexity. In fact, the projection of areal data into a linear network
may induce abrupt changes in the covariate (every time a segment intersects different areas)
or imprecise measurements, hence requiring further modelling care.

We point out that, considering the complexities detailed before, machine learning (ML)
methods (such as classification trees or neural networks) may represent a promising approach
to analyse spatial and spatiotemporal point patterns. However, to the best of our knowledge,
the literature is extremely scarce in this field, and only a few recent papers exist addressing
this aspect. For example, Yang et al. (2019) merge the theory of classical kernel density esti-
mation with variational autoencoders to develop a model for the analysis of spatial inhomo-
geneous Poisson processes. Mateu and Jalilian (2022) provide a mathematical framework for
coupling neural network models with the statistical analysis of planar point patterns focusing
on point processes with multiple groups observed for T ≥ 2 times, whereas Jalilian and Ma-
teu (2023) develop a Siamese neural network discriminant model to evaluate the similarities
between spatial point patterns obtaining superior performances than the classical statistical
tools (i.e., the K function). However, it should be noted that the deep learning methods in-
troduced in the aforementioned papers typically require that the point pattern is reduced to a
two-dimensional grid of cell counts that is treated as an image, that is, a set of pixel values;
hence, planar spatial support is assumed for the data. The adaptation of those techniques to
the analysis of linear network data requires substantial methodological improvements, which
are beyond the scope of this paper.

A further extension is to move towards statistical models that account for data clustering
following different routes, for instance, a double stochastic process, such as the Cox process
where a stochastic component is included in the intensity function to deal with the unex-
plained space-time variation. A natural solution, in this case, would be to adopt an inhomo-
geneous log-Gaussian Cox process (Møller, Syversveen and Waagepetersen (1998)), already
proposed for modelling ambulance interventions by Bayisa et al. (2020). However, moving to
the latter approach requires a substantial amount of methodological development since defin-
ing a proper covariance function for the stochastic component of the intensity function on a
linear network spatial support is not straightforward.
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