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Abstract: Monitoring the integrity of aeronautical structures is fundamental for safety. Structural
Health Monitoring Systems (SHMSs) perform real-time monitoring functions, but their performance
must be carefully assessed. This is typically done by introducing artificial damages to the components;
however, such a procedure requires the production and testing of a large number of structural
elements. In this work, the damage detection performance of a strain-based SHMS was evaluated on
a composite helicopter rotor blade root, exploiting a Finite Element (FE) model of the component.
The SHMS monitored the bonding between the central core and the surrounding antitorsional layer.
A damage detection algorithm was trained through FE analyses. The effects of the load’s variability
and of the damage were decoupled by including a load recognition step in the algorithm, which
was accomplished either with an Artificial Neural Network (ANN) or a calibration matrix. Anomaly
detection, damage assessment, and localization were performed by using an ANN. The results
showed a higher load identification and anomaly detection accuracy using an ANN for the load
recognition, and the load set was recognized with a satisfactory accuracy, even in damaged blades.
This case study was focused on a real-world subcomponent with complex geometrical features and
realistic load conditions, which was not investigated in the literature and provided a promising
approach to estimate the performance of a strain-based SHMS.

Keywords: fiber bragg grating sensors; structural health monitoring; artificial neural network;
composite structure; rotor blade; load monitoring

1. Introduction

This work was focused on the monitoring of a critical component, represented by
a composite helicopter rotor blade root, which requires complex and costly inspection
techniques. In the past, a feasibility study was carried out [1] that was aimed at assessing
the technology to embed optical fiber sensors in composite rotor blades. For this reason,
the scope of this work was to investigate the design methodologies and the potential
performances of an optical fiber-based Structural Health Monitoring System (SHMS) that
was applied to a composite rotor blade root as a completion of the technological activities
carried out in the past [1]. In the continuation of this introduction, some aspects related to
the optical fiber sensors, the criticalities of adhesive bondings, and the algorithms needed
to identify the potential damage were discussed.

Composite materials are widely used in the aerospace field since they exhibit good
performances in terms of high strength, stiffness, and low density. Optimal fatigue perfor-
mance in tension and the possibility of producing large monolithic parts without junctions
represent other appealing aspects motivating the adoption of composite materials for
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primary structural parts. Composite structures usually require complex manufacturing
procedures and a high manpower. The complexity of such manufacturing processes can
give rise to manufacturing defects [2–4], which can propagate in the structure during its
operational life [5–7], affecting the structural properties. Defects can be related to both the
fibers and matrix. In the first case, the instability of the fibers creates wrinkles during the
lamination phase [8,9]. In the second case, voids can nucleate in the matrix during the
curing cycle or can be trapped during the lamination [10,11]. Bondings are also subjected
to manufacturing defects like porosity [12,13], but also faulty curing and contamination
with release agents, de-icing fluid, or fingerprints can occur [14]. Such defects affect prop-
erties like adhesive strength and toughness up to a degradation below 50% [15,16]. In
some cases, it can happen that during the polymerization no chemical interaction occurs
between the adhesive and the bonded surfaces: this is known as a kissing bond, and in
this case, conventional Non Destructive Techniques (NDTs) cannot detect these defects
because material continuity is guaranteed. The measurement of local vibration nonlinear-
ity and acoustic microscopy demonstrated good detection performances [17,18] for this
purpose. NDTs can help detect defects or damages inside composite components [19–21]
but they have some drawbacks. First, they are able to inspect the structure only locally,
and second, usually the component must be disassembled from the aircraft’s structure
to be inspected, increasing the aircraft’s downtime with the consequent loss of revenue.
SHMSs, differently from NDTs, provide an on-line inspection of the structure without the
need to disassemble structural components, and they are able to monitor the structure in a
more diffuse area [22]. Nowadays, different types of SHMSs are studied, such as the ones
based on piezoelectric wafer active sensors, piezoresitive sensors, fiber Bragg grating (FBG)
sensors, and the ones based on comparative vacuum [23–25]. Overall, FBG-based SHMSs
seem to be particularly promising for the monitoring of composite structures as they can
be embedded and protected inside composite laminates [26], and the sensors can be used
to monitor the curing cycle [27,28]. Moreover, they are not affected by electromagnetic
disturbances, and they are characterized by a reduced weight [29–32]. FBG sensors are
characterized by some gratings inscribed inside the core of the optical fiber by means of
UV radiations. Gratings are formed by periodically changing the refractive index in a small
portion of the optical fiber. When the light passes through the grating, part of the light
spectrum is reflected, depending on the period of the grating, and this feature is exploited
for the strain sensing. Over the years, different techniques were developed to integrate FBG
sensors into composite laminates: they can be bonded over the laminate’s surface using
some sensorized ribbons, or they can be embedded inside the laminate [33]. The former
technique is easier; however, it has some drawbacks related to the sinking of the ribbon in
the laminate during the curing phase. The latter technique allows a better protection of the
sensors despite its higher complexity.

Many studies were presented in the literature regarding the implementation of SHMSs
using machine-learning tools [34,35]. For instance, in [36], the authors identified a damaged
welded structure by adopting an Artificial Neural Network (ANN) simulating a pristine
lamb wave signal, which was compared with the measured signal to detect the damage.
In [37,38], the performance of an SHMS based on an ANN for damage detection was
evaluated in a metallic, stiffened helicopter panel. In [39], a methodology for damage
detection in aerospace structures that was based on the Gaussian process was proposed.
In [40,41], a methodology for damage detection under variable loads was presented and
applied to a UAV composite wing. In [42], the Convolutional Neural Networks (CNNs)
were adopted for damage detection in the same type of structure.

The above-mentioned criticalities regarding the adhesive bondings, the potential of
the machine learning techniques, and the lack of research regarding the damage detection
performance on the connection between the blade and the rotor hub motivated the study
presented in this work. In fact, the geometrical complexity of the subcomponent, coupled
with the complexity of the loading scenario, may severely affect the damage detection
capability of an SHMS. This study demonstrates how a Finite Element (FE) model of the
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subcomponent can be exploited to define a procedure to train a load identification and
damage detection algorithm and to assess the performance of the SHMS, thus resulting
in a fundamental tool in the SHMS’s design. This approach was applied to a helicopter
blade root, which represents a critical subcomponent of the blade, as it shows a high
manufacturing complexity, thus increasing the probability to include manufacturing defects.
An experimentally validated FE model of the component was exploited to train an ANN-
based algorithm. Three versions of the algorithm were proposed, with the aim to detect
damages in the adhesive layer joining the central core and the external antitorsional layer
of the blade root. These versions adopted different strategies to recognize the applied loads:
such a step was needed to uncouple the variability in the strain field due to damages from
the one inherent to the variation of the applied loads. This work was divided into four
parts: in Section 2, the component under analysis was described, as well as its modeling
with FE and the model validation; in Section 3, the three versions of the damage detection
algorithm were presented, together with the methodology for the creation of the dataset to
train the ANN; in Section 4, the performances of the three versions of the algorithm were
investigated under different levels of noise; finally, in Section 5, the conclusions and main
findings were discussed.

2. The Description and Modeling of the Blade Root

2.1. Blade Root Description

The component was represented by a composite helicopter rotor blade root, which
is shown with the details including the internal features in Figure 1a, while in Figure 1b,
the blade root subjected to testing can be observed. Referring to Figure 1a, the following
colors were used to distinguish the main subcomponents: the color light green was used
for the central core, the color orange was used for the antitorsional layer, the color light
blue was used for the tapered antitorsional layer, and color red was used for the adhesive
layer. The component was characterized by a composite central core that was wrapped by
an antitorsional layer. The lamination sequence of the composite rotor blade root cannot
be disclosed for confidentiality reasons. Three passing-through holes were positioned in
the curved part of the blade root: one of them was located in the symmetry centre, and
the other two were located symmetrically to the central one. Consistent with the curved
part, additional layers of composite plies were co-bonded over the antitorsional layer:
this produced a tapering in the cross section, which is clearly visible in Figure 1a, colored
light blue.

 
(a) (b) 

Figure 1. Pictures describing the blade root: (a) blade root with details including its internal features;
(b) blade root subjected to testing in the test rig.

The antitorsional layer was connected to the central core by means of an adhesive
layer, which is depicted in Figure 1a, colored red, and represents the focus of this work,
since the SHMS was aimed at monitoring its structural integrity.

The following section describes the FE model of the blade root.
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2.2. Finite Element Model

The component was modeled with the software Simulia/Abaqus 2019, and the input
file was automatically generated through a Matlab® R2022b script. In Figure 2, the mesh
adopted for the component is shown, evidencing the three types of elements that were
adopted: hexahedral bricks, wedge elements, and cohesive elements (respectively, types
C3D8, C3D6, and COH3D8 in the solver code [43]). The antitorsional layer and the tapered
antitorsional layer were modeled ply by ply, with C3D8-type elements to correctly capture
the state of stress. The central core was modeled with both C3D8- and C3D6-type elements.

 

Figure 2. Meshing strategy adopted for the component: (a) the Finite Element model of the blade
root; (b) the curvilinear path of the central core; and (c) the cross section with detail of the mesh of
the corner region with C3D6-type elements.

As can be seen in Figure 2c, the C3D6-type elements were used only in the corners of
the central core in order to allow the proper meshing of the fillet region, while in all the other
locations, C3D8-type elements were adopted. The adhesive layer was modeled with the
COH3D8-type cohesive elements having a thickness of 0.1 mm. Their penalty stiffness was
set equal to the value calculated according to [44], considering, as the adherent thickness
was t, the thickness of the antitorsional layer. Equation (1) related the penalty stiffness of
the cohesive element to the out-of-plane stiffness and thickness of the adjacent layers:

K = α
E33

t
(1)

where K represented the normal penalty stiffness of the cohesive element and α represented
a constant which was set equal to 50, according to [44]. E33 represented the normal out-
of-plane modulus of the antitorsional layer. A total of 16 elements were used to mesh the
antitorsional layer through the thickness, while for the central core, 7 elements were used
along the cross section’s width, and 24 elements were used in the height of the cross section.
For the antitorsional tapered layer, a total of 5 elements were adopted through its thickness.
A characteristic element length of 3 mm along the curvilinear path was adopted.

The model of the component was introduced into a larger model representing the
blade when subjected to a fatigue test that was actually performed on a test rig; all the
components are shown in Figure 3 and are listed below:
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- Blade root: Representing the component to be monitored. Its meshing strategy was
presented in the previous subsection;

- Blade: Representing the part of the blade from the end of the blade root up to approxi-
mately half of the whole blade. The blade was modeled using C3D8I-type elements
having a characteristic length of 5 mm;

- Tabs: These elements were bonded to the blade and were needed to transfer the load to
the blade root. Tabs were modeled with C3D10-type elements having a characteristic
length of 10 mm;

- Bearing: A metallic element, which was representative of the connection of the blade
to the hub; the connection was implemented by three bolts passing through the holes
of the blade root. The bearing was modeled with C3D8R-type elements having a
characteristic length of 2.5 mm;

- Pitch arm: A metallic element that was bonded to the blade root and allows the
introduction of loads to rotate the blade around a pitch axis. The pitch arm was
modeled with C3D10-type elements having a characteristic length equal to 5.5 mm.

 

Figure 3. Blade root assembly: (a) blade root surfaces involved in the tie connection with the rest of
the blade; (b) surfaces of the rest of the blade involved in the tie connection with the blade root; and
(c) blade root assembly for testing.

A nonlinear static FE model was developed, in which the blade root was connected to
the rest of the blade with a tie interaction; the surfaces involved in such interactions are
shown in Figure 3a,b, highlighted in red color. Tabs were also connected to the blade with
a tie interaction, as well as to the pitch arm and to the blade root. A contact interaction
between the blade root and the bearing was modeled, introducing a friction coefficient
equal to 0.1.

2.3. Loading Scenario

The loads applied throughout this work were defined considering the load set that is
actually used to perform the fatigue testing for the blade certification, which in turn are
chosen to represent realistic load conditions for the rotorcraft blade. In the experiments, the
load set consisted of seven components that were applied through a proper test rig. In the
FE model, such loads were applied by using connector elements (type CONN3D2 [43]). A
description of the component of the load sets, as shown in Figure 4, is hereby provided:

- CF: centrifugal force, which was applied to the tabs;
- PL: force acting on the pitch link, which counterbalances the pitching moment;
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- LAT: lateral load, which was applied by the lag damper connected to the blade;
- CB1 and CB2: in-plane bending loads, introduced through the bearing and through

the tabs, respectively;
- BB1 and BB2: out-of-plane bending loads, introduced through the bearing and through

the tabs, respectively.

 

Figure 4. The constraints and load set applied to the blade during the testing in the test rig.

Table 1 describes the constraints applied to the structure, most of them consisting of
spherical hinges.

Table 1. Constrained degrees of freedom, referring to nodes A to L of Figure 4: 1–3 are translations in
axes x, y, and z; 4–6 are rotations around axes x, y, and z.

A B C D E F G H I L

1,2,3 1,2,3 2,3 1,2,3 1,2,3 1,2,3 2,3 2,3,4 1,2,3 1,2,3

It can be observed that all the loads were concentrated, and they were applied statically
to the model.

The analysis was performed in two steps: in step 1, a preloading of the bolts was
performed so as to establish the contact between the blade root and the bearing, while
in step 2, the external loads were applied to the blade. The load set applied, both in the
experiment and in the model, was representative of the forces applied to the blade during
its operational life.

2.4. Model Validation

The model was validated by performing an experiment, in which the blade was
loaded statically in a test rig with all the components of the load set shown in Figure 4. The
normalized value of each component is reported in Table 2. The load set was normalized
with respect to the value of BB1 for confidentiality reasons. Strains were sampled by the
strain gauges applied on the straight arms of the blade root, which are visible in Figure 1b.

Table 2. The load set for model validation, normalized with respect to BB1.

CF BB1 CB1 LAT PL BB2 CB2

122.27 1 7.5 12.2 3.3 1 −7.66
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The results of the validation of the nonlinear implicit model are presented in the
second column of Table 3, and they were normalized with respect to the strain gauge
number S7 for confidentiality reasons. The strain values were extracted from the FE model
in the centroid position of the elements located on the surface, corresponding to the position
of the strain gauges in the experimental set-up.

Table 3. Finite Element model validation with experimental data.

Strain Gauge Code

Nonlinear Implicit Model Linear Model

Difference %
100 × (Test Values − FEM

Strain Values)/Test Value S7

Difference %
100 × (Test Values − FEM

Strain Values)/Test Value S7

S1 −26.27 13.77
S2 −1.67 15.95
S3 −3.08 −4.82
S4 −2.05 −11.70
S5 0.17 −8.47
S6 12.2 27.42
S7 10.46 39.62
S8 −14.03 21.46
S9 3.33 6.23

S10 −4.38 10.99
S11 20.46 16.83
S12 5.28 20.99
S13 8.93 31.04
S14 −1.19 13.88

Considering the complexity of the component, the possible manufacturing defects, ge-
ometrical imperfections, and alignment imperfections in the tests, the pointwise correlation
between the numerical and the experimental strains can be evaluated as acceptable.

However, the scope of the model involves the accomplishment of a large number of
analyses in order to train and test the ANN that was used for the damage and load detection.
For this reason, it was deemed of primary importance to reduce the computational cost.
Consequently, the model was adapted to perform linear analyses. A linear model was
created, starting from the nonlinear one and removing the contact interactions. In particular,
the contact between the blade root and the bearing was removed and replaced with a tie
interaction. However, it was observed that the relative tangential motion that occurred in
the presence of the contact helped in reducing the shear stresses transmitted from the blade
to the bearing. A better representation of the real working condition was accomplished by
using a layer of cohesive elements (COH3D8 [43]) with a very low shear penalty stiffness
(70 N/mm3) so as to reduce the transmitted shear stresses, as occurs in the case of a contact
interaction. The cohesive elements were interposed between the bearing and the blade. The
normal penalty stiffness was set as equal to the value adopted for the adhesive interface.

The results of the linear model validation are shown in third column of Table 3. As it
can be observed, a non-negligible mismatch was identified between the linear model and
the nonlinear one. The reason for such a difference lies in the contact nonlinearity occurring
between the blade root and the bearing. Although this phenomenon was partially mitigated
by using a layer of cohesive elements with a low penalty stiffness in the linear model to
release the shear stresses transmitted through the contact, the behavior of the contact in
the out-of-plane direction could not be replicated. The percentage errors with respect to
the experiments are higher for the linear model. However, since the scope of this paper
was an evaluation of the performances of an SHMS applied to a real-world thick composite
element with complex geometrical features and in combined load conditions, the linear
model was considered an acceptable approximation of a real blade root. Indeed, for a real
application, a more detailed model identification has to be performed to make available
a high-fidelity model that is capable of correctly predicting the strain field evolution due
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to load variation and damage occurrence, so as to adopt it in the training phase of the
ANN algorithm development. This can be achieved by exploiting the high number of FBG
sensors embedded in the component during the manufacturing stage, which can be used
to validate the FE model on a higher number of points, not only located on the surface, but
also located internally. Once a high-fidelity model is obtained, modern high-performance
computing can certainly provide the resources for the application of the method to a fully
nonlinear model.

3. The Damage Detection Algorithm and Virtual SHMS Description

The damage detection procedure was characterized by three main steps [45]: (i) anomaly
detection, whose task was to detect the presence of damage, (ii) damage assessment, whose
task was to provide an estimation of the damage’s size, and (iii) damage localization, which
provided the information about the location of the damage on the component.

The main problem related to this specific application was that the strain field was
affected by the presence of damage and by the application of the load. In order to detect
a possible presence of damage, these two aspects were decoupled. Three versions of the
algorithm were evaluated and compared, considering their noise sensitivity and damage
detection performance. In this study, the SHMS was represented by virtual sensors, repre-
sented by elements of the FE model, and the strain was obtained by sampling the strain
values from the element located on the optical fiber path. For this study, the machine
learning toolbox of Matlab® R2022b was adopted.

3.1. Virtual SHMS for Strain Acquisition

As it was presented in the introduction section, this work was based on a previous
study [1], which investigated the technological feasibility of an SHMS based on FBG sensors
in a composite helicopter rotor blade. In that work, the authors adopted a customized
interrogation system, which was designed to withstand high accelerations because it was
mounted on the rotor hub to read the signal of 64 FBG sensors. In this work, to assess the
performance of the SHMS, a virtual sensing system was considered, embedded in the blade
root. Some of the elements of the FE model were supposed representing the FBG sensors:
one element was treated as one FBG sensor, since the characteristic length of the elements,
about 3 mm, was comparable to the possible length of a real FBG sensor. By taking the
strains at the centroid of the element, the obtained strain could be considered a measure of
the average strain in the FBG when located in the correspondent position. The strain values
were obtained by rotating the entire strain tensor of 45◦ and considering only the strain
component that was directed along the optical fiber path ε11 of the rotated tensor. Certainly,
the assumption behind this procedure is that the strain read by the sensor corresponds to
the strain of the host material; actually, the protective layer of the optical fiber can affect
the measure of the strain of the sensor [46,47]. This aspect was addressed in [1], where the
authors adopted a coating made of ORMOCER to guarantee a satisfactory adhesion to the
host material; therefore, in this work, a perfect strain transfer was assumed.

To be consistent with the technological aspects regarding the embedment of the FBG
sensors in a composite laminate, the virtual FBG sensors were supposed as belonging to six
virtual optical lines, with the paths shown in Figure 5a, colored red, while in Figure 5b an
example of optical fiber sensors integrated in a composite helicopter tail rotor blade can be
observed. The virtual optical fiber paths were considered located inside the antitorsional
layer, colored orange, at a distance of 0.25 mm from the adhesive layer.

A number of 10 virtual FBG sensors per optical fiber was considered, consistent with
the limitations provided by the multiplexing technique [48], so that a total of 60 virtual
FBG’s were employed in the SHMS. The virtual sensors were distributed equally spaced
along each optical fiber with a pitch equal to 42 mm, which is highlighted in Figure 5a.
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(a) (b) 

Figure 5. Virtual and real optical fiber-based sensors in a composite blade: (a) the virtual optical fiber
paths chosen in this work; (b) an example of optical fibers integrated in a helicopter tail rotor blade,
adapted from [1] with permission.

3.2. Damage Detection Algorithms

The basic strategy for damage detection was based on decoupling the effects of the
load application from the effects of the damage by first identifying the applied load set and
subsequently identifying the possible presence of damage. The assumption behind this
strategy was that the load set could be recognized with a satisfactory accuracy despite the
perturbation that the damage created to the strain field. This assumption was verified in
the next section.

The three versions of the algorithm differed only in the first stage, which was the load
identification step. In version #1, the load identification was performed with the ANN
trained only on FE analyses of the blade in pristine configurations, while in version #2, the
load identification was performed with the ANN trained on FE analyses of the blade in
pristine and damaged configuration. In both version #1 and version #2, the identification
of the load was performed using an ANN for regression. The architecture of this ANN,
hereafter named as ANN 1, was characterized by three layers, each one composed of
10 neurons. Of the dataset, 70% was used for the training, 15% for validation, and the
remaining 15% for testing. More details about the architecture and the training parameters
are reported in Table 4.

Table 4. Artificial Neural Network architectures and training parameters.

ANN
Name

Type
Node

Number
per Layer

Number
of Hidden

Layers

Training
Function

Dataset Partition
[Training/

Validation/Test]

Activation
Function

Input Target

ANN
1 Regression 10 3

Levenberg–
Marquardt

backpropaga-
tion

[70/15/15]
Hyperbolic

tangent
sigmoid

Strain at
sensing points

Load
components

ANN
2

Pattern
recogni-

tion
10 3

Levenberg–
Marquardt

backpropaga-
tion

[70/15/15]
Hyperbolic

tangent
sigmoid

Damage
indexes at

sensing points

Blade’s state of
integrity

(0 = pristine,
1 = damaged)

ANN
3 Regression 10 2

Levenberg–
Marquardt

backpropaga-
tion

[70/15/15]
Hyperbolic

tangent
sigmoid

Damage
indexes at

sensing points

Damage position
and damage size

The ANN 1 took in input of the strain values of the sensors and provided an output of
the identified load set. In version #3, the load identification was performed by finding the
load set from the strain measures computing the pseudo-inverse of the calibration matrix.
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Actually, the solution to the problem of the load set is known to be particularly affected by
the bad conditioning of the system [49]. The load identification, assuming a linear response
of the model, was based on Equation (2), which related the vector of the applied load set to
the strain values acquired at the sensor position:

⎧⎪⎨
⎪⎩

ε1
...

εm

⎫⎪⎬
⎪⎭

=

⎡
⎢⎣

K11 · · · K1n
...

. . .
...

Km1 · · · Kmn

⎤
⎥⎦

⎧⎪⎨
⎪⎩

P1
...

Pn

⎫⎪⎬
⎪⎭

(2)

where {ε} represented the vector containing the strain values of each sensor, [K] represented
the calibration matrix obtained by the FE model, and {P} represented the load vector. The
size of matrix [K] was m × n, where m represented the number of strain sensing points, and
n represented the number of load components. Accordingly, the size of {ε} was m × 1, and
the size of {P} was n × 1. Consistently with the assumption of the negligible effect of the
damage on the overall strain field involved in load identification, the calibration matrix
[K] was calculated on the blade in pristine condition. The load set was then identified by
computing the pseudo-inverse of the calibration matrix, presented in Equation (3).

{P} =
(
[K]T [K]

)−1
[K]T{ε} (3)

where {P} represented the load set to be identified, and [K]T represented the transposed
values of the calibration matrix [K]. Table 5 shows a summary of the load identification
methodologies for all the three versions of the algorithm.

Table 5. Load identification methodologies for the three versions of the algorithm.

Algorithm Version Load Identification Methodology

Version #1 ANN trained only on blade in pristine conditions
Version #2 ANN trained on blade both in pristine and damaged conditions
Version #3 Solution of inverse problem finding load set {P} using Equation (3)

Once the load set was identified, regardless of the algorithm’s version, Equation (2)
was used to calculate the nominal strain values that would be provided by the sensors
for the identified load condition with the blade in pristine condition. Such a process
represented a simplification that was allowed by the linearity of the model. If the nonlinear
model had to be considered, the architecture of the damage detection process would not
change, but the strains would need to have been evaluated through a nonlinear analysis
performed with the identified load set. By comparing the calculated strain on the notional
model and the actual strain read by the sensors, it was possible to define a damage index
for each sensor that was representative of the structural integrity of the blade; the proposed
damage index was reported in Equation (4).

damage indexi =
(

εcalculated
i − εmeasured

i

)2
(4)

where εi
calculated represented the strain value of the ith sensor calculated using Equation (2),

while εi
measured represented the strain value measured by the sensor. An ANN for pattern

recognition was then adopted to detect the presence of damage based on the damage
indexes previously calculated; the ANN took in input the vector of the damage indexes
and provided a scalar output which was compared to a threshold value. The blade was
considered damaged if the output exceeded a predefined threshold. If damage was detected,
the next step of the algorithm was related to the identification of the damage’s dimension
and its location [45]. To perform this task, an ANN for regression was adopted.

All the versions of the algorithm were trained, validated, and tested by adding Gaus-
sian noise with a zero mean and standard deviation equal to 1%, 2%, 4%, or 6% of the
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nominal strain value provided by the sensor (in this case, from the strain sampled from the
FE model). For all the versions of the algorithm, the anomaly detection was performed with
an ANN for pattern recognition, hereafter named ANN 2, whose architecture is described
in Table 4. The damage assessment and localization were performed with an ANN for
regression, hereafter named ANN 3, whose architecture is described in Table 4. ANN 3
took in input of the damage index pattern and provided an output of the damage’s size
and location. Regarding ANN 2 and ANN 3, 70% of the dataset was used for the training,
15% for validation, and the remaining 15% for testing.

The architecture for each ANN was chosen based on preliminary studies aimed at
identifying the configuration providing better quality results; this operation led us to use
three hidden layers for ANN 1 and ANN 2 and two hidden layers for ANN 3. The flow
diagrams of the damage identification algorithm are presented in Figure 6 for each of the
algorithm’s versions. In this case, Figure 6a refers to both version #1 and version #2, since
the only difference between them was related to the condition of the blade on which the
ANN 1 was trained.

(a) (b) 

Figure 6. Flow diagrams of the damage detection algorithms: (a) Damage detection algorithm
diagram for version #1 and version #2; (b) damage detection algorithm diagram for version #3.

3.3. Virtual Dataset Creation and Training

The most important interfaces in the blade root were the ones represented by the
adhesive joints. These were critical because they were obtained through secondary bonding
or co-bonding processes, involving parts that had been already cured. It was exactly for
this reason that attention was focused on such interfaces, simulating damages that could
be originated during manufacturing, which can propagate during the operational life of
the helicopter.

To create the virtual datasets to train and test the ANNs, different FE analyses were
performed, introducing damages during the generation of the analysis’ input file that
deleted the cohesive elements that were included in a space described as a sphere that
was located on the surface of the adhesive layer to be monitored. Such damages were
introduced in 40 different locations on the adhesive: in detail, referring to Figure 7a,
damages were introduced in four locations equally spaced along the cross section coordinate
and 10 locations equally spaced along the curvilinear path. Only one damage per FE
analysis was created in the adhesive. It must be specified that, for each combination of
a curvilinear path coordinate and a cross section coordinate, nine damage dimensions
were analyzed, having the following sizes: 3, 6, 9, 12, 15, 18, 21, 24, and 30 mm. A total
of 360 damage scenarios were considered in this study, resulting in the combination of
10 damage locations in the curvilinear path coordinate, 4 damage locations in the cross
section coordinate, and 9 damage dimensions. Figure 7a,b shows an example of damage
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of 30 mm diameter, located at 44.44% of the curvilinear path, and at 50% of the cross
section coordinate.

 
(a) (b) 

Figure 7. Damage introduction in the FE model; (a) the coordinate system for damage introduction
and an example of damage of diameter 30 mm, located at 44.44% of the curvilinear path, and 50% of
the cross section coordinate, better shown in (b).

To create a dataset considering different load conditions and to limit the number of FE
analyses to be performed, the linearity of the FE model was exploited. A calibration matrix
was calculated for each damage size and position, performing an FE analysis by applying
one unitary load per time. Once the calibration matrices were obtained (each one specific
for damage size and position), different strain fields were obtained by multiplying the
calibration matrix by the load condition, representative of the operational loads. Two load
sets were considered to create the training dataset, hereafter named as load set A and load
set B, each one varying according to the following laws, represented in Equation (5) and
Equation (6) for load set A and load set B, respectively. The form of these equations follows
the variation of loads used in the fatigue testing of the blade, mentioned in Section 2.3,
which in turn were defined considering the real load conditions experienced by the blade.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF = 122.27
BB1 = 0.67 + 0.33sin θ
CB1 = 6.1 + 1.4 sinθ

LAT = 8.89 + 3.33sin θ
PL = 2.22 + 1.11sin θ

BB2 = 0.67 + 0.33sin θ
CB2 = −6.11 − 1.55sin θ

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF = 106.24 + 106.24sin θ
BB1 = 0.88 + 0.88sin θ

CB1 = 6.66 + 6.66sin θ
LAT = 8.89 + 8.89sin θ

PL = 2 + 2sin θ
BB2 = 0.88 + 0.88sin θ

CB2 = −7.22 − 7.22sin θ

(6)

To generate realistic load conditions for the ANN training, the parameter θ was varied
in the range 0 ÷ 2π, thus generating 100 evenly spaced load conditions, varying CF, BB1,
CB1, LAT, PL, BB2, and CB2, which represent the load components presented in Figure 4.

It is worth remarking that also in the former equations, loads were normalized with
respect to the maximum peak value of BB1 of load set A for confidentiality reasons. The
normalization is the same as the one adopted for the loads presented in Table 2, referred to
as the experimental load scenario. By applying Equations (5) and (6), a total of 200 load
conditions were generated. It must me remarked that to generate the training dataset,
the load components were applied together to the model, such as to obtain a realistic
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load condition in which the blade was subjected to the superposition of different type of
loads, which were chosen to represent an approximation of the operational conditions as
explained at the beginning of Section 2.3.

For the stage of load identification, in version #1, the training of ANN 1 was performed
on 70% of a dataset made of 8000 load conditions and was obtained by repeating 40 times
the 200 load conditions and adding Gaussian noise. Considering the dataset for the ANN 1
of version #2, the same number of load conditions for pristine and damaged conditions
were considered, each one composed of 8000 load conditions. The input of ANN 1 was
represented by the strain acquired at the sensor location and the output was represented by
the identified load set.

Considering the dataset for the ANN 2, the latter was equally divided in two sub-
sets; one of them was characterized by only pristine conditions and the other one was
characterized by only damaged conditions, obtaining a balanced dataset, as suggested
in [38]. Each of the 200 load conditions was combined with the 360 damage scenarios,
obtaining a dataset made of 72,000 damage index patterns. The same number was then
produced with the blade in pristine condition by repeating each load condition 360 times,
adding Gaussian noise, and calculating the related damage index patterns. The input of
ANN 2 was represented by the damage indexes calculated for each sensor, according to
Equation (4), and the output was represented by a scalar value between 0 and 1. The blade
was then classified as pristine or damaged, depending on the chosen threshold value.

Considering ANN 3, the related dataset was made only of damaged conditions,
therefore, only the part of the dataset of ANN 2 related to the damaged conditions was used
to train and test ANN 3: this dataset was then divided into training/validation/testing,
according to the partition presented in Table 4. The input of ANN 3 was characterized by
the damage index pattern, as it was for ANN 2, and the output was represented by the
estimated position and the damage size.

In this case, the baseline was represented by a pristine blade root, without any defect in
the adhesive layer; however, in some cases, the presence of manufacturing-induced defects
can modify the baseline. The presented approach can also be applied in this scenario,
provided that the analyzed “damaged cases” are consistent with the possible evolution of
the initial defect.

4. Results

In this section, the results of all the algorithm versions are presented in terms of load
identification, anomaly detection, damage assessment, and localization. The performances
of all the versions of the algorithm were assessed for different noise levels, namely 1%, 2%,
4%, and 6%. Since the dataset was divided randomly for training, validation, and testing,
in order to obtain a more reliable estimation of the performance of the algorithm, the results
were averaged for 10 algorithm runs.

4.1. Example of Damage Identification

In this subsection, an example of damage identification was provided to better clarify
the process through which damage was identified in the blade root. The example hereby
considered consisted of two different blade roots, one without damages and the other one
having damage of 30 mm size, located at a 33.33% of the curvilinear coordinate, and at
49.95% of the cross section coordinate, according to the coordinate systems presented in
Figure 7a. The same load set was applied to both the damaged and undamaged blade
roots, whose values were reported in the first row of Table 6, normalized with respect to
the load component BB1 for confidentiality reasons. In Figure 8, the strain field contour can
be observed for the case of a pristine blade root, presented in Figure 8a, and a damaged
blade root, presented in Figure 8b. A difference in the contour can be observed in the red
circle, where the damage was introduced, in Figure 8b.
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Table 6. The applied and identified load set in version #1 of the algorithm with 2% Gaussian noise
level in the cases of a pristine blade and a damaged blade root. The load set was normalized with
respect to BB1.

CF BB1 CB1 LAT PL BB2 CB2

Applied load set 149.34 1.00 8.27 12.71 3.33 1.00 −8.33
Identified load set Pristine blade root 149.30 1.00 8.30 12.79 3.38 1.01 −8.36

Identified load set Damaged blade root 149.41 1.04 8.31 12.73 3.48 1.04 −8.39

 
Figure 8. An example of a strain field in the blade root: (a) strain γ12 field in a pristine blade root;
(b) strain γ12 field in a damaged blade root. Both of them were subjected to the same load condition,
presented in Table 6.

In this example, version #1 of the algorithm was considered with 2% of Gaussian noise
on the strain data. The identified load set, recognized using ANN 1, can be observed in
the second row of Table 6 for the pristine blade root, while in the third row, the load set
recognized in the damaged blade root can be observed. It can be seen that the load set was
slightly better recognized in the pristine blade root. The input of ANN 1 was represented
by the strain field obtained by the 60 virtual FBG sensors, and the output was characterized
by the seven load components of the load set.

According to the procedure previously described, and depicted in Figure 6a, the
anomaly detection step was accomplished. Therefore, a damage index pattern was calcu-
lated for each virtual FBG sensor on the basis of the identified load set using Equation (4).
The calculated damage index pattern was then given as the input to ANN 2, whose task
was to detect the presence of anomalies. The output of ANN 2 was represented by a scalar
value between 0 and 1, where 0 represented the target for the pristine blade root, while 1
represented the target for the damaged blade root. In this example, the following outputs
of ANN 2 can be observed for the pristine and damaged blade root:

• Output of ANN 2 for the pristine blade root = 0.26;
• Output of ANN 2 for the damaged blade root = 0.99.

In this example, a threshold equal to 0.5 was chosen, above which a blade root was
considered as damaged, while a value below 0.5 was considered pristine. According to this
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choice, the damaged blade root was correctly classified as damaged, and the pristine blade
root was correctly classified as pristine.

Once the anomaly detection step was accomplished, the next step consisted of the
damage assessment and localization, which were performed using ANN 3. According
to the Rytter’s hierarchy [45] this step needs to be accomplished only if a structure was
classified as damaged in the step of anomaly detection; therefore, only the damaged blade
root was considered in this example. The size and position of the damage were estimated
by ANN 3, whose input was represented by the damage index pattern, and the output was
represented by the size, the curvilinear coordinate, and the cross section coordinate of the
damage. The results were reported in Table 7, where in the first row the actual values of
damage size and position were presented, while in the second row, the size and position of
the damage as estimated by the algorithm were presented.

Table 7. The real and estimated size and position of the damage for the damaged blade root.

Damage Size
(mm)

Curvilinear
Coordinate %

Cross Section
Coordinate %

Real values 30 33.33 49.95
Predicted from the algorithm 21.46 30.95 44.75

An example of damage identification was provided in this subsection, which aimed to
better understand the results obtained in the next subsections, in which the performances
of the different versions of the algorithm were assessed and compared on a wider range of
load sets, damage sizes, and positions.

4.2. Load Identification

The results regarding load identification for algorithm version #1 and version #2 are
provided in Figure 9, in which the average error was calculated for each load component.
Moreover, a comparison between the identified loads on the pristine and damaged blades
is shown. The error was normalized with respect to the maximum magnitude of each
load component.

Figure 9. The mean percentage error of load identification for algorithm version #1 and version #2 for
(a) 1% Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise.

As expected, the error for all the load components increased as the noise level increased.
For example, an increase in the maximum mean error of 0.27% for the PL load component
with 1% noise level to a maximum average error of 0.76% for the same load component with
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a noise level of 6% was identified. It can be observed that in all the cases, the error related
to the damaged conditions was higher than the one obtained for the pristine condition,
but this difference decreased when the noise level increased This is clearly observed in
Figure 9d, where the noise level reached 6%: a possible explanation for this behavior
is related to the fact that damage perturbs the strain field locally, with an effect that is
comparable to the effect of the noise. So, as the noise level was increased, it tended to
cover the effect of the damage. In the comparison between the algorithm’s versions, it can
be observed that version #1 of the algorithm provided a higher difference between the
errors in the pristine and damaged conditions than version #2; however, these differences
decreased by increasing the noise level.

In Figure 10, the mean percentage error of load set identification for version #3 of the
algorithm is shown. As already mentioned, the loads were obtained by solving for the load
set {P}, as in Equation (3). Errors related to the load components CB2 and LAT were not
reported because they were off-scale for the plot: the error was 5 to 20 times the maximum
magnitude of the loads. Regardless, their contributions to the strain fields were verified to
be one order of magnitude lower than the other loads that were acting on the blade; this
may be the reason for such high errors.

Figure 10. The mean percentage error of load identification for algorithm version #3 for (a) 1%
Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise. Load
components CB2 and LAT were not reported because they were off-scale, accordingly, the notation
N.A. was added to the figures.

The same behavior for version #1 and version #2 of the algorithm was observed. By
increasing the noise level, the error increased as well; moreover, for all the noise levels and
for all the load components, the damaged configuration provided higher errors. It was
interesting to observe that, also in this case, by increasing the level of noise, the difference
between the errors in the pristine and damaged conditions were reduced. However, the
load identification method of version #3 provided worse results than version #1 and version
#2 of the algorithm: the load set identification by means of the ANN 1 revealed itself to be
much more effective with respect to solving the inverse problem for the load set {P}, as in
Equation (3).

4.3. Anomaly Detection

The effectiveness of the algorithm to detect the possible presence of damage was
evaluated considering the Receiver Operating Characteristic (ROC) curves, which allowed
for the expression of the Probability Of Detection (POD) function of the Probability of False
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Alarm (PFA), varying the threshold over which a structure was considered as damaged.
Such a criterion was chosen as it allows for evaluating how much the algorithm is able
to distinguish a damaged blade from a pristine blade. In fact, this is a key aspect in the
cost effectiveness of SHMSs, which have to maximize the POD while minimizing the
PFA. The ROC curves were derived for all the noise levels (1%, 2%, 4%, and 6%) for each
damage dimension and considered all the three versions of the algorithm. The preliminary
results suggested that the algorithm was not sensitive to small damages, as the related
ROC curves were positioned on the no-performance line: the diagonal of the ROC plot that
represents a random classifier. To improve the detection performances for high damage
dimensions, since no performance was obtained with lower ones, the ANN 2 was trained
not considering the damages with smaller sizes, like 3 mm, 6 mm, and 9 mm, as suggested
in [38], maintaining the same dataset partition between pristine and damaged cases. The
POD and PFA were calculated according to the “HIT/MISS data” method presented in [50].
The POD was calculated considering damaged conditions and counting the number of
times that the output of the ANN 2 exceeded the threshold value. This was then divided
by the total number of damaged conditions and analyzed by the ANN 2, as reported in
Equation (7).

POD =
TP

TP + FN
(7)

where TP represented the True Positives (damaged conditions classified as damaged) and
FN represented the False Negatives (damaged conditions classified as pristine); their sum
gave the total number of damaged conditions analyzed by the ANN 2.

The PFA was calculated considering instead pristine conditions, the number of times
that the output of the ANN 2 exceeded the threshold value was divided by the total number
of pristine conditions analyzed by the ANN 2, as reported in Equation (8).

PFA =
FP

FP + TN
(8)

where TN represented the true negatives (pristine conditions classified as pristine) and
FP represented the false positives (pristine conditions classified as damaged), their sum
represented the total number of pristine configurations analyzed by the ANN 2.

The ROC curves were then obtained by calculating the POD and the PFA, varying the
threshold value from its minimum to its maximum value: in this specific case, between 0
and 1.

In Figures 11–13, the ROC curves for version #1, version #2, and version #3 of the
algorithm, respectively, are shown.

As can be observed, the damages with a higher dimension were more likely to be
detected: their curve is in the upper-left side of the plot. The damages with lower dimen-
sions, like 3 mm, 6 mm, and 9 mm, could not be identified by any one of the versions of
the algorithm: their curve is on the no-performance line corresponding to the segment
connecting the axis origin to the point (1,1). As was expected, by increasing the level of
noise, the algorithm decreases its performance, reducing the POD for the same PFA. Version
#1 and version #2 of the algorithm seemed to provide comparable results in the anomaly
detection, while version #3 of the algorithm provided lower performance.

In fact, especially for small values of PFA (where the optimal threshold should be
chosen), the POD showed very small values compared to version #1 and version #2 of
the algorithm.
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Figure 11. Receiver Operating Characteristic curves for algorithm version #1, obtained with (a) 1%
Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise.

 

Figure 12. Receiver Operating Characteristic curves for algorithm version #2, obtained with (a) 1%
Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise.
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Figure 13. Receiver Operating Characteristic curves for algorithm version #3, obtained with (a) 1%
Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise.

4.4. Damage Assessment and Localization

Once the presence of damage was detected, the subsequent step was related to its
assessment and localization. Indeed, these two steps provided information that was useful
for decision making. For instance, depending on the estimated damage size, a fast decision
can be made about repairing or substituting the blade, without the need to inspect the
blade with NDT. The localization of the damage allows an automatic identification of its
position, making possible the evaluation of the effects of the damage in that specific point
of the structure.

The ANN 3 was trained only on damaged configurations: damage size and position
were given together to the ANN 3 as preliminary studies revealed that no improvement
would be obtained by using two different ANNs for damage assessment and localization.
In Figure 14, the plot of the real damage size and the estimated damage size is shown for
all of three versions of the algorithm and for each level of noise. The dashed line colored in
purple represented the theoretical behavior that the algorithm should have. As its angular
coefficient is one, it means that for each real damage size the algorithm should provide
exactly that one. The higher is the performance of the algorithm, the more its behavior is
close to the theoretical one.

For damages with a reduced size, it can be seen that the algorithm overestimated
the damage size, maintaining an estimation of about 15 mm; such behavior was observed
for real damage that was sized below 15 mm. As the real damage size increased above
15 mm, the algorithm seemed to provide a more accurate estimation of the size of the
damage. Regardless, the behavior was still far from the theoretical behavior. No significant
differences existed between the three versions of the algorithm; it seemed that version #2
provided slightly better results than the others; however, this difference seemed to be very
low. The main factor affecting the performance of the algorithm was represented by the
noise level: as the noise level increased, the algorithm seemed to become less sensitive to
the size of the damage. In particular, it was observed that the slope of the curves decreased
as the noise level increased. Moreover, it seemed that the noise affected all the versions of
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the algorithm in the same way. The low sensitivity to the damage size may be due to the
relatively low effect that damage in the adhesive produces. Indeed, the central core was
much stiffer than the antitorsional layer. Therefore, a disbonding has little influence on the
strain field and, consequently, the damage size estimation resulted to be difficult. Moreover,
the presence of other structural elements like the pitch arm and the bearing contributed
locally to increase the stiffness of the blade root, making the estimation of the damage size
even more difficult.

 
Figure 14. Damage quantification obtained for all the three versions of the algorithm with (a) 1%
Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise.

The performances of damage localization are presented in Figure 15, expressed in
terms of the mean percentage errors related to the cross section and curvilinear coordinates
that were represented in Figure 7a. The percentage error was calculated considering, for
each of the two coordinates, the absolute value of the difference between the real damage
coordinate and the damage coordinate estimated by the ANN 3. The coordinates were
expressed in percentage of the total length.

It was interesting to observe that for small damage dimensions, the localization error
for both the coordinates was slightly affected by the level of noise, and it maintained a value
of 28% and 25% for the curvilinear and cross section coordinates, respectively. Moreover,
for small damage sizes, the performances of all the versions of the algorithm seemed to
be similar. As the dimension of the damage increased, the error decreased for both the
coordinates, and the algorithm seemed to provide lower performances as the noise level
increased. In fact, it can be observed that for a damage size of 30 mm, the error for the
cross section coordinate passed from 10–11% with a noise level of 1% to an error of 19%
with a noise level of 6%. In general, no significant differences existed between the three
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versions of the algorithm, especially for low levels of noise. Overall, version #3 seemed
to provide slightly higher errors for the curvilinear coordinates for higher levels of noise,
while version #1 and version #2 exhibited similar behavior. The oscillation of the blue
dashed line, corresponding to the curvilinear coordinate and version #3 of the algorithm
observed in Figure 15d, can be explained considering the low sensitivity of the algorithm
to small damage sizes. For instance, in the region from 3 mm to 12–15 mm, the Gaussian
noise affecting the data played a more relevant role compared to higher damage sizes, thus
leading to oscillations in a region where, for low noise levels, the curve was flat.

 
Figure 15. The percentage error in damage localization obtained for all three versions of the algorithm
with (a) 1% Gaussian noise, (b) 2% Gaussian noise, (c) 4% Gaussian noise, and (d) 6% Gaussian noise.

Figure 16 represents a comparison between the strain field distribution in a damaged
and an undamaged blade root. The elements represented are related to the ply containing
the virtual optical fibers. Considering the size of the damage, which was, in this case, equal
to 30 mm, it should be observed that the strain distribution was almost not affected by the
presence of the damage.

Only one strain component seemed to be influenced by the presence of the damage,
which is represented in Figure 16h, and it was the out-of-plane shear γ13; however, such
a strain component is particularly difficult to measure with an FBG sensor, as they are
sensitive to the deformation along the optical fiber path.
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(a) 

 

(b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 16. Strain field distribution in the elements’ local reference system of pristine blade root and
damaged blade root, with a damage of 30 mm diameter, located at 50% of cross section coordinate,
and 22.22% of curvilinear path coordinate, corresponding to the red circle: (a) ε11 pristine, (b) ε11

damaged, (c) ε22 pristine, (d) ε22 damaged, (e) γ12 pristine, (f) γ12 damaged, (g) γ13 pristine, (h) γ13

damaged, (i) γ23 pristine, and (j) γ23 damaged.

5. Conclusions

The performance of an SHMS was evaluated on a composite rotor blade root that was
subjected to a variable loading condition. The component was modeled with FE, and the
elements located on the path of the virtual optical fibers were supposed by providing the
strain read by the FBG sensors. The FE model was previously validated with experiments
of loading the blade root in a test rig and applying seven different loads that were rep-
resentative of the real operational conditions. Damages of different dimensions and in
different positions were introduced in the adhesive layer between the central core and the
antitorsional layer. An algorithm based on ANN was proposed to identify the presence
of damages under variable loading conditions. Three different versions of the algorithm,
which differed in the way that the load set was identified, were compared in terms of their
damage detection performance.

Overall, the following conclusions can be drawn at the end of this study: (i) Including
only pristine conditions in the training of ANN 1, as was done for version #1 of the
algorithm, was sufficient to obtain satisfactory load identification results, while including
also damaged conditions, as was done for version #2, did not provide clear benefits.
(ii) Recognizing the load set with ANN 1, corresponding to version #1 and version #2 of the
algorithm, provided a higher load identification quality compared to using the calibration
matrix method, the latter corresponding to version #3 of the algorithm. (iii) The quality of
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the load recognition step had paramount relevance in the anomaly detection step. Therefore,
versions #1 and #2 of the algorithm showed higher anomaly detection performances than
version #3. In fact, considering the same PFA, version #1 and #2 provided a higher POD
than version #3. (iv) The algorithms have become sensitive to the damage size for a
characteristic dimension bigger than 15 mm, and all the algorithm’s versions showed
similar performances in the damage assessment and localization step. (v) The effects of
damage in the adhesive layer generated very little effect on the strain field, in particular,
only the out-of-plane shear strain was influenced.

This study was based on a previous work, which was aimed at assessing the feasibility
of an FBG-based SHMS on a helicopter rotor blade, and it demonstrated the feasibility
of an SHMS on a real-world component subjected to a complex loading condition. The
obtained results provided the procedure for the preliminary design of a strain-based SHMS
and allowed for the reduction of the number of blades and tests needed to assess the
performance of an SHMS on such a complex structural element.

This work was limited to the hypothesis of model linearity. However, the contact
interactions between the blade root and the bearing represented a source of nonlinearity.
Future works will be needed to validate the performance of the algorithm with experimental
tests, especially to evaluate the effects of the nonlinearity of the problem. Moreover,
experiments should be performed by embedding some layers of non-adherent material to
replicate a real delamination to assess the modeling of the damage, which in this work was
addressed by deleting the cohesive elements of the adhesive layer. A more complex damage
scenario should also be investigated, for instance, including damage in the antitorsional
layer and/or in the central core. Due to the large number of FBG sensors contributing to
a cost increase, a cost–benefit analysis needs to be performed to evaluate the economic
impact of the SHMS on the lifecycle of the blade.
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