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Harmonic Synchrophasors Measurement Algorithms 

with Embedded Compensation of Voltage 

Transformer Frequency Response 

Abstract— The widespread diffusion of nonlinear power 

electronics-based devices in distribution grids has raised the 

interests towards power quality monitoring. In this respect, the 

estimation of synchronized harmonic phasors would enable the 

employment of algorithms that allow identifying the sources of 

harmonic disturbances, which, until now, have been only tested 

through numerical simulations or implemented in small-scale. 

However, the impact of the uncertainty due to the employed 

voltage transformers and to the other devices that compose the 

measurement chain has to be analyzed. In this framework, the 

present paper proposes a class of harmonic synchrophasor 

estimation algorithms that allows compensating the frequency 

response function of the instrument transformer. The 

technique has been tested and validated under realistic 

conditions considering an inductive voltage transformer. 

Experimental results highlight its effectiveness, especially when 

taking into account its ease of implementation. The black-box 

approach allows abstracting from the operating principle of 

the voltage transducer. 

Keywords—Instrument transformers; Synchronized 

measurements; Voltage transformers; Harmonics; Measurement 

uncertaninty 

I.  INTRODUCTION 

Nowadays we are experiencing a drastic increase of 
power electronics components in ac distribution grids. 
Technological advancement has dramatically improved the 
performance of semiconductor devices; as a result, the 
number of loads connected to the grid through power 
electronics converters is continuously rising. On the other 
hand, most of the generators from renewable sources, such as 
wind turbines and photovoltaic plants, must be connected by 
means of proper interface converters. Their nonlinear 
behaviour introduces harmonic disturbances in voltage and 
current waveforms. 

Harmonic pollution represents one of the most severe 
power quality (PQ) issues [1], since it produces additional 
losses (thus resulting in increased heating and lower 
efficiency), accelerates aging of materials and may trigger 
resonances with potentially harmful consequences. For this 
reason, the interest towards harmonic monitoring and 
harmonic state estimation [2]-[4] has recently increased. 
Reconstructing the harmonic state of the grid would permit 
identifying disturbing devices [5]-[7] as well as studying 
possible remedies. However, reliable and time-tagged 

harmonic measurements are required for the purpose. In this 
context, recent papers have extended the concept of 
synchrophasor [8] (initially intended for the fundamental 
term) to the harmonic components, thus leading to the 
concept of harmonic synchrophasor [9]. 

The outcome of the harmonic state estimation strongly 
depends on the quality of the input data, thus on the accuracy 
of the measured harmonic synchrophasors. A significant 
uncertainty contribution may come from the algorithm 
employed to extract the phasors; for example, it may suffer 
from spectral leakage under off-nominal frequency 
conditions or accuracy may be degraded by measurement 
noise. Furthermore, it should be noticed that voltage and 
current signals are measured by means of instrument 
transformers (ITs), which convert the electric quantities into 
voltage signals that have to be properly acquired and 
processed; these ITs add significant uncertainty to the overall 
measurement result [10]. For example, let us consider 
harmonic voltage measurements in medium voltage 
distribution grids: conventional inductive voltage 
transformers (VTs) are widely employed to this purpose, 
although their metrological performance is guaranteed only 
at the fundamental component [11]. As a consequence, in 
general the accuracy of harmonic measurements does not 
comply with the rated ratio and phase errors of the VT, either 
because of bandwidth limitations [12]-[14] and nonlinearities 
produced by core magnetization [15]-[17]. 

Several techniques aimed at extending the measurement 
bandwidth of VTs thanks to proper winding design [18] or 
through post-compensation filters [19], [20] have been 
proposed. Methods able to mitigate also nonlinear effects are 
recently emerging [21], [22]; of course, their implementation 
is considerably more complex. 

When considering harmonic synchrophasor 
measurements, it would be extremely interesting to directly 
integrate these techniques at instrument design stage, 
allowing one to partially compensate the error contributions 
due to the VT into the estimation algorithm. In this respect, 
[23] provided a first scouting of the idea, focused on the 
analysis of the impact of the two main error sources. In this 
paper, the main contribution is the proposal of an improved 
frequency-domain linear compensation method, which is 
highly integrated with the harmonic synchrophasor 
measurement algorithm and based on synchronized 
frequency measurements. The performance achieved by the 
proposed solution has been evaluated through an extensive 
experimental activity that proves the advantages of the new 
concept. 

The paper is organized as follows: Section II introduces 
the harmonic synchrophasor measurement considering the 
VT, presents the proposed frequency domain compensation 
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and its integration with the synchrophasor estimation 
algorithm; Section III and Section IV describe the 
experimental setup and the VT frequency response 
identification process, respectively; Section V reports and 
analyses the experimental results while Section VI concludes 
the paper with some final considerations. 

II. SYNCHRONIZED HARMONIC PHASOR MEASUREMENTS 

Synchronized phasor measurements have become a 
reality in transmission system monitoring with the design 
and installation of Phasor Measurement Units (PMUs) [24], 
which provide frequent and time-synchronized (with respect 
to coordinated universal time, UTC) fundamental phasor 
measurements from voltage and current signals, along with 
frequency and Rate of Change of Frequency (ROCOF) [8]. 
The synchronization is typically obtained thanks to Global 
Positioning System receivers integrated into the 
measurement device or from a master source via Precision 
Time Protocol, through an Ethernet network.  

Nowadays, the interest toward PMU technology is 
moving also to the distribution level. Considering 
distribution grids, synchronized phasor measurements can be 
also exploited for diffuse PQ analysis, in which the data 
acquired from different positions have to be compared. In 
this scenario, the use of synchronized harmonic phasors to 
identify the sources of the harmonic disturbances has been 
proposed [7], [25]. The measurement of harmonic 
synchrophasors is rather challenging, and it cannot be 
obtained by simply exploiting the procedures that are used in 
the conventional PQ instruments or PMUs. 

In fact, on the one hand instruments compliant with the 
most recent standard for PQ measurement methods [26] are 
not meant to provide any kind of information about the 
absolute phases of the harmonic components. A reference to 
UTC is requested by [26], but it is aimed at time-tagging the 
measurements, in order to allow proper comparison of PQ 
parameters measured in different nodes of the grid. For this 
reason, the required time-clock accuracy is 20 ms (for class 
A instruments and 50-Hz systems), which is definitely 
useless for synchrophasor measurements. On the other hand, 
the current standard on synchrophasors [27] only focuses on 
the fundamental component, while harmonics are merely 
considered as disturbances to be filtered out.  

Thus, in order to extend the functionality of the PMU to 
estimate also synchronized harmonic phasors (harmonic 
PMU, h-PMU), suitable specific approaches are mandatory. 
In this context, different algorithms have been proposed (see 
for instance [25], [28] and [29]). The most common methods 
are based on DFT, but other estimation techniques can be 
found in the literature, e.g. based on Taylor-Fourier 
transform [30], invariance technique [31] and Kalman 
filtering [28], [32]. These methods focus on the harmonic 
extraction from the electric signal, but, in this paper, the 
interest is on the overall performance achievable with the 
measurement chain composed of IT and h-PMU and on the 
design of a h-PMU that is “IT aware”. 

A. Impact of the instrument transformer 

Let us suppose that the target is evaluating voltage 
harmonic synchrophasors in a node of a distribution grid. In 
general, the PMU is connected to the grid through proper 
ITs, each one characterized by a relationship between 
primary and secondary harmonics (V1(h) and V2(h) 
respectively, h denotes the harmonic order). Therefore, 
primary voltage harmonic synchrophasors V1,E(h) have to be 

reconstructed by means of a proper mapping function from 
the output of the estimation algorithm, V2,E(h), as shown in 
Fig. 1. 

 

Fig. 1. Measurement of harmonic synchrophasors: block diagram. 

It has to be stressed that the mismatch between the actual 
behavior of the IT and the mapping function used to perform 
measurements introduces an additional uncertainty 
contribution that has to be properly taken into account. For 
example, let us suppose that a conventional inductive VT is 
employed. Considering a frequency range up to few 
kilohertz, while assuming that the secondary burden is close 
to its rated value, capacitive effects can be neglected. 
Therefore, its behavior can be accurately represented with 
the usual Steinmetz equivalent circuit shown in Fig. 2: 

 

Fig. 2. Equivalent circuit of the VT. 

All the parameters have been reported to the secondary 
side; v1 and v2 are the primary and secondary voltages, Kt the 
turn ratio, Rs1 and Rs2 represent the primary and secondary 
winding resistances, Ls1 and Ls2 the primary and secondary 
winding leakage inductances. Core magnetization can be 
modeled with a quasi-steady-state hysteretic relationship 
im(ψm), where im is the magnetizing current and ψm the 
mutual flux linkage; eddy current loss is considered with the 
parallel resistor Rm. Resistive burden is assumed, thus 
modeled with resistor RL. 

Considering the previous circuit model, the secondary 
voltage waveform v2 is not just a scaled replica of the 
primary voltage v1 according to the nominal ratio Kn 
provided by the manufacturer. First of all, it is affected by 
the dynamic behavior of the transformer. However, v2 also 
suffers from nonlinear effects: because of the iron core, the 
relationship between primary voltage and magnetizing 
current is nonlinear; in turn, this results in a small distorted 
voltage drop across the primary winding series parameters, 
thus introducing a weak nonlinearity in the relationship 
between v1 and v2. This nonlinear effect is typically 
negligible at the fundamental component. 

As far as harmonic synchrophasor measurements are 
concerned, the non-ideal behavior of the IT has to be taken 
into account when the mapping function is selected. 
Techniques that allow partially compensating for the 
nonlinearities introduced by VTs have been proposed in the 
literature, but the focus of this paper is on a linear 
reconstruction of the primary voltage from the secondary 
side, which is effective, as shown in the following, and 
computationally light. As aforementioned, a VT is nonlinear, 
but each nonlinear system can be decomposed into an 
underlying linear system and a nonlinear part. This 
underlying linear system sets a relationship between primary 
and secondary voltage, which can be expressed in terms of a 
transfer function F(s): 
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where V1(s) and V2(s) are the Laplace transforms of the 
primary and secondary voltage, respectively. When 
substituting s=jω in (1), the relationship between primary 
and secondary voltage spectral components due to the 

underlying linear system is obtained; F(j) represents its 
frequency response function (FRF), which can be considered 
as an approximated model of the employed VT. Assuming 

that we have an estimate of F(j), the primary voltage 
harmonic synchrophasors can be reconstructed from the 
secondary side by using its inverse G(jω), thus compensating 
the artifacts introduced by the underlying linear system. 

Now, let us consider again the circuit model of the 
inductive VT reported in Fig. 2. Assuming linearity, the 
mutual flux linkage ψm is proportional to the magnetizing 
current im according to the magnetizing inductance Lm. By 
performing calculation, the relationship between primary and 
secondary voltage is represented by a minimum phase, 3rd 
order transfer function F(s) having one zero in the origin due 
to core magnetization. 

B. Harmonic synchrophasor estimation algorithm 

In this paper, a new proposal for an integrated 
synchronized harmonic estimation and VT compensation is 
presented. In the following, the main idea of the 
measurement procedure is explained, and the measurement 
algorithm adopted in the next Section V is briefly described.  

The concept at the basis of the proposal is schematically 
illustrated in Fig. 3. The acquired secondary voltage samples 
are elaborated to obtain an estimate V2,E(h) of the secondary 
voltage harmonic synchrophasors and of the fundamental 
frequency f0,E. In turn, f0,E is used to compute the frequency 
response compensation of the VT in the estimated harmonic 
grid at runtime and, finally, the compensation is applied to 
V2,E(h) in order to reconstruct the primary voltage harmonics. 

 

Fig. 3. Harmonic synchrophasor estimation scheme. 

For the analysis performed in this paper, which is 
focused on steady-state signals, the harmonic synchrophasor 
estimation algorithm is a two-step procedure: 

1. A discrete Fourier transform (DFT) is applied to a 
window of Nc1 nominal-frequency cycles weighted through 
a Low Sidelobe window (LSW), which belongs to the 
generalized-cosine family, defined by the following 
coefficients: 
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Where L is the window length while ak, for 
k=0,2,3,4  are, respectively, 0.471492057, 0.17553428, 
0.028497078, 0.001261367. The DFT is used to compute 
only the bin corresponding to the rated fundamental 
frequency. Its phase-angle is then used to compute a 
centered discrete-time derivative (as in [24]) thus obtaining 
an estimation of the frequency. 

2. The discrete time Fourier transform (DTFT) is evaluated 
for each harmonic frequency of interest, belonging to a 
frequency grid that is tuned using the frequency estimated in 
the first step in order to reduce leakage-related artifacts. The 
DTFT is applied to a Nc2 cycle window. A different 
weighting window with respect to the first step can be 
generally applied, but, in Section V, the same samples 
already weighted by the LSW are used. 

The compensation process relies on the evaluation of the 
compensation FRF G(jω) on a proper harmonic grid, 
according to the estimated fundamental frequency. These 
values are used to multiply the estimated secondary side 
harmonic synchrophasors V2,E(h), thus obtaining the primary 
values V1,E(h). The whole estimation process is performed 
on sample-by-sample basis by shifting the analysis window. 

III. EXPERIMENTAL SETUP 

The target of the present paper is evaluating the accuracy 
improvement which can be achieved in harmonic 
synchrophasor measurements as long as a linear 
compensation of the instrument transformer is introduced. As 
a case study, a low voltage VT is considered; its rated 
specifications are reported in Table I. The secondary winding 
has been connected to the rated resistive burden. 

TABLE I.  VOLTAGE TRANSFORMER SPECIFICATIONS 

V1n [V] V2n [V] fn [Hz] Class Burden [VA] 

200 100 50 0.5 20 

The activity requires a proper experimental setup that 
allows identifying the FRF of the VT, while applying 
periodic multitone primary waveforms in order to assess the 
performance under realistic conditions. Primary and 
secondary waveforms have to be measured with adequate 
accuracy. The adopted architecture resembles that presented 
in [33] and is reported in Fig. 4. 

 

Fig. 4. Diagram of the experimental setup. 

The primary voltage of the VT under test has been 
provided by an AE Techron 7548 industrial power amplifier 
(specifications are reported in Table II) connected to a 
100V/400V transformer in order to increase its maximum 
output voltage capability. Primary and secondary voltage 
waveforms have been measured by using properly calibrated 
resistive voltage dividers; they have been connected as close 
as possible to the terminals of the VT under test by means of 
twisted cables. Analog Devices AD215BY isolation 
amplifiers configured as voltage followers provide galvanic 
insulation. The frequency responses of the two measurement 
channels have been measured and compensated, so that the 
relative gain mismatch is below 10-4 while the phase 
mismatch is lower than 0.1 mrad between 50 Hz and 1250 
Hz. 



TABLE II.  POWER AMPLIFIER SPECIFICATIONS 

Vmax [V] Imax [A] Bandwidth THD SNR [dB] 

200 43 
DC-30 kHz 

(+0.1, -0.5 dB) 
<0.1% >120 

The input signal for the power amplifier and the data 
acquisition of the primary and secondary voltage signals has 
been provided by a National Instruments NI USB-6356 
board featuring 16-bit resolution, simultaneous sampling and 
generation capability, and adjustable full-scale range. A 
sampling rate fs=100 kHz has been employed during the 
tests. Generation and data acquisition processes have been 
managed by a PC running proper Matlab scripts. 

As mentioned above, the previously described 
experimental setup has been adopted to apply periodic 
multisine primary voltages to the VT under test, namely 
characterized by a fundamental frequency f0 and harmonics 
up to the Nth order. For avoiding aliasing artifacts, f0 (e.g. 50 
Hz) must be a divider of the sampling rate, thus resulting in 
an integer number of samples per fundamental period. It is 
worth noting that mainly because of the step-up transformer, 
the primary voltage waveform v1(t) is not just a scaled up 
replica of the signal vg(t) at the input of the power amplifier. 
In order to mitigate this problem, before applying the test 
waveforms, a small amplitude random phase multisine signal 
having fundamental frequency f0 and all the harmonics up to 
the Nth order has been applied. This allows evaluating the 
frequency response function between vg(t) and v1(t) on the 
harmonic grid, which can be inverted to pre-distort in the 
frequency domain the multisine test signal to be applied, thus 
compensating the filtering behavior of the generation system. 
Further details about the generator are reported in [33]; it can 
be employed to generate generic periodic multisine signals, 
as used here both to measure the FRF of the VT (Section IV) 
and to test the proposed method (Section V). Of course, 
nonlinear effects cannot be mitigated, but they are hopefully 
rather small. On the other hand, a slight deviation of the 
actual primary voltage waveform with respect to its reference 
value has a negligible impact on the achieved results, since 
this voltage has been measured with a reference transducer. 

IV. IDENTIFYING THE VT FRF 

In order to implement the proposed compensation 
technique, the FRF of the considered VT has to be evaluated. 
First of all, the response at the rated frequency has been 
measured through a conventional calibration. It is well 
known that, for best results, the amplitude of the fundamental 
primary voltage should be close to that occurring during 
normal operation. In this way, the FRF coefficient is able to 
partly embed some of the so-called systematic nonlinear 
effects. Therefore, the voltage generator has been used to 
apply a sinusoidal primary voltage having rated amplitude 
and frequency fn=50 Hz, corresponding to the angular 

frequency n=2πfn. P=500 periods of the primary and 
secondary voltage waveforms have been acquired under 

steady-state conditions; for the generic pth period (p =1…P), 

the fundamental components V1,cal
[p](jn) and V2,cal

[p](jn) 
have been extracted through DFT. Let us assume that the 
impact of measurement error on the evaluated primary and 
secondary voltage spectral components can be modeled as 
additive zero-mean, complex-valued random variables 

V1,cal(jn) and V2,cal(jn). Each spectral component 
obtained starting from the pth period is assumed to be 
affected by an independent realization of the aforementioned 
random contribution. Under this hypothesis, its impact can 

be significantly reduced by averaging over the P periods, 

thus obtaining V1,cal(jn) and V2,cal(jn). 

A reasonable assumption is that V1,cal(jn) and 

V2,cal(jn) have jointly circularly symmetric complex 
normal distribution. In this respect, their statistical behavior 

is expressed by three parameters: their variances σ1,cal
2(jn), 

σ2,cal
2(jn) and the covariance σ12,cal

2(jn) which can be 
estimated from the experimental data by considering each 
period as an independent random realization. The maximum 
likelihood (ML) estimate of the FRF [34] at the rated 

fundamental frequency, namely Fnp(jn), is computed as: 
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Assuming high signal to noise ratio (SNR), also Fnp(jn) 
is affected by a random additive contribution having circular 
symmetric complex normal distribution. Its parameter 

F(jn) (thus corresponding to the standard deviation of the 
real and imaginary part) results [34]: 
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Thanks to the experimental setup and to frequency 

domain averaging, F(jn) is extremely small, below -110dB 
in relative value. 

After that, the FRF of the VT has been evaluated at the 
multiples of the rated fundamental frequency. In this case, it 
is mandatory to avoid nonlinear effects that may bias the 
estimates. The voltage generator has been employed to apply 
a random phase multisine signal having rated fundamental 
frequency and containing harmonics whose order h ranges 
from 2 to 26; all the spectral components share the same 
amplitude. The overall root mean square (rms) value of the 
excitation signal is below 10% of the rated primary voltage: 
core flux is much lower than its rated value and thus 
nonlinear effects are supposed to be very small. P=500 
periods of the primary and secondary voltage waveforms 
have been acquired under steady-state conditions. The DFT 
has been computed for each period p of the two signals, thus 

obtaining V1,cal
[p](jhn) and V2,cal

[p](jhn). Under the same 
assumptions that have been introduced when discussing the 
calibration at rated frequency, averaging over the periods can 
be employed for each hth harmonic to reduce the effect of 

noise; variances σ1,cal
2(jhn), σ2,cal

2(jhn) and covariance 

σ12,cal
2(jhn) can also be computed. Equation (3) can be used 

to obtain the ML estimate of the FRF at angular frequencies 

hn, while (4) allows evaluating F(jhn) which quantifies 
the impact of measurement noise; its relative value is below  
-100 dB. 

The previously described procedure allows obtaining 

Fnp(jhn), namely a nonparametric estimate of the FRF 

evaluated on a harmonic grid. Its inverse Gnp(jhn) permits 
reconstructing the primary voltage harmonics from the 
secondary side; however, it cannot be evaluated outside of 
the harmonic grid. In order to overcome this issue, a 
parametric model Gp(s,П) of the inverse transfer function can 
be introduced. The set П of the transfer function parameters 



(e.g. the gain and the location of its poles and zeros in the 
complex plane), can be obtained in the least squares sense, 
thus solving the following optimization problem1: 
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The considerations reported in Section II.A suggest 
employing a transfer function Gp(s,П) having three zeros and 
a pole. In this case, solving (5) under the minimum phase 
constraint does not result in a very good fit. This is 
somewhat expected, since the equivalent circuit depicted in 
Fig. 2 represents an approximated, lumped-parameter model 
of the VT which is based on reasonable simplifications. On 
the other hand, excellent results can be obtained while 
employing a parametric transfer function having two poles 
and a zero. Obtained magnitude and phase responses are 
reported in Fig. 5 and Fig. 6, respectively. 

 

 

Fig. 5. Normalized magnitude response: nonparametric and parametric 

inverse FRFs. 

 

Fig. 6. Phase response: nonparametric and parametric inverse FRFs. 

According to the proposed approach, the FRF has to be 
measured for each VT specimen. One may also consider 
using the same FRF for all nominally equal VTs in a batch. 
However, significantly lower performance is expected since 
the FRF is affected by parasitic effects that are not generally 
controlled during the production process. 

 
1 The nonlinear and non-convex optimization problem has been solved 

using the function tfest of the Matlab System Identification Toolbox. 

V. EXPERIMENTAL RESULTS 

A. Test conditions: single superimposed harmonic 

Having identified the nonparametric and parametric 

inverse FRFs Gnp(jhn) and Gp(j) that allow compensating 
the filtering behavior of the VT, now the target is assessing 
the accuracy in measuring harmonic synchrophasors that can 
be reached thanks to the proposed approach. Firstly, the class 
of primary voltage signals used to test the harmonic 
disturbance rejection for class P compliance [24] has been 
considered. Each signal consists of a fundamental component 
having rated amplitude and frequency f0, superimposed to a 
single hth order harmonic (h ranging from 2 to 25), whose 
amplitude is equal to 1% of the fundamental. Eight different 
harmonic phase angles evenly distributed between –π and π 
have been considered. The possible values f0 for the 
fundamental frequency have been selected to have an integer 
number M of samples per period. 

The signals have been applied to the VT under test by 
using the voltage generator, and the resulting steady-state 
primary and secondary voltage waveforms have been 
measured for P=100 periods. Through averaging over the 
acquired periods, the impact of noise can be heavily 
mitigated: under the usual assumptions, a 20 dB 
improvement in the SNR is achieved. In this way, it is 
possible to highlight the impact of the VT, of the 
compensation technique and of the algorithm employed to 
extract harmonic synchrophasor, while the effect of noise is 
virtually negligible with respect to the others. The samples of 
the acquired secondary voltage waveform v2(t) have been 
prefiltered, decimated by a factor 10 and sent to the 
synchrophasor estimation algorithm. The estimates of the 
primary voltage synchrophasors V1,E(h) have been obtained 
by using either the nominal ratio Kn=V1n/V2n, the 

nonparametric or parametric inverse FRF (Gnp(jhn) or and 

Gp(j), respectively). 
Very accurate estimates of the harmonic synchrophasor 

V1(h) can be obtained by using the output of the voltage 
divider connected to the primary side and computing the 
DFT over M samples. This measurement is employed as a 
reference value. For each injected harmonic, the harmonic 
Total Vector Error (TVE) for harmonic order h has been 
evaluated as: 
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B. Test conditions: realistic voltage waveforms 

The previous tests have been carried out by supplying the 
VT with a set of simple signals that allows easily evaluating 
the accuracy in harmonic synchrophasor measurement. 
However, such waveforms are not representative of a generic 
operating condition of the distribution grid since several 
harmonics could be present simultaneously. 

Standard EN50160 [35] defines the limits for harmonic 
voltage amplitudes in public distribution grids; values are 
reported in Table III. The standard states that, considering a 
one-week observation period, the 10-minute rms value of 
each harmonic component shall be below the corresponding 
limit for at least 95% of the time. Furthermore, the 10-minute 
rms voltage shall be within 90% and 110% of its rated value. 
These limits can be used to define a new class of realistic 
voltage waveforms, resembling those typically found in 
distribution grids. Harmonic amplitudes are considered as 
random variables having Rayleigh distributions; the 95th 



percentile value corresponds to the respective limit. The 
fundamental magnitude is supposed to be normally 
distributed having expected amplitude equal to its rated value 
and standard deviation so that it falls between ±10% of the 
rated value with 95% probability. The standard [35] does not 
provide information about phases, which are assumed to be 
independent and uniformly distributed between –π and π. 

TABLE III.  HARMONIC VOLTAGE AMPLITUDE LIMITS 
(PERCENTAGES OF THE FUNDAMENTAL COMPONENT) 

Odd harmonics Even harmonics 

k Pk k Pk k Pk 

3 5.0 % 15 0.5 % 2 2.0 % 

5 6.0 % 17 2.5 % 4 1.0 % 

7 5.0 % 19 1.5 % 6 0.5 % 

9 1.5 % 21 0.5 % 8 0.5 % 

11 3.5 % 23 1.5 % 10 0.5 % 

13 3.0 % 25 1.5 % 14÷24 0.5 % 

A set of 200 primary voltage spectra have been obtained 
by sampling the previously defined probability density 
functions. Having selected a value of the fundamental 
frequency f0 (an integer number M of samples per 
fundamental period is assumed as before) the waveforms can 
be synthesized and applied to the VT under test. P=100 
periods of the primary and secondary voltage waveforms 
under steady state conditions have been collected and 
averaged. Also in this case, the primary voltage harmonic 
synchrophasors have been reconstructed by using Kn, 

Gnp(jhn) or Gp(j). The reference values of the primary 
voltage synchrophasors are extracted through DFT computed 
over M samples of the primary voltage waveforms. 

According to the previously introduced probability 
density functions of the harmonic amplitudes, their values 
could be extremely small. Therefore, the value of the 
harmonic TVE defined as in (6) may become extremely 
large. For this reason, performance has been evaluated by 
introducing a new metric: 

 ( )
( ) ( )

( )
1,E 1

exp
1,exp

TVE
V h V h

h
V h

−
=   (7) 

Where V1,exp(h) represents the expected amplitude of the 
h-th harmonic, which can be easily computed from the 
statistical features characterizing the class of excitation 
signals. 

C. Test results 

The first tests have been performed by considering rated 
fundamental frequency and using the same assumptions as in 
Section V.A. The synchrophasor estimation algorithm runs at 
fsa=10 kHz and thus a prefiltering and 10-to-1 downsampling 
stage is adopted at the estimation procedure input. For each 
harmonic component, the maximum TVE obtained with the 
different phase angles has been computed, following the 
same steps as in [23], to compare and assess the estimations. 
Fig. 7 shows the results in terms of percent TVE when three 
different approaches for compensation are adopted 

(Nc1=Nc2=5). The first two (indicated as Kn and Gnp(jhn), 
respectively) are the same adopted in [23], that is the simple 
compensation with the nominal VT ratio Kn and the 
compensation obtained through the non-parametric FRF 
measured on the nominal harmonic grid. The third one 

(Gp(j) in the figure) uses the parametric FRF estimated and 

represents the result of the full integration of the harmonic 
synchrophasor estimation and of the compensation process. 

 

Fig. 7. Maximum TVE for the estimated harmonic syncrophasors, f0=50 

Hz. 

Under nominal frequency and steady-state conditions, the 
synchrophasor estimation algorithm operates in synchronous 
sampling conditions and returns virtually error-free 
measurements (for both harmonics and frequency) and thus 
all the errors can be attributed to the VT. As indicated by the 
blue line, the uncompensated VT response (only nominal 
ratio is used to obtain V1,E) leads to an error that increases 
with the harmonic order and resulting in unacceptable 
performance. For example, the 25th order harmonic is 
measured with a TVE reaching 6.3 %. The fundamental 
component is characterized by 0.26 % TVE, of course 
compliant with the accuracy class of the considered VT. 
When compensation is employed, evident advantages 
emerge and the TVE(h) drops even below 0.05 %. This is 
particularly effective where the filtering behavior of the VT 
is stronger. 

As expected, at nominal frequency the two compensation 
approaches behave very similarly. The only significant 
difference is at nominal frequency, where the estimation of 
Gnp(jωn) is extremely accurate, while Gp(jωn) is somewhat 
less precise because it suffers from undermodeling effects 
(the FRF model does not allow a perfect fitting of the 
experimental data). On the other hand, harmonic frequency 
measurements are slightly affected by the impact of noise in 
the FRF estimations. 

Furthermore, it is worth highlighting that the trend of 
TVE is not smooth: peaks are present at low-order, odd 
harmonics. The reason is the odd nonlinearity introduced by 
the VT (because of the odd-symmetric hysteresis loop), 
resulting in odd-order harmonic distortion produced by the 
strong fundamental component. 

As highlighted also in [23], the FRF compensation is way 
less effective when looking at low-order odd harmonics, 
namely the most affected by nonlinearity. When the 3rd 
order harmonic synchrophasor is taken into account, 
maximum TVE is reduced only from 5.95 % to 5.58%; 
nonlinear effects progressively fade out as harmonic order 
increases. Therefore, the nonlinearities introduced by the VT 
represent the performance bottleneck under this operating 
condition. 

Tests have been repeated by considering a deviation with 
respect to nominal frequency (off-nominal frequency 
conditions). The same fundamental frequencies used in [23] 
are employed here for the primary voltage signals. In 



particular, 204 samples per cycle at sampling rate fsa are 
considered, thus corresponding to fundamental frequency f0 

 49.02 Hz; Fig. 8 shows the results. 

 

Fig. 8. Maximum TVE for the estimated harmonic syncrophasors, 

f049.02 Hz. 

Since the harmonic synchrophasor estimation algorithm 
can no longer be considered to have a negligible impact on 
the measurements, its intrinsic error contribution (‘Alg’ 
purple line) is also shown. These maximum TVE values are 
obtained by directly applying the estimation algorithm to the 
primary voltage signals (as if the VT were ideal). This gives 
a bottom TVE line that represents the best possible estimates. 
The compensation appears essential to achieve good 
measurement performance, but it is interesting to notice that, 
in this case, the parametric compensation enables a much 
more accurate measurement of higher order harmonics. For 
example, considering harmonic indexes above 10, the error 
reduction is higher than 30 % and goes up to 79 % for the 
25th order harmonic. As mentioned before, the errors for low 
order, odd harmonics are dominated by nonlinearities and 
thus the FRF compensation cannot improve accuracy.  

With the parametric compensation, the TVE values for 
all the harmonics are similar to those achieved under rated 
frequency conditions (Fig. 7), whereas non-parametric 
approach degrades for higher order harmonics. The VT is the 
predominant uncertainty source and, thus, refining its 
compensation means pushing the performance towards the 
lower bound set by algorithm (below 0.02 %). Similar results 
can be found, for instance, when a fundamental tone with 

196 samples per cycle (thus resulting in f0  51.02 Hz) is 
considered. 

Another significant test has been performed using the 
class of waveforms defined in Section V.B. Fig. 9 shows, 
with the same fundamental frequency as in Fig. 8, the results 
in terms of rms TVEexp (defined in (7)) calculated over the 
200 random signals extracted from EN 50160 limits (for 
each condition the maximum TVE is considered). The 
conclusions are similar to the previous case. Once more, the 
compensation is key to improve performance at higher order 
harmonics, and the parametric FRF approach allows further 
error reduction (up to 56 % at the 25th order harmonic). 

To stress the overall measurement chain, a white uniform 
noise (AWUN) at a SNR of 70 dB has also been added to the 
secondary voltage signals. Fig. 10 reports the TVE results as 

the maximum rms values across the 8 different phases for the 
case of single harmonic test and off-nominal fundamental 
frequency (as in Fig. 8). The results are influenced by the 
additive noise and thus the ideal algorithm error is not 
meaningful and thus no longer reported.  

 

Fig. 9. EN 50160 test case: rms TVEexp for the estimated harmonic 

syncrophasors, f049.02 Hz. 

 

Fig. 10. Rms TVE for the estimated harmonic syncrophasors, f049.02 Hz, 

AWUN with 70 dB SNR. 

The impact of the compensation is clearly visible and the 
error reduction obtained with the parametric approach is still 
noticeable albeit it is smaller than before. From harmonic 
index 10, the error reduction is above 20 % and up to 58 % 
and it shows the same behavior as in the previous tests. To 
reduce the influence of the noise, it is possible to leverage 
the duration of the windows used for the synchrophasors 
estimation. With Nc1=Nc2=10 nominal cycles, the 
performance of the parametric compensation is improved: in 
this case, the parametric approach allows an error reduction 
up to 69 % with respect to the nonparametric compensation 
(23rd order harmonic). The price to pay is that algorithm 
latency becomes about two times higher, due to the longer 
time window, and the computational burden is almost 
doubled. In addition, the capability to follow dynamic 
conditions could be jeopardized. The difference of the TVE 
values for the non-parametric approach is instead negligible 
with respect to Fig. 10, thus indicating that in this case 



performance is capped by the inaccurate compensation 
technique. Tests in the presence of noise have been 
performed also for the EN 50160 waveforms. The rms 
TVEexp graphs patterns are similar to those obtained without 
noise. Error reduction using the parametric FRF 
compensation is up to 41 % for 5-cycle estimation (harmonic 
order 23) and 52 % for 10 cycles (harmonic order 25). 

It is worth noting that the results confirm the outcomes of 
the analysis carried out in [23], concerning the impact of 
linear compensation and the influence of nonlinearities on 
the different harmonic orders. In particular, the nonlinearity 
introduced by the inductive VT has an impact on the 
measurement of low-order harmonic synchrophasors 
(particularly on the 3rd order one). For higher accuracy, the 
synchrophasor estimation algorithm could be integrated with 
a proper technique able to mitigate these nonlinear effects. 
Of course, it may significantly increase computational 
complexity. 

In conclusion, this study points out the importance of the 
integration between estimation algorithm, VT and 
compensation technique while addressing the different 
uncertainty sources. It is possible to design the estimation 
algorithm depending on the available compensation data and 
it is also clear that, under some circumstances and for 
specific harmonics, it is not beneficial to overdesign the 
algorithm if the uncertainty contribution due to the VT is not 
properly addressed. On the other side, a VT compensation 
that does not consider the estimated frequency does not 
permit to take full advantage of the potentialities of the 
measurement process. 

VI. CONCLUSION 

This paper has proposed the idea of an integrated design 
of harmonic synchronized measurement algorithm with VT 
compensation to address the two main sources of 
measurement errors: VT and signal model. Both the VT and 
the employed algorithm may significantly contribute to the 
TVE for different harmonic orders and test conditions. The 
results show that VT compensation can be seen not only as a 
static post-processing to add to the instrument output, but as 
measurement stage that leverages the outputs of the 
harmonic synchrophasor estimation algorithm. Hence, in 
order to achieve best overall performance in the most 
effective way, the algorithm, the VT and the mapping 
function between secondary and primary side quantities have 
to be jointly and carefully selected and defined to meet the 
required accuracy constraints. The method has been 
experimentally validated on an inductive VT but, thanks to 
the black-box approach, it can be applied to other types of 
voltage transducer. 
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