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Abstract

Fluid flows around a symmetric obstacle generate vortices which may lead to symmetry breaking of the
streamlines. We study this phenomenon for planar viscous flows governed by the stationary Navier-
Stokes equations with constant inhomogeneous Dirichlet boundary data in a rectangular channel
containing a circular obstacle. In such (symmetric) framework, symmetry breaking is strictly related
to the appearance of multiple solutions. Symmetry breaking properties of some Sobolev minimizers
are studied and explicit bounds on the boundary velocity (in terms of the length and height of the
channel) ensuring uniqueness are obtained after estimating some Sobolev embedding constants and
constructing a suitable solenoidal extension of the boundary data. We show that, regardless of the
solenoidal extension employed, such bounds converge to zero at an optimal rate as the length of the
channel tends to infinity.
Mathematics Subject Classification: 35Q30, 35G60, 76D03, 46E35, 35J91.
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1 Introduction

We are interested in showing a connection between some purely theoretical tools in functional analysis,
such as Sobolev minimizers, and some problems in fluid mechanics, such as the appearance of vortices
in flows around an obstacle. It is well-known that, if a quickly moving fluid hits an obstacle, a vortex
shedding appears behind the body. This happens also for flows which are laminar before hitting the
obstacle.

In literature, the most documented fluid-structure interaction experiment is that of a circular pendu-
lum (cylinder) in a water flow, where the interaction consists both in the generation of vortices (structure
modifying the fluid) and in the appearance of lift forces (exerted by the fluid on the structure), namely
forces transversal to the flow; we refer to [9, 21, 24, 25, 27, 28] and to [7] for more references. When
a cylinder of diameter d is placed with its axis normal to the flow having an upstream constant speed
U , simple experiments enable to highlight turbulence, vortex shedding, and the appearance of the lift
force, see e.g. [1]. If the cylinder is long compared with d, this experiment can be modeled with a disk
in a 2D flow. One can then vary the value of the speed U and observe that the flow pattern depends on
the Reynolds number (Re = Ud/η, with η being the viscosity of the fluid). The pictures in Figure 1.1
summarize the observations and the symmetry breaking according to the Reynolds number.

Figure 1.1: Regimes of flow across a circular cylinder, taken from [21].

In the left picture (Re < 5) the flow has a double symmetry, both vertical and horizontal, and the
regime is that of unseparated flow. In the middle picture (5 < Re < 40) there is symmetry breaking in
the horizontal direction, with the appearance of a pair of Föppl vortices in the wake. In the right picture
(40 < Re < 150) there is symmetry breaking in the vertical direction leading to a laminar vortex street.
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For larger Re the picture becomes more and more disordered with the appearance of turbulence and
chaos, see [21]. In the present paper we will see that a similar phenomenon occurs for the minimizers of
the Sobolev ratio as the fluid domain tends to enlarge.

Through the Navier-Stokes equations we model the steady motion of a viscous incompressible fluid
in a large horizontal channel containing the unit disk B1 (circular obstacle of diameter d = 2) under
constant inflow, no-slip boundary conditions and no external force, see [2, 6, 23]. To this end we take a
pierced rectangle with variable length 2R in the x-direction and (fixed) given height 2h in the y-direction:

QR
.
= (−R,R)× (−h, h) and ΩR

.
= QR \B1 , (1.1)

with R > h > 1, see Figure 1.2.

Figure 1.2: The pierced rectangle ΩR in (1.1)

We study the following boundary-value problem related to the stationary Navier-Stokes equations:{
− η∆u+ (u · ∇)u+∇p = 0, ∇ · u = 0 in ΩR,

u = (U, 0) on ∂QR, u = (0, 0) on ∂B1 .
(1.2)

In (1.2), η > 0 is the (constant) kinematic viscosity of the fluid, u : ΩR −→ R2 is the velocity vector field
and p : ΩR −→ R is the scalar pressure. The boundary conditions in (1.2)2 model the inflow/outflow of
the fluid across the outer boundary ∂QR with a given constant speed U > 0 (in the x-direction), and
with no-slip condition on the obstacle B1 where viscosity yields zero velocity of the flow. Notice that
the compatibility condition ∫

ΩR

∇ · u =

∫
∂ΩR

u · ν =

∫
∂QR

(U, 0) · ν = 0 (1.3)

is satisfied for the solutions of (1.2). In (1.3), ν ∈ R2 denotes the outward unit normal to ΩR.
In [16] (see also [4, 7, 12, 15, 26]) it is shown that, in a symmetric framework, the most important

threshold for Re is the one yielding symmetry breaking for solutions of (1.2), since it corresponds to
the appearance of the lift force exerted from the fluid on the obstacle. But symmetry breaking also
means multiplicity of the equilibrium configurations of the fluid. Sufficient conditions for uniqueness of
solutions for (1.2) are usually obtained through smallness assumptions on the inflow and they involve
purely analytical quantities such as Sobolev embedding constants. This raises the natural question

In a symmetric framework, is symmetry breaking for solutions of (1.2) (that is, nonuniqueness)
related to symmetry breaking of some minimizers for Sobolev ratios?

In the present paper, we start tackling this problem and we show that, indeed, there is a connection
between symmetry breaking in the stationary Navier-Stokes equations and Sobolev minimizers. This
requires the determination of explicit bounds both for some Sobolev embedding constants and for unique
solvability of the Navier-Stokes equations. With these bounds at hand we exhibit a qualitative connection
between the symmetry breaking in Figure 1.1 as Re increases, and in Sobolev minimizers within the
domain ΩR as R→∞. This connection is properly explained in Remarks 3.1 and 4.3 below.
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2 Bounds for some Sobolev embedding constants

We consider the Sobolev space H1
0 (ΩR) (for both scalar functions and vector fields) and the space of

scalar H1(ΩR)-functions that are constant on ∂QR and vanish on ∂B1, which is a proper connected part
of ∂ΩR:

H1
c (ΩR)

.
= {v ∈ H1(ΩR) | v = 0 on ∂B1 , v is constant on ∂QR} .

Since |∂B1|1 = 2π > 0 (the 1D-Hausdorff measure), the Poincaré inequality holds in H1
c (ΩR), which

means that v 7→ ‖∇v‖L2(ΩR) is a norm on H1
c (ΩR). This space may be rigorously characterized by

using the relative capacity potential ψ ∈ H1
0 (ΩR) of B1 with respect to QR, defined as the function

ψ ∈ H1(ΩR) such that

∆ψ = 0 in ΩR, ψ = 0 on ∂QR, ψ = 1 in B1 ,

‖∇ψ‖2L2(ΩR) = min
v∈H1

0 (QR)

{∫
ΩR

|∇v|2
∣∣∣ v = 1 in B1

}
.

Therefore, H1
c (ΩR) has the characterization

H1
c (ΩR) = H1

0 (ΩR)⊕ R(ψ − 1) with H1
0 (ΩR) ⊥ R(ψ − 1) ,

so that H1
0 (ΩR) has codimension 1 within H1

c (ΩR) and the “missing dimension” is spanned by the
function ψ− 1. To see this, determine the orthogonal complement of H1

0 (ΩR) within H1
c (ΩR) as follows:

v ∈ H1
0 (ΩR)⊥ ⇐⇒ v ∈ H1

c (ΩR) and (∇v,∇w)L2(ΩR) = 0 ∀w ∈ H1
0 (ΩR)

⇐⇒ v ∈ H1
c (ΩR) and 〈∆v, w〉ΩR = 0 ∀w ∈ H1

0 (ΩR) ,
(2.1)

so that v is weakly harmonic and, since v ∈ H1
c (ΩR), it is necessarily a real multiple of ψ − 1. In (2.1),

〈·, ·〉ΩR denotes the duality product between H−1(ΩR) and H1
0 (ΩR).

We then define the Sobolev constant of the embedding H1
0 (ΩR) ⊂ L4(ΩR) as

SR = min
v∈H1

0 (ΩR)\{0}

‖∇v‖2L2(ΩR)

‖v‖2
L4(ΩR)

, (2.2)

so that SR > 0 and
SR ‖v‖2L4(ΩR) ≤ ‖∇v‖

2
L2(ΩR) ∀v ∈ H1

0 (ΩR) . (2.3)

The main goal of this section is to provide explicit lower and upper bounds for SR, in terms of R
and h. For later use we introduce

µ0 = the first zero of the Bessel function of first kind of order zero ≈ 2.40483 . (2.4)

Theorem 2.1. For SR as in (2.2) we have

π

√
3

2
max

{√
π

2

√
R2 + h2

Rh
,

µ0√
4Rh− π

}
≤ SR ≤

1

2

√
π

2κ
(2h2 log(h)2 − 2h2 log(h) + h2 − 1) , (2.5)

where

κ
.
= − 1

324
+

96h

3125
− 9h2

64
+

32h3

81
− 3h4

4
+

7580461h6

16200000

− 66801h6 log(h)− 46690h6 log(h)2 + 17400h6 log(h)3 − 3000h6 log(h)4

90000
.

In particular, for any scalar or vector function w ∈ H1
0 (ΩR) one has

‖w‖2L4(ΩR) ≤
1

π

√
2

3
min

{
2√
π

Rh√
R2 + h2

,

√
4Rh− π
µ0

}
‖∇w‖2L2(ΩR) . (2.6)
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Proof. For a scalar function w ∈ H1
0 (ΩR), after combining the Gagliardo-Nirenberg inequality in R2

given by del Pino-Dolbeault [10, Theorem 1] with some Hölder inequality, the following inequality was
obtained in [16, Theorem 2.3]:

‖w‖2L4(ΩR) ≤
√

2

3π
‖∇w‖L2(ΩR)‖w‖L2(ΩR) ∀w ∈ H1

0 (ΩR) . (2.7)

In fact, (2.7) improves previous results by Ladyzhenskaya [18] (see also [19, Lemma 1, p.8]) and Galdi
[14, (II.3.9)].

We then notice that

−∆
(

cos
(πx

2R

)
cos
(πy

2h

))
=
π2

4

R2 + h2

R2h2
cos
(πx

2R

)
cos
(πy

2h

)
∀(x, y) ∈ QR ;

such eigenfunction for the Dirichlet-Laplace operator is positive in QR and vanishes on ∂QR. Therefore,
by applying the Poincaré inequality in QR to w ∈ H1

0 (QR), we obtain

‖w‖L2(ΩR) ≤
2

π

Rh√
R2 + h2

‖∇w‖L2(ΩR) . (2.8)

In order to finish the proof for scalar functions we apply a symmetrization argument. Let Ω∗ ⊂ R2

be a disk having the same measure as ΩR, and thus its radius is

R∗ =

√
4Rh− π

π
.

Since the Poincaré constant of B1 is given by µ2
0 (see (2.4)), by rescaling, the Poincaré constant of Ω∗ is

µ2
0/R

2
∗. In view of the Faber-Krahn inequality [11, 17] this implies that

min
v∈H1

0 (ΩR)

‖∇v‖L2(ΩR)

‖v‖L2(ΩR)
≥ min

v∈H1
0 (Ω∗)

‖∇v‖L2(Ω∗)

‖v‖L2(Ω∗)
=
µ0

R∗
,

and therefore

‖w‖L2(ΩR) ≤
R∗
µ0
‖∇w‖L2(ΩR) =

1

µ0

√
4Rh− π

π
‖∇w‖L2(ΩR) . (2.9)

The lower bound in (2.5) is reached after inserting (2.8) and (2.9) into (2.7), which then yields (2.6).
The upper bound in (2.5) is obtained by testing the quotient (2.2) with

X0(x, y)
.
=

1

2

(
h−

√
x2 + y2

)
log(x2 + y2) ∀(x, y) ∈ ΩR , (2.10)

which, if extended by zero for x2 + y2 ≥ h2, becomes an element of H1
0 (ΩR).

Figure 2.1: Graph of the function X0 in (2.10) for h = 5.

4



To conclude we notice that inequality (2.3) is also valid for vector functions (with the same constant):
if v = (v1, v2) ∈ H1

0 (ΩR) is a vector field, by the Minkowski inequality we get

‖v‖4L4(ΩR) =
∥∥ |v1|2 + |v2|2

∥∥2

L2(ΩR)
≤
(
‖v1‖2L4(ΩR) + ‖v2‖2L4(ΩR)

)2

≤ S−2
R

(
‖∇v1‖2L2(ΩR) + ‖∇v2‖2L2(ΩR)

)2
= S−2

R ‖∇v‖
4
L2(ΩR) .

Therefore, (2.3) also holds for vector functions. 2

Remark 2.1. A careful look at the proof of Theorem 2.1 shows that (2.7) and (2.8) also hold for
functions in H1

0 (QR), namely

‖w‖2L4(ΩR) ≤
2

π

√
2

3π

Rh√
R2 + h2

‖∇w‖2L2(ΩR) ∀w ∈ H1
0 (QR). (2.11)

Remark 2.2. The upper bound in (2.5) is obtained by using the function X0 in (2.10). For R < 2h+ 1,
a smaller upper bound may be derived through the Sobolev constant of the rectangle (1, R) × (−h, h),
which contains the disc DR,h of radius h centered at

(
R+1

2 , 0
)
: then one considers the function

X1(x, y)
.
= h2 −

(
x− R+ 1

2

)2

− y2 ∀(x, y) ∈ DR,h ,

which gives the estimates

π

√
3

2
max

{√
π

2

√
R2 + h2

Rh
,

µ0√
4Rh− π

}
≤ SR ≤

2
√

5π

h
for R < 2h+ 1 . (2.12)

Several further trials were executed with different functions in H1
0 (ΩR), but (2.10) appears to give a good

upper bound for SR for a wide range of values of h > 1. From (2.5) we observe that

π

2

√
3π

2

1

h
≤ lim

R→∞
SR ≤

1

2

√
π

2κ
(2h2 log(h)2 − 2h2 log(h) + h2 − 1) ∀h > 1 . (2.13)

The plot in Figure 2.2 below compares the lower and upper bounds in (2.12)-(2.13) as functions of h > 1,
as R → ∞. A simple computation shows that the ratio between the upper and lower bounds in (2.13)
tends to 2

√
10/π ≈ 2.01317 as h→∞.

50 100 150 200
h

0.1

0.2

0.3

0.4

L

Lower bound for L in (2.13)

Upper bound in (2.12) (for R < 2h+1)

Upper bound in (2.13)

Figure 2.2: Behavior of the lower and upper bounds for L
.
= lim

R→∞
SR as functions of h > 1.

Later, in Proposition 3.1 we shall improve the upper bound in (2.13) after verifying that lim
R→∞

SR coincides

with the best Sobolev constant of the infinite strip R× (−h, h), for every h > 1 (see Theorem 3.1).
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3 Symmetry breaking of some Sobolev minimizers

In this section we consider the subspace H1
0,e(ΩR) of functions u ∈ H1

0 (ΩR) which are even in x, that is,
u(x, y) = u(−x, y) for every (x, y) ∈ ΩR, and we set

SR,e = min
v∈H1

0,e(ΩR)\{0}

‖∇v‖2L2(ΩR)

‖v‖2
L4(ΩR)

. (3.1)

We prove here the following symmetry breaking result.

Theorem 3.1. There exists R0 > 0 with the property that SR,e > SR for R > R0. Hence every minimizer
of the Sobolev quotient (2.2) is a non-even function in the x-variable for R > R0.

Proof. Consider the infinite strip Ω∞
.
= R× (−h, h) and put

S∞ = inf
v∈H1

0 (Ω∞)\{0}

‖∇v‖2L2(Ω∞)

‖v‖2
L4(Ω∞)

. (3.2)

Since for R′ > R > 1 we have the inclusions H1
0 (ΩR) ⊂ H1

0 (ΩR′) ⊂ H1
0 (Ω∞) induced by trivial extension,

it follows that
SR ≥ SR′ ≥ S∞ for R′ > R > 1 . (3.3)

We claim that

the infimum in (3.2) is attained at a function v ∈ H1
0 (Ω∞) with ‖v‖L4(Ω∞) = 1. (3.4)

In order to prove (3.4) we consider a minimizing sequence for (3.2), namely a sequence (un)n∈N ⊂ H1
0 (Ω∞)

such that ‖un‖L4(Ω∞) = 1, for every n ∈ N, and ‖∇un‖2L2(Ω∞) → S∞. It then follows from the Poincaré

inequality that (un)n∈N is bounded in H1
0 (Ω∞). By Lions’ Lemma [22], after passing to a subsequence,

there exist points τn = (xn, yn) ∈ R2, n ∈ N, with

vn
.
= τn ∗ un ⇀ v weakly in H1(R2) for some function v ∈ H1(R2) \ {0},

in which we use the notation τ ∗ u .
= u( · − τ) to denote the translation of a function u : R2 −→ R

with respect to τ ∈ R2. Since Ω∞ is bounded in the y-direction and v 6= 0, also the sequence (yn)n∈N
is bounded and we may therefore assume that yn = 0 for every n ∈ N. Consequently, v ∈ H1

0 (Ω∞) and
vn ⇀ v in H1

0 (Ω∞). By the Brezis-Lieb Lemma [8], we then have

1 = lim
n→∞

‖un‖4L4(Ω∞) = lim
n→∞

‖vn‖4L4(Ω∞) = ‖v‖4L4(Ω∞) + c4 with c
.
= lim

n→∞
‖vn − v‖L4(Ω∞) .

Consequently, ‖v‖2L4(Ω∞) + c2 ≥ 1 and therefore

S∞ ≤ S∞
(
‖v‖2L4(Ω∞) + c2

)
≤ ‖∇v‖2L2(Ω∞) + lim

n→∞
‖∇(vn− v)‖2L2(Ω∞) = lim

n→∞
‖∇vn‖2L2(Ω∞) = S∞. (3.5)

From this we deduce that
‖v‖2L4(Ω∞) + c2 = 1 = ‖v‖4L4(Ω∞) + c4 .

Since v 6= 0, we infer that c = 0 and then ‖v‖L4(Ω∞) = 1. Therefore, ‖∇v‖2L2(Ω∞) ≥ S∞ by definition of

S∞ in (3.2). Then it follows from (3.5) that ‖∇v‖2L2(Ω∞) = S∞ and lim
n→∞

‖∇(vn − v)‖L2(Ω∞) = 0, and

consequently lim
n→∞

‖vn − v‖L2(Ω∞) = 0 by the Poincaré inequality. Hence vn → v in H1
0 (Ω∞), and v is a

minimizer of the of the Sobolev quotient (3.2). This proves the claimed statement (3.4).
We next claim that

lim
R→∞

SR = S∞ . (3.6)
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To show this, let ρ ∈ C∞0 (R2) be a nonnegative function with ρ ≡ 1 on B 1
2

and ρ ≡ 0 on R2 \ B1.

Moreover, let

ρn(x)
.
= ρ

(x
n

)
∀x ∈ R2 , n ≥ 1,

so that ρn ∈ C∞0 (Bn). By (3.4), there exists a function v ∈ H1
0 (Ω∞) with ‖v‖L4(Ω∞) = 1 and

‖∇v‖2L2(Ω∞) = S∞. It is then standard to see that the sequence vn
.
= ρnv ∈ H1

0 (Ω∞), n ∈ N, sat-

isfies vn → v in H1
0 (Ω∞) and, hence,

‖vn‖L4(Ω∞) → 1 and ‖∇vn‖2L2(Ω∞) → S∞ as n→∞ . (3.7)

Since vn = 0 on Ω∞ \Bn we have

un
.
= xn ∗ vn ∈ H1

0 (ΩRn) for n ∈ N with xn
.
= (n+ 1, 0) and Rn

.
= 2n+ 1.

It thus follows from (3.3) and (3.7) that

S∞ ≤ lim
R→∞

SR = lim
n→∞

SRn ≤ lim
n→∞

‖∇un‖2L2(ΩRn )

‖un‖2L4(ΩRn )

= lim
n→∞

‖∇vn‖2L2(Ω∞)

‖vn‖2L4(Ω∞)

= S∞

which yields the equality in (3.6).
By (3.6), the proof of the theorem will be finished after showing that

lim
R→∞

SR,e > S∞. (3.8)

To prove (3.8), we argue by contradiction, assuming that there exists an increasing divergent sequence
(Rn)n∈N ⊂ (1,∞) and, for every n ∈ N, a function un ∈ H1

0,e(ΩRn) such that ‖un‖L4(ΩRn ) = 1 and

‖∇un‖2L2(ΩRn ) = ‖∇un‖2L2(Ω∞) → S∞ as n→∞.

Without loss of generality, we may assume that un ≥ 0 for every n, otherwise we replace un by |un|.
From the proof of (3.4), we know that there exists a sequence (tn)n∈N ⊂ R and a minimizer v ∈ H1

0 (Ω∞)
of the Sobolev quotient (3.2) with ‖v‖L4(Ω∞) = 1 and the property that

(tn, 0) ∗ un → v in H1
0 (Ω∞).

Since un is symmetric with respect to the x-variable, we have

[(−tn, 0) ∗ un](x, y) = un(x+ tn, y) = un(−x− tn, y) = [(tn, 0) ∗ un](−x, y) ∀(x, y) ∈ ΩRn , n ∈ N ,

which implies that
(−tn, 0) ∗ un → ṽ in H1

0 (Ω∞),

where ṽ ∈ H1
0 (Ω∞) is defined by ṽ(x, y)

.
= v(−x, y), for every (x, y) ∈ ΩR. Then, we note the following

elementary fact: if, for a sequence (wn)n∈N ⊂ H1(R2) and some sequences (αn)n∈N, (βn)n∈N ⊂ R2 we
have that both (αn ∗ wn)n∈N and (βn ∗ wn)n∈N are convergent sequences in H1(R2), then the sequence
(αn − βn)n∈N is bounded in R2. From this fact, it follows that (tn)n∈N is bounded. Passing to a
subsequence we may then assume, without loss of generality, that tn = 0 for every n ∈ N. Hence,

un → v in H1
0 (Ω∞) as n→∞.

Since v is a minimizer of the Sobolev quotient (3.2) with ‖v‖L4(Ω∞) = 1, it follows that v is a nontrivial
weak solution of the semilinear elliptic equation (see, in particular, [3]){

−∆v = S∞v3 in Ω∞ ,

v = 0 on ∂Ω∞ .
(3.9)

By standard elliptic regularity we have that v ∈ C∞(Ω∞). Moreover, v ≥ 0 in Ω∞ and v = 0 in B1 since
un ∈ H1

0 (ΩRn) for every n ∈ N. Since v is superharmonic in Ω∞ by (3.9), this contradicts the strong
maximum principle. The proof of (3.8) is thus finished, which completes the proof of the theorem. 2
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Remark 3.1. Theorem 3.1 establishes a first connection between symmetry breaking in the stationary
Navier-Stokes equations (1.2) and Sobolev minimizers (2.2). In fact, the spirit of its proof is that the
mass of the Sobolev minimizer in (2.2) tends to concentrate on one side of the obstacle as R → ∞.
This is similar to the phenomenon depicted in Figure 1.1, where the energy (vortex shedding) mainly
concentrates behind the obstacle as the Reynolds number increases.

As a straightforward consequence of Remark 2.2 and (3.8) we obtain the estimate

π

2

√
3π

2

1

h
≤ S∞ ≤

1

2

√
π

2κ
(2h2 log(h)2 − 2h2 log(h) + h2 − 1) ∀h > 1 . (3.10)

A finer upper bound for S∞ = S∞(h) can be found by seeking the minimum in (3.2) among separated-
variable functions, that is, having the form V (x)W (y) for (x, y) ∈ Ω∞.

Proposition 3.1. For every h > 1 we have

π

2

√
3π

2

1

h
≤ S∞(h) ≤ 5.151

h
. (3.11)

Proof. Given h > 1 and Wh ∈ H1
0 (−h, h) \ {0}, (3.4) implies that

S∞(h) ≤ min
V ∈H1(R)\{0}

‖V ′‖2L2(R)‖Wh‖2L2(−h,h) + ‖V ‖2L2(R)‖W
′
h‖2L2(−h,h)

‖V ‖2
L4(R)

‖Wh‖2L4(−h,h)

. (3.12)

Furthermore, a rescaling argument shows that

S∞(h) =
h0

h
S∞(h0) ∀h, h0 > 1 . (3.13)

Let cn : R −→ [−1, 1] be the Jacobian elliptic cosine function with modulus k = 1/
√

2, which satisfies
the one-dimensional version of (3.9), namely

cn′′(t) + cn(t)3 = 0 ∀t ∈ R ,

and whose first zero is given by

α
.
=
√

2

∫ π/2

0

1√
2− sin(t)2

dt ≈ 1.85407,

see [5] for more details. Then, the function

Wh(y)
.
=

1

µh
cn
(α
h
y
)

∀y ∈ [−h, h]

vanishes at y = ±h, where µh > 0 is a normalization constant such that ‖Wh‖L4(−h,h) = 1. Let h0 > 1
be such that ‖W ′h0‖L2(−h0,h0) = 1; numerically we find h0 ≈ 1.98978. Then, the Euler-Lagrange equation
associated to the minimization problem in (3.12) (when h = h0) reads

− ‖Wh0‖2L2(−h0,h0)V
′′(x) + V (x) = λV (x)3 ∀x ∈ R , (3.14)

with λ ∈ R being a Lagrange multiplier. By direct substitution we deduce that the function

Vh0(x)
.
=

[
cosh

(
x

‖Wh0‖L2(−h0,h0)

)]−1

∀x ∈ R

8



is a solution of (3.14) with λ = 2. The function Vh0Wh0 minimizes the ratio in (3.12) when Wh = Wh0 ,
and its graph is depicted in Figure 3.1 below.

Figure 3.1: Graph of the function Vh0(x)Wh0(y) for (x, y) ∈ [−2.5, 2.5]× [−h0, h0].

The approximate value 5.151 is obtained numerically after replacing the functions Vh0 and Wh0 into
the ratio (3.12) (with h = h0) and using (3.13). 2

The ratio between the upper and lower bounds for S∞ found in Proposition 3.1 is approximately
1.51061, showing the accuracy of these bounds. A comparison between the lower and upper bounds in
(3.10)-(3.11) is shown in Figure 3.2 below.

50 100 150 200
h

0.1

0.2

0.3

0.4

S∞

Lower bound for S∞

Upper bound in (3.11)

Upper bound in (3.10)

Figure 3.2: Comparison between the lower and upper bounds for S∞ = S∞(h), for h > 1.
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4 Symmetry breaking in the Navier-Stokes equations

4.1 Non-uniqueness as a necessary condition for symmetry breaking

In this subsection we start by quickly recalling some well-known functional spaces and inequalities,
adapting them to our context. Let us introduce the two functional spaces of vector fields

Vc(ΩR) = {v ∈ H1
c (ΩR)2 | ∇ · v = 0 in ΩR} and V(ΩR) = {v ∈ H1

0 (ΩR) | ∇ · v = 0 in ΩR},

which are Hilbert spaces if endowed with the scalar product (u, v) 7→ (∇u,∇v)L2(ΩR). We also introduce
the continuous trilinear form

β(u, v, w) =

∫
ΩR

(u · ∇)v · w ∀u, v, w ∈ H1(ΩR),

which satisfies, by Hölder’s inequality,

|β(u, v, w)| ≤ ‖u‖L4(ΩR)‖∇v‖L2(ΩR)‖w‖L4(ΩR) ∀u, v, w ∈ H1(ΩR) . (4.1)

Moreover,

β(u, v, w) = −β(u,w, v) for any u ∈ Vc(ΩR), v ∈ H1(ΩR), w ∈ H1
0 (ΩR),

β(u, v, v) = 0 for any u ∈ Vc(ΩR), v ∈ H1
0 (ΩR).

(4.2)

We are now in position to define weak solutions for problem (1.2).

Definition 4.1. Given U > 0, we say that a vector field u ∈ Vc(ΩR) is a weak solution of (1.2) if u
verifies (1.2)2 in the trace sense and

η(∇u,∇ϕ)L2(ΩR) + β(u, u, ϕ) = 0 ∀ϕ ∈ V(ΩR). (4.3)

The existence of weak solutions of (1.2) relies on the construction of a solenoidal extension of the
boundary velocity, see [20]. Namely, one needs to find a vector field Ψ ∈ H1(ΩR) such that

∇ ·Ψ = 0 in ΩR , Ψ = (U, 0) on ∂QR , Ψ = (0, 0) on ∂B1 . (4.4)

Then we prove a result whose qualitative statement is essentially known, see for example [14, Section
IX.4]. We give here a slightly different statement and a full proof because explicit constants are needed
to show how uniqueness depends on the magnitude of the solenoidal extension through the Sobolev
embedding constant (2.2).

Theorem 4.1. For any U > 0 there exists a weak solution (u, p) ∈ Vc(ΩR) × L2(ΩR) of (1.2). If,
moreover, there exists a vector field Ψ ∈ H1(ΩR) verifying (4.4) and the inequality

2‖∇Ψ‖L2(ΩR) +
√
SR ‖Ψ‖L4(ΩR) < ηSR , (4.5)

then the weak solution of (1.2) is unique, satisfies the symmetry property

u1(x,−y) = u1(x, y), u2(x,−y) = −u2(x, y), p(x,−y) = p(x, y) ∀(x, y) ∈ ΩR . (4.6)

and the estimate

‖∇u‖L2(ΩR) < 3‖∇Ψ‖L2(ΩR) <
3

2
ηSR . (4.7)
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Proof. Existence of a weak solution (u, p) ∈ Vc(ΩR)× L2(ΩR) of (1.2) follows from [16, Theorem 3.1],
recalling that the compatibility condition (1.3) is fulfilled.

In order to prove the uniqueness statement, suppose there exists a vector field Ψ ∈ H1(ΩR) verifying
(4.4) and (4.5) and, by contradiction, that there exist two weak solutions u, v ∈ Vc(ΩR) of (1.2). Set
ξ
.
= v − Ψ, so that ξ ∈ V(ΩR) can be used as a test function in the weak formulation (4.3) satisfied by

v, thus yielding
η‖∇ξ‖2L2(ΩR) + η(∇Ψ,∇ξ) + β(ξ + Ψ, ξ + Ψ, ξ) = 0

and, in turn,
η‖∇ξ‖2L2(ΩR) ≤ η‖∇Ψ‖L2(ΩR)‖∇ξ‖L2(ΩR) − β(ξ + Ψ, ξ + Ψ, ξ). (4.8)

In view of (4.1)-(4.2) we have β(ξ + Ψ, ξ + Ψ, ξ) = β(ξ + Ψ,Ψ, ξ) and the estimate

|β(ξ + Ψ,Ψ, ξ)| ≤ ‖ξ‖L4(ΩR)‖∇Ψ‖L2(ΩR)

(
‖ξ‖L4(ΩR) + ‖Ψ‖L4(ΩR)

)
≤
‖∇ξ‖L2(ΩR)√

SR
‖∇Ψ‖L2(ΩR)

(‖∇ξ‖L2(ΩR)√
SR

+ ‖Ψ‖L4(ΩR)

)
,

(4.9)

where we used (2.3). After inserting (4.9) into (4.8) and applying (4.5) so that ‖∇Ψ‖L2(ΩR) < SRη, we
infer the bound

‖∇ξ‖L2(ΩR) ≤

‖∇Ψ‖L2(ΩR)‖Ψ‖L4(ΩR)√
SR

+ η‖∇Ψ‖L2(ΩR)

η −
‖∇Ψ‖L2(ΩR)

SR

. (4.10)

Let w
.
= u− v ∈ V(ΩR) and subtract the equations (4.3) corresponding to u and v in order to obtain

η(∇w,∇ϕ)L2(ΩR) + β(u,w, ϕ) + β(w, v, ϕ) = 0 ∀ϕ ∈ V(ΩR).

By taking ϕ = w and using (4.1) and (4.10), we derive

η‖∇w‖2L2(ΩR) = −β(w, v, w) = β(w,w, v) ≤ ‖w‖L4(ΩR)‖∇w‖L2(ΩR)‖v‖L4(ΩR)

≤
‖∇w‖2L2(ΩR)√

SR
‖v‖L4(ΩR) ≤

‖∇w‖2L2(ΩR)√
SR

(
‖ξ‖L4(ΩR) + ‖Ψ‖L4(ΩR)

)
≤
‖∇w‖2L2(ΩR)√

SR

(‖∇ξ‖L2(ΩR)√
SR

+ ‖Ψ‖L4(ΩR)

)

≤ η‖∇w‖2L2(ΩR)

‖∇Ψ‖L2(ΩR) +
√
SR ‖Ψ‖L4(ΩR)

ηSR − ‖∇Ψ‖L2(ΩR)
,

which shows that w = 0 (and, therefore, unique weak solvability for (1.2)) provided that (4.5) holds.
The estimate (4.7) follows from (4.5) and (4.10), noticing that

‖∇u‖L2(ΩR) = ‖∇v‖L2(ΩR) ≤ ‖∇ξ‖L2(ΩR) + ‖∇Ψ‖L2(ΩR)

≤
√
SR ‖∇Ψ‖L2(ΩR)‖Ψ‖L4(ΩR) + 2ηSR‖∇Ψ‖L2(ΩR) − ‖∇Ψ‖2L2(ΩR)

ηSR − ‖∇Ψ‖L2(ΩR)

<
‖∇Ψ‖L2(ΩR)

(
ηSR − 2‖∇Ψ‖L2(ΩR)

)
+ 2ηSR‖∇Ψ‖L2(ΩR) − ‖∇Ψ‖2L2(ΩR)

ηSR − ‖∇Ψ‖L2(ΩR)

= 3‖∇Ψ‖L2(ΩR) <
3

2
ηSR .
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In case of uniqueness, the symmetry property (4.6) is established by noticing that the pair (v1, v2, q) ∈
H1(ΩR)× L2(ΩR) defined as

v1(x, y) = u1(x,−y), v2(x, y) = −u2(x,−y), q(x, y) = p(x,−y) for a.e. (x, y) ∈ ΩR ,

also solves (1.2). 2

As a consequence of Theorem 4.1, we infer that symmetry breaking for the flow, see Figure 1.1, may
occur only if (4.5) is violated, that is, if for any vector field Ψ ∈ H1(ΩR) verifying (4.4) one has

2‖∇Ψ‖L2(ΩR) +
√
SR ‖Ψ‖L4(ΩR) ≥ SRη .

In the next subsection we give a sufficient condition for the existence of a vector field Ψ ∈ H1(ΩR)
satisfying (4.4)-(4.5).

4.2 A small solenoidal extension of the boundary velocity

The purpose of this subsection is to build an explicit solenoidal extension of the boundary velocity,
see [20]. We will build a vector field Ψ ∈ H1(ΩR) satisfying (4.4) and whose “size” can be explicitly
computed or estimated in terms of R and h. By exploiting the particular geometry of ΩR, a solenoidal
extension is built through the use of a suitable cut-off function. Since we are interested in obtaining
explicit bounds, the well-known Hopf cut-off function [13, Lemma 1.2] does not serve our purpose.

Theorem 4.2. Let U > 0 and define the constants

B1 =
8

35

[
36

5

2h2 + 3h+ 2

(h− 1)2
+

6

5

(13h+ 22)(3h2 − h+ 3)

(h− 1)3
+

19h3 + 51h2 + 75h+ 65

3(h− 1)3

]
,

B2 = 4Rh+
4(82563626 + 139273674h+ 131633079h2 + 47395086h3)

75150075(h− 1)

+
4(6562533 + 20038773h+ 29176308h2 + 22648263h3 + 5977793h4)

25050025(h− 1)2

+
288(1561958 + 3280874h+ 4160951h2 + 3491837h3 + 1768313h4 + 336653h5)

425850425(h− 1)3
.

For every R > 1 there exists a vector field ΨR ∈ H1(ΩR) satisfying (4.4) and

‖∇ΨR‖L2(ΩR) =
√
B1 U , ‖ΨR‖L4(ΩR) = 4

√
B2 U . (4.11)

Proof. Given any ε > 0 we define the function φε : R −→ R as

φε(t) =


0 if t ∈ (−∞,−1− ε] ∪ [1 + ε,∞)

1

ε3

[
2|t|3 − 3(ε+ 2)t2 + 6(1 + ε)|t|+ ε3 − 3ε− 2

]
if t ∈ (−1− ε,−1) ∪ (1, 1 + ε)

1 if t ∈ [−1, 1] ,

see also [26, Section 4], whose plot for ε = 1/2 is displayed in Figure 4.1. Then we have φε ∈ C1(R),
supp(φε) = [−1− ε, 1 + ε], φ′ε(1) = φ′ε(−1) = 0, so that φε ∈ H2(R). In fact, it holds φε ∈W 2,∞(R) with

‖φε‖L∞(R) = 1 , ‖φ′ε‖L∞(R) =
3

2ε
, ‖φ′′ε‖L∞(R) =

6

ε2
.

We then notice that

φh−1(±h) = 0 ; φh−1(y) = 1 ∀y ∈ [−1, 1] ; φ′h−1(±1) = φ′h−1(±h) = 0 . (4.12)
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Figure 4.1: Graph of the function φε (left) and of its derivative (right), for ε = 1/2.

We then define the function ω ∈ H2(QR) by

ω(x, y) = 1− φh−1(x)φh−1(y) ∀(x, y) ∈ QR ,

whose plot is given in Figure 4.2. Notice that ω(x, y) = 1 when |x| ≥ h, for every y ∈ [−h, h].

Figure 4.2: Graph of the function ω for R = 6 and h = 2.

We are now in position to define the vector field

ΨR(x, y) = U

ω(x, y) + y
∂ω

∂y
(x, y)

−y∂ω
∂x

(x, y)

 ∀(x, y) ∈ QR ,

which is an element of H1(ΩR) satisfying (4.4) in view of (4.12). We have Ψ(x, y) = (U, 0) when |x| ≥ h,
for every y ∈ [−h, h]. The estimates (4.11) follow from an explicit (but tedious) computation. 2

The following result can be derived as a straightforward consequence of Theorems 2.1, 4.1 and 4.2.

Corollary 4.1. For any U > 0 there exists a weak solution of (1.2). If, moreover,

U

η
<

π

2

√
3π

2

√
R2 + h2

Rh

2
√
B1 +

√
π

2Rh
4

√
3πB2

2
(R2 + h2)

,

then the weak solution of (1.2) is unique and satisfies the symmetry property (4.6).
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Finally, we show that the family of solenoidal extensions built in Theorem 4.2 has the least possible
growth as R→∞.

Theorem 4.3. For every R > 1, let ΨR ∈ H1(ΩR) be a solution of (4.4). Then

lim inf
R→∞

‖∇ΨR‖L2(ΩR) + ‖ΨR‖L4(ΩR)
4
√
R

> 0 .

Proof. Let γ > 0 and consider the convex subset of H1
c (ΩR) given by

Hγ(ΩR) = {v ∈ H1
c (ΩR) | v = γ on ∂QR} .

Define
Iγ(R)

.
= inf

v∈Hγ(ΩR)

(
‖∇v‖L2(ΩR) + ‖v‖L4(ΩR)

)
∀R > 1 ,

and let ε = ε(h) > 0 be the unique positive solution of the algebraic equation

2h

3π3
ε4 +

2
√

2

h1/4
ε = 1 . (4.13)

It suffices to prove that

lim inf
R→∞

Iγ(R)
4
√
R
≥ εγ . (4.14)

By homogeneity we can take γ = 1, and (4.14) will be proved once we show that, for any possible
choice of VR ∈ H1(ΩR), it holds

lim inf
R→∞

‖∇VR‖4L2(ΩR) + ‖VR‖4L4(ΩR)

R
≥ ε4 . (4.15)

So, for any R > 1, choose a function VR ∈ H1(ΩR): two cases may occur. If

lim inf
R→∞

‖∇VR‖4L2(ΩR)

R
≥ ε4 ,

then the claimed limit (4.15) certainly holds. Otherwise, we have that

lim inf
R→∞

‖∇VR‖4L2(ΩR)

R
= δ ∈

[
0, ε4

)
.

Then there exists a sequence of functions VRk ∈ H1(ΩRk), k ∈ N, where (Rk)k∈N ⊂ (1,∞) is an increasing
and divergent sequence, such that

lim
k→∞

‖∇VRk‖4L2(ΩRk )

Rk
= δ . (4.16)

By contradiction, assume that, possibly on a further subsequence (Rj)j∈N ⊂ (Rk)k∈N, it holds

lim
j→∞

‖VRj‖4L4(ΩRj )

Rj
< ε4 − δ . (4.17)

For every j ∈ N we then define a.e. in the rectangle Qj
.
= (−Rj , Rj)× (−h, h) the function

Wj(x, y) =

{
1− VRj (x, y) if (x, y) ∈ ΩRj ,

1 if (x, y) ∈ B1 ,
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so that Wj ∈ H1
0 (Qj). In view of (2.11) we then have, for all j ∈ N,

‖∇VRj‖4L2(ΩRj ) = ‖∇Wj‖4L2(Qj)
≥ 3π3

8

R2
j + h2

R2
jh

2
‖Wj‖4L4(Qj)

=
3π3

8

R2
j + h2

R2
jh

2

[
π +

∫
ΩRj

|1− VRj |4
]
. (4.18)

Then we notice that an application of Hölder’s inequality yields∫
ΩRj

|1− VRj |4 = |ΩRj | − 4

∫
ΩRj

VRj +

∫
ΩRj

V 2
Rj

(
6− 4VRj + V 2

Rj

)
≥ |ΩRj | − 4‖VRj‖L1(ΩRj )

≥ |ΩRj | − 4|ΩRj |3/4‖VRj‖L4(ΩRj ) = (4hRj − π)− 4(4hRj − π)3/4‖VRj‖L4(ΩRj ) .

(4.19)

Since we assumed (4.17), this shows that

lim inf
j→∞

1

Rj

∫
ΩRj

|1− VRj |4 ≥ 4
[
h− (4h)3/4

(
ε4 − δ

)1/4] ≥ 4
[
h− (4h)3/4ε

]
.

Combining (4.13) with (4.18), this implies that

lim inf
j→∞

‖∇VRj‖4L2(ΩRj )

Rj
≥ 3π3

2h2

[
h− (4h)3/4ε

]
= ε4 > δ ,

which contradicts (4.16). 2

Remark 4.1. The lower bound in (4.14) can be improved by taking a larger ε, both by noticing that
(4.15) is merely a sufficient condition for (4.14) and by observing that in (4.19) one may write∫

ΩRj

V 2
Rj

(
6− 4VRj + V 2

Rj

)
≥ max

{
2

∫
ΩRj

V 2
Rj ,

1

3

∫
ΩRj

V 4
Rj

}
∀j ∈ N .

However, we will not pursue this further because we are mainly interested in the growth rate (4.14).

If we maintain both the radius of the obstacle B1 and the height 2h of the outer rectangle fixed, the
result of Corollary 4.1 yields an explicit upper bound for the Reynolds number that ensures the existence
of a unique weak solution of problem (1.2) which, moreover, displays the symmetry (4.6). In Figure 4.3
we plot the quantity

Re
.
=

π

2

√
3π

2

√
R2 + h2

Rh

2
√
B1 +

√
π

2Rh
4

√
3πB2

2
(R2 + h2)

, (4.20)

as a function of R > h, for some fixed value of h > 1.

10 15 20 25 30
R

0.040

0.045

0.050

0.055

Re

Figure 4.3: Upper bound for the Reynolds number (4.20) as a function of R > h, for h = 5.

15



Remark 4.2. By letting R→∞, we notice that (4.20) implies both

lim
h→1

Re = 0 ∀R > 1 and Re � 1
4
√
R

as R→∞ .

In fact, this asymptotic behavior as R → ∞ cannot be improved. Indeed, the family of solenoidal
extensions ΨR ∈ H1(ΩR) built in Theorem 4.2 satisfies

‖∇ΨR‖L2(ΩR) does not depend on R and ‖ΨR‖L4(ΩR) ∼
4
√

4hR as R→∞ .

In view of Theorem 4.3 we deduce that the growth of these norms is “minimal”.

The results of the present section give a second connection between symmetry breaking in the sta-
tionary Navier-Stokes equations and Sobolev minimizers.

Remark 4.3. Theorem 4.1 states that, as long as uniqueness is guaranteed, symmetry of solutions
of (1.2) is observed. In turn, uniqueness is ensured provided that (4.5), which strongly depends on the
Sobolev constant SR, holds. As we saw in Theorem 3.1, the minimizers for SR lose symmetry as R→∞.
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