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SPARSE OPTIMAL CONTROL OF A PHASE FIELD TUMOR
MODEL WITH MECHANICAL EFFECTS\ast 

HARALD GARCKE\dagger , KEI FONG LAM\ddagger , AND ANDREA SIGNORI\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we study an optimal control problem for a macroscopic mechanical
tumor model based on the phase field approach. The model couples a Cahn--Hilliard-type equation
to a system of linear elasticity and a reaction-diffusion equation for a nutrient concentration. By
taking advantage of previous analytical well-posedness results established by the authors, we seek
optimal controls in the form of a boundary nutrient supply as well as concentrations of cytotoxic and
antiangiogenic drugs that minimize a cost functional involving mechanical stresses. Special attention
is given to sparsity effects, where with the inclusion of convex nondifferentiable regularization terms
to the cost functional, we can infer from the first-order optimality conditions that the optimal drug
concentrations can vanish on certain time intervals.
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1. Introduction. Mechanical stresses play a significant role in both enhancing
and inhibiting the growth of tumors. The unregulated proliferation of tumor cells
displaces nearby normal tissues, and in turn these tissues exert externally applied
stress to resist tumor expansion. In various experimental studies (see [9, 25, 26, 44]
and the references cited therein) high compressive stress has the effect of suppressing
proliferation and can induce apoptosis (natural cell death) in tumor cells. However,
in the case where the mechanical loads are not uniform, tumors can adapt by growing
in directions of least stress. Moreover, deformations of the microenvironment brought
about by these mechanical loads can alter the structure of nearby blood and lym-
phatic vessels, which are responsible for supplying the region with crucial nutrients,
oxygen, therapeutic drugs, as well as drainage of excessive interstitial fluids contain-
ing waste products. The gradual reduction in blood flow turns the stressed region
more hypoxic and more acidic; compounded with the reduction in nutrient levels, this
further accelerates the invasive and metastatic potentials of the tumors cells. On the
other hand, this also impairs the effectiveness of immune cells or therapeutic agents,
as they are not able to reach certain tumor regions in sufficient quantities. With the
use of mathematical modeling [29, 43], treatments aimed at alleviating stress seem
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to be a promising avenue that warrant further investigations and could be used in
coordination with other anticancer therapies.

Recent progress in mathematical oncology has shown promising results in fore-
casting tumor growth and predictive simulations of treatments [1, 2, 32, 33, 34, 35].
Most models employ a continuum description involving partial differential equations
to capture a multitude of biological and chemical mechanisms. Among those, we focus
on the subclass of phase field tumor models [13, 23, 38, 45], where the corresponding
numerical simulations (see, e.g., [14, 15, 17, 45, 46]) are able to replicate commonly
observed morphologies exhibited by tumors and their vasculatures.

While there has been a surge of activity in the subsequent mathematical model-
ing and analysis of phase field tumor models (see [1, 11, 14, 15, 23, 38, 46] and the
references cited therein), there seems to comparatively less focus on mechanical inter-
actions in tumor growth within the subclass of phase field models aside from recent
contributions [16, 22, 32, 33]; see also [3, 5, 19, 20] for results concerning the related
Cahn--Larch\'e system. In light of the significance of mechanical stress, for our study,
we consider a simplification of the phase field model that was proposed and studied
in the authors' previous work [22]. Consider a bounded domain \Omega \subset \BbbR d, d \in \{ 2, 3\} ,
with boundary \Gamma := \partial \Omega that is either of C1,1-regularity or is convex and is partitioned
into two subregions \Gamma D and \Gamma N . For an arbitrary T > 0 (which can be interpreted
as the length of the medical treatment), the following model posed in the space-time
cylinder \Omega \times (0, T ) describes the evolution of a cellular mixture containing tumor and
nontumor cells subject to various mechanisms involving a chemical species acting as
nutrient and mechanical stresses:

\varphi t = \Delta \mu + U(\varphi , \sigma , \scrE (\bfitu )) in Q := \Omega \times (0, T ),(1.1a)

\mu =  - \Delta \varphi +\Psi \prime (\varphi ) - \chi \sigma +\scrW ,\varphi (\varphi , \scrE (\bfitu )) in Q,(1.1b)

\scrW ,\varphi (\varphi , \scrE (\bfitu )) =  - \scrC (\scrE (\bfitu ) - \=\scrE  - \varphi \scrE \ast ) : \scrE \ast (1.1c)

\beta \sigma t = \Delta \sigma + S(\varphi , \sigma ) in Q,(1.1d)

0 = div(\scrW ,\scrE (\varphi , \scrE (\bfitu ))) in Q,(1.1e)

\scrW ,\scrE (\varphi , \scrE (\bfitu )) = \scrC (\scrE (\bfitu ) - \=\scrE  - \varphi \scrE \ast )(1.1f)

\varphi (0) = \varphi 0, \sigma (0) = \sigma 0 in \Omega ,(1.1g)

0 = \partial \bfitn \varphi = \partial \bfitn \mu , \partial \bfitn \sigma + \kappa (\sigma  - \sigma B) = 0 on \Sigma := \Gamma \times (0, T ),(1.1h)

\bfitu = 0 on \Sigma D := \Gamma D \times (0, T ),(1.1i)

\scrW ,\scrE (\varphi , \scrE (\bfitu ))\bfitn = \bfitg on \Sigma N := \Gamma N \times (0, T ).(1.1j)

We refer the reader to [22, 32, 33] for more background on the model and related
topics while briefly describing the main components. In the above, the variable \varphi 
denotes a phase field parameter that serves to distinguish between the two differ-
ent types of cellular material in the mixture, with tumor cells occupying the region
\{ \varphi = 1\} and nontumor cells the region \{ \varphi =  - 1\} . The subsystem (1.1a)--(1.1b)
constitutes a Cahn--Hilliard-type equation, where \mu is the associated chemical po-
tential. Coupled to this is a reaction-diffusion equation (1.1d) for a nutrient \sigma , as
well as a quasistatic linear elasticity system (1.1e) with displacement \bfitu and sym-
metric strain tensor \scrE (\bfitu ) := 1

2 (\nabla \bfitu + (\nabla \bfitu )\top ). We mention that there are certain
cases where the nutrient evolves quasistatically, which is covered by the case \beta = 0.
The terms \scrW ,\varphi (\varphi , \scrE (\bfitu )) and \scrW ,\scrE (\varphi , \scrE (\bfitu )) are partial derivatives of the elastic energy
\scrW (\varphi , \scrE (\bfitu )) with respect to its first and second arguments, respectively, and for this
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work, we consider the choice

\scrW (\varphi , \scrE (\bfitu )) = 1

2
(\scrE (\bfitu ) - \=\scrE  - \varphi \scrE \ast ) : \scrC (\scrE (\bfitu ) - \=\scrE  - \varphi \scrE \ast ),

where \scrC is a constant, symmetric, and positive definite elasticity tensor satisfying
the usual symmetry conditions and the phase-dependent stress-free strain \=\scrE (\varphi ) under
Vegard's law is given by the linear ansatz \=\scrE (\varphi ) = \=\scrE + \varphi \scrE \ast with constant symmetric
second-order tensors \=\scrE and \scrE \ast . Furthermore, in (1.1b) the directed movement of
cells by chemotaxis is captured by the term  - \chi \sigma , with \chi \geq 0 playing the role of
chemotactic sensitivity [23], while the term \Psi \prime (\varphi ) is the derivative of a double-well
potential \Psi (\varphi ) with equal minima at \varphi = \pm 1. In our setting this term plays the role
of cellular adhesion that leads to the development of regions of tumor and nontumor
cells well separated by interfacial layers described by the set \{  - 1 < \varphi < 1\} .

For boundary conditions, we subdivide the boundary \Gamma into the partition

\Gamma = \Gamma D \cup \Gamma N such that \Gamma D \cap \Gamma N = \emptyset .

Both portions are assumed to be relatively open and to have positive Hausdorff mea-
sures, and on the portion \Gamma D, representing a rigid structure of the tumor environment
such as bone, the displacement \bfitu is set to be zero, and on the complement portion \Gamma N ,
the normal component of the stress tensor \scrW ,\scrE is equal to some given load \bfitg provided
by a fixed source. Meanwhile, (1.1h) highlights that the cellular diffusive flux \partial \bfitn \mu is
zero across the boundary, and for \kappa > 0 the nutrient flux \partial \bfitn \sigma is proportional to the
difference between a nutrient source \sigma B from nearby capillaries and the nutrient level
at the boundary. The case of a zero nutrient diffusive flux is covered by the choice
\kappa = 0.

Finally, the source term U(\varphi , \sigma , \scrE (\bfitu )) in (1.1a) captures cellular growth that can
be influenced by nutrient concentration and mechanical stress. The example we will
use is

U(\varphi , \sigma , \scrE (\bfitu )) = \lambda p\sigma f(\varphi )g(\scrW ,\scrE (\varphi , \scrE (\bfitu ))) - (\lambda a +m(t))k(\varphi ),

where \lambda p \geq 0, \lambda a \geq 0 are constant proliferation and apoptosis (cell death) rates
and f , g, and k are Lipschitz and bounded functions. For instance, we can model
the proliferation and apoptosis of only the tumor cells by prescribing the conditions
f(1) = k(1) = 1, f( - 1) = k( - 1) = 0; see, e.g., [23], where one example is f(\varphi ) =
k(\varphi ) = 1

2 (1 + \varphi ) for \varphi \in [ - 1, 1]. Meanwhile, to account for the effect of reduced
proliferation due to the increase in mechanical stress [4, 9, 25, 44], we may consider
as a motivating example the function g : \BbbR d\times d \rightarrow \BbbR defined as

g(\bfitA ) =
1\sqrt{} 

1 + | \bfitA | 2
for \bfitA \in \BbbR d\times d,(1.2)

where | \bfitA | is the Frobenius norm of the matrix\bfitA , so that as the magnitude of the stress
\scrW ,\scrE (\varphi , \scrE (\bfitu )) increases, the effects of the proliferation term \lambda p\sigma f(\varphi )g(\scrW ,\scrE (\varphi , \scrE (\bfitu )))
become less significant. This is different from the choice considered in [22], as the
derivation of optimal conditions in our present contribution requires a differentiable
g. What is not present in the previous work [22] is the coefficient m(t), and when
paired with k(\varphi ), we use the product m(t)k(\varphi ) to model a cytotoxic drug--induced
decrease in tumor proliferation. A motivating example for m(t) from [11] is

m(t) =

n\sum 
i=1

dce
 - t - Ti

\tau H(t - Ti),(1.3)
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with drug dosage dc and drug delivery times Ti for i = 1, . . . , n, where n is the
number of chemotherapy cycles, \tau denoting the mean lifetime of the drug, and H
is the Heaviside function. After the ith infusion, the effect of the drug decreases
exponentially until the next infusion at time Ti+1. For drugs with sufficiently short
mean lifetime \tau or with large enough infusion gap Ti  - Ti - 1, there are certain time
intervals where the coefficient m is close to zero.

Similarly, the source term S(\varphi , \sigma ) in (1.1d) accounts for nutrient consumption
and transport to and from external capillaries. The example we will use is of the form

S(\varphi , \sigma ) =  - h(\varphi )(\lambda c\sigma  - s(t)) +B(\sigma c  - \sigma )

with constant consumption rate \lambda c \geq 0, capillary supply rate B \geq 0, capillary nutrient
concentration \sigma c, and a Lipschitz, bounded function h. For instance, we can model
nutrient consumption only by the tumor cells by prescribing the conditions h(1) = 1
and h( - 1) = 0, with one example being h(\varphi ) = 1

2 (1 + \varphi ) for \varphi \in [ - 1, 1]. A new
element absent from [22] is the coefficient s(t), which models the reduction in nutrient
supply caused by antiangiogenic therapy, and in [11] a similar form to (1.3) is proposed
for s(t), meaning that under suitable conditions, the coefficient s(t) takes values close
to zero for certain time intervals.

It is common to prescribe cytotoxic drugs in chemotherapy that serve to disrupt
the cellular division process and promote apoptosis, but tumors can overcome these
effects by developing drug resistance or by generating new vasculatures through an-
giogenesis to obtain nutrients that compensate any loss of mass from chemotherapy.
Therefore, in certain situations, it is of interest to combine two or more different
therapies so that their joint effect can account for more mechanisms that allow tu-
mors to avoid complete elimination and have an overall larger positive impact on the
treatment than the individual monotherapies. Unfortunately, the results of various
experimental and clinical studies (see [36] and the references cited therein) have not
produced clear guidelines on how to proceed with combined therapies, in part due to
the multitude of drugs presently available and patient-specific interactions of multiple
drugs. Hence, mathematicians and physicians have turn toward the framework of op-
timal control to infer protocols, dosages, and timings that maximize tumor reduction
and minimize harmful side effects [27, 30, 31, 37, 39]. To contribute to this effort, we
study an optimal control problem with the model (1.1) as the state system, and as
controls, we work with the boundary nutrient supply w1 = \sigma B , the cytotoxic coeffi-
cient w2 = m(t), and the antiangiogentic coefficient w3 = s(t). The cost functional
we consider is

(1.4)

J(\varphi ,\bfitu , w1, w2, w3) :=
\alpha \Omega 

2
\| \varphi (T ) - \varphi \Omega \| 2L2(\Omega ) +

\alpha Q

2
\| \varphi  - \varphi Q\| 2L2(Q)

+
\alpha \scrE 

2

\int 
Q

n(x, \varphi )| \scrW ,\scrE (\varphi , \scrE (\bfitu ))| 2 dx dt

+
\gamma 1
2
\| w1\| 2L2(\Sigma ) +

\gamma 2
2
\| w2\| 2L2(0,T ) +

\gamma 3
2
\| w3\| 2L2(0,T )

+ \gamma 4\| w2\| L1(0,T ) + \gamma 5\| w3\| L1(0,T ).

It is composed of the standard tracking type with weights \alpha Q, \alpha \Omega \geq 0 and target
functions \varphi Q : Q\rightarrow \BbbR and \varphi \Omega : \Omega \rightarrow \BbbR and L2-regularizations for the optimal controls
w1 = \sigma B , w2 = m(t), and w3 = s(t) with corresponding weights \gamma 1, \gamma 2, \gamma 3 \geq 0. Let
us stress that the controls w2 and w3 are solely functions of time and are spatially
constant. Compared to previous works on optimal control with phase field tumor
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models, we have the presence of a term involving the square of the stress \scrW ,\scrE (\varphi , \scrE (\bfitu ))
weighted by a nonnegative coefficient n(x, \varphi ) and constant \alpha \scrE \geq 0. Due to the role of
mechanical stresses on enhancing tumor growth, we are motivated to minimize stress
accumulating in a certain region of the domain, such as important organs (by taking
n(x, \varphi ) = \chi D(x) for a subregion D \subset \Omega , where \chi D is the characteristic function of
the set D) or in certain parts of the tumor microenvironment whose location can
be encoded with the help of the phase field variable \varphi . One example is a function
n(x, \varphi ) = max(0,min(1, 12 (1  - \varphi ))), so that n is nonzero in the nontumor region
\{ \varphi =  - 1\} and is zero in the tumor region \{ \varphi = 1\} .

Moreover, we prescribe L1-regularizations of the drug concentrations w2 and w3

with weights \gamma 4, \gamma 5 \geq 0 to the cost functional (1.4), with the aim of using the com-
bination of both L2 and L1-regularizations to show sparsity; see Theorem 5.1 below
for the precise formulation. A first work on sparse controls with phase field tumor
models is [41], where directional sparsity [24] of the controls, i.e., sparsity w.r.t. space
or w.r.t. time, is shown. Our reasoning for such considerations is in part motivated
by the common practice that chemotherapies should be administrated to the patient
only in very short periods of time to avoid adverse side effects. In the simulations
performed in [12], where an optimal control problem of a similar nature is studied
with only L2-regularization terms in the cost functional, the optimal cytotoxic drug
concentration is positive over the treatment period. In practical applications this
translates to prolonged exposure and subsequent accumulation of the drugs in the
body, potentially invoking damaging side effects, and may even entail a premature
abortion of the medical treatment.

The goal of this paper is to study the optimal control problem (1.4) subjected
to the state system (1.1). Building on the well-posedness results established in [22],
we prove the existence of a minimizer and derive first-order optimality conditions.
Our main result is sparsity of the optimal drug concentrations, brought about by the
convex nondifferentiable L1-terms in (1.4). Compared to [41], our analysis includes
the elasticity interactions in (1.1b) and in (1.4), covering both cases of \beta > 0 and
\beta = 0 in (1.1d) in a uniform manner, as well as different sparsity conditions for
nonnegative drug concentrations m(t) and s(t).

We comment that tracking terms involving the nutrient concentration \sigma , such
as \| \sigma  - \sigma Q\| 2L2(Q) or \| \sigma (T )  - \sigma \Omega \| 2L2(\Omega ) if \beta > 0, can also be inserted into the cost
functional. Other terms of interest include the total tumor volume at time T given by
the spatial integral of 1

2 (1 + \varphi (T )), and thanks to the well-posedness result for (1.1)
(see Theorem 2.1 below), we can consider other parameters as control variables, for
instance, the capillary nutrient concentration \sigma c, the boundary load \bfitg , the initial data
\varphi 0, \sigma 0, the coefficients \chi , \lambda p, \lambda a, \lambda c in (1.1) in the context of parameter estimation
[18, 28], and even the magnitude of the treatment time T [8, 21, 40]. One can also
consider spatially varying drug concentrations m(t, x) and s(t, x) as in [12, 41] and
the corresponding analysis to adapt to these elements would only require minor and
straightforward modifications.

The rest of the paper is organized as follows: We recall previous results in section
2, and the existence of a minimizer to the optimal control problem is shown in section
3. Section 4 is devoted to the derivation of first-order optimality conditions, and in
section 5, we discuss the sparsity of controls.

2. Mathematical setting and previous results.

2.1. Notation and useful preliminaries. The standard Lebesgue and Sobolev
spaces over \Omega are denoted by Lp := Lp(\Omega ) and W k,p := W k,p(\Omega ) for any p \in [1,\infty ]
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and k > 0, with corresponding norms \| \cdot \| Lp and \| \cdot \| Wk,p . In the case p = 2, these
become Hilbert spaces, and we use the notation Hk := Hk(\Omega ) = W k,2(\Omega ) and the
norm \| \cdot \| Hk . For any Banach space Z we denote its dual by Z \prime and the corresponding
duality pairing by \langle \cdot , \cdot \rangle Z . When Z = H1(\Omega ), we use the notation \langle \cdot , \cdot \rangle = \langle \cdot , \cdot \rangle H1 . The
L2(\Omega )-inner product is denoted by (\cdot , \cdot ), while the L2(\Gamma ) and L2(\Gamma N )-inner products
are denoted by (\cdot , \cdot )\Gamma and (\cdot , \cdot )\Gamma N

, respectively. We define the Sobolev space H2
\bfitn (\Omega )

as the set \{ f \in H2(\Omega ) : \partial \bfitn f = 0 on \Gamma \} , and for the displacement \bfitu , we introduce
the following function space:

X(\Omega ) := \{ f \in H1(\Omega )d : f
\Gamma D

= 0\} ,

where by [10, Thm. 6.15-4, pp. 409--410], a Korn-type inequality is valid in X(\Omega ); i.e.,
there exists a constant CK > 0 such that

\| \bfitu \| H1 \leq CK\| \scrE (\bfitu )\| L2 \forall \bfitu \in X(\Omega ).(2.1)

2.2. Assumptions and previous results. In this work, we make the following
assumptions regarding parameters and functions in the model:

(A1) Let \bfitg \in L2(\Gamma N )d and \sigma B \in L\infty (\Sigma ) be given, while \beta ,B, \kappa , \chi , \lambda a, \lambda p, \lambda c, \sigma c are
nonnegative constants such that at least one of \{ B, \kappa \} is nonzero if \beta = 0.
Moreover, \=\scrE and \scrE \ast are constant symmetric second-order tensors, while \scrC is
a constant symmetric, positive definite fourth-order tensor satisfying

\scrE : \scrC \scrE \geq c0| \scrE | 2

for all symmetric second-order tensors \scrE \in \BbbR d\times d
sym with a positive constant c0.

(A2) The potential \Psi = \Psi 1+\Psi 2 is a nonnegative function, \Psi i \in C3(\BbbR ) for i = 1, 2,
with a convex nonnegative function \Psi 1 such that for all r, z \in \BbbR ,

| \Psi \prime \prime 
2(r)| \leq C, | \Psi \prime \prime \prime 

1 (r)| \leq C(1 + | r| ),
| \Psi \prime (r) - \Psi \prime (z)| \leq C

\bigl( 
1 + | r| 2 + | z| 2

\bigr) 
| r  - z| ,

| \Psi \prime \prime (r) - \Psi \prime \prime (z)| \leq C
\bigl( 
1 + | r| + | z| 

\bigr) 
| r  - z| 

for some positive constant C.
(A3) The functions f , g, h, and k satisfy f, h, k \in W 1,\infty (\BbbR ), g \in W 1,\infty (\BbbR d\times d,\BbbR ),

with Lipschitz constants that shall be denoted by a common symbol L > 0.
Furthermore, we assume h is nonnegative.

(A4) The cytotoxic and antiangiogenic functions satisfy m, s \in L\infty (0, T ).
(A5) The initial conditions satisfy \varphi 0 \in H1(\Omega ) and \sigma 0 \in L2(\Omega ) with 0 \leq \sigma 0 \leq 

M := max(\sigma c, \| \sigma B\| L\infty (\Sigma )) a.e. in \Omega .
To study the optimal control problem, we will need the following:

(A6) We assume f , h, k \in C2(\BbbR ) \cap W 2,\infty (\BbbR ), g \in C2(\BbbR d\times d,\BbbR ) \cap W 2,\infty (\BbbR d\times d,\BbbR ),
and
n : \Omega \times \BbbR \rightarrow \BbbR is a Carath\'eodory function such that n(x, \cdot ) \in C1(\BbbR )\cap W 1,\infty (\BbbR )
is nonnegative for a.e. x \in \Omega .

(A7) The coefficients \alpha Q, \alpha \Omega , \alpha \scrE , \gamma 1, \gamma 2, \gamma 3, \gamma 4, \gamma 5 are nonnegative constants, not all
zero. Moreover, \gamma 2 is positive if \gamma 4 is positive, and \gamma 3 is positive when \gamma 5 is
positive.

(A8) The objective data \varphi Q : Q \rightarrow \BbbR , \varphi \Omega : \Omega \rightarrow \BbbR are given functions satisfying
\varphi Q \in L2(Q), \varphi \Omega \in L2(\Omega ).
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Let us mention that from a practical viewpoint, the drug concentrations m(t)
and s(t) should be nonnegative functions. However, for the mathematical analysis we
perform below, it suffices to work with general L\infty (0, T )-functions as in (A4). We
will revisit the nonnegativity of m and s when discussing the sparsity of controls in
section 5. It is also worth noting that the conditions expressed in (A2) are fulfilled by
the classical quartic potential \Psi (r) = 1

4 (r
2  - 1)2. For the motivating example (1.2),

for any \bfitA \in \BbbR d\times d, we use the notation g\prime (\bfitA ) to denote the tensor derivative of g; i.e.,
g\prime (\bfitA ) is a second-order tensor with

[g\prime (\bfitA )]ij =
\partial 

\partial \bfitA ij
g(\bfitA ) =  - \bfitA ij

(1 + | \bfitA | 2)3/2
for 1 \leq i, j \leq d.

On the other hand, we use the notation g\prime \prime (\bfitA ) to denote the Hessian of g, which is a
fourth-order tensor defined as

[g\prime \prime (\bfitA )]ijkl =
\partial 2

\partial \bfitA ij\partial \bfitA kl
g(\bfitA ) =

3\bfitA ij\bfitA kl

(1 + | \bfitA | 2)5/2
 - \delta ik\delta jl

(1 + | \bfitA | 2)3/2
for 1 \leq i, j, k, l \leq d.

Hence, it is easy to see that for any \bfitA \in \BbbR d\times d, both | [g\prime (\bfitA )]ij | and | [g\prime \prime (\bfitA )]ijkl| are
bounded for all 1 \leq i, j, k, l \leq d. In particular, we can infer that | g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu )))| 
and | g\prime \prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))| are bounded a.e. in Q thanks to (A3). For the rest of the paper,
the parameters \beta , \bfitg , B, \kappa , \chi , \lambda a, \lambda p, \lambda c, \sigma c, \scrC , \=\scrE , \scrE \ast , as well as initial data \varphi 0 and
\sigma 0, are kept fixed. We then introduce the notation

\bfitw = (w1, w2, w3)

and the set of admissible controls \scrU ad = \scrU (1)
ad \times \scrU (2)

ad \times \scrU (3)
ad as

(2.2)
\scrU (1)
ad := \{ w1 \in L\infty (\Sigma ) : w1 \leq w1 \leq w1 a.e. on \Sigma \} ,

\scrU (i)
ad := \{ wi \in L\infty (0, T ) : wi \leq wi \leq wi a.e. in (0, T )\} for i = 2, 3,

with fixed w1, w1 \in L\infty (\Sigma ), w2, w2, w3, w3 \in L\infty (0, T ) such that w1 \leq w1 a.e. on
\Sigma , wi \leq wi a.e. in (0, T ) for i = 2, 3, and max(\| w1\| L\infty (\Sigma ), \| w1\| L\infty (\Sigma )) \leq M . The
admissible set of controls \scrU ad is a nonempty, closed, and convex subset of \scrU :=
L2(\Sigma )\times L2(0, T )\times L2(0, T ), and we can find a positive constant R such that

\scrU R := \{ (w1, w2, w3) \in \scrU : \| w1\| L2(\Sigma ) + \| w2\| L2(0,T ) + \| w3\| L2(0,T ) < R\} \supset \scrU ad.

The following result concerns the well-posedness of the model (1.1).

Theorem 2.1. Under (A1)--(A5) there exists a unique weak solution (\varphi , \mu , \sigma ,\bfitu )
to (1.1) and also an exponent p > 2 that depends on d, \Omega , \Gamma D, and \scrC such that

\varphi \in H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;H1(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega )),

\mu \in L2(0, T ;H1(\Omega )),

\sigma \in L2(0, T ;H1(\Omega )) \cap L\infty (0, T ;L\infty (\Omega )) with 0 \leq \sigma \leq M a.e. in Q

and \sigma \in H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;L2(\Omega )) if \beta > 0,

\bfitu \in L\infty (0, T ;X(\Omega ) \cap W 1,p(\Omega )),
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with \varphi (0) = \varphi 0 in L2(\Omega ) as well as \sigma (0) = \sigma 0 in L2(\Omega ) if \beta > 0 and

0 =

\int T

0

\langle \varphi t, \zeta \rangle + (\nabla \mu ,\nabla \zeta ) - (U(\varphi , \sigma , \scrE (\bfitu )), \zeta ) dt,(2.3a)

0 =

\int T

0

(\mu , \zeta ) - (\nabla \varphi ,\nabla \zeta ) - (\Psi \prime (\varphi ), \zeta ) + \chi (\sigma , \zeta ) - (\scrW ,\varphi (\varphi , \scrE (\bfitu )), \zeta ) dt,(2.3b)

0 =

\int T

0

\beta \langle \sigma t, \zeta \rangle + (\nabla \sigma ,\nabla \zeta ) + \kappa (\sigma  - \sigma B , \zeta )\Gamma  - (S(\varphi , \sigma ), \zeta ) dt,(2.3c)

0 =

\int T

0

(\scrC (\scrE (\bfitu ) - \=\scrE  - \varphi \scrE \ast ),\nabla \bfiteta ) - (\bfitg ,\bfiteta )\Gamma N
dt(2.3d)

for all \zeta \in L2(0, T ;H1(\Omega )) and \bfiteta \in L2(0, T ;X(\Omega )). Moreover, there exists a positive
constant K1 independent of \beta such that

(2.4)

\| \varphi \| H1(0,T ;H1(\Omega )\prime )\cap L\infty (0,T ;H1)\cap L2(0,T ;H2) + \| \mu \| L2(0,T ;H1)

+ \| \sigma \| L2(0,T ;H1) + \beta 
1
2 \| \sigma \| H1(0,T ;H1(\Omega )\prime )\cap L\infty (0,T ;L2)

+ \| \bfitu \| L\infty (0,T ;X(\Omega )\cap W 1,p(\Omega )) \leq K1

\bigl( 
1 + \beta 

1
2 \| \sigma 0\| L2

\bigr) 
.

For any pair \{ (\varphi i, \mu i, \sigma i,\bfitu i)\} i=1,2 of weak solutions to (1.1) corresponding to data

\{ (\varphi 0,i, \sigma 0,i, \bfitg i, \sigma B,i,mi, si)\} i=1,2,

there exists a constant K2 > 0 independent of the differences of \{ (\varphi i, \mu i, \sigma i,\bfitu i)\} i=1,2

and \beta such that

(2.5)

\| \varphi 1  - \varphi 2\| L\infty (0,T ;H1)\cap L2(0,T ;H2) + \| \mu 1  - \mu 2\| L2(0,T ;H1) + \| \sigma 1  - \sigma 2\| L2(0,T ;H1)

+ \beta 
1
2 \| \sigma 1  - \sigma 2\| L\infty (0,T ;L2) + \| \bfitu 1  - \bfitu 2\| L\infty (0,T ;X(\Omega ))

\leq K2

\Bigl( 
\| \varphi 0,1  - \varphi 0,2\| H1 + \beta 

1
2 \| \sigma 0,1  - \sigma 0,2\| L2 + \| \bfitg 1  - \bfitg 2\| L2(\Gamma N )

\Bigr) 
+K2

\Bigl( 
\| \sigma B,1  - \sigma B,2\| L2(\Sigma ) + \| m1  - m2\| L2(0,T ) + \| s1  - s2\| L2(0,T )

\Bigr) 
.

Remark 2.2. The proof of existence can be deduced analogously from [22, sect. 3],
and we comment that the subsequent constant K1 in (2.4) is bounded uniformly in
(\sigma B ,m(t), s(t)) when we restrict to the open set \scrU R, whereas a minor modification of
[22, sect. 6] using the boundedness of k and h yields the above continuous dependence
assertion in the presence of the new coefficients m(t) and s(t). Hence, we omit the
details.

Remark 2.3. A closer inspection of the proof in [22, sect. 5.2] allows us to deduce
the further regularity statement

\varphi \in L4(0, T ;H2
\bfitn (\Omega )).

We briefly sketch the argument. Testing (1.1b) with  - \Delta \varphi , integrating by parts for
the terms involving \mu and \Psi \prime (\varphi ), and then using the convexity of \Psi 1, the bounds
for \Psi \prime \prime 

2 , the boundedness of \sigma , and the regularity \varphi \in L\infty (0, T ;H1(\Omega )), and \bfitu \in 
L\infty (0, T ;X(\Omega )),

1
2\| \Delta \varphi \| 

2
L2 \leq \| \nabla \mu \| L2\| \nabla \varphi \| L2 + C\| \nabla \varphi \| 2L2 + C\| \sigma \| 2L2 + C\| \scrW ,\varphi (\varphi , \scrE (\bfitu ))\| 2L2

\leq C
\bigl( 
1 + \| \nabla \mu \| L2

\bigr) 
.

Squaring and integrating over (0, T ) yields that \Delta \varphi \in L4(0, T ;L2(\Omega )), and elliptic
regularity gives the assertion.
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3. The optimal control problem. In this section, we show that there exists
at least one minimizer to the optimal control problem minimizing the cost functional
(1.4) with state system given by (1.1). By Theorem 2.1, we can define the control-to-
state operator \scrS , which assigns every admissible control\bfitw = (w1, w2, w3) = (\sigma B ,m, s)
the corresponding unique solution (\varphi , \mu , \sigma ,\bfitu ) to (1.1). Namely, we have

\scrS : \scrU ad \subset \scrU R \rightarrow \scrY \beta , (w1, w2, w3) \mapsto \rightarrow (\varphi , \mu , \sigma ,\bfitu ),

where the solution space \scrY \beta is defined, according to Theorem 2.1, as

\scrY \beta :=

\left\{                       

H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;H1(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(0, T ;H1(\Omega ))

\times H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;L2(\Omega )) \cap L2(0, T ;H1(\Omega )) \cap L\infty (Q)

\times L\infty (0, T ;X(\Omega ) \cap W 1,p(\Omega )) if \beta > 0,

H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;H1(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(0, T ;H1(\Omega ))

\times L2(0, T ;H1(\Omega )) \cap L\infty (Q)

\times L\infty (0, T ;X(\Omega ) \cap W 1,p(\Omega )) if \beta = 0.

Denoting by \scrS 1(\bfitw ) = \varphi the first component and by \scrS 4(\bfitw ) = \bfitu the fourth component,
we can define the reduced cost functional as

\scrJ (\bfitw ) = J(\scrS 1(\bfitw ),\scrS 4(\bfitw ),\bfitw ).

Theorem 3.1. Under (A1)--(A8), there exists at least one minimizer \bfitw \in \scrU ad to
the optimal control problem

min
(z1,z2,z3)\in \scrU ad

\scrJ (z1, z2, z3).

Since the proof is somewhat standard, we omit the details and sketch the main
points. The nonnegativity of \scrJ implies the infimum inf\scrU ad

\scrJ exists and allows us to
find a minimizing sequence \{ \bfitw n = (w1,n, w2,n, w3,n)\} n\in \BbbN \subset \scrU ad such that \scrJ (\bfitw n) \rightarrow 
inf\scrU ad

\scrJ as n \rightarrow \infty . Denoting the corresponding solution as (\varphi n, \mu n, \sigma n,\bfitu n) =
\scrS (\bfitw n) \in \scrY \beta , we infer by the bound (2.4) that \{ (\varphi n, \mu n, \sigma n,\bfitu n)\} n\in \BbbN is uniformly
bounded in \scrY \beta . Hence, along a nonrelabeled subsequence there exists a limit triplet
\bfitw = (w1, w2, w3) \in \scrU ad such that, as n\rightarrow \infty ,

(w1,n, w2,n, w3,n) \rightarrow (w1, w2, w3) weakly* in L\infty (\Sigma )\times L\infty (0, T )2,

(\varphi n, \mu n, \sigma n,\bfitu n) \rightarrow (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw ) weakly* in \scrY \beta .

The Aubin--Lions compactness theorem then yields the strong convergence of \varphi n to \varphi 
in C0([0, T ];L2(\Omega ))\cap L2(0, T ;L2(\Omega )), allowing us to pass to the limit in the tracking
terms of \scrJ , and provides strong convergence

\sqrt{} 
n(\varphi n)\bfiteta \rightarrow 

\sqrt{} 
n(\varphi )\bfiteta for all \bfiteta \in L2(Q).

Together with the weak convergence of \scrE (\bfitu n) to \scrE (\bfitu ) in L2(Q), we arrive at the weak
convergence\sqrt{} 

n(\varphi n)\scrW ,\scrE (\varphi n, \scrE (\bfitu n)) \rightarrow 
\sqrt{} 
n(\varphi )\scrW ,\scrE (\varphi , \scrE (\bfitu )) weakly in L2(Q).

Then, by the weak lower semicontinuity of Lp-norms for p \in [1,\infty ), we deduce that

\scrJ (\bfitw ) \leq lim inf
n\rightarrow \infty 

\scrJ (\bfitw n) = inf
\scrU ad

\scrJ .
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4. First-order necessary optimality conditions.

Theorem 4.1. Under (A1)--(A8), let \bfitw \ast = (w\ast 
1 , w

\ast 
2 , w

\ast 
3) \in \scrU ad be an optimal

control with associated state (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ). Then there exist functions \lambda 2, \lambda 3 \in 
L\infty (0, T ) such that, for a.e. t \in (0, T ),

\lambda i(t) \in 

\left\{     
\{ 1\} if w\ast 

i (t) > 0,

[ - 1, 1] if w\ast 
i (t) = 0,

\{  - 1\} if w\ast 
i (t) < 0,

for i \in \{ 2, 3\} ,(4.1)

and for all \bfity = (y1, y2, y3) \in \scrU ad,

(4.2)

0 \leq 
\int T

0

(\kappa r + \gamma 1w
\ast 
1 , y1  - w\ast 

1)\Gamma dt

+

\int T

0

\Bigl( 
\gamma 2w

\ast 
2 + \gamma 4\lambda 2  - 

\int 
\Omega 

k(\varphi )p dx
\Bigr) 
(y2  - w\ast 

2) dt

+

\int T

0

\Bigl( 
\gamma 3w

\ast 
3 + \gamma 5\lambda 3 +

\int 
\Omega 

h(\varphi )r dx
\Bigr) 
(y3  - w\ast 

3) dt,

where p and r are the first and third components of the associated adjoint variables
(p, q, r, \bfits ) satisfying the adjoint system (4.15).

The proof of Theorem 4.1 proceeds in four steps, which are covered in the following
four subsections.

4.1. Linearized state system. Given \bfitw \ast = (w\ast 
1 , w

\ast 
2 , w

\ast 
3) \in \scrU ad with associated

state (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ) \in \scrY \beta , for arbitrary \bfith = (h1, h2, h3) \in \scrU , we study the
following linearized state system:

\xi t = \Delta \eta + Ulin(\varphi , \sigma , \scrE (\bfitu ), w\ast 
2 , h2, \xi , \psi , \scrE (\bfitv )) in Q,(4.3a)

Ulin = \lambda pg(\scrW ,\scrE (\varphi , \scrE (\bfitu )))(f \prime (\varphi )\xi \sigma + f(\varphi )\psi )(4.3b)

+ \lambda p\sigma f(\varphi )g
\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))) : \scrC (\scrE (\bfitv ) - \xi \scrE \ast )

 - (\lambda a + w\ast 
2)k

\prime (\varphi )\xi  - h2k(\varphi )

\eta =  - \Delta \xi +\Psi \prime \prime (\varphi )\xi  - \chi \psi  - \scrC (\scrE (\bfitv ) - \xi \scrE \ast ) : \scrE \ast in Q,(4.3c)

\beta \psi t = \Delta \psi + Slin(\varphi , \sigma ,w
\ast 
3 , h3, \xi , \psi ) in Q,(4.3d)

Slin =  - h\prime (\varphi )\xi (\lambda c\sigma  - w\ast 
3) - h(\varphi )(\lambda c\psi  - h3) - B\psi (4.3e)

0 = div(\scrC (\scrE (\bfitv ) - \xi \scrE \ast )) in Q,(4.3f)

0 = \xi (0) = \psi (0) in \Omega ,(4.3g)

0 = \partial \bfitn \xi = \partial \bfitn \eta , \partial \bfitn \psi + \kappa (\psi  - h1) = 0 on \Sigma ,(4.3h)

\bfitv = 0 on \Sigma D,(4.3i)

0 = \scrC (\scrE (\bfitv ) - \xi \scrE \ast )\bfitn on \Sigma N .(4.3j)

Introducing the solution space

\scrY \beta 
lin =

\left\{                   

H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;H1(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(0, T ;H1(\Omega ))

\times H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;L2(\Omega )) \cap L2(0, T ;H1(\Omega ))

\times L\infty (0, T ;X(\Omega )) if \beta > 0,

H1(0, T ;H1(\Omega )\prime ) \cap L\infty (0, T ;H1(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(0, T ;H1(\Omega ))

\times L2(0, T ;H1(\Omega ))\times L\infty (0, T ;X(\Omega )) if \beta = 0,

we have the following result.
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Theorem 4.2. For given \bfitw \ast = (w\ast 
1 , w

\ast 
2 , w

\ast 
3) \in \scrU ad with (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ) \in 

\scrY \beta and \bfith = (h1, h2, h3) \in \scrU , under (A1)--(A6), there exists a unique solution (\xi , \eta ,

\psi ,\bfitv ) \in \scrY \beta 
lin to (4.3) with \xi (0) = 0, \psi (0) = 0 if \beta > 0, and

0 =

\int T

0

\langle \xi t, \zeta \rangle + (\nabla \eta ,\nabla \zeta ) - (Ulin(\varphi , \sigma , \scrE (\bfitu ), w\ast 
2 , h2, \psi , \xi , \scrE (\bfitv )), \zeta ) dt,(4.4a)

0 =

\int T

0

(\eta  - \Psi \prime \prime (\varphi )\xi + \chi \psi + \scrC (\scrE (\bfitv ) - \xi \scrE \ast ) : \scrE \ast , \zeta ) - (\nabla \xi ,\nabla \zeta ) dt,(4.4b)

0 =

\int T

0

\beta \langle \psi t, \zeta \rangle + (\nabla \psi ,\nabla \zeta ) + \kappa (\psi  - h1, \zeta )\Gamma  - (Slin(\varphi , \sigma ,w
\ast 
3 , h3, \xi , \psi ), \zeta ) dt,(4.4c)

0 =

\int T

0

(\scrC (\scrE (\bfitv ) - \xi \scrE \ast ),\nabla \bfiteta ) dt(4.4d)

for all \zeta \in L2(0, T ;H1(\Omega )) and \bfiteta \in L2(0, T ;X(\Omega )).

Proof. We proceed with formal estimates that can be justified rigorously with
a Galerkin approximation. In the following the positive constants denoted by the
symbol C will be independent of the Galerkin parameter, as well as h1, h2, and h3,
and might change from line to line. In additon, let us remark that since \bfitw \ast is fixed,
the corresponding state (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ) enjoys the bound (2.4). Let us mention
that uniqueness follows from existence thanks to the linearity of the system (4.3).

We test (4.4a) with \eta and K\xi , (4.4b) with  - \xi t and \eta , (4.4c) with R\psi , and
(4.4d) with \bfitv t for positive constants K,R to be determined later. After summing and
rearranging, we get

(4.5)

1

2

d

dt

\Bigl( 
K\| \xi \| 2L2 + \| \nabla \xi \| 2L2 +R\beta \| \psi \| 2L2

\Bigr) 
+
d

dt

\int 
\Omega 

\scrW lin(\xi , \scrE (\bfitv )) dx

+ \| \eta \| 2H1 +R\| \nabla \psi \| 2L2 +R\kappa \| \psi \| 2L2
\Gamma 
+RB\| \psi \| 2L2

=  - K(\nabla \eta ,\nabla \xi ) + (Ulin, \eta +K\xi ) + (\Psi \prime \prime (\varphi )\xi , \eta  - \xi t) + \chi (\psi , \xi t  - \eta )

+ (\nabla \xi ,\nabla \eta ) - (\scrC (\scrE (\bfitv ) - \xi \scrE \ast ) : \scrE \ast , \eta ) +R\kappa (h1, \psi )\Gamma +R(Slin, \psi ),

where

\scrW lin(\xi , \scrE (\bfitv )) = 1

2
(\scrE (\bfitv ) - \xi \scrE \ast ) : \scrC (\scrE (\bfitv ) - \xi \scrE \ast ),

and we have used the identity

d

dt

\int 
\Omega 

\scrW lin(\xi , \scrE (\bfitv )) dx = (\scrW lin
,\xi (\xi , \scrE (\bfitv )), \xi t) + (\scrW lin

,\scrE (\xi , \scrE (\bfitv )), \scrE (\bfitv t))

=  - (\scrC (\scrE (\bfitv ) - \xi \scrE \ast ) : \scrE \ast , \xi t) + (\scrC (\scrE (\bfitv ) - \xi \scrE \ast ), \scrE (\bfitv t))

derived with the help of the symmetry of \scrC and \scrE \ast . Furthermore, by the positive
definiteness of \scrC and Young's inequality,

\scrW lin(\xi , \scrE (\bfitv )) \geq c0
4
\| \scrE (\bfitv )\| 2L2  - C

\bigl( 
1 + \| \xi \| 2L2

\bigr) 
.(4.6)

Next, recalling that w\ast 
2 and w\ast 

3 are constant in space, from the definition of Ulin and
Slin, using the boundedness of w\ast 

2 , w
\ast 
3 , f , g, h, k and their derivatives, as well as the

boundedness of \sigma and of | g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu )))| , it is easy to see that

\| Ulin\| L2 \leq C
\bigl( 
\| \xi \| L2 + \| \psi \| L2 + \| \scrE (\bfitv )\| L2 + | h2| 

\bigr) 
,(4.7)
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while

R(Slin, \psi ) \leq  - R
\bigl( 
B\| \psi \| 2L2 + \lambda c(h(\varphi )\psi ,\psi )

\bigr) 
+RC

\bigl( 
\| \xi \| L2 + | h3| 

\bigr) 
\| \psi \| L2

\leq  - RB\| \psi \| 2L2 + C
\bigl( 
\| \xi \| 2L2 + | h3| 2

\bigr) 
+ \| \psi \| 2L2 ,

where we also use the nonnegativity of h and \lambda c. Also, using (A2), the inclusion
H1(\Omega ) \subset L6(\Omega ), and that \varphi \in L\infty (0, T ;H1(\Omega )),

\| \Psi \prime \prime (\varphi )\xi \| 2L2 \leq C\| \xi \| 2L6

\bigl( 
1 + \| \varphi \| 4L6

\bigr) 
\leq C\| \xi \| 2H1 .

Hence, the right-hand side of (4.5) can be estimated as

RHS \leq 1

4
\| \eta \| 2H1 + c\| \psi \| 2L2 + C

\bigl( 
\| \xi \| 2H1 + \| \scrE (\bfitv )\| 2L2 + \| h1\| 2L2

\Gamma 
+ | h2| 2 + | h3| 2

\bigr) 
+ (\chi \psi  - \Psi \prime \prime (\varphi )\xi , \xi t) +

R\kappa 

2
\| \psi \| 2L2

\Gamma 
 - RB\| \psi \| 2L2

with a positive constant c that is independent of R. To handle the term involving \xi t,
we use (4.4a) and (4.7) to deduce that

(4.8)
\| \xi t\| H1(\Omega )\prime \leq \| \nabla \eta \| L2 + \| Ulin\| L2

\leq \| \nabla \eta \| L2 + C
\bigl( 
\| \xi \| L2 + \| \psi \| L2 + \| \scrE (\bfitv )\| L2 + | h2| 

\bigr) 
,

while invoking the assumption (A2) for \Psi \prime \prime and \Psi \prime \prime \prime leads to

\| \Psi \prime \prime (\varphi )\xi \| H1 \leq \| \Psi \prime \prime (\varphi )\xi \| L2 + \| \xi \Psi \prime \prime \prime (\varphi )\nabla \varphi \| L2 + \| \Psi \prime \prime (\varphi )\nabla \xi \| L2

\leq C\| \xi \| H1 + \| \Psi \prime \prime \prime (\varphi )\| L6\| \xi \| L6\| \nabla \varphi \| L6 + \| \Psi \prime \prime (\varphi )\| L\infty \| \nabla \xi \| L2

\leq C
\bigl( 
1 + \| \varphi \| 2H2

\bigr) 
\| \xi \| H1 .

Then, via Young's inequality,

| (\Psi \prime \prime (\varphi )\xi , \xi t)| \leq 
1

8
\| \nabla \eta \| 2L2 + C

\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| \xi \| 2H1 + C

\bigl( 
\| \psi \| 2L2 + \| \scrE (\bfitv )\| 2L2 + | h2| 2

\bigr) 
.

Meanwhile, by a similar argument,

| (\chi \psi , \xi t)| \leq 
1

8
\| \nabla \eta \| 2L2 + C

\bigl( 
\| \psi \| 2H1 + \| \scrE (\bfitv )\| 2L2 + | h2| 2 + \| \xi \| 2L2

\bigr) 
,

and so, collecting the above estimates for the right-hand side of (4.5), we deduce the
existence of two positive constants c1 and c2 independent of R such that

1

2

d

dt

\Bigl( 
K\| \xi \| 2L2 + \| \nabla \xi \| 2L2 +R\beta \| \psi \| 2L2

\Bigr) 
+
d

dt

\int 
\Omega 

\scrW lin(\xi , \scrE (\bfitv )) dx

+
1

2
\| \eta \| 2H1 + (R - c1)\| \nabla \psi \| 2L2 +

R\kappa 

2
\| \psi \| 2L2

\Gamma 
+ (RB  - c2)\| \psi \| 2L2

\leq C
\bigl( 
1 + \| \varphi \| 4H2

\bigr) \bigl( 
\| \scrE (\bfitv )\| L2 + \| \xi \| 2H1

\bigr) 
+ C

\bigl( 
\| h1\| 2L2

\Gamma 
+ | h2| 2 + | h3| 2

\bigr) 
\leq C

\bigl( 
1 + \| \varphi \| 4H2

\bigr) \bigl( 
\| \scrW lin(\xi , \scrE (\bfitv ))\| L1 + \| \xi \| 2H1

\bigr) 
+ C

\bigl( 
\| h1\| 2L2

\Gamma 
+ | h2| 2 + | h3| 2

\bigr) 
,

where we have also used the lower bound (4.6). In the case \beta > 0, we can directly
employ Gronwall's inequality to handle the terms on the right-hand side, whereas in
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the case \beta = 0, we proceed as follows: If B > 0, we can choose R > max(2c1,
2c2
B ),

and if B = 0, then \kappa > 0 by (A1), and we employ the generalized Poincar\'e inequality

\| f\| L2 \leq C
\bigl( 
\| \nabla f\| L2 + \| f\| L2

\Gamma 

\bigr) 
\forall f \in H1(\Omega )

to handle the term c2\| \psi \| 2L2 on the left-hand side after choosing R sufficiently large.
Invoking Gronwall's inequality, keeping in mind that \varphi \in L4(0, T ;H2(\Omega )), there exists
a constant C independent of \beta such that

(4.9)

\| \xi \| 2L\infty (0,T ;H1) + \beta \| \psi \| 2L\infty (0,T ;L2) + \| \scrW lin(\xi , \scrE (\bfitv ))\| 2L\infty (0,T ;L1)

+ \| \eta \| 2L2(0,T ;H1) + \| \nabla \psi \| 2L2(Q) + \kappa \| \psi \| 2L2(\Sigma ) +B\| \psi \| 2L2(Q)

\leq C
\bigl( 
\| h1\| 2L2(\Sigma ) + \| h2\| 2L2(0,T ) + \| h3\| 2L2(0,T )

\bigr) 
.

In view of \xi (0) = 0, we note that from (4.3) the initial data \bfitv 0 assigned to \bfitv satisfies
the elliptic equation \left\{     

div(\scrC (\scrE (\bfitv 0))) = 0 in \Omega ,

\bfitv 0 = 0 on \Gamma D,

\scrC (\scrE (\bfitv 0))\bfitn = 0 on \Gamma N .

Testing with \bfitv 0 and using Korn's inequality shows that

\| \bfitv 0\| H1 \leq CK\| \scrE (\bfitv 0)\| L2 \leq CK

c0
(\scrC \scrE (\bfitv 0), \scrE (\bfitv 0)) = 0,

which explains the absence of initial data on the right-hand side of (4.9). Then,
recalling the lower bound (4.6) and employing Korn's inequality, we have

\| \xi \| 2L\infty (0,T ;H1) + \beta \| \psi \| 2L\infty (0,T ;L2) + \| \bfitv \| 2L\infty (0,T ;H1) + \| \eta \| 2L2(0,T ;H1) + \| \psi \| 2L2(0,T ;H1)

\leq C
\bigl( 
\| h1\| 2L2(\Sigma ) + \| h2\| 2L2(0,T ) + \| h3\| 2L2(0,T )

\bigr) 
,

which also implies the uniqueness of solution since the difference of two solutions to
the linear system (4.3) satisfies (4.3) with h1 = h2 = h3 = 0. To complete the proof,
we return to (4.8) to deduce that

\| \xi t\| L2(0,T ;H1(\Omega )\prime ) \leq C
\bigl( 
\| h1\| L2(\Sigma ) + \| h2\| L2(0,T ) + \| h3\| L2(0,T )

\bigr) 
,

while if \beta > 0, from (4.4c), we also have

\| \psi t\| L2(0,T ;H1(\Omega )\prime ) \leq C
\bigl( 
\| h1\| L2(\Sigma ) + \| h2\| L2(0,T ) + \| h3\| L2(0,T )

\bigr) 
.

Finally, after passing to the limit in the Galerkin approximation, we obtain limit
functions (\xi , \eta , \psi ,\bfitv ) \in \scrY \beta 

lin satisfying (4.3) except for the L2(0, T ;H2
\bfitn (\Omega )) regularity

of \xi . This can be obtained from viewing (4.4b) as the variational formulation of the
elliptic problem\Biggl\{ 

 - \Delta \xi = \~f := \eta  - \Psi \prime \prime (\varphi )\xi + \chi \psi + \scrC (\scrE (\bfitv ) - \xi \scrE \ast ) : \scrE \ast in Q,

\partial \bfitn \xi = 0 on \Sigma ,

with a right-hand side \~f \in L2(Q), and with the help of elliptic regularity, we then

infer that \xi \in L2(0, T ;H2
\bfitn (\Omega )). Hence, we have shown that (\xi , \eta , \psi ,\bfitv ) \in \scrY \beta 

lin, and
this concludes the proof.
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4.2. Differentiability of the solution operator. In this section, we establish
the Fr\'echet differentiability of the solution operator \scrS between suitable Banach spaces,
and that the derivative at \bfitw \ast = (w\ast 

1 , w
\ast 
2 , w

\ast 
3) \in \scrU ad in direction \bfith = (h1, h2, h3) \in \scrU 

is the unique solution (\xi , \eta , \psi ,\bfitv ) obtained from Theorem 4.2. This is formulated as
follows.

Theorem 4.3. Under (A1)--(A6), for given \bfitw \ast \in \scrU ad with (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ) \in 
\scrY \beta , the control-to-state operator \scrS is Fr\'echet differentiable at \bfitw \ast when viewed as a
mapping from \scrU to \scrX \beta , where

\scrX \beta =

\left\{               

L\infty (0, T ;L2(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(Q)

\times L\infty (0, T ;L2(\Omega )) \cap L2(0, T ;H1(\Omega ))\times L2(0, T ;X(\Omega )) if \beta > 0,

L\infty (0, T ;L2(\Omega )) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(Q)

\times L2(0, T ;H1(\Omega ))\times L2(0, T ;X(\Omega )) if \beta = 0.

Moreover, for all \bfith = (h1, h2, h3) \in \scrU , the directional derivative

D\scrS (\bfitw \ast )[\bfith ] = (\xi , \eta , \psi ,\bfitv )

is the unique solution to (4.3) associated to \bfith .

Proof. We denote

(\varphi h, \mu h, \sigma h,\bfitu h) = \scrS (\bfitw \ast + \bfith )

and aim to show

\| \scrS (\bfitw \ast + \bfith ) - \scrS (\bfitw \ast ) - D\scrS (\bfitw \ast )[\bfith ]\| \scrX \beta 

\| \bfith \| \scrU 
\rightarrow 0 as \| \bfith \| \scrU \rightarrow 0.

This is done via establishing for functions

\Phi := \varphi h  - \varphi  - \xi , \lambda := \mu h  - \mu  - \eta , \theta := \sigma h  - \sigma  - \psi , \bfitz := \bfitu h  - \bfitu  - \bfitv 

the inequality

\| (\Phi , \lambda , \theta , \bfitz )\| \scrX \beta \leq C\| \bfith \| 2\scrU (4.10)

with a positive constant C independent of (\Phi , \lambda , \theta , \bfitz ) and \bfith . To this end, we recall

from Theorems 2.1 and 4.2 that the new variables (\Phi , \lambda , \theta , \bfitz ) \in \scrY \beta 
lin satisfy

0 = \langle \Phi t, \zeta \rangle + (\nabla \lambda ,\nabla \zeta ) + (\lambda pXh, \zeta )(4.11a)

 - ((\lambda a + w\ast 
2)[k(\varphi h) - k(\varphi ) - k\prime (\varphi )\xi ], \zeta ) - ((k(\varphi h) - k(\varphi ))h2, \zeta ),

0 = (\lambda , \zeta ) - (\nabla \Phi ,\nabla \zeta ) - (\Psi \prime (\varphi h) - \Psi \prime (\varphi ) - \Psi \prime \prime (\varphi )\xi , \zeta )(4.11b)

+ (\chi \theta , \zeta ) - (\scrC (\scrE (\bfitz ) - \Phi \scrE \ast ) : \scrE \ast , \zeta ),

0 = \beta \langle \theta t, \zeta \rangle + (\nabla \theta ,\nabla \zeta ) + (B\theta + \lambda ch(\varphi )\theta , \zeta ) + (\kappa \theta , \zeta )\Gamma (4.11c)

+ \lambda c((\sigma  - w\ast 
3)[h(\varphi h) - h(\varphi ) - h\prime (\varphi )\xi ], \zeta ) - \lambda c((h(\varphi h) - h(\varphi ))h3, \zeta )

+ \lambda c((h(\varphi h) - h(\varphi ))(\sigma h  - \sigma ), \zeta ),

0 = (\scrC (\scrE (\bfitz ) - \Phi \scrE \ast ),\nabla \bfiteta )(4.11d)
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for all \zeta \in H1(\Omega ) and \bfiteta \in X(\Omega ) and for a.e. t \in (0, T ), where

Xh =
\bigl( 
g(\scrW ,\scrE (\varphi h, \scrE (\bfitu h))) - g(\scrW ,\scrE (\varphi , \scrE (\bfitu )))

\bigr) 
\times 
\Bigl[ 
(f(\varphi h) - f(\varphi ))(\sigma h  - \sigma ) + f(\varphi )(\sigma h  - \sigma ) + (f(\varphi h) - f(\varphi ))\sigma 

\Bigr] 
+ g(\scrW ,\scrE (\varphi , \scrE (\bfitu )))

\times 
\Bigl[ 
(f(\varphi h) - f(\varphi ))(\sigma h  - \sigma ) + \sigma [f(\varphi h) - f(\varphi ) - f \prime (\varphi )\xi ] + f(\varphi )\theta 

\Bigr] 
+
\Bigl[ 
g(\scrW ,\scrE (\varphi h, \scrE (\bfitu h))) - g(\scrW ,\scrE (\varphi , \scrE (\bfitu ))) - g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))) : \scrC (\scrE (\bfitv ) - \xi \scrE \ast )

\Bigr] 
\times f(\varphi )\sigma .

Take note that h1 does not appear in (4.11) since the state system (1.1) is linear in
w\ast 

1 = \sigma B . We invoke Taylor's theorem with integral remainder for f \in W 2,\infty (\BbbR ),

f(x) - f(a) - f \prime (a)(x - a) = (x - a)2
\int 1

0

f \prime \prime (a+ z(x - a))(1 - z) dz for a, x \in \BbbR ,

to deduce that

f(\varphi h) - f(\varphi ) - f \prime (\varphi )\xi = f \prime (\varphi )\Phi + (\varphi h  - \varphi )2Rf ,

h(\varphi h) - h(\varphi ) - h\prime (\varphi )\xi = h\prime (\varphi )\Phi + (\varphi h  - \varphi )2Rh,

k(\varphi h) - k(\varphi ) - k\prime (\varphi )\xi = k\prime (\varphi )\Phi + (\varphi h  - \varphi )2Rk,

\Psi \prime (\varphi h) - \Psi \prime (\varphi ) - \Psi \prime \prime (\varphi )\xi = \Psi \prime \prime (\varphi )\Phi + (\varphi h  - \varphi )2R\Psi ,

where

Rf =

\int 1

0

f \prime \prime (\varphi + z(\varphi h  - \varphi ))(1 - z) dz, Rh =

\int 1

0

h\prime \prime (\varphi + z(\varphi h  - \varphi ))(1 - z) dz,

Rk =

\int 1

0

k\prime \prime (\varphi + z(\varphi h  - \varphi ))(1 - z) dz, R\Psi =

\int 1

0

\Psi \prime \prime \prime (\varphi + z(\varphi h  - \varphi ))(1 - z) dz,

and in light of the regularity assumption (A6), as well as (A2) and (2.4), there exists
a positive constant C such that

(4.12)
\| Rf\| L\infty + \| Rh\| L\infty + \| Rk\| L\infty \leq C,

\| R\Psi \| L6 \leq C
\bigl( 
1 + \| \varphi \| L6 + \| \varphi h\| L6

\bigr) 
\leq C.

Next, we test (4.11a) with \Phi , (4.11b) with \lambda , (4.11c) with M\theta , and (4.11d) with
K\bfitz for positive constants M,K yet to be determined, and on adding the resulting
equations, we arrive at
(4.13)

1

2

d

dt

\Bigl( 
\| \Phi \| 2L2 + \beta M\| \theta \| 2L2

\Bigr) 
+ \| \lambda \| 2L2 +M\| \nabla \theta \| 2

+M(B\theta + \lambda ch(\varphi )\theta , \theta ) +M\kappa \| \theta \| 2L2
\Gamma 
+Kc0\| \scrE (\bfitz )\| 2

\leq  - (\lambda pXh,\Phi ) +
\bigl( 
(\lambda a + w\ast 

2)[k(\varphi h) - k(\varphi ) - k\prime (\varphi )\xi ] + h2(k(\varphi h) - k(\varphi )),\Phi 
\bigr) 

+ (\Psi \prime (\varphi h) - \Psi \prime (\varphi ) - \Psi \prime \prime (\varphi )\xi , \lambda ) - (\chi \theta , \lambda ) + (\scrC (\scrE (\bfitz ) - \Phi \scrE \ast ) : \scrE \ast , \lambda )

 - M\lambda c((\sigma  - w\ast 
3)[h(\varphi h) - h(\varphi ) - h\prime (\varphi )\xi ], \theta ) +M\lambda c((h(\varphi h) - h(\varphi ))h3, \theta )

 - M\lambda c((h(\varphi h) - h(\varphi ))(\sigma h  - \sigma ), \theta ) +K(\scrC (\Phi \scrE \ast ), \scrE (\bfitz )).
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Looking at the terms involving \bfitz , we see

(\scrC (\scrE (\bfitz ) - \Phi \scrE \ast ) : \scrE \ast , \lambda ) +K(\scrC (\Phi \scrE \ast ), \scrE (\bfitz ))

\leq 1

8
\| \lambda \| 2L2 + C\| \scrE (\bfitz )\| 2L2 + C(1 +K2)\| \Phi \| 2L2

for a positive constant C independent of K. Next, for terms involving \theta , we employ
the boundedness of \sigma and w\ast 

3 and the Lipschitz continuity of h to obtain

 - (\chi \theta , \lambda ) - M\lambda c((h(\varphi h) - h(\varphi ))(\sigma h  - \sigma ), \theta )

 - M\lambda c((\sigma  - w\ast 
3)[h(\varphi h) - h(\varphi ) - h\prime (\varphi )\xi ], \theta ) +M\lambda c((h(\varphi h) - h(\varphi ))h3, \theta )

\leq 1

8
\| \lambda \| 2L2 + C\| \theta \| 2L2 +M2C\| \varphi h  - \varphi \| 2L4\| \sigma h  - \sigma \| 2L4

+M2C\| h\prime \prime (\varphi )\Phi + (\varphi h  - \varphi )2Rh\| 2L2 +M2C\| \varphi h  - \varphi \| 2L2 | h3| 2

\leq CM2
\bigl( 
\| \Phi \| 2L2 + \| \varphi h  - \varphi \| 2H1

\bigl( 
\| \sigma h  - \sigma \| 2H1 + \| \varphi h  - \varphi \| 2H1 + | h3| 2

\bigr) \bigr) 
+

1

8
\| \lambda \| 2L2 + C\| \theta \| 2L2

for a positive constant C independent ofM . Next, for the terms involving k in (4.13),
we similarly have

((\lambda a + w\ast 
2)[k(\varphi h) - k(\varphi ) - k\prime (\varphi )\xi ] + h2(k(\varphi h) - k(\varphi )),\Phi )

\leq C\| \Phi \| 2L2 + C\| \varphi h  - \varphi \| 4L4 + C\| \varphi h  - \varphi \| 2L2 | h2| 2

\leq C\| \Phi \| 2L2 + C
\bigl( 
| h2| 2 + \| \varphi h  - \varphi \| 2H1

\bigr) 
\| \varphi h  - \varphi \| 2H1

and, for the terms involving \Psi \prime ,

(\Psi \prime (\varphi h) - \Psi \prime (\varphi ) - \Psi \prime \prime (\varphi )\xi , \lambda ) = (\Psi \prime \prime (\varphi )\Phi +R\Psi (\varphi h  - \varphi )2, \lambda )

\leq \| \Psi \prime \prime (\varphi )\| L\infty \| \Phi \| L2\| \lambda \| L2 + \| R\Psi \| L6\| \varphi h  - \varphi \| 2L6\| \lambda \| L2

\leq 1

8
\| \lambda \| 2L2 + C

\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| \Phi \| 2L2 + C\| \varphi h  - \varphi \| 4H1 ,

where we used (A2), (2.5), and (4.12). Finally, we tackle the term involving Xh. First,
we observe with the assumption g \in W 2,\infty (\BbbR d\times d,\BbbR ) from (A6) that

| g(\scrW ,\scrE (\varphi h, \scrE (\bfitu h))) - g(\scrW ,\scrE (\varphi , \scrE (\bfitu )))| =
\bigm| \bigm| \bigm| \bigm| \int 1

0

g\prime (\cdot ) dz : \scrC (\scrE (\bfitu h  - \bfitu ) - (\varphi h  - \varphi )\scrE \ast )

\bigm| \bigm| \bigm| \bigm| 
\leq C| \scrE (\bfitu h) - \scrE (\bfitu )| + C| \varphi h  - \varphi | ,

where g\prime (\cdot ) is evaluated at z\scrW ,\scrE (\varphi h, \scrE (\bfitu h)) + (1 - z)\scrW ,\scrE (\varphi , \scrE (\bfitu )), and

g(\scrW ,\scrE (\varphi h, \scrE (\bfitu h))) - g(\scrW ,\scrE (\varphi , \scrE (\bfitu ))) - g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))) : \scrC (\scrE (\bfitv ) - \xi \scrE \ast )

= g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))) : \scrC (\scrE (\bfitz ) - \Phi \scrE \ast )

+
\Bigl( \int 1

0

(1 - z)g\prime \prime (\cdot ) dz
\Bigr) 
[\scrC (\scrE (\bfitu h  - \bfitu ) - (\varphi h  - \varphi )\scrE \ast )] : [\scrC (\scrE (\bfitu h  - \bfitu ) - (\varphi h  - \varphi )\scrE \ast )]

\leq g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))) : \scrC (\scrE (\bfitz ) - \Phi \scrE \ast ) + C| \scrC (\scrE (\bfitu h  - \bfitu ) - (\varphi h  - \varphi )\scrE \ast )| 2,

where g\prime \prime (\cdot ) is evaluated at (1 - z)\scrW ,\scrE (\varphi , \scrE (\bfitu )) + z\scrW ,\scrE (\varphi h, \scrE (\bfitu h)). Hence, using the
boundedness of f(\varphi ), g(\cdot ), g\prime (\cdot ), g\prime \prime (\cdot ), \sigma , and \sigma h that are independent of \| \bfith \| \scrU , we
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obtain for a positive constant \varepsilon > 0 to be determined later

(\lambda pXh,\Phi ) \leq \varepsilon \| \Phi \| 2H2 + C\| Xh\| 2L1

\leq \varepsilon \| \Phi \| 2H2 + C\| \scrE (\bfitu h) - \scrE (\bfitu )\| 2L2\| \varphi h  - \varphi \| 2L4\| \sigma h  - \sigma \| 2L4

+ C\| \scrE (\bfitu h) - \scrE (\bfitu )\| 2L2

\bigl( 
\| \sigma h  - \sigma \| 2L2 + \| \varphi h  - \varphi \| 2L2

\bigr) 
+ C\| \varphi h  - \varphi \| 4L4\| \sigma h  - \sigma \| 2L2 + C\| \varphi h  - \varphi \| 4L2 + C\| \varphi h  - \varphi \| 2L2\| \sigma h  - \sigma \| 2L2

+ C\| \Phi \| 2L2 + C\| \theta \| 2L2 + C\| \scrE (\bfitz )\| 2L2 + C\| \scrE (\bfitu h) - \scrE (\bfitu )\| 4L2

\leq \varepsilon \| \Phi \| 2H2 + C(\| \bfith \| 4\scrU + \| \bfith \| 6\scrU ).

To close the estimate, we require an estimate, for \| \Phi \| 2H2 , which can be obtained from

(4.11b). Using that (\Phi , \lambda , \theta , \bfitz ) \in \scrY \beta 
lin, we see that

\| \Delta \Phi \| 2L2 \leq C\| \lambda \| 2L2 + C\| \Psi \prime (\varphi h) - \Psi \prime (\varphi ) - \Psi \prime \prime (\varphi )\xi \| 2L2

+ C\| \theta \| 2L2 + C\| \scrE (\bfitz )\| 2L2 + C\| \Phi \| 2L2

\leq C
\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| \Phi \| 2L2 + C\| \bfith \| 4\scrU + C

\bigl( 
\| \theta \| 2L2 + \| \scrE (\bfitz )\| 2L2 + \| \lambda \| 2L2

\bigr) 
.

By elliptic regularity, there exists a positive constant C0 independent of (\Phi , \lambda , \theta , \bfitz )
and \bfith , as well as M and K, such that

\| \Phi \| 2H2 \leq C
\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| \Phi \| 2L2 + C\| \bfith \| 4\scrU + C0

\bigl( 
\| \theta \| 2L2 + \| \scrE (\bfitz )\| 2L2 + \| \lambda \| 2L2

\bigr) 
.(4.14)

Let \alpha be a positive constant such that

\alpha C0 \leq 1
8 .

Multiplying (4.14) with \alpha and adding to (4.13), then employing the estimates for the
right-hand side and choosing \varepsilon = \alpha 

2 , we obtain

1

2

d

dt

\Bigl( 
\| \Phi \| 2L2 + \beta M\| \theta \| 2L2

\Bigr) 
+

1

2
\| \lambda \| 2L2 +

\alpha 

2
\| \Phi \| 2H2

+M\| \nabla \theta \| 2L2 +MB\| \theta \| 2L2 +M\kappa \| \theta \| 2L2
\Gamma 
 - \^C\| \theta \| 2L2 + (Kc0  - \^C)\| \scrE (\bfitz )\| 2L2

\leq C
\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| \Phi \| 2L2 + C\| \varphi h  - \varphi \| 2H1

\bigl( 
| h2| 2 + | h3| 2

\bigr) 
+ C\| \varphi h  - \varphi \| 2H1

\bigl( 
\| \sigma h  - \sigma \| 2H1 + \| \varphi h  - \varphi \| 2H1 + \| \scrE (\bfitu h) - \scrE (\bfitu )\| 2L2

\bigr) 
+ C\| \scrE (\bfitu h) - \scrE (\bfitu )\| 2L2

\bigl( 
\| \scrE (\bfitu h) - \scrE (\bfitu )\| 2L2 + \| \sigma h  - \sigma \| 2L2

\bigr) 
+ C(\| \bfith \| 4\scrU + \| \bfith \| 6\scrU )

=: C
\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| \Phi \| 2L2 + C\| \varphi h  - \varphi \| 2H1

\bigl( 
| h2| 2 + | h3| 2

\bigr) 
+\scrR h,

where the positive constants \^C appearing on the left-hand side are independent of M
and K. Hence, choosing M and K sufficiently large, with Gronwall's inequality and
Korn's inequality, as well as \Phi (0) = \theta (0) = 0, we have

\| \Phi \| 2L\infty (0,T ;L2) + \beta \| \theta \| 2L\infty (0,T ;L2) + \| \lambda \| 2L2(Q) + \| \Phi \| 2L2(0,T ;H2)

+ \| \theta \| 2L2(0,T ;H1) + \| \bfitz \| 2L2(0,T ;X(\Omega ))

\leq C exp
\Bigl( 
C + C\| \varphi \| 4L4(0,T ;H2)

\Bigr) \int T

0

\| \varphi h  - \varphi \| 2H1

\bigl( 
| h2| 2 + | h3| 2

\bigr) 
+\scrR h dt

\leq C(\| \bfith \| 4\scrU + \| \bfith \| 6\scrU ),

where the last inequality comes from the application of (2.5). This completes the
proof as (4.10) has been shown.
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4.3. Adjoint system. Associated to an optimal control \bfitw \ast \in \scrU ad and its cor-
responding solution (\varphi , \mu , \sigma ,\bfitu ) are the adjoint variables (p, q, r, \bfits ) that satisfy the
following adjoint system written in strong form:

f1 =  - pt  - \Delta q + \scrG , q =  - \Delta p in Q,(4.15a)

0 =  - \beta rt  - \Delta r +Br +\scrK in Q,(4.15b)

div(\bfitf 2) = div(\scrC (\scrE (\bfits ) +\scrH )) in Q,(4.15c)

p(T ) = \alpha \Omega (\varphi (T ) - \varphi \Omega ), r(T ) = 0 in \Omega ,(4.15d)

0 = \partial \bfitn p = \partial \bfitn q, \partial \bfitn r + \kappa r = 0 on \Sigma ,(4.15e)

0 = (\scrC (\scrE (\bfits ) +\scrH ) - \bfitf 2)\bfitn on \Sigma D,(4.15f)

\bfits = 0 on \Sigma N ,(4.15g)

where using the notation n\prime (\cdot , \varphi ) = \partial n
\partial \varphi (\cdot , \varphi )

f1 = f1(\varphi , \scrE (\bfitu )) = \alpha Q(\varphi  - \varphi Q) +
\alpha \scrE 
2 n

\prime (\cdot , \varphi )| \scrW ,\scrE (\varphi , \scrE (\bfitu ))| 2

 - \alpha \scrE n(\cdot , \varphi )\scrW ,\scrE (\varphi , \scrE (\bfitu )) : \scrC \scrE \ast ,

\bfitf 2 = \bfitf 2(\varphi , \scrE (\bfitu )) =  - \alpha \scrE n(\cdot , \varphi )\scrC \scrW ,\scrE (\varphi , \scrE (\bfitu )),
\scrG = \scrG (\varphi , \sigma , \scrE (\bfitu ), p, q, r, \scrE (\bfits ), w\ast 

2 , w
\ast 
3) = \Psi \prime \prime (\varphi )q + (\lambda a + w\ast 

2)k
\prime (\varphi )p+ q\scrC \scrE \ast : \scrE \ast 

 - \lambda p\sigma p
\bigl( 
f \prime (\varphi )g(\scrW ,\scrE (\varphi , \scrE (\bfitu ))) + f(\varphi )g\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))) : \scrC \scrE \ast \bigr) 

+ h\prime (\varphi )(\lambda c\sigma  - w\ast 
3)r + \scrC \scrE \ast : \scrE (\bfits ),

\scrK = \scrK (\varphi , \scrE (\bfitu ), p, q, r) = h(\varphi )\lambda cr  - \lambda pf(\varphi )g(\scrW ,\scrE (\varphi , \scrE (\bfitu )))p - \chi q,

\scrH = \scrH (\varphi , \sigma , \scrE (\bfitu ), p, q) = q\scrE \ast + \lambda pp\sigma f(\varphi )g
\prime (\scrW ,\scrE (\varphi , \scrE (\bfitu ))).

We introduce the solution space

\scrZ \beta =

\left\{               

H1(0, T ;H2
\bfitn (\Omega )

\prime ) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(Q)

\times H1(0, T ;H1(\Omega )\prime ) \cap L2(0, T ;H1(\Omega ))\times L2(0, T ;X(\Omega )) if \beta > 0,

H1(0, T ;H2
\bfitn (\Omega )

\prime ) \cap L2(0, T ;H2
\bfitn (\Omega ))\times L2(Q)

\times L2(0, T ;H1(\Omega ))\times L2(0, T ;X(\Omega )) if \beta = 0.

Theorem 4.4. For given \bfitw \ast \in \scrU ad with (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ) \in \scrY \beta , under (A1)--
(A8), there exists a unique solution (p, q, r, \bfits ) \in \scrZ \beta to the adjoint system (4.15) with
p(T ) = \alpha \Omega (\varphi (T ) - \varphi \Omega ), r(T ) = 0 if \beta > 0, and

0 =

\int T

0

 - \langle pt, \zeta \rangle H2  - (q,\Delta \zeta ) + (\scrG  - f1, \zeta ) dt,(4.16a)

0 =

\int T

0

 - (q, \phi ) + (\nabla p,\nabla \phi ) dt,(4.16b)

0 =

\int T

0

\beta \langle  - rt, \phi \rangle + (\nabla r,\nabla \phi ) + (Br, \phi ) + \kappa (r, \phi )\Gamma + (\scrK , \phi ) dt,(4.16c)

0 =

\int T

0

(\scrC (\scrE (\bfits ) +\scrH ) - \bfitf 2,\nabla \bfiteta ) dt(4.16d)

for all \zeta \in L2(0, T ;H2
\bfitn (\Omega )), \phi \in L2(0, T ;H1(\Omega )), and \bfiteta \in L2(0, T ;X(\Omega )).
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Remark 4.5. Let us notice that the test function space H2
\bfitn (\Omega ) in (4.16a) can be

weakened by assuming a more regular target function \varphi \Omega . In fact, formally testing
(4.16a) by q and (4.16b) by pt will lead to the regularity q \in L2(0, T ;H1(\Omega )) and
p \in L\infty (0, T ;H1(\Omega )) provided that p(T ) = \alpha \Omega (\varphi (T ) - \varphi \Omega ) \in H1(\Omega ), which is fulfilled
if \varphi \Omega \in H1(\Omega ).

Proof. We proceed with formal estimates that can be rigorously derived with
a standard Galerkin approximation, and let us note that in the following, positive
constants denoted by the symbol C will be independent of the Galerkin parameter.
Then, testing \zeta = Kp in (4.16a), \phi =  - Kq and \phi = p in (4.16b), \phi = Hr in (4.16c),
and \bfiteta = Z\bfits in (4.16d) for some positive constants K, H, and Z yet to be determined,
we obtain after summing the resulting equalities

(4.17)

 - 1

2

d

dt

\Bigl( 
K\| p\| 2L2 +H\beta \| r\| 2L2

\Bigr) 
+K\| q\| 2L2 + \| \nabla p\| 2L2

+H\| \nabla r\| 2L2 +H\kappa \| r\| 2L2
\Gamma 
+HB\| r\| 2L2 + Zc0\| \scrE (\bfits )\| 2L2

\leq  - (K(\scrG  - f1), p) + (q, p) - (H\scrK , r) - (Z(\scrC \scrH  - \bfitf 2), \scrE (\bfits )).

First, we obtain from (4.16b) and elliptic regularity that

\| p\| 2H2 \leq C\| \Delta p\| 2L2 + C\| p\| 2L2 \leq C\| q\| 2L2 + C\| p\| 2L2 .(4.18)

Then a short calculation involving the embedding H2(\Omega ) \subset L\infty (\Omega ) shows that

(K(\scrG  - f1), p) \leq 
1

2
\| q\| 2L2 + C

\bigl( 
1 + \| \Psi \prime \prime (\varphi )\| 2L\infty 

\bigr) 
\| p\| 2L2 + C\| r\| 2L2 + C\| \varphi \| 2L2

+ C\| \scrE (\bfitu )\| 2L2 + C\| \scrE (\bfits )\| 2L2 + 1
2\| p\| 

2
H2 + C\| \varphi  - \varphi Q\| 2L2 ,

(q, p) \leq 1

2
\| q\| 2L2 + C\| p\| 2L2 ,

(H\scrK , r) \leq H2\| q\| 2L2 + C
\bigl( 
\| r\| 2L2 + \| p\| 2L2

\bigr) 
,

(Z(\scrC \scrH  - \bfitf 2), \scrE (\bfits )) \leq Z2\| q\| 2L2 + CZ2
\bigl( 
\| p\| 2L2 + \| \varphi \| 2L2 + \| \scrE (\bfitu )\| 2L2

\bigr) 
+ C\| \scrE (\bfits )\| 2L2 ,

with positive constants C independent of H and Z. Adding (4.18) to (4.17) and
substituting the above yields

 - 1

2

d

dt

\Bigl( 
K\| p\| 2L2 +H\beta \| r\| 2L2

\Bigr) 
+ (K  - (1 + C +H2 + Z2))\| q\| 2L2 + 1

2\| p\| 
2
H2

+H\| \nabla r\| 2L2 +H\kappa \| r\| 2L2
\Gamma 
+ (HB  - C)\| r\| 2L2 + (Zc0  - C)\| \scrE (\bfits )\| 2L2

\leq C
\bigl( 
1 + \| \varphi \| 4H2

\bigr) 
\| p\| 2L2 + C\| \varphi  - \varphi Q\| 2L2 + C

\bigl( 
\| \varphi \| 2L2 + \| \scrE (\bfitu )\| 2L2

\bigr) 
.

If B > 0, we choose HB > C; otherwise, we use the generalized Poincar\'e inequality
with H sufficiently large so that

H\| \nabla r\| 2L2 +H\kappa \| r\| 2L2
\Gamma 
\geq (C + 1)\| r\| 2L2 .

Then, choosing Z sufficiently large so that Zc0 > C and then finally K sufficiently
large, we obtain via Gronwall's inequality (applied backward in time) and Korn's
inequality that

(4.19)

\| p\| 2L\infty (0,T ;L2) + \beta \| r\| 2L\infty (0,T ;L2) + \| q\| 2L2(Q)

+ \| p\| 2L2(0,T ;H2) + \| r\| 2L2(0,T ;H1) + \| \bfits \| 2L2(0,T ;X(\Omega ))

\leq C\| \varphi  - \varphi Q\| 2L2(Q) + C\| \varphi \| 2L2(Q) + C\| \scrE (\bfitu )\| 2L2(Q).
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Then, from (4.16a), we infer

\| pt\| L2(0,T ;H2
\bfitn (\Omega )\prime ) \leq C

\bigl( 
1 + \| \Psi \prime \prime (\varphi )\| L\infty (0,T ;L2)

\bigr) 
\| q\| L2(Q) + C\| p\| L2(Q) + C\| r\| L2(Q)

+ C\| \scrE (\bfits )\| L2(Q) + C
\bigl( 
1 + \| \varphi  - \varphi Q\| L2(Q)

\bigr) 
,

and if \beta > 0, a comparison of terms in (4.16c) gives

\| rt\| L2(0,T ;H1(\Omega )\prime ) \leq C\| r\| L2(0,T ;H1) + C\| p\| L2(Q) + C\| q\| L2(Q).

These estimates are sufficient to pass to the limit and deduce the existence of a solution
(p, q, r, \bfits ) \in \scrZ \beta to (4.15) in the sense that (4.16) is fulfilled. Moreover, as the adjoint
system is linear in (p, q, r, \bfits ), the difference of any two solutions satisfies (4.16), where
the terms involving n(\cdot , \varphi ) and \varphi  - \varphi Q are absent in f1 and \bfitf 2. Consequently, we
arrive at an analogue of (4.19) for the difference of two solutions where the right-hand
side is zero, which in turn leads to uniqueness of solutions.

4.4. Optimality conditions. Finally, we exploit the differentiability property
of \scrS established so far to obtain the first-order necessary conditions for optimality. In
this direction, we first express the reduced cost functional \scrJ as the sum

\scrJ (\bfitw ) := \scrJ 1(\bfitw ) + \scrJ 2(\bfitw ),

where

\scrJ 1(\bfitw ) =
\alpha \Omega 

2
\| \scrS 1(\bfitw ) - \varphi \Omega \| 2L2(\Omega ) +

\alpha Q

2
\| \scrS 1(\bfitw ) - \varphi Q\| 2L2(Q)

+
\alpha \scrE 

2

\int 
Q

n(x,\scrS 1(\bfitw ))| \scrW ,\scrE (\scrS 1(\bfitw ), \scrE (\scrS 4(\bfitw )))| 2 dx dt

+
\gamma 1
2
\| w1\| 2L2(\Sigma ) +

\gamma 2
2
\| w2\| 2L2(0,T ) +

\gamma 3
2
\| w3\| 2L2(0,T ),

\scrJ 2(\bfitw ) = \gamma 4\| w2\| L1(0,T ) + \gamma 5\| w3\| L1(0,T ).

Then, for arbitrary \bfity \in \scrU ad and an optimal control \bfitw \ast \in \scrU ad with corresponding
state (\varphi , \mu , \sigma ,\bfitu ) = \scrS (\bfitw \ast ) \in \scrY \beta and linearized state variables (\xi , \eta , \psi ,\bfitv ) \in \scrY \beta 

lin to
(4.4) corresponding to \bfith = \bfity  - \bfitw \ast , the differentiability of the solution operator
\scrS : \scrU \rightarrow \scrY \beta and the chain rule shows that

(4.20)

D\scrJ 1(\bfitw 
\ast )[\bfith ] = D\scrJ 1(\bfitw 

\ast )[\bfity  - \bfitw \ast ]

=

\int 
\Omega 

\alpha \Omega (\varphi (T ) - \varphi \Omega )\xi (T ) dx+

\int 
Q

\alpha Q(\varphi  - \varphi Q)\xi dx dt

+ \alpha \scrE 

\int 
Q

1
2n

\prime (x, \varphi )\xi | \scrW ,\scrE | 2 + n(x, \varphi )\scrW ,\scrE : \scrC (\scrE (\bfitv ) - \xi \scrE \ast ) dx dt

+

\int T

0

\gamma 1(w
\ast 
1 , h1)\Gamma dt+

\int T

0

\gamma 2w
\ast 
2h2 + \gamma 3w

\ast 
3h3 dt,

where \scrW ,\scrE is evaluated at (\varphi , \scrE (\bfitu )). On the other hand, optimality of \bfitw \ast and the
convexity of \scrJ 2 leads to

0 \leq \scrJ (\bfitw \ast + t(\bfity  - \bfitw \ast )) - \scrJ (\bfitw \ast )

= \scrJ 1(\bfitw 
\ast + t(\bfity  - \bfitw \ast )) - \scrJ 1(\bfitw 

\ast ) + \scrJ 2((1 - t)\bfitw \ast + t\bfity ) - \scrJ 2(\bfitw 
\ast )

\leq \scrJ 1(\bfitw 
\ast + t(\bfity  - \bfitw \ast )) - \scrJ 1(\bfitw 

\ast ) + t[\scrJ 2(\bfity ) - \scrJ 2(\bfitw 
\ast )]
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for all t \in (0, 1) and arbitrary \bfity \in \scrU ad. Dividing by t and passing to the limit t \rightarrow 0
yields the inequality

0 \leq D\scrJ 1(\bfitw 
\ast )[\bfity  - \bfitw \ast ] + \scrJ 2(\bfity ) - \scrJ 2(\bfitw 

\ast ) \forall \bfity \in \scrU ad.(4.21)

Arguing as in [41, sects. 3 and 4], the inequality (4.21) allows us to interpret \bfitw \ast as a
solution to the convex minimization problem

min
\bfity \in \scrU 

\Bigl( 
D\scrJ 1(\bfitw 

\ast )[\bfity ] + \scrJ 2(\bfity ) + \BbbI \scrU ad
(\bfity )

\Bigr) 
, where \BbbI \scrU ad

(\bfity ) =

\Biggl\{ 
0 if \bfity \in \scrU ad,

+\infty otherwise

denotes the indicator function of the set \scrU ad. Using the definition of subdifferentials,
the inequality (4.21) can also be interpreted as

0 \in \partial 
\Bigl( 
D\scrJ 1(\bfitw 

\ast ) + \scrJ 2 + \BbbI \scrU ad

\Bigr) 
(\bfitw \ast ) = \{ D\scrJ 1(\bfitw 

\ast )\} + \partial \scrJ 2(\bfitw 
\ast ) + \partial \BbbI \scrU ad

(\bfitw \ast ),

where the equality is due to the well-known sum rule for subdifferentials of con-
vex functionals. This implies that there exist elements \bfitzeta \in \partial \BbbI \scrU ad

(\bfitw \ast ), and \lambda 2(t) \in 
\partial \| w\ast 

2(t)\| L1(0,T ), \lambda 3(t) \in \partial \| w\ast 
3(t)\| L1(0,T ) with \lambda 2, \lambda 3 \in L\infty (0, T ) satisfy (4.1) for

a.e. t \in (0, T ) (see, e.g., [41, sect. 4.2] for similar ideas regarding the derivation) such
that

0 = D\scrJ 1(\bfitw 
\ast ) + \bfitlambda + \bfitzeta 

for \bfitlambda = (0, \gamma 4\lambda 2, \gamma 5\lambda 3)
\top . From the definition of \partial \BbbI \scrU ad

, we have

(\bfitzeta ,\bfity  - \bfitw \ast ) \leq \BbbI \scrU ad
(\bfity ) - \BbbI \scrU ad

(\bfitw \ast ) = 0 as \bfity ,\bfitw \ast \in \scrU ad,

where we use (\cdot , \cdot ) to denote the inner product on \scrU . Hence, from (4.21), we deduce
that \bfitw \ast \in \scrU ad satisfies

0 \leq D\scrJ 1(\bfitw 
\ast )[\bfity  - \bfitw \ast ] + (\bfitlambda ,\bfity  - \bfitw \ast ) \forall \bfity \in \scrU ad.(4.22)

Next, we aim to simplify (4.20) with the help of the adjoint variables. The standard
procedure is to test (4.4a) with \zeta = p, (4.4b) with \zeta =  - q, (4.4c) with \zeta = r, and
(4.4d) with \bfiteta = \bfits , then take the sum and compare with the resulting equality obtained
from the sum of (4.16a) with \zeta = \xi , (4.16b) with \phi = \eta , (4.16c) with \phi = \psi , and
(4.16d) with \bfiteta =  - \bfitv , which yields the relations\int T

0

\kappa (h1, r)\Gamma + (h3h(\varphi ), r) - (h\prime (\varphi )\xi (\lambda c\sigma  - w\ast 
3), r) dt

=

\int T

0

(\lambda pf(\varphi )g(\scrW ,\scrE (\varphi , \scrE (\bfitu )))p, \psi ) - (\chi q, \psi ) dt

and

\alpha Q

\int 
Q

(\varphi  - \varphi Q)\xi dx dt+ \alpha \Omega 

\int 
\Omega 

(\varphi (T ) - \varphi \Omega )\xi (T ) dx

+

\int 
Q

\alpha \scrE 

2
n\prime (x, \varphi )\xi | \scrW ,\scrE (\varphi , \scrE (\bfitu ))| 2 + \alpha \scrE n(x, \varphi )\scrW ,\scrE (\varphi , \scrE (\bfitu )) : \scrC (\scrE (\bfitv ) - \xi \scrE \ast ) dx dt

=

\int T

0

(h\prime (\varphi )(\lambda c\sigma  - w\ast 
3)r, \xi ) - (h2k(\varphi ), p) - (\chi \psi , q) dt

+

\int T

0

(\lambda pf(\varphi )\psi g(\scrW ,\scrE (\varphi , \scrE (\bfitu ))), p) dt.
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Combining these two leads to the simplification

D\scrJ 1(\bfitw 
\ast )[\bfith ] =

\int T

0

\kappa (h1, r)\Gamma  - h2(k(\varphi ), p) + h3(h(\varphi ), r) dt

+

\int T

0

\gamma 1(w
\ast 
1 , h1)\Gamma dt+

\int T

0

\gamma 2w
\ast 
2h2 + \gamma 3w

\ast 
3h3 dt,

and (4.2) is then a consequence of (4.22).

5. Sparsity of nonnegative optimal controls. In the medical context, the
control variables w2 = m(t) and w3 = s(t) should be nonnegative, and so we modify

the admissible control subsets \scrU (2)
ad and \scrU (3)

ad to the following:

\scrU (i)
ad = \{ wi \in L\infty (0, T ) : 0 \leq wi(t) \leq w for a.e. t \in (0, T )\} for i = 2, 3,(5.1)

where w is a fixed positive constant. If \gamma 1 > 0, from the optimality condition (4.2),
substituting y2 = w\ast 

2 and y3 = w\ast 
3 and then using the Hilbert projection theorem

allows us to infer that w\ast 
1 is the L2(\Sigma )-orthogonal projection of  - \kappa r/\gamma 1 onto the

closed and convex subset \scrU (1)
ad of L2(\Sigma ), leading to the representation formula

w\ast 
1(x, t) = min

\bigl( 
w1(x, t), max

\bigl( 
w1(x, t),  - \kappa 

\gamma 1
r(x, t)

\bigr) \bigr) 
for a.e. (x, t) \in \Sigma .

In a similar fashion, if \gamma 2, \gamma 4 > 0, substituting y1 = w\ast 
1 and y3 = w\ast 

3 in (4.2) leads to
the representation formula

w\ast 
2(t) = \BbbP [0,w]

\biggl( 
1

\gamma 2

\biggl( \int 
\Omega 

k(\varphi (x, t))p(x, t) dx - \gamma 4\lambda 2(t)

\biggr) \biggr) 
for a.e. t \in (0, T ),(5.2)

where \BbbP [a,b] : \BbbR \rightarrow [a, b] denotes the pointwise projection function

\BbbP [a,b](s) = min(b, max(a, s)).

Similarly, if \gamma 3, \gamma 5 > 0, then substituting y1 = w\ast 
1 and y2 = w\ast 

2 in (4.2) leads to the
representation formula

w\ast 
3(t) = \BbbP [0,w]

\biggl( 
 - 1

\gamma 3

\biggl( 
\gamma 5\lambda 3(t) +

\int 
\Omega 

h(\varphi (x, t))r(x, t) dx

\biggr) \biggr) 
for a.e. t \in (0, T ).

Due to the L1-regularization for w2 and w3 in the optimal control problem, we can
expect the optimal controls w\ast 

2 and w\ast 
3 to vanish on certain parts of the time interval

[0, T ]. This is formulated as follows.

Theorem 5.1. Under (A1)--(A8), let \bfitw \ast = (w\ast 
1 , w

\ast 
2 , w

\ast 
3) \in \scrU ad be an optimal con-

trol where \scrU (2)
ad and \scrU (3)

ad are now given as (5.1) with the associated state (\varphi , \mu , \sigma ,\bfitu ) =
\scrS (\bfitw \ast ) and adjoint variables (p, q, r, \bfits ). Then we have the following characterizations:

\bullet If \gamma 2, \gamma 4 > 0, for a.e. t \in (0, T ),

w\ast 
2(t) = 0 \Leftarrow \Rightarrow 

\int 
\Omega 

k(\varphi (x, t))p(x, t) dx \leq \gamma 4.(5.3)

\bullet If \gamma 3, \gamma 5 > 0, for a.e. t \in (0, T ),

w\ast 
3(t) = 0 \Leftarrow \Rightarrow 

\int 
\Omega 

h(\varphi (x, t))r(x, t) dx \geq  - \gamma 5.(5.4)
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Remark 5.2. Similar one-sided inequalities characterizing sparsity of optimal con-

trols are common when the lower bound in the admissible control sets \scrU (i)
ad is zero;

see, e.g., [6, Thm. 3.1] or [7, Thm. 3.3]. If we allow w2(t), w3(t) in the definition

(2.2) of \scrU (2)
ad and \scrU (3)

ad to be a negative constant w, then it is possible to provide a
representation formula also for \lambda 2 and \lambda 3; see [41] in the context of Cahn--Hilliard
tumor models and also [6, 7, 42] for classical parabolic and elliptic control problems.
However, a negative lower bound for the controls may not be applicable in a medical
context.

Remark 5.3. We point out that if w\ast 
2(t0) = 0 for some t0 \in (0, T ), then there

exists an open subinterval I \subset (0, T ) with t0 \in I such that w\ast 
2(t) = 0 for all t \in I.

The same assertion also holds for w\ast 
3 provided that \beta > 0. This is due to the fact

that the mappings

t \mapsto \rightarrow 
\int 
\Omega 

k(\varphi (x, t))p(x, t) dx,

t \mapsto \rightarrow 
\int 
\Omega 

h(\varphi (x, t))r(x, t) dx if \beta > 0

are continuous in light of the regularities \varphi \in C0([0, T ];L2(\Omega )) from Theorem 2.1
and p \in C0([0, T ];L2(\Omega )) and r \in C0([0, T ];L2(\Omega )) if \beta > 0 from Theorem 4.4.
In particular, this behavior where the optimal controls are zero over an interval is
consistent with the prevailing medical practice in which there are periods in the overall
treatment where radiation/cytotoxic therapies are not applied to patients.

Proof. Let us just present the details for (5.3), as (5.4) can be derived in an

analogous manner. Due to the modification to \scrU (2)
ad , we observe from (4.1) that

\lambda 2(t) \in L\infty (0, T ) satisfies

\lambda 2(t) \in 

\Biggl\{ 
\{ 1\} if w\ast 

2(t) > 0,

[ - 1, 1] if w\ast 
2(t) = 0

(5.5)

for a.e. t \in (0, T ). The left implication proceeds as follows: Consider the set E = \{ t \in 
(0, T ) : w\ast 

2(t) = 0\} , where by the representation formula (5.2), we see that\int 
\Omega 

k(\varphi (x, t))p(x, t) dx - \gamma 4\lambda 2(t) \leq 0 for all t \in E.

Using (5.5) and rearranging, we obtain the left implication of (5.3). For the right
implication we argue by contrapositive: Suppose w\ast 

2(t) > 0. Then, from (5.5), we
have \lambda 2(t) = 1, and thus by the representation formula it holds that\int 

\Omega 

k(\varphi (x, t))p(x, t) dx - \gamma 4\lambda 2(t) =

\int 
\Omega 

k(\varphi (x, t))p(x, t) dx - \gamma 4 > 0.

On rearranging, we obtain the assertion

w\ast 
2(t) > 0 =\Rightarrow 

\int 
\Omega 

k(\varphi (x, t))p(x, t) dx > \gamma 4,

which gives the right implication of (5.3).

An interesting consequence is that we can identify w\ast 
2(t) \equiv 0 as a local optimal

control provided that \gamma 4 is sufficiently large and similarly that w\ast 
3(t) \equiv 0 is a local

optimal control provided that \gamma 5 is sufficiently large.
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Corollary 5.4. Suppose (A1)--(A8) and \gamma 2 > 0. Then there exists \gamma \ast > 0 such
that for \gamma 4 > \gamma \ast , w

\ast 
2(t) \equiv 0 for all t \in (0, T ) is an optimal control for (1.4). Similarly,

suppose \gamma 3 > 0 and \beta > 0. Then there exists \gamma \ast > 0 such that for \gamma 5 > \gamma \ast , w\ast 
3(t) \equiv 0

for all t \in (0, T ) is an optimal control for (1.4).

Proof. It suffices to use conditions (5.3) and (5.4). In light of the admissible
control subsets defined in (5.1), where w is a fixed constant, the constant K1 in (2.4)
is independent of the weights \{ \alpha Q, \alpha \Omega , \alpha \scrE , \gamma 1, \gamma 2, \gamma 3, \gamma 4, \gamma 5\} in the optimal control
problem (1.4). Then, revisiting the proof of Theorem 4.4, we note that \{ \gamma i\} 5i=1 do not
appear in the adjoint system (4.15). Consequently, the positive constants on the right-
hand side of (4.19) are independent of \{ \gamma i\} 5i=1. Employing (A3) on the boundedness
of h and k, we deduce that\int 

\Omega 

k(\varphi (x, t))p(x, t) dx \leq C1 for a.e. t \in (0, T ),\int 
\Omega 

h(\varphi (x, t))r(x, t) dx \geq  - C2 for a.e. t \in (0, T ) if \beta > 0

for positive constants C1 and C2 independent of \{ \gamma i\} 5i=1. The assertion now follows
from (5.3) and (5.4) by choosing \gamma \ast = C1 and \gamma \ast = C2.
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