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-Conservative Depth-Averaged Material Point Method For Fast Flow-like Landslides and Mudflows

Fois, Carlo de Falco, Luca Formaggia

he proposed method is able to accurately and consistently reproduce realistic flow-like landslides and mu
ows run-out.

he proposed method can be effectively applied to realistic scenarios with complex bed topographies.

Well-balanced Depth-Averaged MPM formulation is presented and tested on different non flat topographie

he proposed method ensures the conservation of mass and momenta between particles and nodes at each tim
tep of the simulation.
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mi-Conservative Depth-Averaged Material Point Method For Fast Flow-lik
Landslides and Mudflows

Marco Foisa,∗, Carlo de Falcoa, Luca Formaggiaa

aMOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy

ct

sent a two-dimensional semi-conservative variant of the depth-averaged material point method (DAMPM) f
ng flow-like landslides. The mathematical model is given by the shallow water equations, derived from t
ntegration of the Navier-Stokes equations with the inclusion of an appropriate bed friction model and mater
y, namely Voellmy and the depth-integrated Bingham viscoplastic stress model, respectively. After assessi
uracy and performance of the proposed numerical method by means of several idealised benchmarks, we t
viour in a realistic scenario.

ds: Material Point Method, Landslides, Shallow water, Depth-averaged models, Geohazard analysis

oduction and Motivation

ong the many types natural disaster that are being made more frequent by climate change, landslides are o
ost dangerous: not only due to their potentially catastrophic impact in terms of human fatalities and econom
, but also due to their intrinsic unpredictability [1, 2]. Continuous monitoring of areas prone to landslides
ive. In situ detection systems, such as piezometers and strain gauges, allow accurate monitoring of intern
es and surface displacements of the area of interest, while satellite surveys can provide detailed topograph
vation information of the study area [3]. However, empirical monitoring alone is often not sufficient to ensu
e management of an hazardous situation, including preventive capability [4, 5]. The high cost and technic
xity of realistic experimental analysis therefore warrant the need of developing accurate numerical simulati
for landslides.
phenomenology of landslides is heterogeneous and consists of several stages. In the initiation phase, t
e can be modeled as a rigid body subject to gravity, hydrodynamic soil conditions, and pore pressure, whi
lt in intermittent slides and abrupt changes in velocity. In the run-out phase, in contrast, the landslide mater

s a viscoplastic behaviour and a regime dominated mainly by advection. In this phase, the advancement a
n of the front depend mainly on the rheology and orography of the area of interest [6]. In many situatio
debris flows or mudslides, the run-out is characterized by fluid-like behavior and sustained horizontal spee

his work, we focus on the simulation of the evolution of fast-moving landslides immediately after the initiati
nd on the tracking of the advancement front, which is of the utmost importance for predicting the areas whi
impacted and, thus, estimate and/or prevent damages. The basic mathematical model used to describe gravi
ree surface flows consists of a set of two-dimensional equations, derived from the Navier-Stokes equation f
mpressible fluid by integrating in the vertical direction.
owing the work of [7, 8], we propose a semi-conservative variant of the depth-averaged material point meth
M), which is the depth-integrated version of the Material Point Method (MPM), which originally evolved as
n of the Particle In Cell (PIC) method [9, 10], and has recently attracted a growing interest for its amenabil
eration on innovative parallel computing architectures [11, 12, 13].

esponding author: Marco Fois, MOX - Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Mil
ail: marco.fois@polimi.it

submitted to Communications in Nonlinear Science and Numerical Simulation April 30, 20
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use of a depth-averaged formulation for the run-out analysis is useful when considering phenomena occurri
ge areas, which would be extremely expensive to simulate with a fully 3D mode [6]. To account in more det
effect of the impact of landslides or mudflows on barriers and membranes of complex geometry and smal
eristic dimensions, we plan in the future to couple the model discussed in this work with 3D particle mod
ying impact scenarios [14, 15, 16]. In this context, the equation for the hydrostatic pressure gradient 1

2ρg∇(h
considered in its conservation form and fully integrated into the numerical framework for the management
astic and fluid-like materials.
paper is organized as follows. Section 2 is devoted to the presentation of the governing equations, the rheolog
constitutive models that we adopted to deal with flow-like landslides. We present the complete derivation
i-conservative form of the equations in Section 2.3 and of the numerical method in Section 3. Section
ith numerical experiments, showing some well-balancing and accuracy tests carried out in different idealiz
os and, in Section 4.3, the results of a simulation of a real test case, namely the Bindo-Cortenova landslid
Section 5 is devoted to some conclusions and perspectives for future work.

erning equations

summarize the mathematical model we adopted to deal with flow-like landslides. For a complete derivatio
, 18]. We start by making the following assumptions:

he area of interest presents a gentle slope, so we can perform averaging in the vertical direction;

he terrain curvature can be neglected;

he vertical velocities and accelerations are negligible compared with the horizontal counterparts;

he depth of the landslide h is smaller than its horizontal extension.

R2 be a Cartesian domain and let (0,T ] be a time interval with T > 0. We consider the conservative form
th-averaged equations for the unknown elevation h and linear momentum hv, given by



∂th + ∇ · (hv) = 0,

∂t(hv) + ∇ ·
(
v ⊗ hv +

1
2

gh2 ⊗ 1
)
=

1
ρ
∇ · (hσ) +

1
ρ

B f − gh∇Z,
(

= [u, v]T is the horizontal velocity vector, g the gravitational acceleration, ρ the density of the materi
d constant, B f = [Bx, By]T the bed friction, Z = Z(x, y) the orography, σ = [σxx, σyy, σxy] the deviatoric p
auchy stress tensor and 1 is the identity tensor.

e rheology

have enriched the right-hand side of the equation (1) with the bed friction term B f , following the Voellm
y model, that is

B f = −
(
pA tanφ + ρgh tanφ +

ρg|v|2
ξ

)
v
|v| , (

A is the atmospheric pressure, φ the friction angle and ξ the turbulence friction acceleration term.
nature of the phenomena under investigation justifies the combination of a turbulent and a frictional model [1
this assumption has been shown to produce good results for velocity and deposition during simulations [2

2
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e constitutive law

efine the Cauchy stress tensor σ, we resort to the depth-integrated visco-plastic Bingham stress model, giv

σ =

(
2µ +

τY

I2

)
D. (

is the viscosity of the material, τY the yield shear stress and D the tensor of the two-dimensional strain ra
by

D =


∂xu 1
2 (∂yu + ∂xv)

1
2 (∂xu + ∂yv) ∂yv

 . (

m I2 =
1
2 D : D is the second invariant of the depth-integrated three-dimensional strain rate tensor

D =



D11 D12
1
2∂zu

D21 D22
1
2∂zv

1
2∂zu 1

2∂zv −(D11 + D22)


, (

e have set D33 = −(D11 + D22) thanks to the incompressibility constraint.
the computation of I2, according to [6, 18], we need to estimate the quantities ∂zu and ∂zv. To this aim, w
the relation for steady-state, laminar, and simple shear fluid.

∂zv =
3

2 + ζ
v
h
, (

= τY/τB ∈ [0, 1] and τB is the bed resistance force. To estimate the quantity ζ, we use

|v| = τB

6µ
(2 + ζ)(1 − ζ2). (

n (7) can be rewritten as

ζ3 + (3 + a)ζ + 2 = 0, with a =
6µ|v|
τYh
. (

ace the equation of the third degree in ζ with the optimal second-degree approximation, which has a maximu
ual to 1/32 and is given by

48ζ2 − (114 + 32a)ζ + 65 = 0. (

ation has two solutions; we take the positive one as the only physically meaningful. Finally, the invariant
calculated by replacing the solution of Equation (9) with (6).

mi-conservative shallow water system

derive the semi-conservative form of the system (1) by eleborating the left-hand side of the momentum equ
ithout loss of generality, we illustrate only the x-momentum equation.

using the continuity equation in (1), we may replace the term ∂t(h) that appears after explicit differentiatio
g, after a few simplifications,

h ∂t(u) + hu ∂x(u) + hv ∂y(u) + ∂x

(
1
2

gh2
)
= R.H.S . (1

at we have left the pressure term ∂x( 1
2 gh2) in the conservative form.

, recalling that v = [u, v]T and that

du
dt
= ∂t(u) + v · ∇u = ∂t(u) + u ∂x(u) + v ∂y(u), (1

3
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ng the term h in (10) and moving the pressure term ∂x( 1
2 gh2) at the right-hand-side, we reach the form

h
du
dt
=

1
ρ

Bx +
1
ρ
∂x

(
σxxh − 1

2
ρgh2

)
+

1
ρ
∂y(σxyh) − gh∂xZ, (1

s the x-momentum expressed with respect to the material acceleration du/dt. At this point, we can multiply
y density ρ and merge the x component of the pressure gradient ∂x( 1

2ρgh2) with the x component of the tens
). This leads to

ρh
du
dt
= Bx + ∂x

([
σxx − 1

2
ρgh

]
h
)
+ ∂y(σxyh) − ρgh∂xZ. (1

ole procedure can be applied to the y momentum in the same way.
define an effective stress tensor σ∇ that takes into account the hydrostatic pressure gradient simply as

σ∇ = σ − 1
2
ρgh ⊗ 1, (1

is the Cauchy stress tensor defined in (3).
ally, by setting b = −g∇Z we can rewrite the equation in compact form as

ρh
dv
dt
= B f + ∇ · (σ∇h) + ρbh, (1

ly the MPM framework, according to [7, 8, 9, 10].

erical method

ough mesh-based numerical methods, such as the Finite Element Method, are frequently used in the conte
surface flow simulations [6, 22, 23], these techniques have difficulty dealing with the significant changes
ry or topology changes typical of landslide phenomena. Moreover, their accuracy is strongly dependent on t
of the mesh [24].
this reason, particle-based methods, such as MPM, have gained popularity for the type of simulations w
rested in, where they have been shown to be capable of efficiently managing complex evolving flows a
ing the details of the material front during simulations; see, for example, [25, 26, 27].

e Depth-Averaged Material Point Method

provide a detailed derivation of the DAMPM, which is a variant of the Fluid-Implicit Particle (FLIP) a
-in-Cell (PIC), originally developed in [10, 28, 9] for continuum mechanical problems.
first step is to consider the weak form of the momentum equations defined in system (15). For this, we follo

erkin procedure and multiply the equation by a sufficiently regular test function ϕ and then integrate it into t
Ω. Finally, by applying Green’s Theorem, we get

∫

Ω

ρh
dv
dt
ϕ dx =

∫

Ω

(B f + ρbh) ϕ dx −
∫

Ω

σ∇h∇ϕ dx +
∫

∂Ω

σ∇h ϕn ds, (1

is the outward unit normal to the boundary ∂Ω. Regarding the boundary conditions on (16), we impose a n
e interface flux. Moreover, it is also worth noting that the boundary terms do not contribute to the flow as lo
aterial front does not reach the boundary of the computational domain Ω, which is considered more extensi
region occupied by the material itself.

4
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tage 1: Initialization of particles and grid
discretize (16) we consider the continuum material, i.e. the landslide itself, as a finite collection Ωp of
gian material points, which represent in this context columns of material. We define on each particle a mass m

ill be kept fixed throughout the simulations, and the initial conditions on every physical quantity necessary
stitutive model, such as velocities vp, locations xp, volumes Vp, areas Ap and stresses σp, for all p ∈ {1, ...,N
ng the standard MPM procedure [9, 7, 24], we concentrate the mass mp on each column by setting

ρh(x, t) =
Np∑

p=1

mpδ(x − xp), ∀x ∈ Ω, ∀t > 0, (1

(x − xp) is the Dirac delta function. Since we consider the density ρ as constant, we have the following,

h(x, t) =
Np∑

p=1

Vpδ(x − xp), ∀x ∈ Ω, ∀t > 0, (1

p = mp/ρ. In this way, Equation (16) can be expressed with respect to (18), and it reads

Np∑

p=1

mp
dvp

dt
ϕp =

Np∑

p=1

ApB f
p ϕp +

Np∑

p=1

ρVp bp ϕp −
Np∑

p=1

Vpσ
∇
p ∇ϕp, (1

p is the area of the column associated with the pth particle and ϕp := ϕ(xp).
rder to compute the differential terms in (19), a fixed Eulerian grid is generated to cover the entire physic
of interest Ω. Grid type can be Cartesian or unstructured, and the most common element shapes used a
or triangles [24]. Figure 1 shows the typical MPM scheme, with the Eulerian grid and Lagrangian points.

rk, we consider square elements on which we define the standard finite element space Q1(Ω) of continuo
se bilinear polynomials. The shape functions in one dimension, say x−direction, are given by

N x
i (x) =


1 − |x − xi|

∆x
if |x − xi| < ∆x

0 otherwise
, (2

x is the element size in the x−direction, and xi is the generic grid node i ∈ {1, ...,Nv}. The two-dimension
part is the tensor product of the one-dimensional functions along the two directions, as follows.

Ni(x, y) := N x
i (x) ⊗ Ny

i (y). (2

ortant to note that while the use of C0 basis functions makes calculations easier and more affordable, it can al
te to the instability of cell crossing due to the presence of discontinuous gradients [24, 29]. This phenomeno
ccurs when a particle crosses from one element to another, can be mitigated by controlling the time step
this work, we consider

∆t ≤ C · ∆x
maxp ∥vp∥2 , (2

is the CFL condition.
er possibilities, which would, however, increase computational cost and compromise the locality of the pro

to consider smoother functional spaces by using the B-splines or to resort to more complex MPM formu
uch as the Generalized Interpolation MPM (GIMP). The reader interested in an exhaustive discussion abo
riants can refer to [24, 29, 30, 31].

er the shape functions Ni(x, y) are introduced, we can proceed to the semi-discrete form of the system (1
ticle material acceleration, as well as the test function can be approximated as

ap :=
dvp

dt
=

Nv∑

i=1

ai Ni(xp), ϕp =

Nv∑

i=1

ϕi Ni(xp), ∇ϕp =

Nv∑

i=1

ϕi∇Ni(xp), (2

5
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(a) A Eulerian grid is defined in the do-
main Ω, while the continuum material is
discretized as a set Ωp of Np Lagrangian
points, each of which has a proper physical
property.

(b) he P2G procedure. The physical quan-
tities defined in the particles are projected,
through the basis functions Ni(xp), onto the
corresponding grid nodes to assemble the
nodal forces Fi.

Advective phase on the grid nodes.
al accelerations ai and velocities vi,

e depicted with red arrows, are computed
using the nodal masses Mi and the total
e Fi.

(d) The G2P procedure. The advective
phase is projected back to the particles.

(e) Final stage of the method. Once the
stresses σ∇p are calculated, the particle po-
sitions xp are updated and the scheme can
be started again.

Figure 1: Illustration of the classic MPM algorithm (color).
.

equation (19) becomes

v

=1

ϕi ·
Nv∑

j=1

Mi j a j =

Nv∑

i=1

ϕi ·
Np∑

p=1

ApB f
p Ni(xp) +

Nv∑

i=1

ϕi ·
Np∑

p=1

ρVp bp Ni(xp) −
Nv∑

i=1

ϕi ·
Np∑

p=1

Vp σ
∇
p ∇Ni(xp), (2

i j is the mass matrix defined by

Mi j =

Np∑

p=1

mp Ni(xp) N j(xp). (2

6
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quation (24) holds for every sequence {ϕi}i∈{1,...,Nv},we finally reach the form

Nv∑

j=1

Mi ja j =

Np∑

p=1

ApB f
p Ni(xp) +

Np∑

p=1

ρVpbp Ni(xp) −
Np∑

p=1

Vp σ
∇
p ∇Ni(xp), ∀i ∈ {1, ...,Nv}. (2

tage 2: the P2G process
particle momenta (mv)p can be projected on the grid nodes as

(mv)i =

Np∑

p=1

(mv)pNi(xp), (2

e body force bp, friction B f
p and stresses σ∇p defined on each particle are used to collect the nodal external a

forces Fext
i and Fint

i , respectively defined as

Fext
i =

Np∑

p=1

ρVp bpNi(xp),

Fint
i =

Np∑

p=1

ApB f
p Ni(xp) −

Np∑

p=1

Vp σ
∇
p∇Ni(xp),

(2

lumping the mass matrix Mi j so that

Miai ≃
Nv∑

j=1

Mi ja j, (2

ation (26) can be essentially written as

Miai = Fint
i + Fext

i , ∀i ∈ {1, ...,Nv}. (3

total force Fi = Fext
i + Fint

i collected at the nodes, as shown in Figure 1b, allows computing the nodal accel
and the nodal velocity vi, by using the lumped mass matrix Mi, as

ai =
Fi

Mi
, vi =

(mv)i

Mi
. (3

the new velocities ṽi are calculated using an explicit time integration scheme directly at the nodes, as show
re 1c.

ṽi = vi + ∆t ai. (3

tage 3: the G2P process and particle update
e the velocities are updated, they are projected back to the particles, to update the positions xp. To this ai
e two different ways to compute the projection from nodes to particles: the PIC way and the FLIP way [32]
he PIC way, the updated particle velocity ṽp is obtained directly from the nodal one, as

ṽp =

Nv∑

i=1

ṽiNi(xp). (3

LIP way, the particle velocity is instead obtained by using the nodal increment, as

ṽp = vp +

Nv∑

i=1

(ṽi − vi)Ni(xp). (3

work we chose to follow the PIC way, which, although more dissipative than the FLIP method, it has t
ge of being more stable, according to [24, 32]. With the new particle velocities, is it possible to compute t
update x̃p, by using the equation of motion

x̃p = xp + ∆t ṽp. (3

7
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tage 4: stresses update and reset
e we compute the updated particle stresses σ̃∇p , following the so-called Update Stresses Last (USL) techniqu
h the new stresses are updated, with respect to the constitutive model chosen, only after the nodal velocities
puted. Therefore, we need to estimate the increase in strain ∆εp, using the grid velocities ṽi just calculated
such a way that

∆εp =
∆t
2

Nv∑

i=1

(
∇Ni(xp) ṽi + (∇Ni(xp) ṽi)T

)
. (3

we estimate the stress increment ∆σ∇p , by following the constitutive model shown in Section 2.2, as

σ̃∇p = σ
∇
p + ∆σ

∇
p . (3

ough the USL approach has been shown to be rather dissipative, it is advantageous in terms of stability a
ence compared to other stress update techniques [33, 34].
last step of the method is to update the depth hp while satisfying the mass balance defined in (1). Followi

k of [7], the updated h̃p is given by

h̃p =
hp

1 + tr(∆εp)
. (3

e depth of the particles hp and the positions xp are updated, as shown in Figure 1e, the time is advanced a
al variables are reset to zero, to restart the cycle.

erical Results

present numerical framework has been applied both in idealized settings and in realistic scenarios. In th
, we present the numerical results related to some benchmarks well-known in the literature, in which we ha
ated the reliability of the proposed method. At the end of the Section, we show the results of the simulation
ndslide, occurring in Italy in 2002.

ll-balancing test

aim of the first test we carried out is to verify that the DAMPM scheme preserves the well-balancing prope
resence of a non-flat bottom. We notice that, to our knowledge, a well-balancing test with the Depth Averag
as never been conducted.

Figure 2: Lake-at-rest problem notation (color).

erify the so-called lake at rest condition, we choose to perform the test proposed in [18, 35, 36] with a differe
ivalent formulation of the system (1). We refer to the “still water level” H, which represents the rest positi
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id as a straight line orthogonal to the gravity direction, following the notation shown in Figure 2. At first, w
hat, in the steady state, it holds that

∇H = −∇Z. (3

sake of simplicity, we refer to the x−momentum equation of (1) and consider the term −gH ∂xZ on the rig
de. By replacing it with (39) and by adding and subtracting the term gH ∇H, equation (1) becomes

L.H.S . =
1
ρ

[
∇ · (hσ) + B f

]
+ gH ∇H − gH ∇H + gh∇H

=
1
ρ

[
∇ · (hσ) + B f

]
+

1
2

g∇(H2) + g(h − H)∇H.
(4

formulation can be reached by moving the term 1/2g∇(H2) on the left-hand-side of (40), by merging it w
rostatic pressure gradient and by using again (39), in such a way that

∂t(hv) + ∇ ·
(
v ⊗ hv +

1
2

g(h2 − H2) ⊗ 1
)
=

1
ρ

B f +
1
ρ
∇ · (hσ) − g(h − H)∇Z. (4

ice that the entire numerical framework proposed in Section 3 can be applied in an analogous fashion to t
mulation, which is, unfortunately, useful only as long as the still water level H is available.
owing the works [37, 38], we have performed the well-balancing test on two different orthographies Z1(x,
x, y), respectively defined by

Z1(x) = 5 exp
(
−2

5
∥x − 5∥2

)
, Z2(x) =


4 if x ∈ [4, 8]2

0 otherwise
. (4

putational domain is defined by Ω = [0, 10]2, and the initial conditions are set to coincide with the stea
s, given by

h(x, t) + Zi(x) = 10,
u(x, t) = v(x, t) = 0,

∀t ∈ (0,T ], x ∈ Ω, i = 1, 2, (4

he final time T and the gravity g are set to T = 1 s and g = 9.81 m/s2, respectively. The domain Ω
sed with a grid consisting of 2500 elements and a total of 10000 material points, that is, 4 particles per ce
t has been carried out in presence of friction B f given by the Voellmy model defined in (2), with φ = 20◦ a
m/s2. The Cauchy stress tensor σ has been defined following (3), by setting ρ = 1200 kg/m3, µ = 2 · 103

= 30 Pa · s. Finally, a null normal nodal velocity has been set at the boundary of Ω.
summarise the results of the errors computed in the norms L1(Ω) and L∞(Ω) in Table 1, both for Z1 and Z
paring the computed solution with respect to the steady solution given in (43), and evaluating the quantities
, i.e. h, hu, hv, at the same positions of the particles. Figure 3 shows the final time T = 1 s for the simulatio
and Z2, respectively.

Bottom topography: Z1(x)
State variable L1(Ω) L∞(Ω)
h 2.68e − 13 2.26e − 15
hu 1.92e − 12 2.57e − 15
hv 1.47e − 13 3.25e − 15

Bottom topography: Z2(x)
State variable L1(Ω) L∞(Ω)
h 5.34e − 13 4.75e − 14
hu 4.35e − 13 2.57e − 14
hv 3.59e − 13 3.34e − 14

Table 1: Well-balancing test results in H1(Ω) and L∞(Ω) norms after 1 s of simulation.
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Solution of the well-balancing problem after 1 s of simulation, with the bottom topography defined by Z1(x) and Z2(x) respectiv

shown in Table 1, both errors in L1(Ω) and L∞(Ω) remain in the order of machine precision. The resu
d verify the well-balancing property of the DAMPM. It should be noted that the formulation presented in (4
us to avoid the instabilities that can arise from the gradient of the topography Z(x), since the term g(h − H)∇
s when h = H. Moreover, the presence of the friction term B f and Bingham stress σ does not add a
tion, since both directly depend on the velocity vp, which remains constantly equals to zero. However,
alistic landslide situations, the steady state H is usually not easily available and is also difficult to manag
lication of (41) to more complex scenarios requires a more in-depth theoretical study, which goes beyond t
f this paper.

nservation of mass and linear momentum
ection 3.1.2 we have described the P2G procedure, where the quantities defined on the particles p ∈ {1, ...,N

jected on the grid nodes i ∈ {1, ...,Nv} using the shape functions Ni(xp) [39]. The first relation of (27) sho
jection of the linear momentum on the particles (mv)p on the grid counterpart (mv)i. Since the finite eleme
unctions Ni make a partition of unity, we have

Nv∑

i=1

(mv)i =

Nv∑

i=1


Np∑

p=1

(mv)pNi(xp)



=

Np∑

p=1

(mv)p


Nv∑

i=1

Ni(xp)



=

Np∑

p=1

(mv)p.

(4

ar computation shows that it is also true for the grid mass
∑

i Mi and the particles mass
∑

p mp.
rder to verifying the numerical conservation of mass and linear momentum, we consider the test case concer
collapse of a material on an inclined orography with Z and the initial conditions given by

Z(x, y) = 60 − 1
3

x + 15 exp
(
− (x − 50)2

7
− (y − 10)2

7

)


h(x, 0) = 60 − Z(x)
u(x, 0) = v(x, 0) = 0

, x ∈ [0, 20]2
, (4

10
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Snapshot of the collapsing material on the bed described by Z(x, y) after t = 7 s of simulation and trend of the L∞ error for the mome
es conservation between particles and nodes respectively (color) .

= [0, 150] × [0, 20] m. The domain Ω and the collapsing material, a mudflow with density ρ = 1200 kg/m
retised by 2250 elements and 2100 particles, respectively, resulting in the use of 7 particles per cell in t
0, 20] × [0, 20]. We consider friction, with a viscosity coefficient µ = 10 Pa · s, a friction angle φ ∼ 12◦ and

nce coefficient ξ = 200 m/s2. The total simulation time is set to T = 7 s.
mud, after the sudden collapse due to its weight, starts sliding down the bed until the central obstacle

. On the left panel of Figure 4, we show the height of the material hp with respect to the bed orography
hp + Z. After the collision with the obstacle, the landslide, is split into two symmetric logs that independen
e their slide along the bed until finally reunite. The right panel of Figure 4 shows even the infinite norm err
omparison between the calculated moments and masses on the particles and nodes, respectively. At all tim
the simulation, the error remains confined to the order of machine precision for both moments mv and mass
test just performed also highlights one of the main advantages of MPM, which is the automatic conservati
.

plication to a real scenario: Bindo-Cortenova landslide

his section, we consider a real-life test case regarding a landslide phenomenon that occurred in Decemb
ar Bindo-Cortenova (LC), a small town in northern Italy. The sliding material consists of large conglomera

ocks, up to 100 m, surrounded by a mixture of sandy gravel. The lower part of the hill experienced a disa
llapse, involving a substantial volume of approximately 1.2 million cubic metres, after an extended period

onally heavy rain [40].
ore starting with real scenario analysis, it is worth discussing the management of the input data in the comp
domain and particle generation in the area of interest.
of the advantages of MPMs is the relative ease with which data, which often come from digital images (i.

n, TIFF, or PNG images), can be converted into initial data useful for spatial discretization of the proble
d [41, 42, 43]. One of the classical approaches used in the literature is to convert each pixel in the input ima
article. The characteristic of the material can be deduced, for example, from the pixel color [24]. However, o
ajor problems with this approach is related to the resolution of the image itself and consequently to the numb
rial points used to discretize the initial mass. In the context of landslide simulation, input data on orograp
ial conditions on the landslide itself are typically derived from digital terrain models (DTM) generated fro
interferometric surveys [44, 45, 46]. Once processed, the images are presented in geoTIFF format. The DT

ally produced in raster format by associating each pixel with the absolute elevation attribute, but the resoluti
rally not less than 5 m in spatial extent. Discretizing the initial material by defining a material point for ea
ould generate a configuration with at most a single particle for each cell of the background grid. This proce

11
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Bindo-Cortenova landslide: on the left panel, the location of the event from a Google Earth image, on the right panel the computatio
f interest and the initial height of the material hp with respect to the orography Z, in meters

(color).

ause problems in the P2G phase of the method, because for each node i ∈ {1, ...,Nv} of the grid, there wou
ss contribution Mi that would be derived from at most 4 different particles, with the risk of losing informati
erating a cell-crossing instability. To avoid this kind of phenomenon, while preserving a sort of independen
ata input, it is sufficient to consider the polygonal line drawn by the initial condition on the landslide, i.e.
er, and then fill it with a number of particles, regardless of the raster of the input geoTIFF images.

re 6: Bindo-Cortenova landslide: two snapshots of the landslide run-out at t = 2 s and t = 20 s, from left to right respectively (color).

ur context, the area of interest was discretized from DTM satellite data with a 5-m raster in a domain Ω
] × [0, 1350] m2 consisting of 5.1 · 105 elements and 6.9 · 104 particles. Following the work done in [4

ial height of the landslide mass, shown in red on the right panel of Figure 5, is approximately 38 m and l
rface inclined about 28◦ with respect to the horizontal direction, with a residual friction angle φ equals
garding the physical aspects of the event, the material has a density ρ set to 1291 kg/m3, while the turbulen
ent ξ, the viscosity µ and the yield shear stress τY are set equal to 200m/s2, 2 ·103 Pa and 50Pa · s, respective
al time is set to T = 20 s. Finally, the problem is complemented by non-reflective boundary conditions. Af
triggering, the material collapses along the surface of the hill, following the complex orography of the ar
e toe of the landslide approaches the north bank of the Pioverna river. Figure 6 illustrates the distribution
erial at two different times and the propagation of the front through the intricate local topography.
igure 7, the distribution of the main stresses σ∇xx and σ∇yy is depicted at the final instant of the simulation, th
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20 s. It can be observed that the pressures along the principal directions peak in the central regions of t
e material, reaching magnitudes on the order of 2 · 105 Pa.

igure 7: Bindo-Cortenova landslide: distribution of the normal stresses σ∇xx and σ∇yy respectively, after 20 s of simulation (color).
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On the left, the profile of the domain of interest, with initial condition (in red) and DAMPM simulation (dotted black line). On the rig
arison of the total displacement of the Bindo-Cortenova landslide detected numerically and empirically (color).

left panel of Figure 8 shows the profile of the domain of interest along the line x′ = 675 m in which the init
the landslide material, with a thickness of about 38 m, and the final state obtained by DAMPM after 20 s

ion are superimposed, respectively. It can be seen that the total length of the material in the final state is nea
compared to the initial length of approximately 400 m, with a maximum height that does not exceed 30
fy the accuracy of the method, the results of the numerical simulation were compared with the final state
slide, obtained from topographic and satellite surveys. The right panel of Figure 8 shows the final state, th
car from the landslide, superimposed on the numerical state, demonstrating that the extent and shape of t
btained by the DAMPM simulation are consistent with those derived from the surveys. It is important to no

his case it was considered the general trace left by the landslide during the collapse and not only the final sta
on of each particle, as shown in Figure 6. A final comparison of the area occupied by each region showed th
erence between the DAMPM simulation and the empirical one is about 16%.

clusions and perspectives

proposed a semi-conservative variant of the depth-averaged material point method to solve differential pro
minated by advective control, especially landslide phenomena and mudflows.

13



Journal Pre-proof

We tly
varying of
non-fla ar-
ticles. F lts
with re lly
in popu an
active a nt
of the p in
combin a,
such as nd
solid ph

CRediT

Ma ig-
inal dra

Car vi-
sion, W

Luc ft,
Writing

Data av

Dat

Acknow

Thi 8-
5-HH.0

C.d
C.d ig

Data an
We di

Milano

Conflic

The

Referen

[1] U. bal
war

[2] U. H des
in e

[3] M. ata
for

[4] M. 18)
216

[5] M.
[6] F. G nd

sha
 Jo
ur

na
l P

re
-p

ro
of

verified the accuracy of the proposed framework with different benchmark tests and showed that, by sligh
the mathematical formulation of the problem, the method turns out to be well-balanced in the presence

t topographies. We also verified the numerical conservation of masses and momenta between nodes and p
inally, we have tested the numerical framework in a real scenario, obtaining coherent and consistent resu

spect to the available empirical data. Modeling landslides or mudflow flow is very challenging, especia
lated areas, and the development of predictive flow tools, in combination with impact analysis models, is
rea of research [16, 47]. For this aim, among the various perspectives on this work, we mention the enrichme
resented framework by developing more advanced DAMPM formulations in order to limit stability issues
ation with space-adaptive states. Finally, in order to study and simulate other kind of landslide phenomen
debris flows, it would be important to consider multiphase models to take into account both the liquid a
ases [48].
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urope, Landslides 13 (6) (2016) 1545–1554.
S. Bernardi, P. C. Africa, C. de Falco, L. Formaggia, A. Menafoglio, S. Vantini, On the use of interferometric synthetic aperture radar d
monitoring and forecasting natural hazards, Mathematical Geosciences 53 (8) (2021) 1781 – 1812.
J. Froude, D. N. Petley, Global fatal landslide occurrence from 2004 to 2016, Natural Hazards and Earth System Sciences 18 (8) (20
1–2181.
Dilley, Natural disaster hotspots: a global risk analysis, Vol. 5, World Bank Publications, 2005.
atti, M. Fois, C. de Falco, S. Perotto, L. Formaggia, Parallel simulations for fast-moving landslides: Space-time mesh adaptation a

rp tracking of the wetting front, Int J Numer Meth Fluids 95 (8) (2023) 1286–1309. doi:https://doi.org/10.1002/fld.5186.

14



Journal Pre-proof

[7] K. un-
dati 14.
doi

[8] L. G ow
slab 92.
arX
UR

[9] D. S er-
ing

[10] D. S
[11] X. ble

mu
UR

[12] p. B
UR

[13] P. J ble
flow

[14] P. D rch
Com

[15] V. S of
mas for
Cou

[16] M. as,
S. W 9.2
(v9

[17] M. ga-
tion

[18] M. ite
elem 1.

[19] S. ish
colu 47.
doi

[20] R. S ce:
Spa

[21] M. on
Geo

[22] J. I nd
Pre

[23] M. (1)
(19

[24] A. nd
app ier,
202

[25] S. 47.
doi

[26] M. es,
Lan

[27] K. lar
emp

[28] F. H
[29] S. B s 5

(06
[30] E. W ci-

enti
[31] A. rial

poi 11)
143

[32] A. S 3).
doi

[33] P. W od,
Jou

[34] S. B 02)
383

[35] B. for
Num -E.
Jo

ur
na

l P
re

-p
ro

of

Abe, K. Konagai, Numerical simulation for runout process of debris flow using depth-averaged material point method, Soils and Fo
ons 56 (5) (2016) 869–888, special Issue on the International Symposium on Geomechanics from Micro to Macro IS-Cambridge 20
:https://doi.org/10.1016/j.sandf.2016.08.011.

uillet, L. Blatny, B. Trottet, D. Steffen, J. Gaume, A depth-averaged material point method for shallow landslides: Applications to sn
avalanche release, Journal of Geophysical Research: Earth Surface 128 (8) (2023) e2023JF007092, e2023JF007092 2023JF0070

iv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023JF007092, doi:https://doi.org/10.1029/2023JF007092.
L https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023JF007092

ulsky, Z. Chen, H. Schreyer, A particle method for history-dependent materials, Computer Methods in Applied Mechanics and Engine
118 (1993) 179–196.
ulsky, Erratum: Application of a particle-in-cell method to solid mechanics, Computer Physics Communications (1995).

Wang, Y. Qiu, S. R. Slattery, Y. Fang, M. Li, S.-C. Zhu, Y. Zhu, M. Tang, D. Manocha, C. Jiang, A massively parallel and scala
lti-gpu material point method, ACM Trans. Graph. 39 (4) (aug 2020). doi:10.1145/3386569.3392442.
L https://doi.org/10.1145/3386569.3392442

aioni, T. Benacchio, L. Capone, C. de Falco, Gpus based material point method for compressible flows, in: Particles, 2023.
L https://www.scipedia.com/public/Baioni et al 2023a

. Baioni, T. Benacchio, L. Capone, C. de Falco, Portable, massively parallel implementation of a material point method for compressi
s, Computational Particle Mechanics (2024).
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