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Abstract—Thanks to its capability of manipulating electro-
magnetic signals, the reconfigurable intelligent surface (RIS) is
gaining momentum in alleviating the impact of blockages on
mmWave signals, by providing redirected transmission paths.
However, obstacles can also inevitably appear in the redirected
paths. This can be solved by installing multiple RISs and
switching among them. In this letter, for the first time, we
adaptively switch among RISs for a mobile user in real time to
optimize its achievable rate, without need for a priori knowledge
on potential obstacles. We present an actor-critic based approach
to learn unknown obstacles and variational spatial correlations
originated by the user mobility, which is followed by the analysis
on ergodic achievable rate. Experimental results have shown that
the approach can achieve rates about 15% less than the optimum
and 76% more than the state-of-the-art.

Index Terms—RIS-aided mmWave access networks, obstacles,
user mobility, adaptive RIS switch.

I. INTRODUCTION

AS one of the main reliefs to explosively increasing global
mobile traffic, millimeter-wave (mmWave) bands have

been considered for radio access networks (RANs) to enable
large bandwidths and make underutilized spectrum portions
available at high frequencies. However, the consequent benefits
can vanish in the harsh propagation environments charac-
terized by obstacles, where mmWave networks are typically
deployed. Recently, the reconfigurable intelligent surfaces
(RISs) have emerged as a tool to control the electromagnetic
waves propagation. RISs are meta-surfaces containing reflect-
ing elements, whose reactance and resistance can be adjusted,
resulting in a tunable reflection / redirection of the mmWave
signals [1, 2]. Therefore, they can be exploited to bypass
obstacles and designed to be integrated into many applications
of 6G communications[3]. With a careful design of the power
pattern, even a quasi-static broad coverage can be achieved [4].
However, in practice, obstacles can inevitably appear also in
the redirected path, either in the path between the base station
(BS) and the RIS or in the path between the RIS and the user
equipment (UE). Therefore, one potential solution is to deploy
multiple RISs to provide more alternatives.

In this letter, we investigate a mmWave access network
equipped with multiple RISs installed in the service area where
a UE randomly moves and a few obstacles with unknown
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locations and sizes are randomly deployed. We consider a
control framework such that the RIS that can maximize the
signal-to-noise ratio (SNR) perceived by the UE is constantly
activated as the UE moves in the service area. In such
scenario, the SNR depends not only on the UE’s position
and the RIS’s setups (e.g., location, orientation, hardware
configuration, etc.), but also on the blockage condition of
the reflected path. Theoretically, the constantly-changing user
position and the lack of obstacles information require frequent
and timely SNR estimation and comparison across different
RISs, which is infeasible to obtain in real time. Therefore, a
new appropriate RIS switch approach is required.

To tackle unknown and dynamic factors and enable real-
time operations in such networks, we take advantage of the
adaptability of reinforcement learning (RL), which can obtain
knowledge about uncertain environments through successive
interactions. Once the RL agent is trained, it can make adaptive
and real-time decisions based on the current network state,
without a priori information about obstacles or continuous
time-costly and redundant channel estimation procedures.

In the literature, most of the RIS-related works [1, 5] focus
on the scenarios with only one RIS. Some works consider
multiple RISs and give the RIS selection logic [6, 7]. A general
RIS selection strategy is presented in [6] via sorting SNRs, and
the ergodic capacity is derived considering outdated channel
information. In [7], the authors investigate optimum location-
based RIS selection policies, considering product-scaling and
sum-scaling path-loss models. These works set good examples
of RIS selection. However, none of them focus on providing
real-time switch operations that can avoid unknown potential
obstacles standing in redirected propagation paths.

There are some existing works resorting to RL to address
diverse technical issues in RIS-aided wireless access networks
such as [8, 9]. However, as far as we know, there’s no work
applying RL to deal with the RIS switch problem above
described. Moreover, we derive the frame-wise ergodic achiev-
able rate for the proposed RL-based RIS selection approach.
The experimental results show that our approach can provide
rates approaching the optimum with the gap of only 15.35%
and exceeding those of the state-of-the-art by 75.9%.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a mmWave access network that consists of
a BS, a set of RISs R, each with Er (r ∈ R) elements,
and a mobile UE. The RISs are installed at diverse locations
and with different orientations. The UE’s movement follows
the well-known Random Waypoint model, which generates
random trajectories. Several obstacles are randomly deployed
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Fig. 1: A mobile mmWave network with multiple RISs.

and possibly obstruct links. An example of such scenario is
depicted in Fig. 1. The time domain T of the system is divided
into frames, each of which consists of T slots of equal length
δ. In a slot t, an RIS is selected, if needed, as passive relay
of the transmission from the BS to the mobile UE1.

We consider a downlink scenario and adopt the path loss
model in [10] to characterize the line-of-sight (LoS) link
budget, while we model non-line-of-sight (NLoS) conditions
considering 3D obstacles standing in transmission paths. In
particular, the path loss experienced by the UE at slot t,
if served by the r-th RIS, is denoted as ρt,r. 3D obstacles
standing in the BS-RIS and RIS-UE paths are modeled as rect-
angular screens and induce a blockage attenuation according to
the knife-edge diffraction model indicated in 3GPP specs [11].
The attenuation caused by an obstacle to the path between the
BS and the r-th RIS is denoted as χBR

r , and that between r-th
RIS and the UE at t-th time slot is denoted as χRU

t,r . Fig. 1
illustrates different blockage cases where the obstacles stand in
either the BS-RIS and RIS-UE paths (RIS ①), or the RIS-UE
path (RIS ③), or the BS-RIS path (RIS ⑤).

In such a scenario, we aim to identify, in each slot, the
optimal RIS, thus the optimal redirected path, considering
physical conditions (i.e., RIS hardware conditions, obstacles,
UE mobility), to maximize the average UE SNR in a frame:

max
I

1

T

T∑
t=1

|R|∑
r=1

PBρt,rχ
BR
r χRU

t,r It,r

PN
, (1)

where PB and PN are the transmit power of BS and the noise
power. I is a matrix of binary variables whose element It,r
takes value 1, if the r-th RIS is selected at slot t; 0, otherwise.

The RIS-aided mmWave access network described above
is characterized by a UE moving with arbitrary directions
and speeds, RISs having diverse hardware configurations, and
unknown obstacles randomly deployed. Such a complex and
dynamic network, full of uncertain factors, makes it tough to
decide the best RIS in advance or in time, based on the limited
channel information. We believe that RL can allow appropriate
and adaptive RIS switch, thanks to its high efficiency in
learning unknown environments with dynamic statistics.

III. ADAPTIVE OBSTACLE-AWARE RIS SWITCH

1We here use frame-slot time scale to measure the UE throughput, however
any other time scale could be applied to the proposed RIS switch approach,
if needed.

In this section, we propose an Advantage Actor Critic
(A2C) [12] based RIS switch approach, which trains a policy
that can be applied to adaptively switch across RISs in real
time, based only on the information of the latest UE position
captured2, without any further need for channel estimation or
information about potential obstacles. Then, we analyze the
ergodic achievable rate when applying the trained RIS switch
policy throughout the operation process.
A. RL Components

Acting as a central controller at the BS, the RL agent
interacts with the physical network, in order to learn 1) the
latent channel characteristics of different reflected paths as UE
moves, and 2) the unknown obstacles that attenuate the signal.
We consider one step in RL equivalent to one time slot of the
physical frame, and design the following RL components.

State Space The state at step t is defined as the latest
captured UE’s 2D position (xt, yt): St = [xt, yt].

Action Space The set of candidate actions is the set of
available RISs, i.e., At ∈ R.

Reward Function The design of the reward function is
based on the two considerations below. First, as we aim to
maximize the average per-frame SNR perceived by the UE, the
immediate reward should be proportional to the instantaneous
SNR. Second, the UE’s movement can lead to considerable
differences of BS-RISs-UE spatial correlations, thus SNRs,
across different time slots, which can further result in an
unstable and tough learning process. To mitigate such an
impact, we multiply the perceived SNR by a distance-based
factor. In particular, the reward is defined as:

Rt = ς · µt ·min
r∈R

{dBR
r · dRU

t,r }, (2)

where µt is the SNR perceived by the UE at slot t, whose
magnitude depends on the size of the service area, the number
of RISs, the sizes of RISs, etc. This can lead to diverse
reward magnitudes among different scenarios. To maintain the
reward to a specific range for all scenarios, normalizing factor
ς is introduced, which is adjusted empirically for different
scenarios. The factor min

r∈R
{dBR

r · dRU
t,r } counterbalances the

path loss difference across sparse UE locations. dBR
r is the

distance between the BS and r-th RIS, which can be computed
in advance based on the knowledge on the BS and r-th RIS
positions. dRU

t,r is the approximate distance between the UE
and r-th RIS at t, which can be computed beforehand as well.
First, the service area is divided into a fine-grained grid. Then,
the distances between cell centers and RISs are computed and
recorded. Finally, dRU

t,r is the distance between the r-th RIS
and the cell center closest to the UE position at t.

B. Details of Learning Procedures

The A2C neural network (NN) model is composed of a fully
connected (FC) preprocessing layer, actor layers and critic
layers, with connection weight vectors ζ, θ and ϕ, respec-
tively. The FC layer preprocesses the input state and feeds the

2Considering the time cost in capturing the UE position, there could exist
some error between the latest obtained UE position and the current one, which
has a limited impact on the proposed approach, as demonstrated in Sec. IV.
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Algorithm 1 Learning Procedures for RIS Switch
Parameters: Ttrain, tmax.
1: Initialize NN weight vector κ = [ϕ,θ, ζ];
2: Initialize step t← 1;
3: while t ⩽ Ttrain do
4: tstart ← t; Get state St; Reset gradient dκ← 0;
5: while t− tstart < tmax and St is not terminal do
6: Decide an RIS r based on π(r|St) and transmit;
7: Obtain Rt+1 and St+1;
8: t← t+ 1;
9: if St is not terminal then G← v(St);

10: else G← 0;
11: i← t− 1;
12: while i ⩾ tstart do
13: G← Ri + γG;
14: Update dκ← dκ+∇κL based on Eq. (7);
15: i← i− 1;
16: Update κ using dκ based on Eq. (8);

extracted features to the parallel actor and critic layers. The
actor part π(At|St;θ, ζ), identified with θ and ζ, is expected
to approximate the policy function that picks an action based
on the current state. The critic part vπ(St;ϕ, ζ), parameterized
with ϕ and ζ, is aimed at approximating the value function that
evaluates the policy’s performance. Collaborative training of
actor and critic parts ultimately produces the best RIS switch
policy.

In particular, the critic part approximates the value function
v(St;ϕ, ζ) by minimizing the value loss as in (3).

min
ϕ,ζ

Lv = a(St, At;ϕ, ζ)
2, (3)

a(St, At;ϕ, ζ) = Gk(St)− v(St;ϕ, ζ), (4)

Gk(St) =
k−1∑
i=0

γiRt+i + γkv(St+k), (5)

where a(St, At;ϕ, ζ) computes the difference between the
return Gk(St) and the value v(St;ϕ, ζ), thus used to constitute
the value loss.

The actor part approximates the policy function by updating
θ and ζ in the direction of increasing the expected return
E[Gk(St)], i.e.,∇θ,ζE[Gk(St)], whose unbiased estimate is
∇θ,ζ log π(At|St;θ, ζ)a(St, At). In addition, to prevent a pre-
mature convergence to sub-optimal policies, the policy entropy
H(π(At|St;θ, ζ)) = −

∑
At

π(At|St;θ, ζ) log π(At|St;θ, ζ)
is included in the policy loss minimization:

min
θ,ζ

Lp =− log π(At|St;θ, ζ)a(St, At)

− ηH(π(At|St;θ, ζ)), (6)

where η controls the importance of entropy regularization.
We concatenate ϕ, θ and ζ into κ, i.e., κ = [ϕ,θ, ζ], and

iteratively update κ through Eq. (8) to minimize the total loss
L in Eq. (7), which is the sum of policy loss and value loss:

min
κt

L = − log π(At|St;κt)a(St, At)− ηH(π(At|St;κt))

+ βa(St, At;κt)
2, (7)

κt+1 = κt + ot∇κt
L. (8)

The learning procedures are summarized in Algorithm 1.
The training phase spans Ttrain steps, and the NN model is

updated every tmax steps. First of all, the connection weight
vector κ is initialized (Line 1). Before each model update,
the pointer to the beginning of the training sequence tstart
is updated and the gradient dκ is set to 0 (Line 4). The
data used in iterative updates of gradients and NN weights
is collected through the loop in Lines 5-8. At each step, an
RIS r is adopted as the passive relay, according to the current
policy π(r|St;θ, ζ) (Line 6). The reward and the next state are
set respectively based on Eq. (2) and the latest UE’s location
obtained (Line 7). Once data has been collected, return Gk(St)
is computed in Line 13, which is initialized in Lines 9-10. The
gradients are computed based on Eq. (7) (Lines 12-15). Finally,
κ is updated using Eq. (8) (Line 16). The above operations
are performed iteratively till the end of the training phase.

C. Algorithm Convergence and Complexity

1) Convergence: We let φ = [ϕ, ζ] and express the
value function using linear function approximation v̂(St;φ) =
ν(St)

⊺φ, whose resulting error is ϵ. Based on [13], we have

1

(1 + t− τt)

t∑
k=τt

E∥φk −φ⋆
k∥2 = O(

1

t1−σ
)+O(

log t

tσ
), (9)

where τt is the mixing time of an ergodic Markov chain. σ ∈
(0, 1) is a constant. ϕk and ϕ⋆

k are, respectively, the parameter
and unknown parameter of value function at iteration k. O(·)
is the operation of the order of magnitude.

Let ϑ = [θ, ζ] and ∇J(ϑ) = ∇ϑ log π(At|St;ϑ)a(St, At),
then based on [13], we have

min
0≤k≤t

E∥∇J(ϑk)∥2 = O(ϵ) +O(
1

t1−σ
) +O(

log2 t

tσ
). (10)

Based on the convergence of both critic and actor parts shown
in Eqs. (9) and (10), the proposed approach can converge.

2) Complexity: Let U denote the total number of units
in the NN model. The computational complexity of model
updates f(U) and inferences g(U) depends on forward prop-
agation and backpropagation operations on units and con-
nection weights [14]. As Algorithm 1 consists of parts of
data collection (Lines 5-8) and model updates (Lines 9-16),
the computational complexity of the algorithm is O(Ttrain ·
(f(U) + g(U))).

D. Ergodic Achievable Rate

The ergodic achievable data rate C, in the operation process
of length |T |, depends on the RL agent’s trained policy π∗:

C = Eπ∗

 1

|T |

|T |∑
t=1

log2(1 +
PB · σπ∗(t)

PN
)

 , (11)

where E[·] is the statistical expectation operation. σπ∗(t) is the
total path attenuation at slot t, which includes the path loss
and obstacle attenuation, and is determined by the policy π∗.
Based on the Jensen’s inequality, i.e., E[log2(·)] ≤ log2(E[·]),
the upper bound of the ergodic achievable rate can be obtained:

C ≤ 1

|T |

|T |∑
t=1

log2(1 +
PB · Eπ∗ [σπ∗(t)]

PN
). (12)
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TABLE I: Achievable rates for different UE speeds (bits/s/Hz).

Optimal Proposed
2-20m/s 20-60m/s 2-20m/s 20-60m/s

100×100 15 RISs 8.146 8.132 6.896 6.881
30 RISs 9.372 9.367 7.352 7.348

200×200 15 RISs 12.133 12.119 9.962 9.948
30 RISs 13.364 13.359 10.918 10.912

We abbreviate π∗(r|St;θ, ζ) to π∗
t,r and let π∗

t = [π∗
t,r]r∈R

be the decision probability vector at slot t. In addition, suppose
that the r-th RIS is sampled from π∗

t , then the total path
attenuation σπ∗(t) can be specified as σt,r. Further, denoting
σt = [σt,r]r∈R, we can obtain Eπ∗ [σπ∗(t)] = π∗

tσ
⊺
t . After

we submit it to Eq. (12), the upper bound becomes:

C ≤ 1

|T |

|T |∑
t=1

log2(1 +
PB · π∗

tσ
⊺
t

PN
). (13)

As the policy generated by the proposed A2C-based ap-
proach follows the categorical distribution, which is a special
case of the general RL-based approach, rather than stopping
at the upper bound, we can further derive the exact ergodic
achievable rate. Let ωt,r = log2(1+

PBσt,r

PN ) be the achievable
rate if r-th RIS is employed at slot t, then the ergodic rate
through the whole operation process can be computed as:

C =
1

|T |
∑
ξ∈Ξ

[
(
∑
t∈T

ωt,ξ(t)) · (
∏
t∈T

π∗
t,ξ(t))

]
, (14)

where ξ(t) ∼ π∗(St) denotes the adopted RIS at slot t. ξ =
[ξ(t)]t∈T is an action sequence over time domain T , which is
composed of a combination of the RISs sampled at different
slots. Ξ is the whole set of possible action sequences. By
introducing the rate matrix Ω = [ωt,r]t∈T ,r∈R and the policy
matrix Π∗ = [π∗

t,r]t∈T ,r∈R, the ergodic rate can be derived:

C =
1

|T |
tr(Π∗Ω⊺), (15)

where tr(·) is the trace of a matrix.

IV. NUMERICAL RESULTS

In this section, we first compare the achievable rates of
the proposed and baseline approaches, considering different
numbers and sizes of RISs. Then we experiment the proposed
approach with different blockage cases, UE speeds and UE
position estimation errors. The values in the figures and tables
are averages over 10 randomly generated network instances.

A. Network Scenario Settings

In the experiments, we consider a 100 m × 100 m service
area where 1 BS is located at the left-side midpoint. We respec-
tively consider 15 and 30 RISs deployed with random locations
and orientations facing the BS. The RISs can contain either
100× 100 or 200× 200 elements whose length and width are
both equal to half of the wave length and reflection coefficient
amplitude is 1. And we consider 10 and 20 randomly placed
small obstacles with (radius, height) of (2.5, 6) m or large ones
with (7.5, 12) m. The UE moves according to the Random
Waypoint model with speeds uniformly sampled from [2, 20]

m/s or [20, 60] m/s, moving intervals in [2, 6] s, and pause
intervals in [0, 1] s. The heights of the BS, RISs and UE are
10 m, 2 m and 1.7 m, respectively. The network operates at
the frequency of 26 GHz. The BS is equipped with 1 antenna
panel with transmission power of 34 dBm. The noise power
at the UE follows −174 + 10 log10(BW) + NF, where the
bandwidth BW is 200 MHz and the noise figure NF is 9 dB.

B. RL Model Settings
The critic and actor networks are both composed of 5 FC

layers of 32 hidden units, whose output layers use Softmax and
linear functions, respectively. We train an RL model based on
the experience data of 100000 episodes, each with 100 steps.
It takes approximately 2.3 hours on our Intel(R) Core(TM) i5-
12500 @3.00GHz and 24.0GB RAM machine. The discount
factor γ is set to 0.99. The coefficients η and β in Eq. (7)
are set to 0.01 and 0.5. The RMSProp optimizer is used to
minimize the total loss, with a learning rate of 0.0007.
C. Performance Analysis

We first compare the proposed adaptive A2C-based RIS
switch approach (referred to as Proposed) against the follow-
ing three baselines, on the scenarios with 15 and 30 RISs that
are equipped with 100× 100 and 200× 200 elements:

• Optimal Scheme (referred to as Optimal): provides the
achievable data rate under the ideal condition where the
best RIS is adopted in each slot, assuming that the BS
stands in the god’s view and is aware of the obstacles.

• Ergodic Achievable Rate (referred to as Ergodic): is the
ergodic rate that can be achieved by the proposed A2C-
based approach, derived in Sec. III-D.

• Location-Based Scheme [7] (referred to as MinProdDis):
uses the RIS with the minimum product of the BS-RIS
and RIS-UE distances. We adapt it to a real-time version,
using the same distances recorded in Sec. III-A.

In Figs. 2a and 2b, the tiny difference between the rates
achievable with Proposed and Ergodic confirms the effec-
tiveness of our approach, and that the number of samples
in the testing phase is sufficient so that numerical results
adhere to the theoretical analysis. And Proposed provides rates
very close to those of Optimal and outperforms MinProdDis,
regardless of the number of RISs and the number of elements.
These two observations show that Proposed can learn spatial
information about network entities and unknown obstacles.

Moreover, if maintaining the same number of elements,
installing more RISs can help to increase UE rates. This is
reasonable because an increased number of RISs provide a
larger action space for the RL agent and a denser relay system
for the UE. Finally, equipping the same number of RISs with
more elements can considerably increase the UE rates.

The training curves of A2C models applied in Figs. 2a and
2b are shown in Figs. 2c and 2d, w.r.t. the UE’s received
power. As can be seen, despite the number of RIS elements,
the models trained with 30 RISs can gain greater improvement
than those with 15 RISs, because a increased number of RISs
lead to a larger action space thus more possibilities.

Subsequently, we examine the performance of the Proposed
on different numbers (10 and 20) of obstacles with different
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(d) 200× 200 elements

Fig. 2: Comparison on the achievable rates and the training curves of the proposed approach.
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(a) Different blockage cases.

��� ��
 
�� ��
 ���� ���
 �
�� ���
 ����
������� �������������

�

�



�

��

��

��
 �

���
� �

���
�

!�

�
����������2����
�
����������2����
	�����������2����
	�����������2����

(b) Different UE position errors.

Fig. 3: The impact of different blockage cases and UE position
errors on the performance of the proposed approach.

sizes (small (S) and large (L)). Fig. 3a shows the achievable
rates in scenarios where 15 and 30 RISs, both equipped with
100 × 100 elements, are deployed. We can see that even
severe blockages have very limited impact (≤ 3 bits/s/Hz
rate decrease) on the performance of the Proposed. When the
number or size of obstacles is small, increasing the other factor
considerably cuts down the rates, whereas when either factor
is large, the impact of increasing the other is quite limited.

Then, we test the Optimal and Proposed on different UE
speed ranges ([2, 20] m/s and [20, 60] m/s) in scenarios with
10 small obstacles. The achievable UE rates are listed in Table
I. As expected, both approaches see slight rate decreases as
UE speeds are increased. Despite the number of RIS elements,
both approaches exhibit about 0.015 and 0.005 bits/s/Hz rate
decrease for 15 and 30 RISs, respectively. 30 RISs enable less
rate decrease, because more RISs can serve more UE positions.

Finally, we test the sensitivity of the Proposed to the UE
position estimation errors (from 0 m to 20 m), in the scenarios
with 10 small obstacles. As can be seen from Fig. 3b, despite
the RIS settings, as the UE position error increases, the UE
rates decrease at a close rate. The rate decrease is not evident
when the UE position error is less than 5 m. The rate decreases
corresponding to 10 m and 20m are 0.5 and 1 bits/z/Hz. This
demonstrates that the Proposed is not sensitive to the UE
position error, therefore, can be used to achieve satisfactory
rates even with outdated UE position information due to time
costs of positioning and RIS configuration procedures.

V. CONCLUSION

In this letter, we have investigated a real-time RIS switch ap-
proach for mobile mmWave network scenarios where multiple
RISs are installed and the associated redirected propagation

paths could be blocked by obstacles. We have resorted to
the actor-critic technique to learn uncertain obstacles and
constantly changing spatial conditions caused by the mobile
user. Finally, we have derived the ergodic rate achievable
with the proposed approach. The experimental results carried
out in different scenarios have shown that the proposed RIS
switch approach can effectively learn unknown environmental
features and approximate the optimal strategy. It can even
approach the ideal optimum with only around 15% gap and
outperform the state-of-the-art by 76%.
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