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ABSTRACT 

Machine learning algorithms have undergone rapid growth in recent years thanks to the ever-increasing amount of 
data and the parallel growth of computational power. Among the machine learning algorithms, one of the most 
famous and most effective classes for performance and flexibility are artificial neural networks, algorithms capable 
of learning relations between the data. In this work, neural networks are exploited to infer the relation between flight 
mechanics parameters and resulting loads of an articulated rotor configuration. The accuracy of these algorithms is 
closely related to the quality of the dataset used for their training. Since rotor loads are time-periodic signals with a 
precise harmonic content, a dedicated neural network is trained to predict each harmonic separately. The load time 
history is then reconstructed a-posteriori by combining all the predictions given by every single network. Different 
types of network architectures are tested, and a sensitivity analysis is conducted on hyper-parameters to determine 
the optimal configuration for the specific application. Furthermore, such predictions are then used to feed a fatigue 
damage calculation algorithm. 
 
 

NOTATION  

A0 Static component of a signal 
A/C   Aircraft 
ANNs  Artificial Neural Networks 
BB   Beam Bending 
CB   Chord Bending 
Cn Cosine component of the n-th 

harmonic of a signal 
FFNN  Feed Forward Neural Networks 
HTH   Harmonic Time History 
HUMS  Health and Usage Monitoring System 
LSTM  Long-Short Term Memory 
MSE   Mean Squared Error 
RNN   Recurrent Neural Network 
TDNN  Time Delay Neural Networks 
Sn Sine component of the n-th harmonic 

of a signal 
XP X-th harmonic 
 

INTRODUCTION 

The development and certification of a new aircraft requires 
the execution of several experimental flight tests aimed 
mainly at verifying the aircraft actual capabilities (in terms 
of performance, handling qualities, aeroelastic stability, ...)  
which can highlight potential design problems not foreseen 
in the preliminary phase. Notwithstanding the high-fidelity 
simulation tools nowadays available, experimental tests are 
still necessary to assess the behavior of the aircraft when 
analyses are only an approximation of the reality. 

Even with the computational power now available, 
aeroelastic simulations of a complete rotor, coupling both 
aerodynamics loads and structural deformations, are very 
demanding when high fidelity tools are exploited. On the 
contrary, neural networks algorithms are more flexible and 
faster, so they can be an ideal candidate for predicting loads 
in real-time with a fair level of accuracy. Indeed, they 
require only some matrix multiplications and some 



 

 

evaluations of simple nonlinear algebraic functions. On the 
other hand, the main drawback of using neural networks is 
that existent flight-data databases, with large amounts of 
high-quality data, are needed in order to obtain reliable 
predictive models that work well throughout the whole flight 
envelope. 

In this work, we demonstrate the effectiveness of using 
neural networks for predicting loads on a conventional 
articulated rotor. In particular, we focused our attention on 
the flap-wise beam bending at the root section of the rotor 
blade. Furthermore, using the load estimated from the 
prediction of the artificial neural network, the fatigue 
damage of the blade specimen can be calculated. 

The helicopters of the production fleet are not equipped with 
sensors for monitoring blade loads because of high 
maintenance costs, but blades are critical components for the 
safety of flight. For this reason, current maintenance 
standards must be very conservative and, consequently, 
blades can be prematurely withdraw even if they could be 
used for more flight hours. Better computation of the actual 
blade damage can open up a new maintenance scenario: 
extending or reducing the component residual life in relation 
to the way the aircraft is flown. 

The neural networks approach for rotor loads estimation has 
been already investigated by Ref. 1 and Ref. 2. However, the 
focus was limited to the prediction of conventional 
helicopter rotor loads during particular maneuvers. Also, 
Ref. 3 used neural networks to estimate hub-center loads in 
real time to design an envelope protection system. Ref. 6 
introduces a new methodology for pre-processing the data to 
predict rotor loads on a tiltrotor application. The present 
work extends this approach to blade loads of a common 
articulated rotor. 

DATA SOURCE 

Among all the flights in the database, a load survey 
campaign is chosen as training set. A definition of what is 
the goal of a load survey is summarized as: 

“Loads, stresses and strains are measured for ground and 
flight conditions and used to establish a comprehensive 
database, that is used to evaluate the fatigue life and/or 
inspection intervals for the aircraft parts in agreement with 
the operational usage spectrum”. 

This set of flights is chosen because, as its objective 
suggests, it comprehensively explores the flight envelope. In 

addition, a proper subset of data must be selected for testing 
and for validating the developed algorithms. These datasets 
are composed by data never “seen” by the neural network 
during the training phase. Figure 1 and Figure 2 show a 
comparison between the training dataset with respect to the 
test dataset in terms of rotor commands (i.e. collective and 
longitudinal blade pitch) and in terms of altitude vs TAS 
envelope.  
In our case, the complete dataset consists of approximately 
100 flight hours and is split into 80% for the training set, 
10% for the validation set and 10% for the test set. 

 

Figure 1: Rotor Commands, Training Set VS Test Set 

 

Figure 2: Altitude Envelope, Training Set VS Test Set 

 

After defining those datasets, an appropriate set of inputs 
must be defined to predict the flap-wise bending moment at 
the blade root section. These inputs feed the neural network 
algorithm as pictured in Figure 3. 



 

 

Choosing the correct set of inputs that drive the output, i.e. 
flap-wise bending moment, is not trivial and an explorative 
data analysis can help in finding the best set. In this branch 
of Machine Learning, there are many techniques that deduce 
the correlation between a dataset with a brute force approach 
(e.g. PCA, Pearson correlation index, …) which would not 
consider the physics behind the strain gauge sensor. 

Our approach choses a different strategy and a domain 
specialist, who knows the physics of the sensor itself and the 
driver parameters of that load component, is consulted to 
determine which parameters are most relevant for predicting 
the flap-wise bending moment. Without carrying out any 
reduction of the dimensionality of the dataset, the flight 
mechanics parameters are initially selected (see Table 1). 
They can be collected into two groups which separately 
describes the flight physics of the aircraft and of the rotor. 
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Pressure altitude & Outside air temperature 

Airspeed 

Load factor 

Pitch / Roll angles 

Body pitch / yaw / roll rates 
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Main / Tail rotor mast torque 

Main Rotor RPM 

Main rotor commands & Pedal 

Table 1: NN inputs 

   

DATA PREPROCESSING 

The approach presented in this work makes use of an 
harmonic decomposition of the signal which enable the 
neural network to separately predict the harmonic 
components. The time history of the load is reconstructed a-
posteriori by re-combining the harmonic components 

predicted by each neural network. This can be accomplished 
by a technique, proved to be effective in Ref.6, used in the 
preprocessing of quasi-periodic time series, i.e. the harmonic 
time history (HTH).  

A briefly explanation of the technique is here reported. The 
signal to be analyzed is divided in chunks determined by the 
rotor turning frequency. In particular, a chunk starts when 
the reference blade passes through the zero azimuth position 
and ends exactly one (or more) turn(s) later. Within every 
chunk, a harmonic fitting is exploited, approximating the 
signal as 

𝑦௜(𝑡) =෥ 𝐴଴
௜ + ෍[𝐶௡

௜ cos(𝑛Ω t) + S୬
௜ sin(𝑛Ω t)]

ே

௡ୀଵ

,           (1) 

 
where 𝑦௜(𝑡) is the time history of the load within the i-th 
rotor revolution and 𝐴଴

௜ , 𝐶௡
௜  and 𝑆௡

௜  are the values of the 
harmonic components. So, the different neural networks are 
trained to predict 𝐴଴(𝑡), 𝐶௡(𝑡) and 𝑆௡(𝑡) during whole 
flights, knowing that 
 

𝐴଴
௜ = 𝐴଴(𝑡௜), 

𝐶௡
௜ = 𝐶௡(𝑡௜), 

𝑆௡
௜ = 𝑆௡(𝑡௜), 

where 𝑡௜  is the mid-point time of the i-th rotor revolution. 
Then, the time history of the load can be reconstructed as: 

𝑦௜
௥௘௖(𝑡) = 𝐴଴

௜ + ෍[𝐶௡
௜ cos(𝑛Ω t) + S୬

௜ sin(𝑛Ω t)]

ே

௡ୀଵ

.      (2) 

 

It might be worth highlighting that 𝑦௜
௥௘௖(𝑡) is just an 

approximation of 𝑦௜(𝑡), particularly when its harmonic 
components change very fast from a complete revolution to 
another or when a limited number of harmonics are used.  

Figure 3: FFNN architecture 



 

 

Therefore, instead of focusing on the highly demanding task 
of predicting the complete time history of the signal at a very 
high sample rate, the approach makes use of neural networks 
to predict its harmonic components which are related to the 
slow dynamics of the flight mechanics parameters and then 
the complete time history of the load is reconstructed by 
means of Eq. (2). 

Besides, one neural network for each harmonic component 
of the output signal is synthesized, i.e. one for the static 
component, one for the 1st harmonic, one for the 2nd 
harmonic, ect. In this way, the NN architecture can be very 
simple and the optimization of all the NN hyper-parameters 
converges relatively easily. The whole process is 
schematized in Figure 4. 

 

NEURAL NETWORK ARCHITECTURE 

The design of a neural network involves the selection of 
some parameters called hyper-parameters that are not trained 
by the algorithm but are set by the data scientist himself. 
Optimizing hyper-parameters is necessary to achieve rapid 
convergence during the training phase and good metrics 
performances but there are no general rules for doing this. 
Some of these hyper-parameters are investigated, such as: 
learning rate, activation functions, regularization 
coefficients, epochs, number of neurons and layers. 
Furthermore, different architectures of the network are 
tested, i.e.: Feed Forward neural networks (FFNN), Time 
Delay neural networks (TDNN), Recurrent neural networks 
[4] (RNN) and Long-Short term memory networks [5] 
(LSTM). In the end, a FFNN proved to be effective to the 
scope of the present work. 
The choice of the simplest architecture of the neural network 
leads to numerous advantages ranging from lower 
computational power required in the training phase to 
shorter time required in the testing/validation phase. 
Network architectures which can process temporal 
information, i.e. time delay networks (TDNNs), recurrent 
neural networks (RNNs), and long-short term memory 
networks (LSTM) do not improve the metrics performances 
obtained with FFNNs. In particular, RNNs and especially 
LSTM, as well as not improving the predictions, require 
longer training times with respect to FFNNs and TDNNs. 

So, for the problem under investigation and with the data 
preprocess methodology used in this work, the simplest 
FFNN with a single layer and with the right amount of 
neurons is sufficient to learn properly the non-linear relation 
that binds the flight mechanics inputs to the flap-wise beam 
bending moment at the blade root. 

ROTOR LOAD PREDICTION 

As already explained, different neural networks are trained 
to predict a single harmonic component of the load and then 
the complete signal is reconstructed with Eq.(2). 

Figure 5 shows the comparison of the true signal (black line) 
with the FFNN prediction (red dots) for a complete flight. 

 

Figure 5: Comparison for a complete flight 

 

Blade beam bending 

The blade beam bending near the blade root, estimated 
during a whole flight of the test set is represented in Figure 
5. Figure 6 shows the correlation coefficient computed on 
the whole test set and is equal to R=0.989. 

Time   [s]

Flight Data
NN prediction

Figure 4: Integration of neural networks in the data processing workflow 



 

 

 

Figure 6: Correlation between Predicted and Real 
Signal 

Moving to the prediction of a harmonic, the black line 
represents the data actually measured during the flight. The 
red line represents the prediction of the neural network. 
Figure 7 shows the prediction of the 1st harmonic, both sine 
and cosine component. 

 

Figure 7: Blade BB Prediction of the 1st Harmonic 

Figure 8, Figure 9 and Figure 10 show how the neural 
network behaves in different maneuvers. The black line 
represents the data actually measured during the flight. The 
blue line represents the reconstruction of the real signal with 
only a certain amount of harmonics. The blue line represents 
the prediction of the neural network.  

 

Figure 8: Blade BB in Forward Flight 

 

Figure 9: Blade BB in a bank Turn at 20 deg 

 

 

Figure 10: Blade BB in a bank Turn at -15 deg 



 

 

 

FATIGUE DAMAGE ESTIMATION 

As we have shown that the FFNN load predictions are quite 
reliable over the most of the flight envelope, the predicted 
load time histories can be used to evaluate the fatigue 
damage of the blade root section. Figure 11 shows the 
comparison in terms of number of cycles for every load bin 
between the actual signal (black bars), the reconstructed 
signal with a certain amount of harmonics (red bars) and the 
predicted signal (blue bars). The computation of the load 
cycle is performed using the rainflow-counting technique 
and the Goodman relation accounting for the mean value.  

 

Figure 11: N. Cycles Vs Load Amplitude 

It can be noted that the only differences in terms of load 
cycles are related to the highest load bins which are, 
unfortunately, the most damaging cycles. So, even if the 
error between the time histories (see Figure 8, Figure 9 and 
Figure 10) seems small, there can be a huge difference in 
terms of the highest load cycles. This fact could lead to a bad 
prediction of the total damage suffered by the components 
and other counter actions should be used to prevent 
inaccuracy in signal prediction. 

 

CONCLUSIONS AND WAY FORWARD 

The usage of neural networks to estimate the blade loads of a 
common helicopter is proven to be feasible. An effective 
solution for the architecture of a simple FFNN along with 
the HTH preprocessing is proposed and tested, analyzing 
briefly the pros and cons of such a network vs. other 
possible architectures (e.g. RNN and LSTM networks). In 
the end, the fatigue damage suffered by the component is 
computed with the predictions of the trained NNs and some 
issues are highlighted. 

Other applications where these predictive tools can be 
used are here summarized. Firstly, the synthesized neural 
networks can be used to extract loads by feeding ANNs with 
inputs coming from a flight simulator. In this way, there can 
be a reduction of the test flights. Secondly, these neural 
networks can also be implemented in the telemetry 
monitoring system, as generators of “special” parameters, so 

that it will be possible to have a real time prediction of the 
loads that the blades are supposed to experience during flight 
tests. This significantly helps the flight test crew for 
enhancing the test safety. Finally, a set of “virtual sensors” 
can be virtually installed on the production fleet in order to 
monitor the actual fatigue damage and so the remaining life 
of different components.  
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