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Abstract: To identify the best transfer learning approach for the identification of the most frequent
abnormalities on chest radiographs (CXRs), we used embeddings extracted from pretrained convolu-
tional neural networks (CNNs). An explainable AI (XAI) model was applied to interpret black-box
model predictions and assess its performance. Seven CNNs were trained on CheXpert. Three transfer
learning approaches were thereafter applied to a local dataset. The classification results were en-
sembled using simple and entropy-weighted averaging. We applied Grad-CAM (an XAI model) to
produce a saliency map. Grad-CAM maps were compared to manually extracted regions of interest,
and the training time was recorded. The best transfer learning model was that which used image
embeddings and random forest with simple averaging, with an average AUC of 0.856. Grad-CAM
maps showed that the models focused on specific features of each CXR. CNNs pretrained on a large
public dataset of medical images can be exploited as feature extractors for tasks of interest. The
extracted image embeddings contain relevant information that can be used to train an additional
classifier with satisfactory performance on an independent dataset, demonstrating it to be the optimal
transfer learning strategy and overcoming the need for large private datasets, extensive computational
resources, and long training times.

Keywords: medical imaging; X-rays; artificial intelligence; transfer learning; explainability

1. Introduction

The world’s population increased by about threefold between 1950 and 2015 (from 2.5
to 7.3 billion), and this trend is projected to continue in the coming decades (a population
of 19.3 billion people is expected in 2100), with a growing share of the aging population
(≥65 years) (https://www.eea.europa.eu/data-and-maps/indicators/total-population-
outlook-from-unstat-3/assessment-1 (accessed on 30 April 2021)). This projected trend
is strongly linked to the increasing demand for medical doctors, including imagers. The
medical community has offered some warnings about the urgent need to act (https://www.
rcr.ac.uk/press-and-policy/policy-priorities/workforce/radiology-workforce-census (ac-
cessed on 30 April 2021)), suggesting that artificial intelligence (AI) might partially fill this
gap [1]. The joint venture between AI and diagnostic imaging relies on the advantages
offered by machine learning approaches to the medical field, which include the automation
of repetitive tasks, the prioritization of unhealthy cases requiring urgent referral, and the
development of computer-aided systems for lesion detection and diagnosis [2]. Nonethe-
less, the majority of such AI-based methods are still research prototypes, and only a few
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have been introduced in clinical practice [3], despite increasing evidence the superior
performance of AI relative to that of doctors [4,5]. A number of reasons may be called upon
to explain this fact [6–8]. A successful AI-based tool relies on three main ingredients: an
effective algorithm, high computational power, and a reliable dataset. Whereas the first
two ingredients are generally available and can leverage several applications in different
domains, the latter is perhaps the most critical in medical imaging. An adequate quality
and amount of data necessary for machine learning approaches are still challenging or
unfeasible in most clinical trials [6]. Accordingly, some strategies can be used to cross the
hurdle of datasets in the medical imaging field. These comprise virtual clinical trials [9,10],
privacy-preserving multicenter collaboration [11], and transfer learning approaches [12]. In
particular, transfer learning, i.e., leveraging patterns learned on a large dataset to improve
generalization for another task, is an effective approach for computer vision tasks on small
datasets. Besides enabling training with a smaller amount of data, avoiding overfitting,
transfer learning has shown remarkable performance in generalizing from one task and/or
domain to another [13]. However, the optimal transfer learning strategy has not yet been
defined due to the lack of dedicated comparative studies. In this work, we propose:

1. Identification of the best transfer learning approach for medical imaging classification,
encompassing three steps: (1) pretraining of CNN models on a large publicly available
dataset, (2) development of multiple transfer learning methods, and (3) performance
evaluation and comparison;

2. Interpretation of CNN black-box predictions using explainable AI (XAI) on a popula-
tion level and randomly selected set of examples.

We tested this proof-of-concept approach on chest radiographs (CXRs). CXR is the
most frequently performed radiological examination. Thus, the semiautomatic interpreta-
tion of CXRs could significantly impact medical practice by potentially offering a solution
to the shortage of radiologists.

2. Materials and Methods
2.1. Datasets

The experimental analysis discussed in this paper involved two datasets: (i) CheXpert,
a large public dataset, which was used to pretrain several classification models; and
(ii) HUM-CXR, a smaller local dataset, which was used to evaluate the investigated transfer
learning approaches.

CheXpert. This dataset comprises 224316 CXRs of 65,240 patients collected from the
Stanford Hospital from October 2002 to July 2017 [14]. For this study, 191027 CXRs from
the original dataset that presented a full reported diagnosis were selected. Each image was
annotated with a vector of 14 labels corresponding to major findings in a CXR. Mentions of
diseases were extracted from radiology reports with an automatic rule-based system and
mapped—for each disease—with positive, negative, and uncertain labels according to their
level of confidence. Table 1 shows the data distribution among the 14 labels included in
the dataset.

HUM-CXR. We retrospectively collected all chest X-rays performed between 1 May 2019
and 20 June 2019 from the IRCCS Humanitas Research Hospital institutional database. We
excluded records (1) not focused on the chest, (2) without images stored in the Institutional
PACS, (3) without an available medical report, and (4) without an anteroposterior view.
HUM-CXR is composed of 1002 CXRs, including anteroposterior, lateral, and portable
(i.e., in bed) CXRs. Labels were manually extracted from medical reports (CJ). Uncertain
cases were reassessed by two independent reviewers (M.S. and M.K.), and discordant
findings were solved by consensus. Each image was annotated as normal or abnormal;
abnormalities were further specified as mediastinum, pleura, diaphragm, device, other,
gastrointestinal (GI), pneumothorax (PNX), cardiac, lung, bone, or vascular, resulting in a
vector of 12 labels. It was not possible to use available automatic labelers [14] because they
are designed for English-language use, whereas our radiological reports were written in
Italian. Mediastinum, diaphragm, other, GI, and vascular labels were not included in this
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work due to a limited number of available X-rays (<30) and significant inconsistencies with
CheXpert labels. Ultimately, 941 CXRs were included in the analysis. Table 2 shows the
data distribution of the labels selected for this study.

Table 1. Absolute frequencies of positive, uncertain, and negative samples for each finding (relative
frequencies are reported in parentheses) in the CheXpert dataset (n = 191,027).

Label Positive (%) Uncertain (%) Negative (%)

No Finding 16,974 (8.89) 0 (0.0) 174,053 (91.11)
Enlarged card. 30,990 (16.22) 10,017 (5.24) 150,020 (78.53)
Cardiomegaly 23,385 (12.24) 549 (0.29) 167,093 (87.47)
Lung opacity 137,558 (72.01) 2522 (1.32) 50,947 (26.67)
Lung lesion 7040 (3.69) 841 (0.44) 183,146 (95.87)

Edema 49,675 (26.0) 9450 (4.95) 131,902 (69.05)
Consolidation 16,870 (8.83) 19,584 (10.25) 154,573 (80.92)

Pneumonia 4675 (2.45) 2984 (1.56) 183,368 (95.99)
Atelectasis 29,720 (15.56) 25,967 (13.59) 135,340 (70.85)

Pneumothorax 17,693 (9.26) 2708 (1.42) 170,626 (89.32)
Pleural effusion 76,899 (40.26) 9578 (5.01) 104,550 (54.73)

Pleural other 2505 (1.31) 1812 (0.95) 186,710 (97.74)
Fracture 7436 (3.89) 499 (0.26) 183,092 (95.85)

Support devices 107,170 (56.1) 915 (0.48) 82,942 (43.42)

Table 2. Absolute frequencies of positive, uncertain, and negative samples for each finding (relative
frequencies are reported in parentheses) in the HUM-CXR dataset (n = 941).

Label Positive (%) Negative (%)

Normal 273 (29.01) 668 (70.99)
Cardiac 93 (9.88) 848 (90.12)

Lung 427 (45.38) 514 (54.62)
Pneumothorax 38 (4.04) 903 (95.96)

Pleura 135 (14.35) 806 (85.65)
Bone 137 (14.6) 804 (85.4)

Device 147 (15.56) 794 (84.44)

This study was approved by the Ethical Committee of IRCCS Humanitas Research
Hospital (approval number 3/18, amendment 37/19); due to the retrospective design,
specific informed consent was waived.

Preprocessing. For both datasets, we selected only anteroposterior images. Concerning
CheXpert, following the approach described in [15], we resized the images to 256 × 256, and
a chest region of 224 × 224 was extracted using a template-matching algorithm. We then
normalized the images by scaling their values in the range [0, 1]; because the original models
were pretrained on ImageNet, we further standardized them with respect to ImageNet
mean and standard deviation. Concerning HUM-CXR, we selected X-rays acquired with an
anteroposterior view, screening the images according to the series description in DICOM
format, which had to be anteroposterior, posteroanterior, or portable; the final sample
comprised 941 image of 746 patients. First, we clipped pixel values with a maximum
threshold of 0.9995 quantile to minimize the noise due to the landmark (see Figure 1).
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Figure 1. Preprocessing by clipping values larger than the 0.9995 quantile. The presence of a
landmark, significantly whiter than the other pixels, created significant noise after normalization (a);
original image (b); clipped image (c); normalized original image (d). To match the input dimension
of the models, we resized the images to 224 × 224 and encoded them as RGB images by repeating
the images for three channels. This was a necessary step in order to use the state-of-the-art image
classification networks already pretrained on the ImageNet dataset. Then, we normalized each image
by scaling the values in the range.

2.2. Pretraining on CheXpert

In this work, we trained several classifiers on the CheXpert dataset to predict CXR
findings. Following the protocol described in [15], we considered seven convolutional neu-
ral networks (CNNs) with different topologies and numbers of parameters: DenseNet121
(7M parameters), DenseNet169 (12,5M parameters), DenseNet201 (18M parameters) [16],
InceptionResNetV2 (54M parameters) [17], Xception (21M parameters) [18], VGG16 (15M
parameters) [19], and VGG19 (20M parameters) [19]. We selected these seven network archi-
tectures because (i) they are the most common architectures used to perform classification,
and (ii) the performance of each architecture differed depending on the labels. With no pre-
dominant architectures, aggregating multiple models can improve the final performances.
To use these networks as classifiers, we removed the original dense layer and replaced it
with a global average pooling (GAP) [20] layer, followed by a fully-connected layer with
a number of outputs that matched the number of labels. These seven networks were not
trained from scratch; instead, following a common practice in CNN training, we performed
a first transfer learning step by initializing the convolutional layers of the networks with
weights of pretrained models on the ImageNet dataset [21]. Then, we trained all the weights
(both convolutional and classification layers) on the CheXpert dataset, using 90% of the
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sample for training and 10% for validation (further details on the training process can be
found in our previous work [15]).

Once trained to classify images, the convolutional blocks of CNN models can be
employed as a mean to extract a vector of features from images, usually called image
embedding. CNNs learn to classify images by learning an effective input representation
directly from raw data; the sequence of convolutional layers progressively reduces the size
of the input and extracts features from images from low-level features (e.g., edges, pixel
intensities, etc.) in early convolutional layers to high-level semantic features in the latest
convolutional layers. Accordingly, the last convolutional block, resulting from the training
process, is designed to output a vector with the relevant features.

2.3. Transfer Learning

In this paper, we propose three transfer learning approaches, as depicted in Figure 2.
As a reference standard, we mapped the CheXpert labels to the HUM-CXR labels and

using the pretrained CNNs. The first transfer learning approach consisted of combining
the outputs of pretrained CNNs using stacking [22]. The second approach exploited the
pretrained CNNs to compute the image embeddings from HUM-CXR data and used them
to train tree-based classifiers. The last approach consisted of tuning the CNNs pretrained
on CheXpert on HUM-CXR data. In the remainder of this section, we describe these four
approaches in detail.

Pretrained CNNs. This was the most straightforward of the investigated approaches
and was used mainly as a baseline. It consisted of providing the HUM-CXR images as input
to the CNNs trained on CheXpert and using the output of the networks to classify them
based on a mapping between the labels of the two datasets. Table 3 shows the mapping
designed as a result of an analysis of the images and labels in the two datasets.

Table 3. Correspondence between CheXpert and HUM-CXR labels.

CheXpert HUM-CXR

Pleural effusion, pleural other Pleura

Support devices Device

Pneumothorax PNX

Enlarged cardiomediastinum, cardiomegaly Cardiac

Lung opacity, lung lesion, consolidation, pneumonia, atelectasis, edema Lung

Fracture Bone

No findings Normal

For multiple labels, we selected the maximum output probability of the network
for CheXpert labels as the predicted value for the respective HUM-CXR outcome. As
reported in previous works [15,23], none of the trained CNNs outperformed any of the other
networks on the label problem. Thus, to improve the overall classification performances,
we combined the outputs of the trained CNSs through two ensemble methods: simple
average and entropy-weighted average. In the case of simple average, the predictions of
the classifiers were combined as:

ỹi =
1
N

N

∑
k=1

pk,i (1)

where pk,i is the prediction of classifier k for label i, N is the number of classifiers, and yei is
the resulting prediction of the ensemble for label i.

When using entropy-weighted average, the predictions were combined as:

ỹi =
N

∑
k=1

(1 − H(pk,i))pk,i (2)
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where pk,i is the prediction of classifier k for label i, N is the number of classifiers,
H(p) = −plog2(p) − (1 − p)log2(1 − p) is the binary entropy function, and ỹi is the re-
sulting prediction of the ensemble for label i.
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Figure 2. An overview of our experimental design. In the first phase, state-of-the-art image classifica-
tion networks were tuned on a large public dataset of X-rays (CheXpert [14]). Then, we performed
four different steps on the HUM-CXR dataset: (1) we tested the originally trained networks on
the X-rays of the new dataset, mapping the HUM_CXR labels to CheXpert labels; (2) we used the
originally pretrained networks with a metaclassifier to combine the predictions of each network
on the new dataset; (3) we fine-tuned the networks by removing the fully connected classification
layer from the seven CNNs trained on CheXpert and replacing it with a seven-output layer that
matched HUM-CXR labels; and (4) we extracted the image embeddings from each network and
trained tree-based classifiers to predict the HUM-CXR labels starting from the extracted embeddings.
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Stacking. This approach extends the previous approach by using a method called
stacked generalization or stacking [22]. Instead of combining the outputs of the CNNs with
a simple or an entropy-weighted average as described above, we combined them using a
metaclassifier trained for this purpose. Thus, we trained a random forest (RF) to predict
the label for HUM-CXR samples based on the predictions of the seven CNNs trained on
CheXpert and mapped to labels of HUM-CXR, as shown in Table 3. The data were divided
into a training set (70%) and a test set (30%).

Tree-based classifiers. This approach exploits the CNNs trained on CheXpert to
compute the image embeddings of CXRs included in the HUM-CXR dataset. Image
embeddings can be used to predict the label of the corresponding images using much
simpler models than CNNs, such as tree-based models. The benefit of using tree-based
models with respect to CNNs is that they do not require either high computational resources
or extremely large datasets for training, making them suitable for smaller single-institution
datasets. In this work, we focused on three kinds of tree-based methods: decision tree
(DT), random forest (RF), and extremely randomized trees (XRT). For each method, we
trained seven classifiers using the seven CNNs pretrained on CheXpert to compute the
image embeddings from the HUM-CXR dataset, with 70% of the samples used for training
and 30% for testing. As previously mentioned, for the pretrained CNNs, we applied
ensemble methods, i.e., the simple average and the entropy-weighted average, to combine
these seven classifiers. We tuned the training hyperparameters of the tree-based classifiers
with a grid-search optimization using stratified K-fold cross validation (Table 4 shows
the parameters).

Table 4. Embedding model hyperparameters.

Model Hyperparameters

DT

Max depth = [1, 2, 3, 4, 5, 10, 20], min samples leaf = [1, 2, 4], min samples split =
[2, 5, 10], criterion = [gini, entropy]
Final values:
Max depth = 10, min samples leaf = 1, min samples split = 2, criterion = gini

RF

Max depth = [1, 2, 3, 4, 5, 10, 20], min samples leaf = [1, 2, 4], min samples split = [2,
5, 10], criterion = [gini, entropy], number estimators = [10, 20, 30, 50, 100, 200, 300]
Final values:
Max depth = 10, min samples leaf = 4, min samples split = 10, criterion = gini,
number of estimators = 100

XRT

Max depth = [1, 2, 3, 4, 5, 10, 20], min samples leaf = [1, 2, 4], min samples split = [2,
5, 10], criterion = [gini, entropy], number estimators = [10,20,30, 50, 100, 200, 300]
Final values:
Max depth = 10, min samples leaf = 2, min samples split = 2, criterion = entropy,
number of estimators = 200

The results were combined with simple average and entropy-weighted average.
Fine-tuning. This is a common transfer learning approach in deep learning that consists

of adapting and retraining the last layers of a pretrained neural network on different data
or tasks [13]. Therefore, we removed the fully connected classification layer from the seven
CNNs trained on CheXpert and replaced it with a seven-output layer that matched the
HUM-CXR labels. Then, the HUM-CXR (70% training, 10% validation) dataset was used
to finetune the original networks. The models were fine-tuned for five epochs with early
stopping on the validation AUC set to three epochs. Binary cross entropy was used as loss
function, and the learning rate was initially set to 1 × 10−4, to be reduced by a factor of
10 after each epoch. For each CNN, the best-performing model upon validation was tested
on the remaining 20% of the HUM-CXR dataset. The performances were evaluated with
simple average, entropy-weighted average, and stacking.
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2.4. Performance Assessment

To assess the performances of our classifiers, we computed the area under the receiving
operating characteristic (ROC) curve. The ROC curve was obtained by plotting the true
positive rate (TPR) (or sensitivity) versus the false positive rate (FPR) (or 1-specificity).
Values higher than 0.8 were considered excellent [24], and the training time was recorded.

2.5. Explainability

Despite having proven successful predictive performance, CNNs are recognized as
black-box models, i.e., the reasoning behind the algorithm is unknown or known but not
interpretable by humans. In order to build trust in AI systems, it is necessary to provide the
user with details and reasons to make their functioning clear or easy to understand [25]. We
applied gradient-weighted class activation map (Grad-CAM) [26], a state-of-the-art class-
discriminative localization technique for CNN interpretation that outputs a visualization
of the regions of the input (heat map) that are relevant for a specific prediction. Grad-CAM
uses the gradient of an output class in the final convolutional layer to produce a saliency
map that highlights areas of the image relevant to detection of the output class. Then, the
map is upsampled to the dimensions of the original image, and the mask is superimposed
on the CXR. Grad-CAM is considered an outcome explanation method, providing a local
explanation for each instance. Therefore, we applied Grad-CAM to randomly selected
HUM-CXR data. Grad-CAM heat maps were computed for each CNN model and averaged.
In addition to superimposing them on the original image, we used Grad-CAM heat maps to
automatically generate a bounding box surrounding the area associated with the outcome.
We created a mask with the salient part of the heat map (pixel importance larger than the
0.8 quantile) and used its contours to draw a bounding box highlighting the region of the
input that contributed most to the prediction. Grad-CAM saliency maps were compared to
saliency masks manually extracted by a radiologist (A.A.). The agreement was evaluated as
intersection area over the total area identified by the imager. DeGrave et al. [27] suggested
that single local explanations are not enough to validate the correctness of a model against
shortcuts and spurious correlations. Therefore, we propose a population-level explanation
averaging the saliency maps of 200 randomly sampled images, with the prediction with
the highest probability selected.

3. Results

In this section, we first introduce the baseline results (of the networks originally trained
on CheXpert) and the performance of the networks following stacking, embedding, and fine
tuning. Then, we present an in-depth analysis of the classification by applying Grad-CAM
and comparing the extracted saliency maps with those generated by radiologists.

3.1. Baseline with Pretrained CNN

Table 5 shows the performance on the test set achieved by transfer learning without
retraining in terms of AUC for each HUM-CXR class and on average.

The results are shown for each CNN, ensembling with averaging, and weighted
entropy averaging. Generally, the networks pretrained on CheXpert showed promising per-
formance on the new dataset (HUM-CXR). Failures occurred mainly for bone. Ensembling
generally achieved better average results compared to single-model performance.



Diagnostics 2022, 12, 2084 9 of 20

Table 5. CNN results with pretrained networks without retraining in terms of AUC. Each column
represents an HUM-CXR label. We report the results for each network and for the two ensembling
strategies. The best results for each class and average are highlighted in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean

DenseNet121 0.81 0.84 0.70 0.89 0.87 0.39 0.87 0.766
DenseNet169 0.80 0.79 0.69 0.90 0.87 0.36 0.88 0.755
DenseNet201 0.81 0.78 0.70 0.90 0.87 0.35 0.86 0.754

InceptionResNetV2 0.81 0.83 0.69 0.89 0.87 0.39 0.86 0.762
Xception 0.80 0.77 0.69 0.91 0.87 0.44 0.86 0.764
VGG16 0.82 0.85 0.70 0.89 0.89 0.41 0.86 0.775
VGG19 0.81 0.83 0.71 0.88 0.89 0.42 0.85 0.772

Averaging 0.82 0.84 0.71 0.91 0.89 0.38 0.89 0.777
Entropy 0.82 0.83 0.71 0.91 0.89 0.37 0.89 0.772

3.2. Stacking and Embeddings

Combining the predictions with a metaclassifier (stacking) significantly improved
bone classification and the mean classification AUC compared to the baseline. Furthermore,
the embeddings extracted from pretrained CNNs were used to train tree-based classifiers.
Table 6 shows the performance achieved by stacking and embeddings with DT, RF, and
XRT ensembled with simple average and entropy-weighted average.

Table 6. Results of stacking and tree-based models trained on embeddings extracted from pretrained
CNNs in terms of AUC. Each column represents an HUM-CXR finding. We report the results for each
tree model and for both ensembling strategies. Best results for each class and average are highlighted
in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean

Stacking 0.85 0.81 0.74 0.88 0.94 0.85 0.84 0.843
DT + averaging 0.81 0.69 0.68 0.75 0.88 0.68 0.78 0.734
RF + averaging 0.86 0.85 0.72 0.92 0.94 0.85 0.86 0.856

XRT + averaging 0.85 0.84 0.73 0.92 0.94 0.85 0.85 0.853
DT + entropy 0.81 0.69 0.68 0.75 0.88 0.69 0.78 0.753
RF + entropy 0.85 0.85 0.72 0.92 0.94 0.85 0.85 0.853

XRT + entropy 0.85 0.84 0.73 0.92 0.94 0.85 0.84 0.852

The best model (RF + simple averaging) achieved a mean AUC of 0.856 with a max-
imum of 0.94 for pleura. The results show that stacking and embedding achieved better
classification performance compared to the baseline. Complex machine learning models
(XRT and RF) achieved better performance than simple decision tree classifiers.

3.3. Fine Tuning

The last set of experiments consisted of fine tuning the classification layers of the
pretrained CNNs (Table 7). Single-model performance improved with respect to transfer
learning without retraining, except for VGG16 and VGG19. Ensemble AUC increased for
all strategies. Fine tuning combined with stacking achieved the best AUC for PNX (0.97),
whereas on average, it was performant than the best embedding model. However, these
results show that fine tuning alone is not enough to achieve competitive performance, and
an additional metaclassifier is required to combine the results. All the described models
are available at https://github.com/DanieleLoiacono/CXR-Embeddings.

https://github.com/DanieleLoiacono/CXR-Embeddings
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Table 7. CNN results with fine tuning of the classification layer of pretrained networks in terms of
AUC. Each column represents an HUM-CXR finding. We report the results for each single network,
for the two ensembling strategies, and for stacking. The best results for each class and average are
highlighted in bold.

Model Normal Cardiac Lung PNX Pleura Bone Device Mean

DenseNet121 0.81 0.73 0.76 0.94 0.90 0.73 0.78 0.807
DenseNet169 0.73 0.88 0.77 0.95 0.94 0.72 0.72 0.814
DenseNet201 0.83 0.81 0.71 0.94 0.94 0.74 0.82 0.828

InceptionResNetV2 0.81 0.86 0.79 0.90 0.93 0.69 0.76 0.818
Xception 0.81 0.82 0.73 0.94 0.95 0.68 0.80 0.819
VGG16 0.67 0.81 0.72 0.33 0.95 0.62 0.82 0.704
VGG19 0.64 0.79 0.44 0.83 0.93 0.52 0.87 0.717

Averaging 0.83 0.86 0.78 0.96 0.96 0.71 0.81 0.842
Entropy 0.81 0.86 0.78 0.95 0.96 0.73 0.83 0.845
Stacking 0.80 0.85 0.74 0.93 0.97 0.83 0.86 0.853

3.4. Grad-CAM

We averaged the saliency maps of two batches of 200 randomly sampled images
computed with Grad-CAM. The Grad-CAM heat map emphasizes the salient area within
the image in shades of red and yellow, whereas the rest of the image is colored in blues and
greens. Figure 3 shows that at a population level, the model was generally focused on the
lung field and did not take into account shortcuts or spurious correlations that could be
present in the borders.
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Figure 4. Visualization of pleura prediction maps for two selected CXRs. The panels represent the
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Figure 5. Visualization of device prediction maps for two selected CXRs. The panels represent the
saliency mask obtained with Grad-CAM (panels a,d), the relevant area (mask values higher than the
0.8 quantile) (panels b,e), and the respective bounding box (panels c,f). The saliency mask focuses on
device (hardware and/or leads), as shown by the heat map (panel a,d).
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by the heat map (panel a), focuses on the right lung field, which shows the pneumothorax.
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Figure 7. Visualization of lung prediction maps for a selected CXR. The panels represent the saliency
mask obtained with Grad-CAM (panel a), the relevant area (mask values higher than the 0.8 quantile)
(panel b), and the respective bounding box (panel c). The saliency mask, as emphasized by the heat
map (panel a), focuses on the left lung, which shows lung abnormality.

In Figure 8, we superimposed the bounding boxes for two classes to show how the
model looks at different input areas depending on the specific class.
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Figure 8. Superimposition of bounding boxes for cardiac (panel a, cardiac in blue and device in red)
and device (panel b, device in blue and cardiac in red) outcomes for two examples.

Furthermore, we compared Grad-CAM maps with saliency masks extracted by a
radiologist in terms of common area over the full area identified by the expert. Our
models achieved an overall average agreement of 75% (80% lung, 65% pleura, 84% cardiac,
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75% PNX, and 67% device), showing how the models automatically learned meaningful
features from the images similarly to an expert radiologist. Explainable AI (XAI) algorithms
for visualization are successful approaches to identify potential spurious shortcuts that
the network may have learned. Overall, our CNNs focused on meaningful areas of the
image for the respective prediction. We found some inconsistencies in some examples of
device predictions, especially with pacemakers. Figure 9 shows an example of a correct
classification but based on an area that does not match well the hardware of the CIED.
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The saliency map highlights the intracardiac leads as the region responsible for device
prediction.

4. Discussion

In this work, we first developed and trained CNN models to extract features; thereafter,
we proposed the application of different transfer learning approaches to the feature extractor
stage of pretrained CNNs to a test dataset, proving the efficiency of transfer learning for
domain and task adaptation in medical imaging. Finally, we used Grad-CAM saliency
maps to interpret, understand, and explain CNNs and to investigate the presence of
potential Clever Hans effects, spurious shortcuts, and dataset biases. Our results support
the use of transfer learning to overcome the need for large datasets toward promising AI-
powered medical imaging to assist imagers in automating repetitive tasks and prioritizing
unhealthy cases. CNNs were first introduced in handwritten zip code recognition in [28],
dramatically increasing the performance of deep learning models, especially with N-
dimensional matrix input (e.g., three channels images). Since then, CNNs have proven
successful capabilities for image analysis, understanding, and classification. Convolutional
layers are used in sequence to progressively reduce the input size and simultaneously
perform feature extraction, starting from simple patterns in early convolutional layers
(edges, curves, etc.) to semantically strong high-level features in deeper layers. The feature
maps, i.e., the output at each convolutional step, can be represented as a continuous vector
that contains a low-dimensional representation of the image, namely the image embedding.
Image embeddings meaningfully represent the original input in a transformed space,
reducing the dimensionality. Image embeddings can be used as input to train classifiers
based on trees, kernels, Bayesian statistics, etc. Thereby, the advantage of using embeddings
lies in benefiting the feature extraction capabilities of CNNs trained on a large dataset of
images while designing a specific classifier for new data and, eventually, for a slightly
different task. We trained our CNNs with a large publicly available dataset [14] to create an
efficient feature extractor that could learn from a large corpus of images. Next, we proposed
three transfer learning approaches to apply the feature extractor stage of pretrained CNNs
to a new local, independent dataset—HUM-CXRs. Transfer learning has shown remarkable
capabilities in computer vision, boosting performance for applications with small datasets.
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Transfer learning avoids overfitting, in addition to enabling generalization from one task to
another [13], although the generalization capabilities decrease according to the dissimilarity
between the base task and target task. Transfer learning has been successful in several
fields, including image classification [21,29,30], natural language processing [31–34], cancer
subtype discovery [35], and gaming [36]. We applied transfer learning to medical imaging
understanding and classification, envisioning the possibility of developing a library of
pretrained models for different medical imaging modalities and tasks. Our first TL approach
consisted of stacking the predictions of the pretrained CNNs and training an additional
metaclassifier to learn the correspondence between them and the HUM-CXR outcomes. The
second approach involved two steps: first, the image embeddings of the last convolutional
layer were extracted, and additional tree-based classifiers were trained to classify them
into the output vector. Finally, we applied a more conventional fine tuning of the last
classification layer of each CNN. In this way, the classification layer was customized
to the label vector of the new dataset, and the final weights were updated to learn the
correspondence between the features extracted by the CNN and the output. In addition to
achieving a best classification performance of 0.856 average AUROC, transfer learning with
image embeddings has the advantage of minimizing the computational power, dataset
dimensions, and time required to adapt the pretrained models to a new dataset and
task. The time required to train our tree-based model was in the order of a few minutes,
overcoming the need for considerable computational resources, long training times, and
GPU availability.

As a proof of concept, we applied this framework to CXRs. CXRs are commonly
used for diagnosis, screening, and prognosis; thus, large labeled datasets are already avail-
able, such as CheXpert [14], MIMIC-CXR [37], and ChestX-ray [38]. Several previous
studies were focused on CXR diagnosis with deep learning, along with these publicly
available datasets. CheXNet [39] achieved state-of-the-art performance on fourteen disease
classification tasks with ChestXray data [38], and the modified version CheXNeXt [40]
achieved radiologist-like performance on ten diseases. On the same dataset, Ye et al. [41]
proposed localization of thoracic diseases, in addition to CXR classification. Along with
the publication of the dataset, Irvin et al. [37] proposed a solution to achieve performance
comparable to that of expert radiologists for the classification of five thoracic diseases.
Recently, Pham et al. [23] improved state-of-the-art results on CheXpert, proposing an
ensemble of CNN architectures. We used the same dataset as Irvin et al. [37], Pham
et al. [23], and Giacomello et al. [15] for pretraining; however, whereas they focused on
only five representative findings, we enlarged the classification to seven classes. We can
compare the performance of cardiomegaly and pleural effusion, the two findings that are
most similar between HUM-CXRs and CheXpert. With respect to cardiomegaly [14,15,23],
achieved a best AUROC of 0.828, 0.854, and 0.910, respectively. With respect to pleural
effusion, [14,15,23] achieved a best AUROC of 0.940, 0.964, and, 0.936, respectively. Our
models obtained by transferring the knowledge acquired on CheXPert to an independent
local dataset achieved a best AUROC of 0.88 and 0.97 for cardiac and pleura, respectively.
However, [14,15,23] trained and tested on data from the same dataset, i.e., the same dis-
tribution, demographic and geographic characteristics (USA residents, Stanford Hospital)
and—potential—bias in the data. Hence, these models are potentially prone to the ”Clever
Hans” effect [42], which limits their actual transition to clinical application. Weber et al. [43]
discussed the importance of evaluating the performance of a DL model for applications
for which it was not explicitly trained to characterize its generalization capabilities and
avoid the Clever Hans effect. Similarly, in a recent analysis of COVID-19 machine learning
predictors, Roberts et al. [44] claimed that none of the works under review was reliable
enough for the transition from scientific research to clinical routine due to dataset biases,
insufficient model evaluation, limited generalizability, and lack of reproducibility, among
other reasons. Furthermore, they argued that the scientific community is focusing too much
on outperforming benchmarks on public datasets. Using only public datasets without
generalizing to new data can lead to overfitting, strongly hindering clinical translation. For
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these reasons, in this work, we did not focus on outperforming the state of the art in CXR
classification, instead proposing a reproducible framework to overcome some of the main
limitations of DL in medical imaging toward a more robust AI-powered clinical routine. In
particular, we achieved the following insights. The original models performed poorly on
the baseline task (best average AUROC: 0.777), i.e., using the CNNs directly in inference on
the new external independent dataset; therefore, even if they were trained on an extremely
large dataset, the CNNs were not able to generalize to a new domain and additional data.
On the other hand, using transfer learning, in particular with image embeddings, it is
possible to adapt the original models to a new domain, i.e., a new hospital, geographic and
demographic characteristics, and new tasks, i.e., different labels, with minimum effort and
competitive performance (best average AUROC: 0.856). Our approach is not limited to
our dataset and the highlighted application; it could be adopted and successfully applied
by any other research group or hospital that might need to classify medical images but
does not have either a sufficient volume of data or the computational resources to train
the model. Following this framework, the resulting models will have excellent feature
extraction capability learned from large public datasets, but they will be validated, tailored,
and improved with respect to the specific application to achieve optimal results.

Although adherence to the FAIR principles [45] is recommended for scientific data
management, a recent systematic review proved the scarce reproducibility of deep learning
research. The majority of published deep learning studies focused on medical imaging were
non-randomized retrospective trials (only 7% of prospective were tested in a real-world
clinical setting) affected by a high risk of bias (72%), with a low adherence to existing
reporting standards and without access to data and code (available in 5% and 7% of
cases, respectively). Furthermore, deep learning studies typically scantly and elusively
describe the used methods, affecting external validity and implementation in clinical
settings [7]. To comply with the FAIR principles, respect legal requirements, and preserve
the institutional policy, we exhaustively described our methods, providing details for
each step, from image analysis to model building, and we made our models available
(https://github.com/DanieleLoiacono/CXR-Embeddings) Regardless of the singular value
of AUC for each class and the direct comparison between HUM-CXRs and CheXpert among
labels, we demonstrated the efficiency of the proposed method. We believe that by making
the data available, we guarantee the reproducibility of the proposed methodology, strongly
encouraging other groups to repeat our approach with CXRs and/or other images (e.g.,
computed tomography (CT)).

Finally, CNNs are black-box models that are difficult to interpret, significantly hinder-
ing their acceptance in critical fields, such as medicine. Degrave et al. [27] demonstrated
that DL models for COVID-19 detection relied on spurious shortcuts, such as lateral mark-
ers, image annotations, and borders, to distinguish between positive and negative patients
instead of identifying real markers of COVID-19 in the lung field. They suggested that
explainable AI (XAI) models should be applied to every AI application in medicine and
should be a prerequisite for clinical translation to routine practice. The trustworthiness of
AI models for clinical diagnosis and prognosis has to be accurately assessed before they
can be applied in a real setting. Several algorithms have been proposed to overcome the
intrinsic black-box nature of CNNs. DeepLIFT [46] and SHAP GradientExplainer [47] are
based on feature importance, with the aim of measuring the relevance and importance
of each input feature in the final predicted output, usually using the coefficients of linear
models as interpretability models. Another proposed approach is the use of DGN-AM [48],
which evaluates which neurons are maximally activated with respect to a particular input
observation, with the aim of identifying input patterns that maximize the output activation.
CAM [49], Grad-CAM [26], and LRP [50] create coarse localization maps of the important
regions of the input defining the discriminative regions for a specific prediction.

For these reasons, we applied Grad-CAM [26] to our problem, with the aim of (1) inter-
preting, understanding, and explaining CNN black-box behavior through comprehensible
explanations to increase the trust and acceptance in AI for medical imaging for transla-
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tion to clinical routine; and (2) investigating the presence of potential Clever Hans effects,
spurious shortcuts, and dataset biases. Overall, the explanations provided by Grad-CAM
showed a satisfactory ability of the model to identify specific markers and features with
respect to the identified class. Grad-CAM saliency maps were found inside the lung field,
with particular attention to the correct side of the chest. Double-class images correctly
showed the differences between chest findings. However, De Grave et al. [27] were skep-
tical about presenting only a few examples of explanations, as they may not truthfully
represent the real behavior of the model. They discussed the need for a population-level
explanation to demonstrate the correctness and reasoning of the entire model, in addition
to selecting single examples. In this work, we presented randomly selected examples and
population-level explanations averaging two batches of 200 CXRs. The averaged saliency
maps presented in Figure 3 demonstrate a high level of attention in the center of the image,
whereas the borders are almost useless. Our findings demonstrate that the models were
generally focused on the lung field without deploying shortcuts and spurious correlations
that may be present outside the lung field, such as annotations, different border dimensions,
and lateral markers. Overall, examples of local explanations did not indicate the use of
shortcuts as the general model. The only exception we identified concerns the device class,
particularly when detecting a CIED. Whereas the model generally correctly focused on the
hardware components, in some examples (Figure 9), it correctly classified “device” but
exploited the intracardiac leads. This finding is not incorrect, but we would expect the
model to focus more on the hardware, i.e., the main box. We believe this might be caused by
the original dataset on which the models were pretrained. The device class is extensive and
includes lines, tubes, valves, catheters, CIEDs, hardware, coils, etc. However, the percent-
age proportion of each subclass is not publicly available, so it is possible that “some objects”,
such as tubes, leads, electrodes, and catheters, are more present than CIEDs, inducing the
model to focus on them. Furthermore, we investigated false-positive predictions with
respect to the device class. In most cases, we assert that the model was correctly classified
devices, although the ground truth was incorrect. The main reason for such false positives
is that our labels were extracted from unstructured medical reports. Whereas diseases are
clearly written and discussed in the report, cardiac devices, electrodes, prosthesis, and
other “objects” may be omitted in the report because are not considered “abnormal” as
medical pathologies or clinically relevant. We reasonably believe that with further effort in
the definition of the ground truth, the performance of “normal” and “device” labels can
be improved.

In contrast to reports by Saporta et al. [51] and Arun et al. [52], who recently demon-
strated the unreliability of current saliency methods to explain deep learning algorithms in
chest X-ray interpretation, we proved a satisfactory match between Grad-CAM saliency
maps and a human benchmark (overall average agreement of 75%), although our data
confirmed the same issues (a larger gap between Grad-CAM and radiologist saliency
maps in cases of diseases characterized by multiple instances, complex shapes, and small
size [51]). We found more variability in some classes, such as pleura and device (65% and
67%, respectively), whereas lung, cardiac, and PNX exhibited greater confidence (80%, 84%,
and 75%, respectively).

Results of our study may be of value for both the medical and the scientific communi-
ties, as well as for the general population. Overall, our results may impact AI applicability
in the medical field, speeding up the grounding system of machine and deep learning
algorithms toward clinical application, partially overcoming the problem of the increasing
demand for medical doctors. In this work, we analyzed the adaptability and applicability
of state-of-the-art imaging classification techniques to a new dataset of images collected in a
different country with different scanners. Our models achieved competitive performances
(AUC > 85%), correctly identifying and labeling seven classes from X-ray images. We also
showed that our model correctly interpreted X-rays similarly to expert radiologists. We
proved the feasibility of our approach to train large models and apply them in different
countries and hospitals. Next steps of this work will include the investigation of more
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recent CNN models [53–55] and the validation of this proof of concept on other datasets, as
well as on different kinds of images (e.g., computed tomography). Finally, we have to ac-
knowledge some limitations in our study. First, our results are limited by the retrospective
design of our study. Secondly, we did not evaluate the optimal transfer learning approach
when we trained the seven CNNs on the CheXpert dataset; however, this was outside of
the scope of the present work. Thirdly, different and more recent CNN models should also
be used in future research.

5. Conclusions

In this work, we proposed three transfer learning approaches for medical imaging
classification. We demonstrated that CNNs pretrained on a large public dataset of medical
images can be exploited as feature extractors for a different task (i.e., different classes) and
domain (different country, scanner, and hospital) than the original one. In particular, the
extracted image embeddings contain relevant information to train an additional classifier
with satisfactory performance on an independent local dataset. This overcomes the need for
large private datasets, considerable computational resources, and long training times, which
are major limitations for the successful applications of AI in clinical practice. Finally, we
proved that we can rely on saliency map for deep learning explainability in medical imaging,
showing that the models automatically learned how to interpret X-rays in agreement with
expert radiologists.
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