
Neural Network Based Practical/Ideal Integral Sliding Mode Control

Nikolas Sacchi, Gian Paolo Incremona, Member, IEEE, and Antonella Ferrara, Fellow, IEEE

Abstract— This paper deals with the design of a novel
neural network based integral sliding mode (NN-ISM) control
for nonlinear systems with uncertain drift term and control
effectiveness matrix. Specifically, this paper extends the classical
integral sliding mode control law to the case of unknown
nominal model. The latter is indeed reconstructed by two
deep neural networks capable of approximating the unknown
terms, which are instrumental to design the so-called integral
sliding manifold. In the paper, the ultimate boundedness of the
system state is formally proved by using Lyapunov stability
arguments, thus providing the conditions to enforce practical
integral sliding modes. The possible generation of ideal integral
sliding modes is also discussed. Moreover, the effectiveness of
the proposed NN-ISM control law is assessed in simulation
relying on the classical Duffing oscillator.

Index Terms— Sliding mode control, neural networks, uncer-
tain systems.

I. INTRODUCTION

Sliding Mode Control (SMC) has a wide popularity due
to its ability to make the controlled system insensitive to
matched uncertainty terms whenever the system state lies on
a predefined sliding manifold [1]. This property is enabled
by the discontinuous nature of the control law, which, on
one hand, enables the finite time convergence of the so-called
sliding variable to the corresponding sliding manifold, while,
on the other hand, it may cause the notorious chattering
phenomenon [2]. The amplitude of chattering is considerably
affected by the size of the control gain, which, on the other
hand, must to be selected in order to dominate the uncertain
terms. As such, it is beneficial when non-excessively conser-
vative bounds on the uncertainties are available to the control
designer.

Different solutions have been proposed to alleviate the
chattering effect while maintaining the robustness and fi-
nite time convergence properties of SMC. Among these
solutions, there are for instance higher order sliding mode
controllers [3]–[5], adaptive control approaches [6]–[8], or
internal model principle based strategies [9]. Instead, as for
the improvement of the robustness of SMC, a new paradigm
was introduced in [10], based on the concept of Integral
Sliding Mode (ISM), which enables to eliminate the so-called
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reaching phase, during which the controlled system is still
sensitive to the uncertainties, thus enabling a sliding mode,
with the associated robustness property, from the initial time
instant. Extensions of the basic ISM control concept have
been proposed in the literature. For instance, the original
setting with only matched disturbances has been extended in
[11], where also unmatched uncertain terms are taken into
account. Moreover, several works have assessed the validity
of the ISM control approach for different applications (see
e.g., [12]–[14]).

Given a nonlinear system affine in the control input, to
design an ISM control the nominal drift term and the matrix
multiplying the control input, i.e., the control effectiveness
matrix, must be known. This knowledge is not available
in many practical implementations, where only conservative
bounds can be retrieved from the physics of the process to
control or via experimental tests.

In the last twenty years, the so-called deep neural networks
(DNNs) and their universal approximation property [15] have
become a viable way to provide estimations of the model
uncertain terms, even in model based control schemes. For
instance, in [15] and [16], neural networks with weight
adaptation laws which rely on Lyapunov’s stability theory
have been introduced. The same concepts have been used in
[17]–[19] to directly generate the control laws. Moreover,
Lyapunov-based adaptation laws have been used to train
DNNs which estimate the unknown dynamics in the case
of continuous-time systems in [20], and in that of discrete-
time system in [21]. The combination of neural networks
with SMC has been also investigated, see e.g., [22]–[25].

In this paper, we propose a novel NN-ISM control ap-
proach. Specifically, we extend the algorithm in [10] to
the case of unknown nominal dynamics, exploiting the
use of two DNNs to design the so-called integral sliding
manifold. This allows us to produce a sliding mode control
law with a smaller amplitude than the one that would be
obtained, to get equal performance, via a conventional SMC
approach. This because the NN-ISM control law does not
rely on conservative bounds on the uncertain terms, but on
the rather accurate approximation of these terms provided
by the DNNs included in the control scheme. Moreover,
differently from other published solutions which use SMC
and neural networks, no knowledge of the bounds of the
function reconstruction errors is necessary in our proposal.
In the considered setting, the ultimate boundedness of the
state to a set depending on the design control parameters
(i.e., the enforcement of a practical sliding mode) is formally
proved in the paper. The generation of ideal sliding modes
is instead proved in some specific conditions.



To the best of our knowledge, this is the first time that
ISM and neural networks are combined giving rise to an
original solution, which is capable of solving a complex
control problem with a minimum amount of available infor-
mation, and a limited amplitude of the sliding mode control
input, thus alleviating all the problems which, in practical
implementations, are normally associated with a high control
gain.

Notation: The used variables and operators are mostly
standard. Let x be a vector, then x⊤ refers to its transpose.
Given a real matrix A ∈ Rn×n, then tr(A) is its trace. Given
two real matrices A, B ∈ Rn×n, then tr(A+B) = tr(A)+
tr(B), while given A ∈ Rn×m, B ∈ Rm×n, then tr(AB) =
tr(BA). Given two real column vectors a, b ∈ Rn, the trace
of the outer product is equivalent to the inner product, i.e.,
tr(ba⊤) = a⊤b.

II. PRELIMINARIES AND PROBLEM STATEMENT

The aim of this section is to describe the dynamical system
that will be considered in the paper and recall the main
features of the ISM control in [10].

Consider the following nonlinear system

ẋ = f(x(t)) +B(x(t))u(t) + h(x(t), t), x(0) = x0, (1)

where x ∈ Rn is the measurable state vector, x0 ∈ Rn is
the initial condition, u ∈ R is the control variable, f(x(t)) :
Rn → Rn represents the drift dynamics, B(x(t)) : Rn → Rn

is the control effectiveness term, and h(x(t), t) : Rn → Rn is
the system perturbation. Moreover, the following assumption,
classical in the sliding mode theory [1], [26], holds:
A1: There exists a known constant sh ∈ R>0 such that the

perturbation function h(x(t), t) is bounded as

sup
t∈R≥0

∥h∥ ≤ sh. (2)

In order to compensate the effect of the external dis-
turbance h(x(t), t) from t ≥ 0, an ISM controller can be
designed. According to [10], the control law is defined as

u = u0 + u1, (3)

where u0 is a control law making the origin be an asymp-
totically stable equilibrium point for the nominal dynamics,
given by (1) when h = 0, while u1 is a discontinuous control
aimed at rejecting the uncertainties. In particular, it is defined
as

u1 = −ρ sign(s), (4)

where ρ ∈ R>0 is the control gain, and s(x(t)) : Rn → R
is the so-called integral sliding variable given by

s(x(t)) = s0(x(t)) + z(x(t)), s(x0) = 0. (5)

Specifically, in (5) z is the so-called transient function
selected such that

ż = −∂s0
∂x

(f(x) +B(x)u0) , z(0) = −s0(0). (6)

Then, by properly selecting the stabilizing control law u0 and
the discontinuous control gain ρ, the sliding mode condition

and the robustness of the controlled system with respect
to the matched perturbation h can be proved (see [10] for
further details). Note that, for the sake of simplicity, in the
following the dependence of the sliding variable on x(t) is
omitted when obvious, leaving only the time dependence.

III. DNN BASED FUNCTION APPROXIMATION

While in [10] the nominal dynamics of the system is
assumed to be fully known, in this paper the functions
f(x) and B(x) are assumed to be unknown. Hence, in this
section we introduce two DNNs to estimate such terms,
relying on the so-called universal approximation property.
More precisely, consider the following theorem.

Theorem 1 (Universal approximation [15]): Let Ω ⊆ Rp

be a compact set and consider a smooth function g(α) :
Rp → Rq . Then, there exists a two-layer neural network
with L ∈ N>0 neurons in the hidden layer characterized by
ideal weights W ∈ RL×q and Φ ∈ Rp×L, ideal activation
function vector σ(·) : RL → RL and a constant sεg ∈ R>0

such that
g(α) = W⊤σ(Φ⊤α) + εg(α), (7)

with εg(α) : Rq → Rq being the so-called function recon-
struction error so that ||εg|| < sεg for all α ∈ Ω.

The above theorem can be exploited in order to approx-
imate the unknown drift dynamics f(x) and the control
effectiveness term B(x) in (1), as

f(x) = W⊤
f σf (Φ

⊤
f x) + εf (x), (8)

B(x) = W⊤
B σB(Φ

⊤
Bx) + εB(x), (9)

for x ∈ Ω ⊆ Rn. In particular, Wf ∈ RLf×n, WB ∈ RLB×n

and Φf ∈ Rn×Lf , ΦB ∈ Rn×LB are the ideal NN weights,
σf (·) : RLf → RLf and σB(·) : RLB → RLB are the ideal
bounded activation functions vectors, while εf (x) : Rn →
Rn and εB(x) : Rn → Rn are the functions reconstruction
errors. Since the ideal DNNs are not known, an approxima-
tion of them can be used. In particular, the unknown drift
dynamics and the unknown control effectiveness term can be
estimated by

f̂(x) = Ŵ⊤
f σ̂f (Φ̂

⊤
f x), (10)

B̂(x) = Ŵ⊤
B σ̂B(Φ̂

⊤
Bx), (11)

where σ̂f (·), σ̂B(·) are the activation functions vectors se-
lected by the designer, which may differ from the ideal ones
σf (·) and σB(·). As a consequence, the weight estimation
errors are expressed as

W̃f (t) = Wf − Ŵf (t), (12a)

W̃B(t) = WB − ŴB(t), (12b)

Φ̃f (t) = Φf − Φ̂f (t), (12c)

Φ̃B(t) = ΦB − Φ̂B(t). (12d)

Now, the following assumption about the bounds of the
ideal output layer weights and about the activation functions
vectors needs to be introduced.



A2: By virtue of the universal approximation property, there
exist known constants �WF , �WB , sσf , sσB , sσ̂f , sσ̂B ∈
R>0 such that the unknown ideal output layer weights
Wf , WB , the unknown ideal activation functions vec-
tors σf (·), σB(·) and the designer-selected activation
functions vectors σ̂f (·), σ̂B(·) are bounded as

supx(t)∈Ω∥Wf∥ ≤ �Wf , supx(t)∈Ω∥WB∥ ≤ �WB ,

supx(t)∈Ω∥σf∥ ≤ sσf , supx(t)∈Ω∥σB∥ ≤ sσB ,

supx(t)∈Ω∥σ̂f∥ ≤ sσ̂f , supx(t)∈Ω∥σ̂B∥ ≤ sσ̂B .

As for the functions reconstruction errors, the following
assumption instead holds.
A3: There exist unknown constants sεf , sεB ∈ R>0 such

that the function reconstruction errors εf and εB are
bounded, i.e.,

supx(t)∈Ω∥εf∥ ≤ sεf , supx(t)∈Ω∥εB∥ ≤ sεB .

IV. NN-ISM CONTROLLER DESIGN

We are now in a position to introduce the proposed NN-
ISM control algorithm.

First, select the component s0 of the sliding variable in (5)
as the linear combination of the system states, i.e., s0 = λ⊤x,
with λ ∈ Rn being a design vector such that λ⊤1 > 0, and
1 ∈ Rn being a column vector of all ones. Then, by using
the approximations defined in (10) and (11), it is possible to
approximate the dynamics (6) as

ż = −λ⊤
(
f̂(x) + B̂(x)u0

)
, z(0) = −s0(0),

which, exploiting (10) and (11), can be rewritten as

ż = −λ⊤
(
Ŵ⊤

f σ̂f (Φ̂
⊤
f x) + Ŵ⊤

B σ̂B(Φ̂
⊤
Bx)u0

)
, (13)

with σ̂B(·) and σ̂f (·) being selected as vectors of logistic
sigmoid functions. For the sake of simplicity, in the rest of
the paper the quantities σf (Φ̂

⊤
f x), σB(Φ̂

⊤
Bx), σ̂f (Φ̂

⊤
f x) and

σ̂B(Φ̂
⊤
Bx) are indicated as σf , σB , σ̂f and σ̂B , respectively.

Now, in analogy with the classical ISM approach, in order
to make the origin be an asymptotically stable equilibrium
point for the approximated nominal dynamics

ẋ = f̂(x) + B̂(x)u0 = Ŵ⊤
f σ̂f + Ŵ⊤

B σ̂Bu0, (14)

the control law u0 can be selected as

u0 = −kx, (15)

with k ∈ R1×n being a row vector of positive gains ki, ∀i =
1, 2, . . . , n. Then, the overall control input is obtained as the
sum of (4) and (15), i.e.,

u = −kx− ρ sign (s). (16)

The adaptation laws for the estimated weights are instead
chosen as

˙̂
W f = Γf σ̂fsλ

⊤, (17a)
˙̂
WB = −ΓBσ̂Bkxsλ

⊤, (17b)

˙̂
Φf = Θfx

(
˙̂σ
⊤
f Ŵfsλ

)⊤
, (17c)

˙̂
ΦB = −ΘBx

(
˙̂σ
⊤
BŴBkxsλ

)⊤
, (17d)

u1 = −ρ sign(s)
+

+

ẋ = f +Bu+ h
∫

u0 = −kx

DNN1

DNN2

ż = −λ⊤(f̂ + B̂u0)

s0 = λ⊤x

∫+

+

x

f̂

B̂

z

u

s

Fig. 1. Block diagram of the proposed NN-ISM control scheme.

where Γf ∈ RLf×Lf , ΓB ∈ RLB×LB , Θf ∈ Rn×n and
ΘB ∈ Rn×n are diagonal gain matrices, and

˙̂σf = diag {σ̂f}(ILf×Lf
− diag {σ̂f}), (18a)

˙̂σB = diag {σ̂B}(ILB×LB
− diag {σ̂B}), (18b)

with ILf×Lf
and ILB×LB

being identity matrices.
The dynamics of the sliding variable, that is, ṡ = λ⊤ẋ+

ż, can be computed. In particular, using (1), (8), (9), (13),
(15), (16) and exploiting relations (12a) and (12b) to express
Ŵf = Wf − W̃f and ŴB = WB − W̃B , one obtains

ṡ = λ⊤
(
h+ εf − εB(ρ sign (s) + kx)

−W⊤
B σBρ sign (s) +W⊤

f (σf − σ̂f )

−W⊤
B (σB − σ̂B)kx+ W̃⊤

f σ̂f − W̃⊤
B σ̂Bkx

)
. (19)

The proposed control scheme is illustrated in Fig. 1.

V. STABILITY ANALYSIS

In this section, the main theoretical results relevant to
the proposed control approach are presented. In particular,
the following theorem proves the ultimate boundedness of
the system state, providing a bound on the convergence set
depending on the control parameters. Moreover, conditions
for the enforcement of both practical and ideal integral
sliding modes are indicated.

Theorem 2: Consider the nonlinear system (1) controlled
by (16), with x0 ∈ Ω, sliding variable as in (5) and (13),
and output layer weights adaptation laws (17a) and (17b). If
A1, A2 and A3 hold, and

ρ >
h+W f (σf + σ̂f )

WBσB

, (20)

then ∀t ≥ t̃, with t̃ ≥ 0, the state of the controlled system
x(t) is ultimately bounded in the set X ⊆ Ω given by

X :=

{
x ∈ Ω | ∥x∥ ≤ εf

∥k∥
(
WB(σB + σ̂B)

)} . (21)

Proof: Select the following Lyapunov-like candidate
function V ,

V =
1

2
s2 +

1

2
tr(W̃⊤

f Γ−1
f W̃f ) +

1

2
tr(W̃⊤

B Γ−1
B W̃B) (22)

where s is the sliding variable defined in (5). By differenti-
ating with respect to time, one has

V̇ = sṡ+ tr(W̃⊤
f Γ−1

f
˙̃
W f ) + tr(W̃⊤

B Γ−1
B

˙̃
WB). (23)



Exploiting (19) and, since by computing the derivatives of
(12a) and (12b) one has ˙̃

W f = − ˙̂
W f and ˙̃

WB = − ˙̂
WB ,

then the derivative becomes

V̇ = sλ⊤
(
h+ εf − εB(ρ sign (s) + kx)

−W⊤
B σBρ sign (s) +W⊤

f (σf − σ̂f )

−W⊤
B (σB − σ̂B)kx+ W̃⊤

f σ̂f

− W̃⊤
B σ̂Bkx

)
− tr(W̃⊤

f Γ−1
f

˙̂
W f )

− tr(W̃⊤
B Γ−1

B
˙̂
WB). (24)

Using the adaptive laws (17a) and (17b) one has

V̇ = sλ⊤
(
h+ εf − εB(ρ sign (s) + kx)

−W⊤
B σBρ sign (s) +W⊤

f (σf − σ̂f )

−W⊤
B (σB − σ̂B)kx+ W̃⊤

f σ̂f

− W̃⊤
B σ̂Bkx

)
− tr(W̃⊤

f σ̂fsλ
⊤)

+ tr(W̃⊤
B σ̂Bkxsλ

⊤)

= sλ⊤
(
h+ εf − εB(ρ sign (s) + kx)

−W⊤
B σBρ sign (s) +W⊤

f (σf − σ̂f )

−W⊤
B (σB − σ̂B)kx+ W̃⊤

f σ̂f

− W̃⊤
B σ̂Bkx

)
− sλ⊤W̃⊤

f σ̂f

+ sλ⊤W̃⊤
B σ̂Bkx. (25)

Rearranging the previous expression, V̇ can be written as

V̇ = − sλ⊤
(
− h−W⊤

f (σf − σ̂f )
)
− sλ⊤εBρ sign (s)

− sλ⊤εBkx− sλ⊤W⊤
B σBρ sign (s)

− sλ⊤
(
− εf +W⊤

B (σB − σ̂B)kx
)
. (26)

Since A1, A2 and A3 hold, one can write

V̇ ≤− λ⊤1
(
− sh−�Wf (sσf + sσ̂f )

)
|s| − λ⊤1sεBρ|s|

− λ⊤1sεB∥k∥∥x∥|s| − λ⊤1�WBsσBρ|s|

− λ⊤1
(
− sεf +�WB(sσB + sσ̂B)∥k∥∥x∥

)
|s|

≤ − λ⊤1
(
�WBsσBρ−

(
sh+�Wf (sσf + sσ̂f )

))
|s|

− λ⊤1
(
�WB(sσB + sσ̂B)∥k∥∥x∥ − sεf

)
|s|. (27)

Using ρ as in (20), the first term of inequality (27) is negative,
while for the second term two cases can occur. If

∥x∥ ≤ sεf

∥k∥
(
�WB(sσB + sσ̂B)

) ,
then V̇ < 0 or V̇ ≥ 0. In this second subcase, one has that,
inside the ball of radius sεf

∥k∥
(
�WB(sσB+sσ̂B)

) , V is an increasing

function and ∥x∥ increases until ∥x∥ =
sεf

∥k∥
(
�WB(sσB+sσ̂B)

) .

On the other hand, if

∥x∥ >
sεf

∥k∥
(
�WB(sσB + sσ̂B)

) ,

then V̇ < 0, and, outside the ball, ∥x∥ decreases until ∥x∥ ≤
sεf

∥K∥
(
�WB(sσB+sσ̂B)

) . Therefore, ∀ t ≥ t̃, with t̃ ≥ 0 the state

of the controlled system x(t) is ultimately bounded in the
set X in (21). Moreover, by using (22) and (27) one may
observe that V is bounded, which in turn implies that the
weights Ŵf and ŴB are bounded as well.

Remark 5.1 (Size of the convergence set): Note that, ac-
cording to Theorem 2, a degree of freedom for the designer
to reduce the radius of the set X is provided by the possibility
of sizing the gain vector norm ∥k∥. ▽

Remark 5.2 (Practical and ideal integral sliding mode):
Note that, if x(t) is ultimately bounded in the set X , as
it happens if the assumptions of Theorem 2 hold, then
according to the definition of s0, also |s0| is ultimately
bounded. This implies that a practical integral sliding mode
is enforced in a boundary layer around s = 0, the amplitude
of which can be reduced by acting on ∥k∥. This will be
illustrated in §VI.
In case V̇ in (23) would result in being negative-definite
both outside and inside X , then, with ρ as in (20), the
reaching condition [1, Ch. 1] would be verified. Therefore,
s would become zero in a finite time t̄, and remain zero
∀ t ≥ t̄. Since, according to (13), s(x0) = 0, then t̄ = 0,
which means that an ideal integral sliding mode on s(t) = 0
would be enforced since the initial time instant. Notice that,
when s = 0, the controlled system, which is in sliding mode,
becomes equal to system (14) (i.e., to the approximated
nominal dynamics) with u0 as in (15). By design, u0 makes
the origin be an asymptotically stable equilibrium point
for the approximated nominal dynamics. Hence, when an
ideal integral sliding mode on s = 0 is produced, it follows
that the origin results in being an asymptotically stable
equilibrium point also for system (1) controlled by means
of the proposed control u indicated in (16). ▽

Remark 5.3 (Conservativeness of the control gain): Note
that Theorem 2 holds under the assumption A3, which
implies the control gain ρ in (20), and the set X in (21).
However, if we could relax A3 by assuming to know the
bound of the input function reconstruction error εB , that is
sεB ∈ R>0, the sliding mode control gain would be given
by sρ >

sh+�Wf (sσf+sσ̂f )
�WB sσB+sεB

, with sρ < ρ. As a consequence, the
new convergence set sX ⊂ X would be

sX :=

{
x ∈ Ω | ∥x∥ ≤ sεf

∥k∥
(
�WB(sσB + sσ̂B + sεB)

)}. (28)

▽

VI. NUMERICAL EXAMPLE

In this section, the proposed control scheme is assessed
in simulation, considering as process to control the Duffing
oscillator (see [1, Ch. 1]) described by

f(x) =

[
x2

g
l sin(x1)− β

ml2x1 − γ
ml2x2

]
, B(x) =

[
0
1

]
h(x, t) =

[
h1

h2

]
=

[
0

0.15 sin
(
1
2 t
)
+ 0.1 cos(t)

]
,



where x =
[
x1 x2

]⊤
, with x1 being the position and x2 the

velocity, m the mass of the oscillator, and l its length. If the
model parameters β and γ are chosen such that g

l −
β

ml2 = 1,
g
6l = 1 and γ

ml2 = 1, then the dynamics can be rewritten as{
ẋ1 = x2

ẋ1 = x1 − x3
1 − x2 + u+ h2.

(29)

Note that the knowledge of this model is assumed not to be
available for the controller design.

A. Settings
To asses the validity of the NN-ISM control algorithm

introduced in §IV, three different simulations has been
carried out, analyzing the behaviour of system (29) for
different values of the control gain vector k: k =

[
5 5

]
,

k =
[
10 10

]
and k =

[
20 20

]
, with ∥k∥ equal to 7.071,

14.142 and 28.284, respectively. The drift dynamics and the
control effectiveness term used for updating the transient
function z have been estimated using 2 DNNs with one
output layer with 2 neurons and one hidden layer with
Lf = LB = 50 neurons. Such DNNs are characterized by
output layer weights Ŵf , ŴB and hidden layer weights Φ̂f ,
Φ̂B , whose values are initialized as small random numbers
(between 0 and 0.01) and then adapted using (17), with
Γf = ΓB = 0.7 · I50×50 and Θf = ΘB = 0.9 · I2×2. All the
simulations have the same initial conditions x0 =

[
1 1

]⊤
and duration equal to 100 seconds. Moreover, the sliding
variable parameter vector has been chosen as λ =

[
1 1

]⊤
,

while the discontinuous control gain has been selected as
ρ = 0.3, which, assuming upper bounds sh = 0.25, �Wf =
0.2, �WB = 2.2 and sσ̂f = sσf = sσB = 1, satisfies (20).

Fig. 2. State-space trajectories in the case of different values of ∥k∥.

Fig. 3. Time evolution of the norm of the drift term estimation error when
the system is controlled with different values of ∥k∥.

Fig. 4. Lower and upper bounds of Ŵf (in blue) and ŴB (in red) when
∥k∥ = 28.284.

(a) ∥k∥ = 7.071

(b) ∥k∥ = 14.142

(c) ∥k∥ = 28.284

Fig. 5. Time evolution of s = s0 + z when ∥k∥ = 7.071 (a), ∥k∥ =
14.142 (b) and ∥k∥ = 28.284 (c).

Fig. 6. Time evolution of ∥x∥ when the system is controlled via a
conventional SMC, with different control amplitudes, and via the proposed
NN-ISM control.

B. Results and discussion

By virtue of Theorem 2, and according to Remark 5.1 the
size of the convergence set X decreases as ∥k∥ increases.
Fig. 2 shows indeed that, larger ∥k∥ is, smaller the radius of
set X , namely rX , becomes. This result is also evident from



Table I, where rX is estimated relying on (21). Evidence of
the DNN capability of estimating, for instance, the uncertain
drift term is provided in Fig. 3, where the norm of the drift
term estimation error is reported versus time for different
values of ∥k∥.

TABLE I
SIZE OF THE CONVERGENCE SET X WITH RESPECT TO ∥k∥.

∥k∥ rX

7.071 4.2 · 10−3

14.142 1.3 · 10−3

28.284 7 · 10−4

In Fig. 4 the evolution of the output layer weights Ŵf and
ŴB is shown. As expected from Theorem 2, they are also
bounded. In Fig. 5 the time evolution of the sliding variable s
is illustrated for different value of ∥k∥. Starting from s = 0,
then for a short transient of 2 seconds the sliding mode is
temporarily lost until the DNN weights Ŵf , ŴB , Φ̂f , Φ̂B

are properly adjusted, and then it is again steered to zero.
Finally, a comparison between the proposed NN-ISM control
approach and a classical SMC [26], with amplitude of the
control input based on the knowledge of the upper bounds
of the uncertain terms, is reported in Fig. 6. Notice that to
obtain a performance comparable with that of the NN-ISM
control, the amplitude of the classical SMC must be about 5
times higher.

VII. CONCLUSIONS

In this paper, a novel NN-ISM control algorithm is pro-
posed for a class of uncertain nonlinear systems. In order
to use the classical ISM control approach, the nominal
model of the system should be known, which is not true
in the considered case. Thus, in this paper, the integral
sliding manifold is designed relying on two DNNs. The
theoretical analysis reported in the paper provides conditions
for the enforcement of practical integral sliding modes, as
well as results on the boundedness of the DNNs weights.
Moreover, the possible generation of ideal integral sliding
modes is discussed. The proposed control approach provides
satisfactory performance, as assessed in simulation.
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