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A B S T R A C T   

We tackle oil commingling scenarios and develop an original deconvolution approach for geochemical pro-
duction allocation. This yields robust assessment of the proportions of oils forming a mixture originating from 
commingling oils associated with diverse reservoirs or, wells. Our study starts from considering that production 
allocation performed by means of geochemical fingerprinting is relevant in the context of modern and sus-
tainable use of georesources, with the added benefit of favoring shared facilities and production equipment. A 
geochemical production allocation workflow is typically structured according to two steps: (i) determination of 
the chromatograms associated with the mixture (and eventually with each of the End Members, EMs, constituting 
the fluids in the mixture), and (ii) the use of a deconvolution algorithm to estimate the mass fraction of each EM. 
Concerning the latter step, we introduce an original approach and the ensuing deconvolution algorithm (here-
after termed PGM) that does not require additional laboratory efforts in comparison with traditional approaches. 
We also present extensions of widely used deconvolution algorithms, which we frame in a (stochastic) Monte 
Carlo context to improve their robustness and reliability. The new PGM approach is assessed jointly with a suite 
of typically used approaches and algorithms against new laboratory-based commingling scenarios. The latter are 
based on the design and introduction of a novel and low-cost experimental method. The results of the study (i) 
constitute a unique and rigorous comparison of the traditionally employed production allocation deconvolution 
algorithms, (ii) document the critical importance of the number of features of the chromatograms used during a 
quantitative deconvolution, and (iii) suggest that our new PGM approach is very robust and accurate compared 
to existing approaches.   

1. Introduction 

The assessment of the spatial and temporal chemical evolution of 
fluids in oil and gas systems is a key element of modern reservoir en-
gineering and use of underground energy resources. It provides strong 
support to the planning and implementation of effective and sustainable 
strategies for reservoir development and production [1]. In this context, 
interpretations arising from geochemical analyses can have significant 
impacts to cost and production scenarios. Advancements in geochemical 
tools and related analytical methodologies enable further constraining 
of uncertainties associated with reservoir characterization [2]. Within 
this broad framework, geochemical fingerprinting is nowadays consid-
ered a robust technique in reservoir geochemistry applications [3–7]. 
Geochemical analyses of reservoir fluids are routinely adopted to 

support our conceptual understanding of fluid connectivity. The latter 
represents a major aspect in reservoir modeling and management and 
can markedly impact oil and gas production [8,9]. Additionally, 
geochemical data can be used for dynamic reservoir performance 
assessment and evaluation of compositionally graded fluid column 
depletion [10]. The adoption of such techniques yields robust results, 
which are overall consistent with findings obtained with other classical 
methods (such as, e.g., pressure tests or wireline logs for compartmen-
talization assessment, as well as production logging tools and flowme-
ters for production monitoring) and are characterized by marked 
advantages in terms of cost savings and practical convenience [11–13]. 

Oil commingling is a common practice in the petroleum/geore-
sources industry. It is associated with the benefit of cost reduction by 
sharing facilities and production equipment. Crude oils originated from 
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various reservoirs, wells, and/or fields are mixed and jointly produced 
through commingling operations. It may be necessary to deconvolute 
such mixtures, with the goal of assessing the individually contributing 
zones in the subsurface. The process of assigning the individual contri-
bution of an oil type to the overall production is known as production 
allocation and has been subject to renewed interest in recent years 
[3,14–17]. 

Conventional production allocation techniques [18–20] make use of 
the molecular differences between individual End Members, EMs, i.e., 
fluids belonging to a distinct region in the system. In production allo-
cation scenarios, commingled oils and EMs are typically analyzed 
through geochemical techniques (e.g., gas chromatography, GC). The 
ensuing data (chromatograms, also termed GC fingerprints) are then 
processed upon relying on deconvolution algorithms to evaluate the 
contribution of each EM to the commingled produced oil. Several pro-
duction allocation methodologies and procedures have been illustrated 
in the literature. Key differences among them are chiefly related to the 
experimental setup for GC fingerprinting and the deconvolution algo-
rithm employed to analyze the ensuing data. 

Three main GC experimental approaches can be identified: (i) High- 
resolution gas chromatography (HRGC), targeting the aliphatic and ar-
omatic peaks lying between dominant n-alkanes; (ii) Multidimensional 
gas chromatography (MDGC) based on the quantitative target analysis 
of C8-C9 alkylbenzenes; and (iii) Saturate and aromatic fraction gas 
chromatography-mass spectrometry (GC–MS) analysis. 

HRGC [20,21] is based on the GC analysis of whole-oil samples. The 
chemical species considered are typically in the range C8-C20 and the 
acquired chromatograms provide peak heights of a variety (sometimes 
hundreds) of compounds (which mostly remain unidentified). The main 
element guiding peak selection for the quantitative deconvolution is the 
possibility of finding a set of components that can enable one to 
discriminate between EMs and can therefore be used to deconvolute 
commingled oil samples. Otherwise, peak selection can be somehow 
arbitrary and largely a subjective (and operator-dependent) element. 
Moreover, HRGC is often plagued by poor chromatographic resolution. 
Accuracy can then deteriorate with time, as it might be significantly 
affected by changes in detector response and baseline drift. 

MDGC [22] focuses on a limited number of compounds (11 alkyl-
benzenes). These can be considered as a constrained, while represen-
tative, dataset capable of explaining much of the variability between oil 
groups. The MDGC technique selectively detects a limited number of 
compounds, all of them chromatographically well separated, a feature 
which positively affects the accuracy, repeatability, and reproducibility 
of the analysis. Therefore, peak heights can be readily determined, since 
either external or internal standard calibrations can be conveniently 
carried out on a constrained number of components. This element is 
markedly relevant when analyses are performed across wide temporal 
windows (e.g., during production monitoring activities). In such cases, 
newly assimilated samples can be analyzed over time without the need 
to re-analyze previously acquired data. 

Finally, GC–MS analyses [23,24] have the notable advantage of 
unambiguously identifying an extensive set of geochemical features in 
the chromatogram. The resulting database can then be used to identify 
basin-specific indicators which are directly linked to up-to-date pro-
duction/performance data. This approach might require that multiple 
analyses (one for each type of component) be carried out on the same 
sample. As such, this makes (in principle) the methodology significantly 
more expensive and time-consuming than MDGC. Furthermore, some of 
these analyses require pre-analytical steps (for example fractionation 
through open column/medium pressure GC). These can introduce 
further biases, thus potentially affecting the accuracy of the deconvo-
lution results. 

When considering deconvolution algorithms for data processing, a 
variety of approaches have been described in the literature [22–29]. 
These approaches can be framed within the general context of system 
identification, also leveraging on statistical signal processes analysis 

[30]. In this framework, a system is excited by one or multiple known 
signals (e.g., EM chromatograms). The objective is then to estimate the 
target response (i.e., EMs mass fraction in the mixture) from available 
observations of the system output (i.e., mixture chromatogram). It is 
noted that system identification theory is used within a wide range of 
areas. These encompass, e.g., structural system analysis, medical image 
processing, wireless communication systems, and Earth sciences (e.g., 
[31] and references therein). For instance, it has been applied in oil 
exploration engineering to estimate properties of geomaterials based on 
wave signal data [32]. 

Deconvolution algorithms can be grouped into two main categories 
(i) methods based on peak heights (or actual concentrations) and (ii) 
methods based on peak ratios, evaluated from peaks associated with 
molecules eluting at close times. The use of peak ratios instead of peak 
heights is consistent with the possible change of baseline of the GC 
detection due to the use of multiple GC devices or improper equipment 
calibration. Note that a baseline change can significantly affect the 
monitored peak height whereas the peak ratios remain unaltered [33]. 

The first algorithm for geochemical production allocation has been 
proposed by Kaufman et al. [20], who exploited peak ratios in the C15- 
C20 molecular range. This approach considers the fractional composition 
of an EM in a mixture to be related to the difference between the peak 
ratios of the EM and of the mixture. As highlighted by McCaffrey et al. 
[29], the approach suffers from two main drawbacks: (i) ratios of 
mixture chromatogram are not linear combinations of the ratios of EMs, 
so that the use of artificial mixtures with known EM contributions is 
required; (ii) the method is typically restricted to the allocation of 
mixtures composed by (at most) three EMs, as the mixing curves are not 
associated with a simple graphical representation. McCaffrey et al. [29] 
proposed an approach that makes use of peak heights (rather than peak 
ratios) where the relative amount of each compound/molecule (that is 
proportional to peak heights) in commingled samples is the result of a 
(weighted) linear combination of the concentration of molecules in each 
of the EMs. Relying on this approach circumvents the need for artificial 
mixtures, and deconvolution is not limited to the aforementioned three 
EMs. The approach introduced by Nouvelle et al. [28] is based on peak 
ratios and is aimed at (i) overcoming errors associated with baseline 
change of GC and (ii) enabling production allocation for mixtures with 
virtually no limitation on the number of EMs. Finally, recent efforts have 
been directed towards the development of approaches conducive to 
production allocation without strictly requiring information on EMs. A 
promising method is based on the Alternating Least Squares (ALS) al-
gorithm [25,34]. 

In this broad context, the distinctive aim of our study is to introduce 
an original deconvolution algorithm that (i) makes use of peak ratios, 
thus providing high flexibility against possible sampling errors caused 
by baselines changes and/or improper equipment calibration and (ii) 
does not require relying on synthetic mixtures, thus reducing efforts and 
resources, in terms of laboratory time and investments. We do so upon 
framing our methodology within a technical and theoretical assessment 
of the deconvolution approaches discussed above and including exten-
sions of (a) the method proposed by Nouvelle et al. [28] and (b) the ALS 
algorithm, which we view in a stochastic context. All of these ap-
proaches are then considered against a suite of new laboratory-based 
commingling scenarios. Concerning these, we also introduce a novel 
and low-cost GC experimental approach. The latter is grounded on a 
direct quantitative determination of C8-C12 alkylbenzene components in 
oil through GC–MS fingerprinting and has been developed to circumvent 
some limitations of the typically employed methodologies. 

2. Methods 

Here, we briefly introduce in Sect. 2.1 two mixing models which are 
traditionally used for production allocation and rely on peak heights and 
peak height ratios. We then present an appraisal of key elements of two 
widely used deconvolution algorithms (Sect. 2.2), including their area of 
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application, advantages, and limitations. Sect. 2.3 is devoted to the 
introduction of an original deconvolution algorithm that overcomes 
some of the limitations detected in the traditional approaches. We 
conclude the analysis by discussing (in Sect. 2.4) the ALS algorithm. The 
latter is used for the deconvolution of commingled fluids in cases where 
the absence of information on EMs hampers the applicability of the 
previously considered approaches. Here, we propose to extend ALS by 
viewing it in the context of a stochastic (Monte Carlo) framework. 

2.1. Mixing models 

Approaches to deconvolution in the context of production allocation 
are grounded on mixing models of either peak heights (or peaks) of a 
chromatogram or peak height ratios (hereafter termed ratios) evaluated 
from peaks associated with molecules eluting at close times. 

Mixing models associated with peak heights rest on the assumption 
that peaks in the GC of a mixture are linear combinations of peaks of the 
GCs associated with each EM according to 

Ax = b + ε with
∑K

k=1
xk = 1, (1)  

where, x = (x1,⋯, xK)
T is a vector containing the (unknown) mass 

fractions (xk; k = 1,...,K) of the K EMs in a mixture; b =
(
b1,⋯, bNp

)T is a 
vector whose entries correspond to the Np peaks of the mixture GC; 
vector ε =

(
ε1,⋯, εNp

)T embeds GC peak measurement errors as well as 
model errors; and A is a Np × K matrix, whose entry an,k is the nth peak of 
the kth EM of the mixture (i.e., column k of matrix A contains the Np 

peaks detected for the kth EM). 
Production allocation methods relying on ratios, Rij, are based on the 

following formulation [28] 

Rij =
bi

bj
; with bn =

∑K

k=1
xkan,k

mK

mk
; n = i, j. (2)  

Here, mk is the mass of the kth EM injected into the GC device. Note that 
mk and xk are (usually) unknown model parameters, to be estimated by 
making use of a deconvolution method (as described in Sects 2.2 and 
2.3) on the basis of GC peak or ratio data. 

2.2. Deconvolution algorithms 

2.2.1. McCaffrey algorithm 
The deconvolution algorithm proposed by McCaffrey et al. [29] rests 

on the peak heights mixing model and is characterized by K unknowns 
(i.e., the elements of vector x). The algorithm renders an estimate of x, 
x̂Mc, as 

x̂Mc =
(

ATA
)− 1

ATb. (3) 

Eq. (3) descends from minimization of the generalized Least Squares 
(LS) criterion, assuming that elements of ε in (1) are zero-mean Gaussian 
random variables. To improve the accuracy of estimates based on Eq. 
(3), McCaffrey et al. [29] propose the following procedure: 

• Evaluate (3) normalizing an,k and bn by max
{
an,1, ..., an,K

}
; this en-

ables one to properly consider the information content embedded in 
each peak value (even for small values of bn). 

• Determine ε by cross-validation and verify that its entries are char-
acterized by a zero-mean Gaussian distribution and reject from the 
analysis peaks where entries of ε do not satisfy this condition. 

Note that the McCaffrey’s deconvolution algorithm corresponds to a 
least-squares estimation approach. The latter is widely used in several 
areas such as, e.g., machine learning [35], genomics [36], econometrics 

[37], as well as petroleum engineering (e.g., [38,39,40]). The main 
advantage of the algorithm is its conceptual simplicity. However, it 
might yield unphysical or inaccurate results when GCs of poor quality 
(in terms of measurement accuracy and reliability) are employed. 

2.2.2. Nouvelle algorithm 
Nouvelle et al. [28] introduce a deconvolution algorithm based on 

the peak ratios mixing model. The approach can be applied when (i) GCs 
of the EMs and of the mixtures to deconvolute as well as (ii) GC of at least 
one mixture with known EMs mass fractions (hereafter termed as syn-
thetic mixture) are available. The main advantage of this algorithm is that 
common GC detection errors can be neglected since they can be signif-
icantly shadowed by relying on ratios. Additionally, considering that all 
components in a fluid sample are equally affected by improper storage, 
the mixture model relying on peak ratios is highly adaptable also to GC 
related to samples that have not been properly handled. Nevertheless, 
the application of the approach requires having at our disposal at least 
one synthetic mixture. Such a constraint is otherwise not needed by the 
McCaffrey deconvolution algorithm. This requirement implies, in turn, 
that efforts associated with laboratory analyses significantly increase, 
thus potentially limiting its application. 

The mixing model is characterized by a total of (2 K – 1) unknowns. These 
are subdivided into two groups: (i) the ratios of EM masses injected into the 
GC device, which form the entries of vector MR = (mK/m1,⋯,mK/mK− 1); 
and (ii) the mass fractions of EMs in a mixture, i.e., x. The Nouvelle algorithm 
is structured according to two steps: First (Step 1), MR is estimated by 
making use of available synthetic mixtures; then (Step 2), estimates of x are 
provided by relying on MR determined in Step 1. 

Step 1 and Step 2 are performed by minimizing the function, L( ) 

L(MR, x|R*) =
∑

∀(i,j)

ln
{

1 + Q2
Rij

(
R*

ij − Rij

)2
}

, with

QRij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

σ2
Rij

(
ηi + ηj

)

√

.

(4) 

Here, R* is a vector of components R*
ij, the latter corresponding to the 

experimentally observed ratio values, Rij, defined in Eq. (2); and ηi and ηj 

are the number of times that peaks i and j are used in the set of ratios of 
NR elements, respectively. The quantity σ2

Rij 
is the variance of Rij, which 

is approximated in Nouvelle et al. [28] as 

σ2
Rij =

1
b2

j

(

σ2
i +

b2
i

b2
j

σ2
j

)

, (5) 

bn and σ2
n (with n = i, j) being mean and variance of peak n, 

respectively. According to the procedure highlighted by Nouvelle et al. 
[28], bn and σ2

n can be estimated on the basis of replicates of laboratory 
experiments. However, the number of available replicates, N, is usually 
very limited (typically, N = 3–5). This renders the accuracy and reli-
ability of statistical moments evaluated in such a small ensemble highly 
questionable (note that the error associated with estimates of mean and 
variance decreases as N− 1 and N− 0.5, respectively). 

Nouvelle et al. [28] derived Eq. (4) by (i) assuming that measure-
ment errors of peaks i and j can be described through a zero-mean 
Gaussian distribution, so that Rij follows a Cauchy distribution, and 
(ii) determining the weighting factor Q2

Rij 
relying on an approximation of 

σ2
Rij 

as given by Eq. (5) instead of considering the scale parameter of the 
probability density function of Rij. Note also that Eq. (5) relies on a 
Taylor expansion of Eq. (2) truncated at first order. Therefore, it is a 
good estimate of the variance of Rij only if σ2

i and σ2
j are small. 

Here, we reframe the work of Nouvelle et al. [28] within a rigorous 
Maximum Likelihood, ML, approach. Assuming that Rij follows a Cauchy 
distribution, ML estimates of MR and x are obtained by minimizing the 
negative log-likelihood function, NLL( ) 
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NLL(MR, x|R*) = NRlnπ +
∑

∀(i,j)

ln
{

1 + σ2
ij

(
R*

ij − Rij

)2
}

− lnσij with

σij =
σj

σi
.

(6) 

Note that key differences between Eqs. (4) and (6) are (i) the weight 
factor, i.e., Q2

Rij 
in Eq. (4) and σ2

ij in Eq. (6), and (ii) the additional term, 
lnσij, in (6). In the following we assume that cv = σn/b*

n (b*
n corresponding 

to the experimental value of peak n) is constant, thus implying that the 
relative error across peak height measurements is constant. This 
assumption is consistent with previous studies (e.g., [41]) linking 
contaminant concentration errors to measured concentration values. 
Thus, Eq. (6) becomes 

NLL(MR, x|R*) = NRlnπ +
∑

∀(i,j)

lnR*
ij + ln

{

1 +

(

1 −
Rij

R*
ij

)2}

. (7) 

Note that minimization of Eq. (7) is equivalent to the minimization of 
its last term. We further note that another possible approach is to 
consider σn as constant, i.e., independent of peak measurements. Results 
obtained in this case were unsuccessful and are not reported in Sect. 3. 

2.3. Original approach and deconvolution algorithm 

In this Section, we introduce a novel deconvolution algorithm 
(hereafter termed PGM, after the initials of the authors’ institutions) that 
enables one to overcome limitations associated with the approaches 
described above while maintaining operational simplicity. Our 
approach (i) allows the use of the key concept of the ratios mixture 
model, i.e., explicitly considering the objective function to be based on 
the difference between observed and numerically evaluated ratios; (ii) 
does not rely on synthetic mixtures (as otherwise required by the Nou-
velle deconvolution method), thus avoiding an increase in laboratory 
time (as compared against the McCaffrey algorithm); (iii) is character-
ized by theoretical foundations that enable one to overcome the as-
sumptions and limitations required by the Nouvelle approach (as 
detailed in Sect. 2.2.2), and (iv) does not strictly require (in principle) 
replicates to obtain estimates of peak measurements variance. Our 
approach is conducive to estimating x and MR from the mixing model as 
detailed in the following. 

We write 

bn = b*
n + λn; with n = i, j, (8)  

where the peak height bn of a mixture GC is expressed as the sum of the 
observed value, b*

n, and a zero-mean measurement error, λn, character-
ized by a Gaussian distribution with (generally unknown) variance σ2

n . 
Assuming that peak measurement errors are not correlated, Rij in model 
is a random variable characterized by the following probability density 
function, pdf, 

pRij

(
rij
)
=

1
2πσiσj

∫ ∞

− ∞

⃒
⃒bj
⃒
⃒e

− 1
2

(
rij bj − b*

i
σi

)2

e
− 1

2

(
bj − b*

j
σj

)2

dbj=
σije

− 1
2

b*2
j

σ2
j
(R*2

ij σ2
ij+1)

π
(
1+r2

ijσ2
ij
)
(
1+γij

)

(9) 

with 

γij =
̅̅̅
π

√
ϕij eϕ2

ij erf ϕij;

ϕij =
b*

j

σj

1 + rijR*
ijσ2

ij
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(
1 + r2

ijσ2
ij

)√ ;

R*
ij =

b*
i

b*
j
.

(10) 

Considering all available NR ratios, ML estimates of model parame-
ters (i.e., x, MR, and σ2

n) can be obtained by minimizing the negative 
Log-Likelihood criterion, i.e., 

NLL
(
MR, x, σ2

n

⃒
⃒R*) = − ln

{
pR1,2 ...Rij ...

(
r12,⋯, rij...|x, MR, σ1, σ2, ....,

)}

= −
∑

∀(i,j)

lnpRij

(
rij
⃒
⃒x, MR, σi, σj

) .

(11) 

Note that the sum in Eq. (11) considers all of the NR ratios in the set. 
Making use of Eq. (9), Eq. (11) becomes 

NLL = NRlnπ +
∑

∀(i,j)

ln

(
1 + r2

ijσ2
ij

σij

)

+
1
2

b*2
j

σ2
j

(
R*2

ij σ2
ij + 1

)
− ln

(
1 + γij

)
.

(12) 

As in Sect. 2.2.2, we assume that cv = σn/b*
n is constant across peak 

height measurements and Eq. (12) simplifies as 

NLL= J+NR

(

lnπ+ 1
c2

v

)

; with J=
∑

∀(i,j)

lnR*
ij + ln

(

1+
r2

ij

R*2
ij

)

− ln
(
1+υij

)
,

(13)  

where 

υij =
̅̅̅
π

√
ωij eω2

ij erf ωij;

ωij =
1 + rij

/
R*

ij

cv

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
(

1 + r2
ij

/
R*2

ij

)√ .
(14) 

Parameters embedded in Eq. (13) include x, MR, and cv. If cv is 
known, minimization of NLL (Eq. (13)) coincides with minimization of J. 
If cv is unknown, its ML estimate can be obtained according to 

∂NLL
∂cv

= −
2NR

c3
v

+
1
cv

∑

∀(i,j)

1
(
1 + υij

)
(

2ω2
ij + 2ω2

ijυij + υij

)
= 0. (15) 

One can then evaluate cv by solving the following implicit equation 

c− 2
v =

1
NR

∑

∀(i,j)

ω2
ij +

υij

2
(
1 + υij

). (16) 

Here, we propose to obtain ML estimates of x, MR, and cv (denoted as 
x̂PGM, M̂RPGM and ĉv,PGM, respectively) according to the procedure 
highlighted in the flowchart depicted in Fig. 1. The latter shows that the 
procedure requires to (i) initialize x and MR; (ii) compute the ratios of 
the mixture chromatogram using Eq (2); (iii) initialize the value of cv and 
minimize J in Eq. (13) to compute the ML estimates x̂PGM and M̂RPGM; 
and (iv) make use of Eq. (16) to evaluate ĉv,PGM. The procedure ends 
when a convergence criterion (e.g., 

⃒
⃒cv − ĉv,PGM

⃒
⃒
/
cv < δ0) is satisfied. 

Note that δ0 is a threshold value that must be defined at the beginning of 
the workflow. In our test case, we set δ0 = 0.01. Moreover, we note that 
in our analyses the same mass of EMs samples is employed during GC 
experiments. As such, the ratios of EM masses injected into the chro-
matography device (corresponding to the entries of vector MR) are 
constrained to the range 0.95–1.05 during the optimization procedure. 

2.4. Alternating least squares algorithm, ALS 

All deconvolution methods described in Sects. 2.2 and 2.3 allow 
estimating the mass fraction of EMs in a mixture when chromatograms 
of EMs (i.e., entries of matrix A) are known. The ALS deconvolution 
algorithm tackles a fundamentally different production allocation 
problem in which entries of matrix A are not known. Nevertheless, the 
application of ALS requires the analysis of multiple virtual mixtures (the 
number of which must be greater than the number of EMs) that need to 
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be subject to the deconvolution simultaneously. To provide a proper 
representation of the overall system variability, these virtual mixtures 
must be associated with different mass fraction compositions of EMs. 

As ALS relies on multiple mixtures, vectors x and b in model are now 
matrices. These are hereafter denoted as x and b of size (K× NM) and 
(Np × NM), respectively (NM being the number of mixtures being 
deconvoluted simultaneously). 

The first step in an ALS-based production allocation relies on esti-
mating the number of EMs, K, making use of one of the following 
methodologies (or a combination thereof): 

(i) perform a principal component analysis, PCA (or a Singular Value 
Decomposition – SVD), of the mixture GCs included in b and evaluate 
the minimum number of components required to explain the variance of 
b [42,43]; 

(ii) make use of information about the natural system (e.g., the 
geological structure) that could assist in constraining K. 

It is noted that, when the assessment of K is not unambiguous, the 
deconvolution process should be performed several times, upon varying 
K and analyzing the ability of the estimated EM spectra and mass frac-
tions to describe b [42]. 

Once K is defined, the ALS deconvolution algorithm rests on an 
iterative procedure to determine a Least Square (LS) estimate of A and x 
according to the following workflow: 

Step 1. Initialize A. 
Step 2. Determine an LS estimate of x as 

x̂ALS =
(

ATA
)− 1

ATb. (17) 

Step 3. Determine an LS estimate of A as 

ÂALS = b x̂T
ALS

(
x̂ALS x̂T

ALS

)− 1
, with entries (aALS)n,k > 0. (18) 

Step 4. If 
⃒
⃒
⃒an,k − (aALS)n,k

⃒
⃒
⃒

/
an,k < δ0, then stop; otherwise, set A =

ÂALS and go to step 2. 
Note that, since GCs with negative entries have no physical meaning, 

entries of ÂALS (Eq. (18)) are constrained to be positive. Note also that 
NM must be larger than (or equal to) K, to guarantee that the system is 
not under-constrained. 

The workflow described above must be repeated multiple times with 
different initializations of A (Step 1) to avoid entrapment in local 
minima of the objective function to be minimized [44]. We note that, 
since Eq. (17) for the evaluation of ̂xALS is coupled with, it is possible that 
the global minimum value of the objective function is not necessarily 
associated with the optimal x (i.e., associated with the minimum LS 

value) due to the action of ÂALS in. To overcome this issue, we propose 
an original view and frame the approach within a probabilistic Monte 
Carlo setting. We do so by relying on multiple realizations. Each one of 
these corresponds to a combination of the N replicates associated with 
GC performed for each mixture (to be deconvoluted simultaneously). To 
the best of our knowledge, this is the first study exploring the potential 
of the ALS deconvolution algorithm in the context of a production 
allocation scenario under such a probabilistic framework. 

2.5. Experimental setup 

The analysis of the relative skills of the deconvolution algorithms 
described in Sects. 2.2–2.4 to assist production allocation is assessed 
upon considering a set of ten laboratory-based mixtures produced by 
commingling three EMs as listed in Table 1. These mixtures have been 
selected with the aim of reproducing at the laboratory scale typical 
commingling scenarios associated with field settings. 

2.5.1. Materials 
All solvents, including dichloromethane, are of analytical grade. 

These, as well as ethylbenzene-d10 (used as an internal standard for 
quantification purposes), were purchased from Merck (Darmstadt, 
Germany). An alkylbenzene standard mixture containing 37 compounds 
and used for identification, method development, and evaluation of 
response factors associated with the internal standard was purchased 
from Restek Corporation (Bellefonte, United States). Oil mixtures and 
EMs were properly stored in a fridge at a temperature of 4 ◦C to mini-
mize potential alterations due to improper handling of the samples. 

Rij

Rij

PGM

|cv -cv     |< 0^

0

x̂

cv̂

cv̂

cv

cv

xMR

PGM

PGM

PGM

PGM

M̂R

b*

*

A__

Fig. 1. Flowchart of the PGM deconvolution algorithm.  

Table 1 
Mass fractions of the three EMs in the 10 laboratory-based mixtures.  

Oil sample EM1 
x1 [%] 

EM2 
x2 [%] 

EM3 
x3 [%] 

M1 33.3 33.3 33.3 
M2 70 15 15 
M3 10 70 20 
M4 20 20 60 
M5 50 30 20 
M6 20 40 40 
M7 45 55 0 
M8 5 10 85 
M9 85 10 5 
M10 0 90 10  
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2.5.2. Sample preparation and GC–MS analysis 
EM samples are weighed and dissolved in dichloromethane to a 

concentration of 10 mg/mL and used to produce the 10 laboratory 
mixtures illustrated in Table 1. All EMs samples and mixtures are then 
analyzed 5 times through GC–MS by targeting the alkylbenzene com-
ponents in the molecular range C8-C12. Fixed amounts of ethylbenzene- 
d10 are added to each sample to assist quantification of the various 
alkylbenzenes. This step is performed by applying the internal standard 
method, using peak heights and response factors evaluated from a 
standard alkylbenzene mixture of 37 compounds. Since oil samples 
contain a number of alkylbenzenes that is significantly higher than what 
is available in the standard mixture, response factors equal to those of 
the most closely eluting alkylbenzene available as standard are assigned 
to such compounds. 

The analysis of alkylbenzene compounds in the oil samples is per-
formed via gas chromatography-single quadrupole mass spectrometry 
(GC–MS). Helium is used as carrier gas and the injections are performed 
in split mode. The analytical separation is carried out using a Stabilwax 
capillary column (Restek − 60 m × 0.32 mm × 0.25 μm) in temperature 
gradient mode. The eluted compounds are ionized within the electron 
ionization source of the mass spectrometer, which operates at 70 eV and 
250 ◦C source temperature. 

The MS analyzer is operated in full scan mode only in the early stages 
of method development. This yields spectral data for the identification 
and quantification of alkylbenzene components in the standard mixture. 
Otherwise, sample analyses are conducted in SIM (Selected Ion Moni-
toring) mode. Mass-to-charge ratios (m/z) for SIM acquisition are: 91, 
105, 106, 116, 119, 120, 133, 134, 147, 148, 162. A quantitative 
analysis is performed for each peak using the measured heights in the 
GC. 

3. Results 

3.1. Experimental method development and available data 

As discussed in Sect. 1, several methods have been reported in the 
literature, including HRGC, MDGC, and GC–MS analysis. The current 
analyses are performed using GC–MS since (i) GC–MS requires a simpler 
and more accessible instrumentation and allows for a more selective 
analysis of alkylbenzenes than MDGC, especially if high molecular 
weight compounds need to be assessed; (ii) GC–MS analyses are faster 
than their counterparts based on MDGC or HRGC; (iii) selectivity of 
GC–MS allows filtering out all signals related to non-alkylbenzene spe-
cies which are typically observed in oil samples, replacing the need for a 
double separative column (which is otherwise required for MDGC); (iv) 
GC–MS allows monitoring additional compound classes with respect to 
MDGC (e.g., diamondoids, alkylnaphtalenes, dibenzothiophenes, poly-
cyclic aromatic hydrocarbons) further increasing the number of 
geochemical parameters that can be obtained for fingerprinting or other 
applications; and (v) GC–MS yields a complete baseline separation of the 
11 alkylbenzenes analyzed by MDGC and extends the analytical range 
up to C12-alkylbenzenes, thus enabling one to analyze 50–80 com-
pounds. In this context, advantages related to our operational choice 
include: (i) the possibility to identify more discriminating features in 
case of highly similar oils, with an ensuing increase in the quality of 
production allocation estimates; and (ii) the observation that the higher 
boiling point molecules better compensate for poor sampling practices 
or improper storage conditions. 

It is otherwise noted that extending the analytical range beyond the 
C9-alkylbenzenes has the potential drawback of increasing the number 
of isomers and the possibility of coelutions. This potentially renders the 
chromatographic separation more complex and the chromatographic 
peaks less resolved. A solution to this issue can be found upon relying on 
the selectivity attributes of mass spectrometry, which allows for easier 
discrimination. For example, doing so enables one to separate C12- 
alkylbenzenes from C11-alkylbenzenes due to their associated differing 

m/z ratios (133 vs 119, respectively). Therefore, even as a complete GC 
separation is virtually impossible, a sufficiently high number of well- 
resolved peaks can be readily identified. This in turn allows enhancing 
the discriminatory capacity of the deconvolution algorithms employed 
for production allocation estimates. 

Analysis and comparison of several oil samples associated with 
various sources suggest that the analyzed alkylbenzenes do not suffer 
from contamination or interferences (details not shown). Therefore, the 
methodology does not require a manual peak selection, because it al-
ways targets the same suite of compounds. Thus, these are automatically 
quantified and fed to the deconvolution algorithms. 

Measurement precision plays a key role in GC fingerprinting pro-
duction allocation studies, as a successful production allocation is 
closely linked to the ability to effectively distinguish EMs from the 
samples analyzed. The use of compounds (alkylbenzenes) associated 
with almost identical chemical and physical properties further enhances 
instrumental precision. In our study, the coefficient of variation of 
component measurements is generally lower than 5% and never exceeds 
10%. As an example, Fig. 2 depicts the chromatogram of the five rep-
licates associated with mixture M1. These experimental results suggest 
an overall high degree of repeatability of the experimental analyses. The 
remaining mixtures and EMs display a similar quality of repeatability 
(details not shown). One can see that peak responses vary across two 
orders of magnitude, the largest values being associated with the first 11 
peaks (i.e., those related to C9-alkylbenzenes). 

3.2. Deconvolution 

Here, we present a quantitative comparison of the accuracy of the 
various deconvolution algorithms illustrated in Sect. 2 on the basis of the 
laboratory dataset detailed in Sect. 3.1. For this purpose, we compute 
estimates of x, x̂ξ, using (i) Eq. (3) when ξ = Mc (McCaffrey algorithm), 
(ii) Eq. (4) when ξ = Nv (Nouvelle algorithm), (iii) Eq. (7) when ξ = MNv 
(modified Nouvelle algorithm), (iv) Eqs. (13)–(16) when ξ = PGM, and 
(v) Eqs. (17)–(18) when ξ = ALS. For the McCaffrey and PGM algorithms 
no synthetic mixtures are required. Thus, estimates x̂ξ for each mixture 
have been evaluated considering all combinations of the N replicates of 
the given mixture and associated EMs chromatograms. This yields NK+1 

values of x̂ξ. On the other hand, for the ALS algorithm (where NM is 
required to be larger than K) a subset of the NNM possible estimates has 
been randomly selected. With reference to the Nouvelle algorithm 
(where at least one synthetic mixture is required), we explore the 
goodness of the deconvolution algorithm by varying the number of 
synthetic mixtures, NSM, from 1 to 9. 

The mean associated with estimates x̂ξ (i.e., xξ) is then evaluated 
upon considering that the available data are compositional vectors 
(whose components express proportions or percent amount of a whole). 
We then leverage on the theoretical framework underlying Composi-
tional Data Analysis (CoDa; e.g., [45–47] and references therein). For 
comparison purposes, we also provide an estimate of xξ (denoted xξ) by 
averaging EMs and mixture replicates before implementing a deconvo-
lution algorithm. 

Finally, we assess the performance of each deconvolution method by 
computing the mean absolute error, MAEξ, and the mean absolute per-
centage error, MAPEξ, obtained with deconvolution method ξ and 
defined as 

MAEξ =
1
K
∑K

k=1

⃒
⃒x*

k − xk,ξ
⃒
⃒; MAPEξ =

100
K

∑K

k=1

xk∕=0

⃒
⃒
⃒
⃒
x*

k − xk,ξ

x*
k

⃒
⃒
⃒
⃒. (19)  

Here, x*
k is the true value associated with the kth EM in a mixture and xk,ξ 

is the kth element of xξ. Note that by making use of xξ instead of xξ in 
(19) we obtained almost identical results (details not shown). 
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3.2.1. McCaffrey deconvolution method 
Fig. 3 provides ternary diagrams of the NK+1 estimates x̂Mc (gray 

symbols). The variability of x̂Mc is modest, samples M7, M9, and M10 
being the only exceptions. Note that M7 and M10 are formed by only 
two EMs (i.e., K = 2). The compositional mean associated with these 
estimates, xMc (black cross), experimental values, x* (green circle), as 
well as values of the deconvolution obtained by averaging EMs and 

mixture GC replicates before the use of the deconvolution algorithm, 
xMc, are also included in Fig. 3. Quantities xMc and xMc are seen to 
properly represent the overall behavior of the EMs mass fractions for all 
of the mixtures tested. Across all mixtures, the average MAEMc (Eq. (19)) 
is 4.3% (its corresponding median being equal to 3%), and the average 
MAPEMc is equal to 22.9% (median being equal to 11.9%) . Fig. 4 depicts 
histograms of Aitchison distances between measured mass fractions x* 

Fig. 2. Chromatograms resulting from 5 replicates (Mixture M1).  

Fig. 3. Results of the production allocation approach obtained through the McCaffrey deconvolution algorithm. Each ternary diagram corresponds to a given mixture 
and includes: (i) Individual Estimates, x̂Mc; (ii) Compositional mean of x̂Mc, xMc; (iii) The true value, x*; and (iv) Estimates obtained by averaging mixtures and EMs 
replicates before performing the deconvolution, xMc. 

L. Sandoval et al.                                                                                                                                                                                                                               



Fuel 327 (2022) 124715

8

and their estimated counterparts x̂Mc. These results confirm quantita-
tively the observations made to Fig. 3 according to which the largest 
variabilities of the estimates are associated with mixtures M7, M9, and 
M10, these mixtures being also associated with the largest mean esti-
mation errors. 

3.2.2. Nouvelle deconvolution approach 
Here, we analyze four test cases (C1, C2, C3, and C4; see Table 2). 

Test cases C1 and C3 consider ratios of two consecutive peaks (e.g., b1/

b2,b2/b3,...) and two formulations of the objective function employed in 
the procedure, corresponding to the Nouvelle et al. [28] deconvolution 
method (Eq. (4)) and our suggested modification (Eq. (7)), respectively. 
Then, in test cases C2 and C4 we explore the benefit of relying on ratios 
evaluated upon using more than two peaks (e.g., b1/(b2 + b3)) for the 
deconvolution procedure. 

Fig. 5 depicts box plots of MAPENv values for mixture M3 (the 
remaining tested mixtures exhibit a similar behavior; details not shown) 
for an increasing number of the synthetic mixtures, NSM, used for the 
deconvolution algorithm. Mean and median values of MAPENv are also 
included. Note that results plotted in Fig. 5 include all possible combi-
nations of synthetic mixtures (i.e., 9, 36, 84, 126, 126, 84, 36, 9, and 1 
combinations of synthetic mixtures when NSM = 1, 2, …, 9, respectively). 

As expected, increasing NSM tends to yield errors which are smaller 
and associated with reduced variability in all test cases. These errors are 
concentrated in the 5%-25% range for C4. In general, when a sufficient 
number of synthetic mixtures is available (at least 3 according to our 
analyses), all test cases are associated with production allocation esti-
mates that are as accurate as those stemming from the McCaffrey 
deconvolution algorithm. 

When the set formed by ratios between two consecutive peaks is used 
(i.e., scenarios C1 and C3), similar results are obtained employing the 
deconvolution algorithm proposed by Nouvelle et al. [28] and our 
proposed modification (i.e., Eq. (7)). Otherwise, if the set involving ra-
tios of more than two peaks is considered (i.e., scenarios C2 and C4), 
results of enhanced accuracy are achieved upon relying on the proposed 
objective function given by Eq. (7) than on the original Nouvelle 

algorithm. Note that case C4 is characterized by the overall best accu-
racy of the results even when only one synthetic mixture is available. 
This suggests that by relying on the objective function we propose (Eq. 
(7)) one can potentially reduce the laboratory efforts associated with the 
preparation and analysis of synthetic mixtures whilst the precision of the 
method is enhanced. This is an important observation, as time con-
straints can limit the number of synthetic mixtures available in practical 
production allocation applications. 

3.2.3. Original PGM approach and algorithm 
Fig. 6 provides ternary diagrams of the NK+1 estimates x̂PGM (gray 

symbols). Fig. 6 also includes the compositional mean of x̂PGM, xPGM, 
experimental values, x*, as well as values of the deconvolution obtained 
by averaging EMs and mixture GC replicates before the use of the 
deconvolution algorithm, xPGM. Similar to Fig. 3, values of xPGM and xPGM 
are close to x*. Notably, also mixtures M7, M9, and M10 are associated 
with small estimation errors (as opposed to what is noted in Fig. 3). 
Across all mixtures, the average MAEPGM (Eq. (19)) is only 2.5% (its 
corresponding median being equal to 2.1%) and the average MAPEPGM is 
equal to 11.7% (its corresponding median being equal to 6.0%). The 
variability of the individual estimates is modest and significantly smaller 
than the one displayed in Fig. 3. Fig. 7 presents histograms of the 
Aitchison distances between measured mass fractions x* and x̂PGM. It is 
noted that the mean of the Aitchison distances rendered by our original 
PGM deconvolution algorithm is significantly smaller than its counter-
part related to the McCaffrey deconvolution algorithm for almost all 
mixtures analyzed. Mixtures M7, M9, and M10 are characterized by the 
largest values of the Aitchison distance. This is similar to what has been 
documented for the results of the McCaffrey deconvolution algorithm, 

2E-3 3E-3

3E-3 3E-3

2E-3

Fig. 4. Histograms of the Aitchison distances between measured mass fractions x* and their estimated counterparts x̂Mc. Values of the resulting mean (μ) and 
variance (σ 2) are also listed. 

Table 2 
Scenarios used for the assessment of the Nouvelle-based deconvolution 
approach.   

Ratios of two peaks Ratios of more than two peaks 

Eq. (4) C1 C2 
Eq. (7) C3 C4  
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Fig. 5. Box plots of MAPENv for mixture M3 versus the number of synthetic mixtures used in the algorithm NSM. Green triangles and orange lines represent the 
median and the mean of the distribution, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Results of the production allocation approach obtained through our original PGM approach. Each ternary diagram corresponds to a given mixture and 
includes: (i) Individual Estimates, x̂PGM, (ii) Compositional mean of x̂PGM, xPGM; (iii) True value, x*; and (iv) Estimates obtained by averaging mixtures and EMs 
replicates before performing the deconvolution, xPGM. 
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even as a reduced variability can be observed here. 

3.3. Production allocation without knowledge of end members and use of 
the ALS algorithm 

In cases where some (or all) of the chromatograms of EMs are not 
available and the use of the approaches and algorithms illustrated in 
Sects. 2.2 and 2.3 is hampered, production allocation can be performed 
upon relying on the ALS deconvolution algorithm as described in Sect. 
2.4. 

To evaluate the number of EMs, K, we perform an SVD of the mixture 
GCs included in b. Our results reveal that considering 1, 2, and 3 EMs can 
explain 78.9%, 96.8%, and 99.4% of the variance of b, respectively 
(details not shown). The selection of three EMs is therefore well justified 
by our data, which are indeed formed by two or three EMs (see Table 1). 

We explore the effect of the size S of a subset of the NNM possible 
combinations of replicates of mixtures’ GC on the stability and accuracy 
of the estimator xALS by plotting in Fig. 8 the quantity 1K

∑K
k=1
⃒
⃒x*

k − xk,ALS
⃒
⃒

versus S (K = 3, except for M7 and M10 where K = 2). Our results 
suggest that (a) the compositional mean of the estimates, xALS, as well as 
the error between xALS and x* tend to stabilize by increasing the number 
of realizations; and (b) relying on about 1000 realizations yields stable 
results of the quantities of interest. 

Fig. 9 depicts estimates x̂ALS associated with S = 1000 random 
combinations of the mixtures’ GC replicates. Each combination A is 
randomly initialized 103 times. The best one (i.e., the one that minimizes 
Eq. (17)) is selected and plotted in Fig. 9 for each combination (gray 
symbols). The compositional mean associated with estimates xALS (black 
cross), experimental values x* (green circle) as well as values of the 
deconvolution obtained by averaging mixtures’ GC replicates before the 
use of the deconvolution algorithm, xALS (red circle), are also included in 
Fig. 9. Values of xALS and xALS are close to the true values of mass frac-
tions of EMs in each mixture, although with reduced accuracy when 
compared against results of deconvolution algorithms based on EMs’ 
chromatograms. The average MAEALS across mixtures (Eq. (19)) is 9.8% 

(its corresponding median being equal to 10.2%) and the average 
MAPEALS is 46.4% (the median being equal to 33.8%). Fig. 10 depicts 
histograms of the Aitchison distances between measured mass fractions 
x* and rows of x̂ALS. Our results indicate that mean Aitchison distances 
associated with the results rendered by the ALS algorithm are in general 
larger than their counterparts stemming from the McCaffrey and PGM 
algorithms. The largest distances are associated with mixtures M9 and 
M8. 

3.4. Performance of the analyzed deconvolution algorithms 

Table 3 lists values of the MAEξ and MAPEξ metrics related to M3 and 
associated with production allocation estimates obtained through all 
deconvolution algorithms discussed in this study. The importance of the 
number of features (i.e., peaks) used by the deconvolution algorithms is 
also tested through the comparison of the resulting allocation errors by 
employing (i) the entire available set of 41 peaks of the mixture GCs and 
(ii) a subset of the first 11 peaks from the original dataset. Note that (a) 
the Nouvelle deconvolution algorithm (implemented by considering the 
original formulation, Eq. (4), or our proposed modification, Eq. (7)), is 
applied using M1 as synthetic mixture and employing ratios encom-
passing more than two peaks; and (b) the ALS deconvolution algorithm 
is initialized for a total of 103 times. 

The accuracy of the estimates tends to increase with the number of 
features (either peak height or peak ratios) employed. Thus, the addi-
tional information content carried by considering various peaks (which 
might include enhanced information on molecular differences between 
oils or mitigate the effect of measurement errors) can be beneficial to 
enhance the accuracy of production allocation estimates. Therefore, 
extending the target alkylbenzene molecular range to C12-species with 
the experimental procedure illustrated in this study leads to enhanced 
robustness and accuracy of all deconvolution methods. 

In general, our proposed original approach, as well as our reformu-
lation of the Nouvelle algorithm, are characterized by an improved 
performance (in terms of the metrics considered in this study) when 
compared against the traditionally employed deconvolution algorithms. 

1E-3 3E-3

3E-3 3E-3

Fig. 7. Histograms of the Aitchison distances between measured mass fractions x* and x̂PGM. Values of the resulting mean (μ) and variance (σ2) are listed 
as reference. 
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4. Conclusions 

We introduce an original deconvolution approach for production 
allocation to enable effective assessment of the diverse oil types forming 
a mixture originating from the common practice of commingling oils 
associated with diverse reservoirs, wells, and/or fields. Our original 
approach (which we term PGM) (a) is inspired by methods resting on 

peak ratios and (b) does not require relying on synthetic mixtures, thus 
being potentially associated with reduced laboratory analyses efforts. 
The approach is framed in the context of typically used deconvolution 
algorithms, i.e., the algorithm proposed by McCaffrey et al. [29], the 
method of Nouvelle et al. [28], as well as the approach based on the 
Alternating Least Square (ALS) algorithm. We also present extensions of 
(a) the method proposed by Nouvelle et al. [28] and (b) the ALS 

Fig. 8. Evolution of 1K
∑K

k=1
⃒
⃒x*

k − xk,ALS
⃒
⃒ for increasing size of the collection of realizations S used for the evaluation of the compositional mean in the ALS algorithm.  

Fig. 9. Results of the production allocation approach obtained through the ALS approach. Each ternary diagram corresponds to a given mixture and includes: (i) 
Individual Estimates, x̂ALS), (ii) Compositional mean of x̂ALS, xALS; (iii) True value of the mass fractions in the mixtures, x*; and (iv) Estimates obtained by averaging 
mixtures and EMs replicates before performing the deconvolution, xALS. 
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algorithm, which we view in a stochastic context, corresponding to a 
Monte Carlo framework, with the aim of improving their robustness and 
reliability. 

The potential of the new PGM approach is shown together with an 
assessment of the other analyzed deconvolution algorithms against a 
suite of new laboratory-based three-oil commingling scenarios. These 
are based on the design and introduction of a novel and low-cost 
experimental approach. The latter rests on a direct quantitative deter-
mination of C8-C12 alkylbenzene components in oil through GC–MS 
fingerprinting and has been developed to circumvent some limitations of 
the typically employed methodologies. 

Results of the analyses of the controlled experiments provide a 
unique, comprehensive, and rigorous comparison of the traditional 
production allocation deconvolution algorithms and highlight the 
benefit of our extensions to these and of the new PGM approach and 
algorithm. Our study documents that the number of features used during 
a quantitative deconvolution is critical to enhance the accuracy of the 
procedure. Additionally, we found that our new PGM approach is the 
most accurate methodology, followed by the Nouvelle algorithm based 
on our modified objective function (Eq. (7)). 
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