
Learning Cooperative Dynamic Manipulation Skills from Human Demonstration Videos

Francesco Iodicea,b, Yuqiang Wua,c,d, Wansoo Kima,e, Fei Zhaoc,d, Elena De Momib, Arash Ajoudania

aHRI2 Lab of Italian Institute of Technology (IIT), Genoa, Italy
bDepartment of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy

cState Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an Shaanxi, China
dState Key Laboratory of Intelligent Robots and School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an Shaanxi, China

eRobotics Department, Hanyang University ERICA, Ansan, South Korea.

Abstract

This article proposes a method for learning and robotic replication of dynamic collaborative tasks from offline videos. The objective
is to extend the concept of learning from demonstration (LfD) to dynamic scenarios, benefiting from widely available or easily
producible offline videos. To achieve this goal, we decode important dynamic information, such as the Configuration Dependent
Stiffness (CDS), which reveals the contribution of arm pose to the arm endpoint stiffness, from a three-dimensional human skeleton
model. Next, through encoding of the CDS via Gaussian Mixture Model (GMM) and decoding via Gaussian Mixture Regression
(GMR), the robot’s Cartesian impedance profile is estimated and replicated. We demonstrate the proposed method in a collaborative
sawing task with leader-follower structure, considering environmental constraints and dynamic uncertainties. The experimental
setup includes two Panda robots, which replicate the leader-follower roles and the impedance profiles extracted from a two-persons
sawing video.
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1. Introduction

To make robots easily programmable and usable by non-
experts, in the last decade, Learning from Demonstration (LfD)
has become a major topic in robotics research [1, 2, 3]. The ben-
efits of LfD over other robot programming methods are more
evident when ideal behaviors can neither be scripted (e.g., sim-
ple point-to-point trajectories), nor be formulated (e.g., through
an optimisation problem or reinforcement learning), but instead
can be demonstrated. In such a way, naive workers can easily
access and operate robotic systems, and respond to the flexibil-
ity requirements of today’s custom-made manufacturing [4].

Recently, the advances in LfD with deep neural networks
have enabled the learning of complex robot skills involving
large and different datasets of raw images. These prominent
works in Visual Imitation have shown promising results and
demonstrated utility in applications such as manipulating de-
formable planar objects [5], performing intricate manipulations
such as pushing, grasping, and stacking [6, 7], and simulating
physical forces from videos of humans interacting with objects
[8]. However, although these approaches are promising for
modern industrial challenges, they require a huge number of
demonstrations, and have limitations in implicitly learning task
constraints from demonstrations as they rely solely on extrapo-
lation of skeletal kinematics.

With our work we take into account these challenges and
propose a solution for learning collaborative-dynamic manipu-
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lation skills from human demonstration videos. Our motivation
is to exploit easily producible, large, and diverse video datasets
of human operations in industrial environments to decode dy-
namic features in addition to the leader-follower relations in
collaborative tasks. To achieve this, we use an innovative ap-
proach in LfD for collecting raw data based on the 3D transfor-
mation of the human pose tracking library, OpenPose [9], after
which we rely on the contribution of arm endpoint stiffness pro-
files, extracted from human demonstrations, to the task dynam-
ics [10], and their geometric variations, to the leader-follower
relations. In this direction, we exploit the Configuration Depen-
dent Stiffness (CDS) model, previously developed in our work
[11], which represents the dominant contribution of arm con-
figuration to the arm endpoint stiffness geometry [12]. Sub-
sequently, the Gaussian Mixture Model (GMM) and Gaussian
Mixture Regression (GMR) are used to encode and reproduce
the CDS. Finally, the desired trajectory and stiffness profiles
for both robots are achieved by a Cartesian variable impedance
controller [13], and the cooperative dynamic two-person sawing
skill is transferred from human demonstrated videos to robots.

As a proof-of-concept for collaborative operations, we chose
a two-person sawing task that requires effective regulation of
physical interaction parameters at hand, in addition to the leader-
follower relations [14], as depicted in Fig. 1. This dynamic ma-
nipulation task’s challenges are proper motion and compliance
coordination (leader/follower role allocation) of the two sub-
jects, rejecting external disturbances, and maintaining contact
stability while performing the task.
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Figure 1: Illustration of the concept and the experimental setup. The
objective is to extract leader-follower roles and dynamic features such
as configuration-dependent stiffness (CDS) from videos of humans
performing collaborative tasks (here, a two-person wood sawing), and
replicating them in a dual-arm robotic setup. ΣC represents the camera
local frame while ΣA and ΣB represent the base frames of Robot A and
B respectively. The axes of ΣC align with ΣA and ΣB.

2. Related Work

Most of the Learning from Demonstration methods operate
based on one of the following data collection methods: i) kines-
thetic teaching, ii) joystick teleoperation, and iii) wearable-based
teleoperation. In kinesthetic teaching, the human teacher comes
into direct contact with the robot, moving it slowly and repro-
ducing the desired trajectory sequences while the robot records
them [15, 16]. This method, which is widely used in motion tra-
jectory learning, helps avoid the correspondence problem caused
by the human-robot mapping function. An alternative to kines-
thetic teaching is teleoperation, which provides the most direct
method to transfer information in demonstration learning. Dur-
ing teleoperation, the follower robot is operated by the human
leader and the sensory data is recorded. Joystick-based inter-
faces are very common in such leader-follower settings, whose
applications can be found in a variety of cases, including as-
sembly tasks [17], piloting an aerial robot [18, 19], obstacle
avoidance and navigation [20, 21]. However, a different type is
wearable-based teleoperation, where the robot mimics the mo-
tions demonstrated by the teacher while recording data from
body sensors. An example of this interface is used by [22] to
control the robot pose using the Xsens MVN motion capture
inertial suit worn by the user, and by [23], which is based on

an optical tracker and EMG Sensors to develop a multimodal
interface to provide the robot with feedback on human motor
behavior in real-time.

Although all three approaches are widely used in LfD appli-
cations, when it comes to high degree-of-freedom (DoF) robotic
systems or multi-robot cooperation, kinaesthetic teaching and
direct interaction interfaces can be time-consuming (due to the
need to teach each robot separately). Similarly, teleoperation
interfaces can be associated with high costs and discomfort for
humans, as these interfaces may require expensive haptic de-
vices worn by the operators [24].

Due to these limitations and considering practical industrial
applications, the use of cameras to record human movements is
encouraged, which brings several advantages: cameras are usu-
ally low cost, convenient to deploy, and can be used to create
large and diverse datasets for industrial operations. In this re-
spect, deep learning techniques have shown promising results
for human modeling after the phase of extrapolating raw data
from human performances. The tools used often involve both
Reinforcement Learning (RL) and Imitation Learning (IL). For
example, using RL-based models, in [25], the authors were
able to train a video prediction model to imitate human poses,
and in [26] to imitate human interactions with objects. For IL
methods, end-to-end approaches based on mapping from pix-
els captured in the video to actions have been reported for ob-
ject manipulation [5] and the simulation of physical forces in
[8]. Some approaches combine RL and IL [27]; however, these
works generally focus on optimizing a specific problem using a
task-specific cost function.

The main limitation of the current vision-based skill imi-
tation techniques is that, learning task dynamics is much less
straightforward in comparison to the task kinematics. This lim-
itation becomes even more evident when the plan is to imitate a
human demonstrator during manipulation tasks, in which task
dynamics contribute majorly to its accomplishment. Human be-
ings can adapt their arm endpoint stiffness ellipsoid’s geometry
and volume to match the interaction requirements of a dynamic
manipulation task [12]. Thus, human arm endpoint stiffness is
a preferred representation of task-related interacting dynamics.
The online human stiffness estimation techniques were first pro-
posed under the concept of teleimpedance control [28], for real-
time transferring of human arm stiffness to teleoperated robots.
In [29], the theory of the Common Mode Stiffness (CMS) and
Configuration Dependent Stiffness (CDS) was proposed to ex-
plore their roles in realizing desired task space impedance for
robot control. Then the idea is used in [30] to map human
arm joint stiffness to endpoint stiffness through arm Jacobian,
in which CMS reflects the effect of muscular co-activationand
CDS reflects the geometric contribution of arm Jacobian. How-
ever, the proposed model can only work within a certain vol-
ume of arm workspace due to the configuration-dependent na-
ture of the joint stiffness. To extend this model to a larger arm
workspace, the mapping from muscle stiffness to endpoint stiff-
ness is proposed in [31], Although it resulted in an online and
accurate model, however, calculating the muscle Jacobian can
be quite complex, hindering its wide spread use in practice. In
our recent work, an intuitive human arm endpoint model is pro-
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Figure 2: The proposed framework for robots learning dynamic manipulation skills from human demonstration videos. Firstly, human demon-
strations are directly recorded by an RGB-D camera and saved as an offline video. Then by using OpenPose, the 3D position information of the
keypoints distributed in the human body skeleton model is extracted. Furthermore, the human arm endpoint stiffness model proposed in [11] is
employed to construct the CDS part based on the data extracted from the video. Finally, human demonstrated data is encoded by GMM through
offline training and GMR is used to reproduce and generalize CDS information online. The full stiffness matrix, formulated by position-dependent
CDS and constant CMS is implemented on robots by a Cartesian impedance controller, whose desired pose is provided by a fifth-order trajectory
planner and a Finite State Machine (FSM).

posed based on construction of eigenvectors and eigenvalues of
stiffness matrix [11] which only requires position information
of shoulder, elbow and wrist to calculate CDS. It results in a
model which is easier to develop and with less parameters.

The main contribution of this paper to develop a method
to learn task dynamics through human demonstration videos.
To this end, after extrapolating the raw data from the 3D po-
sition estimation obtained by a transformation in OpenPose[9],
we implement a policy, based on a low-level representation ap-
proach that takes the form of a non-linear mapping between
sensory and motor information, obtaining a modeling action
through a probabilistic Gaussian Mixture Model - Gaussian Mix-
ture Regression (GMM-GMR).

3. Skills Learning Framework

The overall learning framework is depicted in Fig. 2. Firstly,
human demonstrations are directly recorded by an RGB-D cam-
era and saved as an offline video. Then by using OpenPose,
the 3D position information of the keypoints distributed in the
human body skeleton model is extracted. Furthermore, the hu-
man arm endpoint stiffness model proposed in [11] is employed
to construct the CDS part based on the data extracted from
the video. Finally, human demonstrated data is encoded by
GMM through offline training and GMR is used to reproduce
and generalize CDS information online. A constant CMS com-
ponent is adopted in our framework to incorporate minimum
prior knowledge of the task. The full stiffness matrix, formu-
lated by position-dependent CDS and constant CMS is imple-
mented on robots by a Cartesian impedance controller, whose
desired pose is provided by a fifth-order trajectory planner and
a Finite State Machine (FSM). In the following sections, each
part of the overall framework will be explained in more detail.

Figure 3: Schematic of the 3D multi-person joint position reconstruc-
tion.

3.1. Keypoints information extraction from offline videos
In this section, we describe in detail the required stages to

transform the 2D human pose data in the 3D space, as depicted
in Fig. 3. These data were extracted from a previously recorded
learning video, and stored in a rosbag.

3.1.1. 2D Human Pose Estimation
Human pose estimation is not only defined as the problem

of localization of human joints in images or videos, but also
as the search for a specific pose in the space of all articulated
poses. Over the years, different approaches to human pose es-
timation have been introduced. The earliest methods were typ-
ically estimating the pose of a single person in a static image
based on a representation of deformable parts [32]. Of course,
these methods are not particularly useful in many real-life sce-
narios where images contain multi-person.

In this regard, there are several approaches to estimating the
pose of multi-people[33, 34], which is more complex than the
single-person case, as the position and number of people in an
image are unknown. In our approach, we use Openpose[9], one
of the most popular bottom-up approaches, that takes, as input,
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a color image of size w × h and produces, as output, the 2D
locations of anatomical keypoints for each person in the image.
It uses a feed-forward network to simultaneously provide both
a series of 2D confidence maps of body parts positions and a se-
ries of 2D vector fields of the affinities of the parts, which code
the degree of association between the parts and then be parsed
by greedy inference to output the 2D keypoints for all people in
the image. The extracted information is subsequently used to
create a configuration of the skeleton model, with the different
number of body joints changing according to the dataset used
(in our case, we have 25 keypoints consisting of 18 body key-
points by COCO dataset [35] and 6 foot keypoints [9] ). This
approach provides reliability in identifying errors for proximity
and occlusion, ensuring accurate position estimation.

3.1.2. 3D Human Pose Estimation
To formulate CDS information, we concentrate on recon-

structing the 3D pose and implementing a 3D extractor from the
2D positions of the human joints in the RGB image emitted by
the OpenPose network, by taking into account the depth infor-
mation. When the depth image is synchronized with the RGB
image, we obtain an image RGB-D, where one can directly
extract the corresponding pose estimation in the 3D Cartesian
space for each 2D pixel (u,v). Since the conversion, we pay
attention to simultaneously accessing the color and depth val-
ues for each pixel of the input RGB-D data, keeping the data
organized, setting both resolutions to 640 × 480 and frequency
of 20Hz, to have a one-to-one correspondence depth and color
data. We address occlusion problems during 3D mapping re-
moving all those pixels without depth values (NaN) in the as-
sociated point cloud. Then, assuming that the pixels in the 2D
human joint position are mapped to the correct depth pixels, we
use the closest proximity pixels to average their values.

3.2. Human arm endpoint stiffness model
The idea of CMS and CDS is inspired by human motor con-

trol principles on the predominant use of the arm configuration
in directional adjustments of the endpoint stiffness profile, and
the synergistic effect of muscular activations, which contributes
to a coordinated modification of the endpoint stiffness in all
Cartesian directions. In [11], we propose a principally sim-
plified, and intuitive online model of the human arm endpoint

Figure 4: The geometric relationship between the human arm config-
uration and the principal axes of the endpoint stiffness ellipsoid. ~n is
perpendicular to the plane formed by ~l and ~r. ~l and ~n are parallel to
the major and minor principal axes of the endpoint stiffness ellipsoid,
respectively.

stiffness. The new model is based on the large dependency of
the shape and orientation of the stiffness ellipsoid on the arm
configuration. In fact, previous studies [36, 37] indicate that
i) the major principal axis of the arm endpoint stiffness ellipse
passes close to the hand-shoulder vector, and ii) when the arm is
extended and the hand moves further from the shoulder, the el-
lipse becomes more elongated and conversely, it becomes more
isotropic. Inspired by these findings, the new model in 3D is
constructed by the ellipsoid’s principal axes and their lengths,
namely the eigenvectors and eigenvalues of the stiffness matrix,
based on the arm configuration.

As shown in Fig. 4, we use a two-segment human arm skele-
ton structure in the 3D space. The hand-forearm and the upper
arm segments in this model permit us to form an arm triangle at
any non-singular configuration. Relying on the dominant con-
tribution of the arm configuration to the endpoint stiffness ge-
ometry, we propose to use the vector from the centre of shoulder
joint to the position of the hand (~l ∈ R3), to identify the major
principal direction of the human arm endpoint stiffness ellip-
soid. The minor principal axis direction (~n ∈ R3), instead, is
defined to be perpendicular to the arm triangle plane

~n = ~r ×~l, (1)

where ~r ∈ R3 represents the vector from the centre of shoul-
der to the centre of elbow. The remaining principal axis of the
stiffness ellipsoid, which lies on the arm triangle plane, is cal-
culated based on the orthogonality of the three principal axes.
Under the assumption that the ratio of the length of median prin-
cipal axis to the major principal axis of the stiffness ellipsoid is
inversely proportional to the distance d1 ∈ R, from the hand
position to the centre of shoulder, while the ratio of the length
of the minor principal axis to the major principal axis is propor-
tional to the distance d2 ∈ R, from the centre of the elbow to
the major principal axis, the estimated endpoint stiffness matrix
K̂c ∈ R3×3 is formulated by

K̂c = VAcc DsVT . (2)

Here, Acc ∈ R is the co-contraction activation index of human
arm muscles corresponding to CMS, while V DsVT ∈ R3×3 cor-
responding to CDS, and V ∈ R3×3 and Ds ∈ R3×3 are respec-
tively eigenvectors representing the orientation and eigenvalues
representing the shape of the stiffness ellipsoid and formulated
by:

V =

[ ~l

‖ ~l ‖
,

(~r ×~l) ×~l

‖ (~r ×~l) ×~l ‖
,
~r ×~l

‖ ~r ×~l ‖

]
, (3)

Ds =
diag(1, α1/d1, α2d2)

(1 × α1/d1 × α2d2)
1
3

, (4)

where α1 ∈ R and α2 ∈ R are subject related parameters in the
model. For the detailed explanation and further model parame-
ter identification, please refer to [11].

In most applications, the stiffness geometry (CDS) plays a
dominant role compared to its volume (CMS) [13]. Consid-
ering our learning framework is only based on vision sensors
while CMS can only be recorded by electromyography (EMG)

4



sensors, a suitable constant CMS component will be selected
according to the allowable range of translational stiffness of
robots to involve minimum prior knowledge of the tasks. Ac-
cording to the introduced model, to extract CDS information
from human demonstrations for a given task, only positional in-
formation of the shoulder, elbow and wrist is necessary which
could be collected even from an offline video. The CDS infor-
mation can be extracted followed by a post-processing of the
collected 3D position data according to the proposed model.

3.3. Skills transfer by GMM/GMR

In this part, we first give a recap of GMM/GMR algorithm
and then introduce how to apply it to encode the CDS profiles.
The Gaussian mixture distribution can be written as a linear
superposition of Gaussians in the form

p(ξ) =

K∑
k=1

πkN(ξ|µk,Σk), (5)

where ξ ∈ Rd and p(ξ) ∈ R, respectively, represent the vector of
variables and joint probability distribution. πk ∈ R, µk ∈ Rd and
Σk ∈ Rd×d represent the prior probability, mean and covariance
of the k-th Gaussian component respectively, while K ∈ Z+ is
the total number of Gaussian components.

The goal of the offline training phase is to maximize the log
likelihood function Eq. (6) with respect to the model parameters
(πk, µk and Σk), which results in an EM procedure (E-step in
(7) and M-step in (8) and (9)) to iteratively update the model
parameters until convergence

ln p([ξ1, ξ2, . . . , ξN]) =

N∑
n=1

ln
{ K∑

k=1

πkN(ξn|µk,Σk)
}
, (6)

γn,k =
πkN(ξn|µk,Σk)∑K
j=1 π jN(ξn|µ j,Σ j)

, (7)

πnew
k =

∑N
n=1 γn,k

N
, µnew

k =

∑N
n=1 γn,kξn∑N

n=1 γn,k
, (8)

Σnew
k =

∑N
n=1 γn,k(ξn − µ

new
k )(ξn − µ

new
k )T∑N

n=1 γn,k
. (9)

Here, N ∈ Z+ is the total number of data points in a training
dataset and ξn ∈ Rd is the n-th training data point.

After modeling the joint probability distribution of the train-
ing data offline, to derive GMR, we use superscripts I and O to
denote the dimensions of the input and output variables. At it-
eration n, ηIn and ηOn represent the input and output variables,
respectively. With this notation, the data point ηn ∈ Rd, mean
µk and covariance Σk of the k-th Gaussian component can be
decomposed as

ηn =

[
ηIn
ηOn

]
,µk =

[
µIk
µOk

]
,Σk =

[
ΣIIk ΣIOk
ΣOIk ΣOOk

]
. (10)

In the online reproduction phase, the best estimation of out-
put η̂On for a given input ηIn is the mean µ̂n of the conditional

probability distribution η̂On |η
I
n ∼ N(µ̂n, Σ̂n), with parameters

which was reported in [38]:

µ̂n = E(η̂On |η
I
n ) =

K∑
k=1

hk(ηIn )µk(ηIn ), (11)

where

hk(ηIn ) =
πkN(ηIn |µ

I
k ,Σ

II
k )∑K

j=1 π jN(ηIn |µIj ,Σ
II
j )

, (12)

µk(ηIn ) = µOk + ΣOIk (ΣIIk )−1(ηIn − µ
I
k ). (13)

In this framework, only the mean value is used although
covariance can be derived as well. Human arm endpoint pose
and CDS are respectively considered as input and output of the
GMM. Pose data can be represented in vector form, whereas
since the CDS profile is a series of Symmetric Positive Defi-
nite (SPD) matrices, it’s not possible to apply GMM to encode
it directly considering GMM can only deal with independent
variables in vector form. In [39], two different ways to repre-
sent stiffness matrix are provided. In the following, Cholesky
decomposition is used to decompose CDS into the product of a
lower triangular matrix and its transpose, and then the non-zero
elements are arranged in the vector form.

Kdemo = LLT , (14)

where Kdemo ∈ R3×3 is the demonstrated stiffness by human and
L ∈ R3×3 is the lower triangular matrix after Cholesky decom-
position. The format of L is as following:

L =

l11 0 0
l21 l22 0
l31 l32 l33

 , (15)

where l11, l22 and l33 are all positive values. Rearrange the non-
zero and independent elements in L into vector form:

L̂ =
[
l11 l21 l22 l31 l32 l33

]T
. (16)

After the above process of demonstrated stiffness matrices, a se-
ries of L̂ is obtained, which can be encoded directly by GMM,
the offline training phase takes the compact pose and L̂ as the
vector of variables ξ. Subsequently, the GMR reproduces the
CDS vector online by taking robot end-effector pose as input.
The CDS matrices can be constructed followed by a reverse
process of Cholesky decomposition and in this way, SPD prop-
erty of stiffness matrices is guaranteed.

4. Experiments and Results

As depicted in Fig. 1, two subjects used a two-person cross
cut saw to perform the wood sawing task. The challenges of this
dynamic manipulation task are proper motion and impedance
coordination (for interaction control and leader/follower role
allocation) of the two subjects, to comply with external distur-
bances and maintain contact stability during the task. In the fol-
lowing, based on the data collected through OpenPose from hu-
man demonstration videos and CDS construction method pro-
posed in Sec. 3.2, the motor behaviour of the two subjects in
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Figure 5: Subplots from left to right respectively correspond to x, y and z positions in the camera frame ΣC of keypoints of shoulder (blue), elbow
(red) and wrist (purple) of subject A’s right arm extracted from the offline video. Results of subject B, which are similar, are not reported to avoid
duplication.

the experiment is first analyzed. Furthermore, the sawing task-
related dynamic manipulation skill, extracted from human mo-
tions, is transferred to robots through GMM/GMR. The pro-
posed skills learning framework is then validated by comparing
to different stiffness parameter settings.

4.1. Human demonstration learning and analysis

To learn human arm cooperative dynamic manipulation skills
from videos, first, an RGB-D camera was used to record the
process and save it as an offline video. After processing the of-
fline video as explained in Sec. 3.1 by using OpenPose, the raw
3D position information of keypoints distributed on the skeleton
model of the two subjects can be collected. Here, only the in-
formation of keypoints on human right arm was used. The raw
shoulder (blue), elbow (red) and wrist (purple) position infor-
mation from subject A are illustrated in Fig. 5. As can be seen
in these plots, the main position variation happened in elbow
and wrist keypoints and in y direction in camera local frame
ΣC , which was the sawing direction.

According to the raw human arm keypoints position data
extracted from the offline video, by adopting the method pro-
posed in Sec. 3.2, the behaviours of CDS of the two subjects
during the cooperative sawing task were constructed. These are
depicted in Fig. 6a, in which the 3D stiffness ellipsoids are pro-
jected onto y − z plane due to the fact that the movement of the
sawing task was constrained in y − z plane. More importantly,
we consider that the task-related CDS is position-dependent and
does not depend on the execution time. To encode the CDS in-
formation extracted from human demonstrations, to reproduce
and to generalize it online, the widely used imitation learning
algorithm, GMM/GMR was used, which was explained in de-
tail in Sec. 3.3. By employing the processed data in GMM
model training (for both subjects, y and z positions of the sub-
ject’s wrist as input vector, the corresponding CDS matrix as
the output), the priors, mean, and covariance for each Gaussian
element were converged. To eliminate the effects of different
sawing speed and jitter observed in the raw data collected from
the offline video as shown in Fig. 5, a resampling procedure was
performed to smooth the raw data and align the length of sam-
ples in each demonstration. Fig. 6b illustrates the online CDS

Follower Leader

Intermediate

FollowerLeader

Intermediate

(a) CDS demos for GMM training. (b) CDS regression from GMR.

Figure 6: The GMM (green) encoded, and the GMR (blue) decoded
CDS profiles of subjects A and B, considering the task plane positions
(y and z axis) as the input.

results, which were reproduced via GMR, the input data was
chosen from the demonstration.

An important observation is the change of the stiffness el-
lipsoids’ geometries towards the end of each sawing action (i.e.,
pulling or pushing) for subjects A and B in Fig. 6a, which re-
veals the leader-follower relationship of the involved subjects.
In more details, the leading role is played by the subject with
more elongated stiffness in the direction of sawing (with an
extended arm that contributes to a larger CDS axis), since it
can generate larger reactive force under the same tracking er-
ror due to the impedance control law. On the other hand, the
follower has a more compliant profile in that instant, facili-
tating the leader’s role in pulling the saw to perform the cut-
ting. Hence, such a leader-follower relation, which is repeated
in each task cycle, can be easily implemented by reproducing
the CDS profiles by the robots.

To make a deeper analysis of the CDS variations extracted
from human data, the reproduced CDS profiles of subjects A
and B were projected into three orthogonal directions x, y and
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Figure 7: The projected CDS profiles of the two subjects in x, y and z axes, in one leading (subject B)-following (subject A) phase.

z, as plotted in Fig. 7. It can be seen that, compared with the
stiffness profile in y direction, the stiffness in x and z directions
didn’t show obvious variations, coinciding with the fact that the
main task direction is along the y (sawing) axis. Furthermore,
the stiffness in x direction during the whole process was rela-
tively lower than the stiffness in the other two directions, while
the stiffness in z direction was kept at a relatively high level dur-
ing the whole process. The reasons behind these observations
are the following. Considering that the movement in x direction
was severely constrained during the sawing action, a compliant
behaviour was achieved to avoid the generation of large reac-
tive forces. In z direction instead, the descending movement
of the saw was blocked by the wood, however, the ascending
movements could cause an instability. A higher stiffness value
in z direction can serve to maintain the stability of the saw dur-
ing such a highly dynamic manipulation task, whose effect is
demonstrated in the following experiments on two robots.

4.2. Robots’ performance evaluation and validation

To evaluate the potential of transferring cooperative dynamic
manipulation skills from human demonstration videos to robots,
we designed two sets of experiments: one to evaluate the con-
tribution of stiffness in z direction to the task stability, while
the other, to evaluate the contribution of stiffness in y direc-
tion (i.e., the main task direction) to the task performance and
leader-follower relationship.

The robotic experimental setup is illustrated at the bottom
of Fig. 1. Two Franka Emika Panda robots were deployed in
a center-symmetrical arrangement. Each side of the saw was
grasped by the Pisa/IIT SoftHand, which was rigidly connected
to each robot’s end-effector. Both robots were controlled under
a Cartesian impedance controller, based on the control frame-
work presented in [40]. The sawing task setup was similar to
the one described in human demonstrations.

Our first observation from human demonstrations revealed
that a high stiffness profile in z direction can help to preserve
the stability of the collaborative task. Hence, we performed a
comparative experiment to validate this aspect. The experiment
was conducted in different constant stiffness (0 and 800 N/m)
and pushing force (-4, -8 and -10 N) settings in the z-direction,
for both robots. The stiffness value in the sawing direction (y)
was set to 800 N/m and kept fixed for both robots, to implement

a trade off between the cutting force generation and robot com-
pliance. This is because, a very compliant robot cannot produce
the necessary reactive forces to overcome the friction between
the saw blade and the surface, while a stiff profile will result in
a non-harmonic collaborative action, since any possible trajec-
tory mismatch can result in opposing forces between the two
robots. Finally, since the sawing movement in x direction was
fully constrained, the stiffness value for both robots was set to
zero to achieve a very complaint behaviour.

Fig. 8 illustrates the results of the tracking error (E) and the
reactive forces (F) in z direction, while performing the sawing
task under the different stiffness and forces conditions. As the
desired force increased in z direction, the tracking errors be-

Figure 8: The top subplot illustrates that, when setting zero stiffness
in z direction, the tracking error Ez becomes larger as the desired force
Fz increases. In our experiment when Fz = −10N, the saw rotated
significantly due to the large Ez and the stability was compromised.
However, when setting the stiffness in z direction to 800 N/m, Ez sig-
nificantly decreased and instabilities were never observed. The bottom
subplot shows the force tracking behaviors for the different settings.
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came larger and larger. In particular, when the desired force in
z direction was set to −10N, due to a large error in z direction,
the saw rotated significantly and the sawing task had to be in-
terrupted due to this unstable behaviour. However, when the
stiffness in z direction was set to 800 N/m, the desired force was
still kept at −10N, and the the tracking performance showed
the maximum tracking error of 0.02m (purple dashed line in
Fig. 8), in comparison to the with zero stiffness case, with the
maximum tracking error of 0.08m (purple solid line) in stable
conditions. With reference to the force tracking behaviour in z
direction, as shown at the bottom of Fig. 8, it could be observed
that the sawing force was much more stable with a high stiffness
value. We can conclude that the force tracking behaviour with
high stiffness in z direction also outperformed the zero stiffness
case.

In the above set of experiments, constant stiffness values
were set for both robots, leading to ‘non-ideal’ collaborative
behaviors for Robots A and B, especially in y direction. Fig. 9
shows the tracking error (E) and the reactive forces (F) in y
direction for Robots A (red line) and B (dashed line) under the
same constant stiffness condition (i.e., same condition as the
dashed purple line in Fig. 8). The tracking error and the re-
action forces applied by Robot A were always slightly higher
than Robot B in certain moments. This difference was probably
caused by the fact that, after we setup the robot experiment sce-
nario, the goal position of the trajectory planner for each robot
was decided by reading the current pose of robot’s end-effector,
in which there was minor uncertainty. The resulted larger re-
active force from Robot A whenever it is pulling or pushing
therefore led the leader/follower role allocation issue. For in-
stance, when Robot B is pulling while Robot A is pushing, it
can be observed in Fig. 9 that the reactive force from Robot A
was still larger than Robot B which will cause discontinuity or
even stability issues if the tracking error in z direction is large
enough in the sawing task.

To confront this issue and based on the observations of the
leader-follower relationship in human experiments, we deployed

=800yK

=800yK

Robot A is pulling,

Robot B is pushing

Robot A is pushing,

Robot B is pulling

Figure 9: Similar constant stiffness values in y direction for the two
robots resulted in a similar tracking error (E) and the reaction forces,
as a consequence. Hence, the leader-follower relation in this stiffness
setting was far from being ideal. As observed in the plot, whenever
Robot A was pulling or pushing, its reactive force was always larger
than that from Robot B, which may cause discontinuity or even insta-
bility in the sawing motion when Robot A was pushing while Robot B
was pulling since the pushing force was larger than the pulling force.

Figure 10: Learned coordinated stiffness profiles in y direction from
two subjects, taking y and z positions as input.

(a) Tracking error.

Robot A is pulling,

Robot B is pushing

Robot A is pushing,

Robot B is pulling

Robot A is pulling,

Robot B is pushing

Robot A is pushing,

Robot B is pulling

Robot A is the leader,

Robot B is the follower

Robot A is the follower,

Robot B is the leader

(b) Reactive forces.

Figure 11: When employing the coordinated stiffness profiles learned
from humans in y direction, similar tracking error in y direction Ey

(on the top) for Robot A and B led to different reactive forces (at the
bottom), resulting in an autonomous leader/follower role assignment
and switching during the sawing task. The tracking error in z direction
Ez by using the learnt CDS patterns (within 0.01m) was also smaller
than that (around 0.02m) by using the same constant stiffness.

the stiffness profile (encoded via CDS) in y direction into the
two robots’ sawing process. This stiffness profile was learnt
from human demonstrations, as illustrated in Fig. 10. The re-
sulting tracking errors and the reactive forces for the two robots
are illustrated in Fig. 11a and Fig. 11b respectively. In the be-
ginning of the experiment, Robot A had a larger stiffness profile
in comparison with Robot B, and generated necessary pulling
forces to cut the wood. Robot B had more compliant behaviour
on the other hand facilitated this action and did not contribute
to creating larger pushing forces. Towards the end of this phase,
the stiffness trends of the two robots changed, and hence their
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contribution to pulling and pushing actions, which determine
the role of each robot in leading or following the collaborative
phases. In fact, the transferring of the learnt CDS patterns in y
direction to the robots not only contributed to a better task per-
formance in comparison to the constant stiffness case (judged
by the tracking error in z direction, the former is within 0.01m
shown in Fig. 11a while the latter is around 0.02m depicted in
Fig. 8), but also achieved an effective role allocation and control
sharing among the two.

5. Discussions and Conclusions

In this work, the SPD stiffness matrices are pre-processed
and converted into vectors by using Cholesky decomposition,
and then the traditional Euclidean GMM/GMR is adopted to
encode and reproduce human demonstrated stiffness profiles.
It was shown in [39, 41] that Euclidean GMM/GMR with a
Cholesky decomposition could lead to inconsistent SPD matri-
ces during extrapolation. In the sawing experiment, it didn’t
exploit the extrapolation ability of GMM/GMR too much, also
from Fig. 6b, it can be seen that the reproduced stiffness profile
is consistent with the task requirements. However, if the pro-
posed framework used in tasks that exploit extrapolation ability
of GMM/GMR a lot, then the consistency problem has to be
taken into account and the representation of stiffness matrices
in GMM/GMR algorithms has to be based on Riemannian ge-
ometry.

In the sawing experiment, although the demonstrated stiff-
ness is in 3D, only the value of stiffness ellipsoid along y di-
rection was transferred to robots. For x direction, the saw is
totally constrained by the wood, so it is reasonable to keep it as
completely compliant. For z direction, the stiffness in this di-
rection keeps stability during sawing, due to the limitations of
human arm itself, it can’t always keep high stiffness in this di-
rection. However, for robots, their behavior should not be lim-
ited because of this, to improve their performance in the sawing
experiment, we set the stiffness is always high in z direction.

In summary, in this paper, we proposed a framework for
learning cooperative dynamic manipulation skills from human
demonstration videos. Our motivation was to extend the con-
cept of LfD to dynamic coordinates, benefiting from easily pro-
ducible, large, and diverse human demonstration datasets. We
demonstrated the proposed method in a collaborative sawing
task with leader-follower structure, considering environmental
constraints and dynamic uncertainties. The experimental setup
included two Panda robots, which replicated the leader-follower
roles and the impedance profiles extracted from a two-persons
sawing video. The aim was to tune robot impedance in such a
highly coupled task not only to accomplish it but also to respond
to possible trajectory mismatches with low interaction forces.
Naturally, the hands’ passive impedance behaviour also con-
tributes to this, however, since robot compliance is higher, the
interaction is majorly dominated by the arm impedance. These
results revealed the potential of our approach in transferring of
the key action principles from human demonstration videos to
robots in dynamic industrial tasks.
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