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A New Methodology to Study the Pantograph-Catenary Dynamics in 

Curved Railway Tracks 

The pantograph-catenary system is responsible to provide an uninterrupted energy 

supply to power electric traction railway vehicles. The analysis of the dynamic 

behaviour of the catenary and pantograph, as well as its interaction, has been object 

of active research to improve the energy collection quality. This work proposes an 

approach for the fully three-dimensional dynamic analysis of pantograph-catenary 

interaction in general railway tracks including curves. Both the catenary model and 

the trajectory of the pantograph base are defined with respect to the track geometry 

considering the conventional definition used by the rail industry, i.e., curvature, 

cross level and vertical position of the track. The pantograph is modelled using a 

3D multibody formulation being its base motion constrained to follow the 

generalized trajectory from the top of a railway vehicle. The finite element method 

is used to model the catenary. A co-simulation procedure is set to allow for the 

coupled dynamics of the two systems. In order to demonstrate the methodology, 

setting up models for curved catenaries, analyse their modelling implications and 

highlight applicability, realistic case studies of pantograph-catenary interaction in 

high-speed rail operations are presented and discussed. In the process there are 

found significant differences on the dynamic response of the catenary in curved 

and straight tracks. 

Keywords: Railway dynamics, 3D Pantograph-Catenary interaction, Co-

Simulation, Curved tracks, Contact mechanics. 

1 Introduction 

The modern railway systems rely on the cost-effectiveness and reliability of electrical 

traction vehicles where the pantograph–catenary interface, represented in Figure 1, 

ensures the supply of electrical energy to power the vehicles motors. Thus, it is not only 

of fundamental importance that this energy supply remains uninterrupted, but also that its 

electro-mechanical wear is as reduced as possible.  
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Figure 1: Railway energy collecting system composed of a catenary and a pantograph. 

The over-head contact line, also known simply as catenary, is composed of a set of 

suspended cable wires and its supporting elements that run along the railway track and 

carry the electrical current, which in turn is collected by the pantograph mounted on the 

top of the railway vehicle. The energy collection is assured by the sliding contact between 

the pantograph and the catenary contact wire. The interaction contact force developed 

must fulfil tight operational requirements that ensure that a reliable and efficient energy 

collection is achieved. Operating the pantograph-catenary interface at a low average 

contact force increases the susceptibility to contact loss incidents with consequent arcing, 

which in turn leads to high electro-mechanical wear and the deterioration of the functional 

conditions of both the catenary and the pantograph. High contact forces, in the other hand, 

results in mechanical wear of the contact elements increasing the frequency of the 

maintenance cycles and risk of failure [1]. Certainly, the present need to increase the rail 

network capacity and its interoperability puts extra demands on these systems, [2,3], for 

which the energy collection ability remains a limiting factor of the current railway 

vehicles operational speeds [4,5].  

The dynamic analysis of the pantograph and catenary, as well as their interaction, 

is object of active research. The development of specialized numerical applications for 

the dynamic analysis of pantograph-catenary interaction plays a significant role in the 

analysis and design of railway network assets. An extensive amount of publications on 

the development and application of computational methods and applications in 

pantograph-interaction can be found in the literature, addressing analysis of multiple 

pantograph operation [6–8], analysis of critical catenary sections [9–11], and optimisation 

of pantograph and catenary designs [12–14] among other issues of importance. The 

perturbation of the quality of contact in the pantograph-catenary interface due to 

aerodynamics effects, vehicle vibration and catenary irregularities [15–19] are also 

considered in the literature. The hardware-in-the-loop hybrid simulations of pantograph-

catenary interaction is also another approach to find improved dynamic performance for 

the two systems [20,21]. Also, research on the identification and influence of catenary 
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damping, shown as very important for the interaction quality [22], was performed to 

improve catenary models [23]. The pantograph-catenary benchmarks, [24,25], and its 

associated references portrait the state-of-the-art of existing numerical analysis tools, 

developed by world leading research institutions. Notice that in all applications, methods 

or case-studies considered in previous publications on the topic of pantograph-catenary 

interaction modelling and analysis, most catenary models are exclusively set in straight 

railway tracks. The work by Teichelmann et al. [26] presents an application with a curved 

catenary, but the method on how to build the model is not presented. The employment of 

catenary geometries consistent with general track geometries, i.e., catenaries with 

curvatures, is addressed in PantoCat statement of method [27], however this capability is 

not fully demonstrated. In [28], M. Tur et al. present a methodology for computing the 

initial configuration of a railway catenary, including catenaries in curved tracks. Also, A. 

Rønnquist et al. [29] present a modal analysis of catenaries set in general paths and P. 

Nåvik et al. [30] present the first results obtained from numerical simulations in 

comparison with field measurements. However, a detailed methodology for the 

construction of catenary models set in general track trajectories, its modelling 

implications and the interaction with the pantographs are not addressed in any of the 

previous works [26–30]. 

The work presented here purposes an approach for the numerical dynamic analysis 

of pantograph-catenary interaction in curved tracks or for that matter in any generalized 

track trajectory. Here both the catenary model and the trajectory path of the pantograph 

are consistent with the general geometry, which is defined as parametric curve with an 

associated local reference frame that defines the orientation of the track layout. The track 

geometry is obtained using the standard information required for railway vehicle 

dynamics applications, i.e., curvature, cross level and vertical profile as function of the 

track length. The finite element method is used to model and evaluate the dynamic 

behaviour of a catenary system following the methodology presented in previous works 

[31]. To cope with the general geometry of the track and the path of its base, the 

pantograph model is developed using a spatial multibody dynamics formulation [32]. The 

pantograph base motion, which is fixed to the railway vehicle roof, is defined by a 

prescribed kinematic motion constraint [33,34]. As both pantograph and catenary use 

different formulations, their interaction is established through a co-simulation procedure 

where a penalty method is used to evaluate the contact force between the pantograph and 

the catenary [35]. To demonstrate the proposed procedure, a detailed analysis of a 



5 

 

pantograph-catenary interaction is presented in this work for catenary models inserted in 

tracks with a general geometry, including different curve radii.   

2 Track Spatial Definition 

The catenary layout is defined in relation to the track travel length, or track arc-length, 

and its running surface. To define a catenary system in space and to place it correctly in 

relation to the track, a spatial reference is required. For a catenary on a straight track this 

process is straight forward. However, when dealing with a generalised track trajectory a 

more systematic approach is required to account for the track curvature and cross level, 

which influence the orientation of the running surface of the track. Also, the trajectory of 

the pantograph is defined by the position of the vehicle roof top relative to the track 

surface, which enforces that a common geometric framework is used for both systems. 

The track geometric description commonly used in railway vehicle dynamics studies, is 

also used here as such a common framework.   

The railway track geometry is described as a function of its travel length, by the 

curvature, cross level and elevation [36]. Though this description defines the track 

geometry along its travel length, it does not provide an absolute spatial frame with respect 

to which position other systems. To fulfil this need, a reference moving frame of the track 

is established as a function of the travel length [37,38]. For a given travelled length s, the 

position of the moving frame origin tr  is set such way that t  is tangent to the track 

centreline, t  is transversal to the track and tangent to the running surfaces of the rails 

while  t  is normal to the track running surface, as shown in Figure 2. 

 

Figure 2: Representation of the track moving frame: (a) As a parametric curve relative to the track length; 

(b) In relation to the track running surface. 

The track centreline spatial curve is obtained by performing the geometric 

reconstruction of the track geometry using the curvature and elevation data of the selected 

track [39], which is the same data that is used by the rail industry to represent the track 
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design. With the track centreline curve and the track cross level and corresponding cant 

angle, φ, a local moving frame of reference is built along the track using a methodology 

based on the evaluation and rotation of Frenet-Serret frame, [34,40]. For the purpose of 

computational applications, the track centreline curve and the moving frame unit vectors, 

t
, t

 and  t
, are discretized in particular locations, such way that, by interpolation, the 

complete track geometry can be used  

3 Catenary Model 

The catenary system is modelled in this work using a finite element formulation [41]. The 

geometric description of the catenary, which is defined in relation to the track running 

surface, is the basis of the construction of the finite element model used here. Therefore, 

the catenary layout along the track and its geometric spatial description are presented first. 

Afterwards, the equations of motion for the finite element model are detailed along with 

the catenary initialization procedure, i.e., the methodology that allows positioning the 

finite element mesh nodes in such a way that the catenary is in static equilibrium when 

the dynamic analysis starts. 

3.1 Catenary Layout  

A typical catenary structure is composed by two main suspended cable wires, the contact 

wire and the messenger wire, which are set in tension along the track by mechanical 

tensioning devices mounted at the end poles of each catenary section. Due to physical and 

operational reasons, each section has a limited length. Hence the continuity of the contact 

wire, as seen by the pantograph contact strip, is assured by overlapping catenary sections 

at its ends. Both the contact and messenger wires are periodically supported by 

cantilevered consoles, known as cantilevers, mounted in poles, as represented in Figure 

3. In between each pole, the contact wire is supported, in a discrete manner, by dropper 

cables that hang from the messenger wire. Besides supporting the contact wire, the 

droppers are responsible to minimize its sag and to keep its vertical elasticity as uniform 

as possible along its span. 
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Figure 3: Catenary structure and its main components: (a) Cantilever; (b) Longitudinal and top view. 

To avoid grooving and ensure, as much as possible, a uniform wear of the 

pantograph contact strip, an alternating lateral offset of the contact wire, commonly 

known as stagger, is imposed at each cantilever. The stagger of the contact wire is 

provided by a steady arm, which is fixed on the cantilever by a pin joint and designed to 

allow the vertical movement of the contact wire to provide clearance for the pantograph 

passage. To provide clearance for the pantograph passage and to allow vertical movement 

of the contact wire, its supporting connection to the cantilever is achieved by a steady 

arm, which is fixed on the cantilever by a pin joint. The offset is set in relation to the 

nominal trajectory of the pantograph contact strip, which in straight tracks is just a straight 

line located at a given height above track centreline. Generally, the offsets are determined 

in order to keep the span lengths as long as possible, to reduce construction costs, while 

still ensuring that the contact wire deflection, under wind conditions, never exceeds a 

permissible lateral displacement, eperm, such that the contact wire is always within the 

usable length of the contact strip [42]. In straight lines and very large radius curves this 

results in an alternating offset pattern (±b), or zig-zag, as represented in Figure 4 (a). Note 

that the lateral forces, 
spf , at the contact wire supports, which result from the imposed 

change of direction of the tensioned contact wire, have defined maximum and minimum 

tolerances [43]. Also, a minimum lateral sweep of the contact wire must be ensured to 

avoid grooving. As a result of these constraints, as the track curvature increases, a 

reduction of the offset at the inner side of the curve is required, thus forcing b1≠b2, as 

shown in Figure 4 (c). 
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Figure 4: Contact wire lateral position on: (a) Straight track, (b) Large radius curves; (c) Small radius 

curves. 

For small radius curves the offset is placed always on the outside side of the curve, i.e., 

(+b1,+b1). Eventually, for even smaller radius it is not possible to use suitable offsets 

while maintaining the span length and shorter spans need to be used. Moreover, note that 

direction of the lateral forces at the steady arm support result from the imposed stagger 

and can either act away or towards the pole which determine the position and orientation 

of the steady arm in a pull-off or push-off configuration. 

When designing a catenary system, the positioning of the offsets along each 

cantilever must take into consideration the catenary design, specified operational 

requirements set by the infrastructure owners and by standards [44]. This results in a set 

of catenary layout rules that define the allowed span lengths and correspondent staggering 

for defined ranges of track curvature, which can be specific to a given wind region. The 

determination of these design rules can follow different approaches being its detailed 

discussion beyond the scope of this work [45]. For catenary systems belonging to 

different railway networks in current operation, Table 1 presents a summary of the 

maximum allowed span lengths, lmax, and correspondent stagger, (b1,b2), set for different 

track curvatures, on a given wind region. Due to confidentiality, the railway network 

remains unidentified.  
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Catenary A B C 

Operating Speed [km/h] 160 200 300 

Curve Radius [m] 
lmax 

[m] 

b1 

[mm] 

b2 

[mm] 

lmax 

[m] 

b1 

[mm] 

b2 

[mm] 

lmax 

[m] 

b1 

[mm] 

b2 

[mm] 

∞ 80 +400 -400 63 +200 -200 65 +300 -300 

10000 80 +400 -300 63 +200 -200 65 +300 -190 

7000 76 +400 -330 63 +240 -50 65 +300 -150 

5000 76 +400 +120 63 +240 -50 65 +300 -90 

4000 80 +400 +150 63 +240 0 65 +300 -40 

3000 80 +400 +310 63 +240 +90 65 +300 +50 

2000 80 +400 +400 63 +240 +240 65 +300 +230 

1000 67 +400 +400 54 +240 +240 63 +300 +300 

Table 1: Catenary span length and stagger set in relation to the track curvature in different catenary 

systems. 

Note that there are different catenary designs [31,43], with slightly different or more 

accentuated topological arrangements such as the stich-wire and compound catenaries. 

However, simple alternatives are more extensively used. For the sake of simplicity, the 

approach proposed here is applied for the setup of catenary models of the simple type. 

Nevertheless, this methodology can be applied to any type of catenary. 

3.2 Catenary Model Geometry 

The finite element model of the catenary is defined firstly by setting the geometric 

positions of the catenary subsystems made by the contact and messenger wire points at 

the cantilever and at each dropper connection. With reference to Figure 5, at each 

cantilever, the positions of the contact wire at the steady arm, cwr , and the messenger wire 

at its cantilever support, mwr , are determined as: 

 
t

cw t t cw

cw

mw cw mw

r = r + A s

r = r + s
  (1) 

where tr  is the position vector of the track centreline and tA  is the rotation matrix 

associated to the local reference frame, ( ), ,  
t

, which defines the track running surface 

orientation. These quantities are obtained by the evaluation of the track moving frame, 

described in Section 2, at the track length in which the pole is mounted. Vectors t
cws  and 

cw

mws  are, respectively, the position of the contact wire in respect to the local reference 

frame ( ), ,  
t
 and the position of the messenger wire relation to the contact wire 
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position, 
cwr , evaluated as: 

 
 

 

0

0 0

 = 

=

Tt

cw cw

Tcw

mw e

b h

h

s

s
  (2) 

where the parameters b, hcw and he are respectively, the contact wire lateral offset relative 

to the track centreline, the nominal contact wire height relative to the running surface and 

the encumbrance of the cantilever which sets the distance between the contact and 

messenger wire. 

 

Figure 5: Representation of the contact and messenger wire position on the cantilever, in a curved track: 

(a) pull-off configuration; (b) push-off configuration. 

At each span, the position of the contact and messenger wires at the dropper 

connections is defined by the dropper spacings, ad, the dropper lengths, ld, and the 

appointed contact wire pre-sag set at for each dropper, sd. In practice these parameters are 

set in pre-calculated span tables for a collection of normalised span lengths, lspan, of a 

particular catenary design, as represented in Figure 6. By superimposing these span 

geometry parameters with the already determined contact and messenger wire position at 

the cantilever, cwr  and mwr , the position of the contact and messenger wires at each 

dropper j, are defined as: 

 
ˆ [0 0 ]

[0 0 ]

 
= + + −  

 

= +


j

j i j j Tcw
cw cw d cw d

span

j j j T

mw cw d

l
a s

l

l

d r u

d d

  (3) 

where 
1 += −i i

cw cw cwl r r  is the length between the subsequent cantilever contact wire 
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positions and ( )1ˆ /+= −i i

cw cw cw cwlu r r  is the corresponding versor.  

 

Figure 6: Catenary span geometric parameters. 

3.3 Catenary Finite Element Model 

The motion of the catenary is characterized by small rotation and small deformations 

where the only nonlinear effect is the dropper slacking resulting from the pantograph 

passage. The constant axial tensioning of the contact and messenger wires should also not 

be neglected. Therefore, the catenary is here modelled with linear finite elements where 

dropper slacking compensating forces are added, such that the dynamic equilibrium 

equation is assembled as: 

 + + + ++ + =t t t t t t t tMa C v K d f    (4) 

where M, C and K are the catenary finite element global mass, damping and stiffness 

matrices. At time t+∆t, the accelerations, velocities and displacements vector are 

represented respectively as a, v and d while the sum of all external applied forces is 

depicted by vector f. All catenary elements are modelled using two-node Euler–Bernoulli 

beam elements [41], with the exception of the messenger wire cantilever support which 

is modelled as an equivalent three dimensional spring-damper element. The mass of the 

clamps and claws, present on the catenary structure to join its components, are modelled 

as lumped masses. To represent the stress stiffening of the catenary structure due to the 

tension stress state caused by tensioning the cable wires the stiffness matrix of the beam 

element i used for the contact and messenger wire is evaluated as:    

 = +e e e

i L GFK K K   (5) 

in which e

LK  is the linear Euler-Bernoulli beam element stiffness matrix, F is the axial 

tension and e

GK  is the element geometric matrix. Proportional damping, also known as 

Rayleigh damping  [46], is used to evaluate each beam finite element damping matrix 
e

C  

such that: 
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  e e e e e
C = Μ + Κ   (6) 

being  e
 and  e  the mass and stiffness proportionality factors set for each type of 

catenary component. Alternatively, the same proportionality factors   and   are used 

for all structural elements. For a time, t+Δt the force vector f t+Δt is evaluated as: 

 
+ + += + + +g t c d

t t t t t tf f f f f   (7) 

where vector g
f  contains the gravitational forces and t

f  is made of the forces responsible 

for tensioning the wires individually applied at each tensioned element as pre-stress. 

Vector 
+

c

t tf  and 
+

d

t tf  are evaluated each time t+Δt and represent the equivalent contact 

forces and moments applied at the appropriate nodes of the contact wire element and the 

dropper slacking compensating forces evaluated as:  

 ( )+ +=d e e

t t d d t t
i

i

f B K d   (8) 

where for any dropper i that is slack, e

dK  is its stiffness matrix and +

e

t td  is a close 

prediction of its nodal displacements. The Boolean matrix 
dB  simply maps the local 

coordinates of the dropper element into the global nodal coordinates of the model. At 

each evaluated time t+Δt, the dropper slacking compensating forces are evaluated 

iteratively with equation (4) until convergence is reached, such that + +− t t t t dd d . 

Here,  d  is a defined tolerance and vector t t+d  denotes the displacement vector of the 

last iterative evaluation of equation (4). Vector t t+d  refers to the predicted nodal 

displacements that are either taken from the previous iteration or , in case of being the 

first iteration, correspond to the previous time step solution. The finite element mesh of 

the catenary is constructed following closely the catenary geometry established in Section 

3.2, one beam element is used for each dropper and steady arm and, at least, 6 elements 

between droppers are used to define the contact and messenger wires. The model is 

constrained by pinned points at the ends of the contact and messenger wires, at the steady 

arm on the cantilever side and at the end of the cantilever messenger wire support.  

3.4 Catenary Finite Element Model Initialization 

The catenary initialization corresponds to the procedure set to determine the undeformed 

mesh of the model that upon being statically loaded by the gravitational and axial tension 

loads exhibit a correct static deformed shape, with special attention to the contact wire 
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position along the track and its sag. In reality, a similar problem exits when mounting a 

catenary system on track where, after the first mounting stage, the catenary must be 

adjusted to fit all geometric specifications. These adjustments are generally comprised on 

regulating the dropper lengths and the steady arm position at the cantilever. In analogy to 

this procedure the catenary initialization is formulated here as a minimisation problem, to 

be solved using a classical gradient based optimisation procedure [47]. Here the 

minimization problem is defined as:  

 

 m m

1

1 2

0 0 0

min ( )

subject to: , ,  ... ,

 
− 

 

 =  


m

S

cw cw

ml l l

d x d

x

  (9) 

where the initial dropper lengths, l0, are set as design variables used to construct the 

catenary model. The evaluation of the fitness function implies the static analysis of the 

generated finite element mesh. The deviations between the deformed contact wire 

positions at the droppers, S

cwd , and their nominal positions, cwd , are evaluated. The 

minimisation problem is solved iteratively for each span where also pinned point 

constraints are added on the contact and messenger wire cantilever supports, as 

represented in Figure 7 (a). After the minimisation problem being solved, these 

constraints are released and substituted by pre-stress forces imposed on the messenger 

wire support element and the steady arm element. At the contact wire support, the 

solicitation on each constraint is decomposed on a lateral offset force, 
latf , that results 

from the imposed stagger and a vertical force, 
zf , resulting from a residual support of the 

contact wire weight. These forces are not only used to calculate the pre-stress force to be 

applied on the equivalent steady arm beam element, psf , but are also used to set its 

orientation, as represented on Figure 7 (b).   

 

  Figure 7: (a) Representation of the deformed catenary span resulting from the solution of the  

minimisation problem; (b) Representation of the steady-arm pre-stress forces and their orientation.  

4 Pantograph Model 
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A pantograph is a multibody system that can be modelled as such, as seen in Figure 8 (a) 

or by a lumped mass representation, as observed in in Figure 8 (b). When modelled as a 

lumped mass, the pantograph model may have 2 masses, as in the case of low or medium 

train speed operations, or may need to have 3 masses, to account for the upper arm 

deformability in the case of lighter design as for the case high speed applications. 

Mechanically, the pantograph unfolding system is such that, during its lifting motion, the 

head of the pantograph is maintained levelled and its movement is set along a straight line 

perpendicular to the plane of the pantograph base. In turn, the base is attached to the roof 

of the railway vehicle, with electric isolators in-between, in perfect alignment with the 

centre of the vehicle bogie. This is to ensure that, when curving, the centre of pantograph 

head does not deviate from the centre of the track more than it is to be expected in face 

of the vehicle dynamics and all allowed clearances and kinematic gauges [48]. 

Two alternative approaches are generally used to model the pantograph system, the 

lumped mass model and the multibody model, [17,49]. Each approach has its advantages 

and drawbacks, being both models suitable to be used in a multibody system dynamics 

computational environment. The pantograph multibody model assumes the pantograph 

described by a set of bodies interconnected by force elements and joint constraints 

representing the structural and mechanical components of the pantograph. Despite of 

representing properly the pantograph moving elements, the multibody models developed 

until now are composed of rigid bodies connected by perfect kinematic joints, which do 

not allow the model to fully describe the realistic behaviour of the pantograph in its 

complete operating frequency range [50,51]. Due to the scope of this work a multibody 

representation of the lumped mass model is here adopted. This model consists on a series 

of lumped masses linked sequentially to a ground by spring/damper elements, as 

represented in Figure 8 (b). The masses, m1-3, spring, k1-3, and damping, c1-3, coefficients 

are parameters identified experimentally in laboratory tests [52,53] in order for the model 

to have the same frequency response of the real pantograph. Thus, these parameters have 

no direct physical correspondence with the real pantograph with the exception of the 

upper stage parameters of m3, k3, and c3 which are matched to the mass, stiffness and 

damping of the collector suspension. For high speed railway applications, there is a 

minimal requirement of three lumped mass stages to allow for representation of the 

dynamic behaviour of the system [54]. Regardless of its simple topology the fidelity of 

the lumped mass pantograph model in representing the dynamic response of a pantograph 

is recognised, being an industry standard and commonly used by operators, manufacturers 
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and homologation bodies instead of more complex multibody models. However, note that 

this work follows the assumption that the dynamic response of the pantograph, identified 

in laboratory tests, is not affected by the pantograph roll. Although reasonable, as shown 

in [30], this assumption is to be followed by further research in order to determine the 

minimal requirements for pantograph models employed in curved tracks. 

 

Figure 8: Pantograph models:  (a) Multibody; and (b) Lumped mass. 

4.1 Multibody Lumped Mass Pantograph Model 

A multibody model is characterized by a set of rigid and/or flexible bodies interconnected 

by force elements and joints that constrain their relative motion. The equations of motion 

that represent the multibody lumped mass model here considered are written together 

with the second time derivative of the constraint equations as [32]: 

 
     

=     
      

T

q

q

M Φ q g

Φ 0 λ γ
  (10) 

where q  is the vector with the accelerations of the rigid bodies λ is the Lagrange 

multiplier vector associated to the joint reaction forces. The remaining terms are described 

hereafter. 

The detailed representation of the multibody lumped mass model considered for 

this work is depicted in Figure 9. The model is composed by four aligned bodies, b0-3, 

representing the three staged lumped masses and the pantograph base. Their mass 

properties, m1-3, are used to form the mass matrix M in Equation (10). The spatial position 

and orientation of the bodies are included in vector q, which is evaluated by integrating 

the accelerations resulting from the solution of Equation (10) during the dynamic analysis 

of the pantograph. Vector q contains, for each body, a set of Cartesian coordinates with 

the position of its centre of mass and a set of Euler parameters that define its orientation 

via a local reference frame, ( )
0 3

, ,  
−

. The linear spring and damper elements placed in 
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between the masses are formulated as force elements where the forces transmitted to the 

connected bodies are included in the vector force, g. Also included in this vector are the 

resultant contact force and transport moment, 3

cf  and 3

cn , applied on the lumped mass 

pantograph top body centre, b3, and the pantograph static uplift force, upf , applied on the 

bottom lumped mass body, b1, which is set to raise the pantograph lumped masses and 

adjust the resulting average contact force. The kinematic constraints and joints set on the 

model, along with its respective geometric parameters, are used to form the constraint 

equations, whose second time derivative includes the Jacobian matrix, qΦ , and the right-

hand side vector, γ. In the pantograph lumped mass model, to maintain its unidimensional 

actuation, three prismatic joints, pris1-3, are set between each lumped mass body and the 

pantograph base such that the motion of the lumped masses is constrained to be along an 

axis perpendicular to the plane of the pantograph base as also preventing their relative 

rotation.  

 

Figure 9: Representation of the multibody lumped mass model: (a) Lumped mass bodies; (b) Spring and 

damper elements; (c) External applied forces; (d) Prismatic constraints.  

To set the trajectory of the pantograph along the track path a prescribed kinematic 

motion constraint is set to the pantograph base body, b0, where its position, 0r , and 

orientation, ( )
0

, ,   , is set to follow a moving frame correspondent to the trajectory of 

the pantograph, as represented in Figure 10. At a given track length, the position, pr , and 

local reference frame, ( ), ,  
p
, that define the pantograph trajectory are built in relation 

to the track moving frame, established in Section 1, such that: 

 
0

  ;     ;   



  

t

p t t

p t p t p t

r = r + A s

ξ ξ ζ ζ η η
  (11) 
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where 
0
ts is the coordinate position of the pantograph base relative to the track local 

reference frame, ( ), ,  
t
, which is defined by the position of the vehicle rooftop, in 

relation to the track running surface. Matrix 
tA  is the rotation matrix associated to track 

local reference frame ( ), ,  
t
. 

 

Figure 10: Representation of the prescribed kinematic motion constraint set to the pantograph base. 

Note that, in the work presented here, the trajectory of pantograph follows that of 

the train carbody roof where the pantograph is mounted, which in turn is that of the 

vehicle that directly follows the track geometry. Using the same methodology, it is 

possible to include vehicle vibrations by adding them to the pantograph prescribed 

moving frame. However, it has been shown that track irregularities and car vibrations do 

not lead to perturbations on the pantograph motion worth accounting for [55]. 

5 Pantograph-Catenary Interaction 

The dynamic analysis of the pantograph-catenary interaction represents a coupled 

problem in which the dynamic behaviour of the two sub-systems is affected by each other. 

The classical and most direct methodology to solve this coupling problem is to use the 

same formulation for both models, such as in the case of pantograph-catenary interaction 

where the equations of motion of a lumped mass pantograph are added to the finite 

element equations of the catenary [31].  With the finite element approach described, it is 

not possible to model the pantograph motion in any other type of operation than its motion 

in straight track. This is unless additional information to set the pantograph absolute 

position and orientation in relation to the lumped mass nodal displacements is provided 

as proposed in [30]. In this work, due to the requirements that each formulation needs to 

fulfil when dealing with generalized trajectories of the track, a simple formulation is used 

for each one of the sub-systems, i.e., the finite element method for the catenary and the 

multibody dynamics formulation for the pantograph. To couple both sub-systems, a co-



18 

 

simulation environment is setup where the dynamic analysis of each sub-system is done 

independently [35,56]. Generally, in co-simulation the coupling is either described by 

imposing a kinematic constraint between the models or by defining a set of constitutive 

interaction laws [57]. For the pantograph-catenary co-simulation procedure presented 

here, the latter coupling approach is used, where the constitutive interaction laws lead to 

contact forces, which in turn result in a set of forces/torques applied on each sub-system. 

A penalty force methodology is used here to represent the interaction, i.e., to evaluate the 

contact force between the pantograph and the catenary. 

5.1 Pantograph-Catenary Contact Model 

From the contact mechanics point of view, the contact between the pantograph contact 

strip and the catenary contact wire is physically a contact between a flat surface, made of 

carbon, and a cylinder surface, made of a copper alloy, as represented in Figure 11. Due 

to the nature of the contact between both types of materials and contact surfaces, the 

sliding friction forces are neglected, being only the normal contact force, perpendicular 

to the flat surface of the contact strip considered in this work. 

For the penalty formulation used here, the contact force evaluation is dependent on 

the contact geometry. In this sense, consider the contact geometry presented in Figure 11 

where points a and b represent the extremities of the top surface of the pantograph contact 

strip. The point positions, ar  and br , are evaluated as: 

 
 

 

3 3

3 3

3 3

3 3

    ;     0 / 2 0

    ;     0 / 2 0

  = −

  =

T

a a a cs

T

b b b cs

l

l

r = r + A s s

r = r + A s s
  (12) 

where 3r  is the global coordinate position of the lumped mass pantograph top body and 

3A  is the rotation matrix associated to its local reference frame ( )
3

, ,   . Vector 3
as  and 

3
bs  are correspondingly the positions of points a and b relative to the body local reference 

frame, evaluated as: 

 
 

 

3

3

0 / 2 0

0 / 2 0

 = −

 =

T

a cs

T

b cs

l

l

s

s
  (13) 

 being lcs the length of the pantograph contact strip.  
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Figure 11: Representation of the pantograph-catenary contact geometry. 

Point c is the position of the centre of the contact wire cross section, which includes 

the candidate contact point on the catenary. As the catenary geometry is described in a 

finite element formulation, point c belongs to one of the catenary finite elements that is 

connected to nodes i and j, as represented in  Figure 12 (a). Therefore, the coordinate 

position of c, cr , is evaluated as: 

 

0

0 0 0 0

( )[ ]

( )





= +

= + −

c c i j

c i j i

r r N d d

r r r r
  (14) 

where id  and 
jd  are the node displacements of the contact wire finite element and 0

cr  

refers to the corresponding position of c, c0, in the undeformed finite element mesh of the 

catenary, such that: 

 
0 0 0 0( )= + −c i j ir r r r   (15) 

Matrix N() contains the beam element shape functions, [58], evaluated at the parametric 

length coordinate of the finite element, , in which the contact takes place with 

correspondence to point c. The parametric coordinate, , is obtained by finding the 

intersection between the lines defined by points a and b and points i and j, when projected 

on the same plane. For convenience, as represented in Figure 12 (b), the xy plane is used 

here. The interception between both lines of the contact strip and of the contact wire is 

expressed as: 

 ˆ ˆ + = +xy xy xy xy xy xy

i ij ic a ab acr u r u   (16) 

where the superscript xy denotes here the projection on the xy plane and ˆ
mnu  is the versor 

of a generic vector that goes from node m to node n. The scalar values  xy

ic
 and  xy

ac
 are 

the distance between points i and c and points a and c in the xy plane. These can be 

obtained by solving equation (16) from which the parametric coordinate  can be 
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evaluated as: 

 


 =
−

xy

ic

xy xy

j ir r
  (17) 

where  0,1  . If   0,1   the catenary finite element considered does not fit the 

contact geometry and another element along the contact wire must be tested for contact.   

 

Figure 12: (a) Representation of the contact wire finite element in which contact occurs; (b) Contact 

geometry on xy plane. 

In Figure 11, point d represents the contact point on the contact strip surface which 

is geometrically determined by assuming that the normal contact force, nf , and its 

corresponding pseudo penetration are perpendicular to both the flat surface of the contact 

strip and the contact wire cylindrical contact surface. As point c is collinear with a and b, 

its coordinate position is obtained as:  

 
ˆ

ˆ ˆ ( )





= +

=  =  −

d a ad ab

ad ab ac ab c a

r r u

u r u r r
  (18) 

such that ad
 is the length between point a and d which can be retrieved as the scalar 

projection between the versor ˆ
abu  and vector acr  that goes from point a to c:  

 ˆ ˆ ( ) = = −T T

ad ab ac ab c au r u r r   (19) 

With the contact geometry established, the normal contact force, fn, is obtained by 

using a purely elastic Hertzian normal contact force model, written as: 

 
  ,   0

  0   ,   0

 




= 


n

K
f   (20) 

where K is the contact stiffness , = − −c d cwrr r  is the pseudo normal penetration and 

cwr  is the contact wire radius. In this work the contact stiffness used is 200×103 N/m 

following the recommendations for key parameters on pantograph-catenary numerical 
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models established in PantoTRAIN European project [54].  

As the contact surface of the contact wire is concentric with its cross section centre, 

the normal contact force is directly applied in point c, being the equivalent contact forces 

and moments, c

if  and 
c

jf , applied at nodes i and j of the contact wire finite element, 

evaluated as: 

 ˆ( )
 

= 
  

c

i T

n dcc

j

f
f

N u
f

  (21) 

On the contact strip the normal force is applied on point d such that the resultant force 

and transport moment, 
3

cf  and 
3

cn , to be applied on the lumped mass pantograph top body 

mass centre are evaluated as: 

 
3

3

3 3 3

ˆ=

=

c

n cd

c T c

d

ff u

n s A f
  (22) 

where 3
ds  is the position of point d relative to the top body local reference frame ( )

3
, ,  

. 

5.2 Pantograph-Catenary Co-Simulation 

The catenary is modelled with a finite element formulation being a dynamic linear system 

integrated with a Newmark family numerical integrator set implicitly with fixed time step  

[59]. The multibody pantograph model nonlinear dynamics is evaluated as a forward 

dynamics problem being its solution obtained with a variable time step and variable order 

numerical integrator of the Gear type [60]. In the co-simulation procedure implemented 

here, each sub-system performs its dynamic evaluation independently from the other. In 

order that each sub-system can proceed with its integration procedure the state variables 

of each subsystem are shared. Since the contact evaluation needs to access the deformed 

finite element mesh of the catenary to search for contact along the catenary wire, the 

contact is evaluated on the finite element dynamic solver, on the catenary side. To this 

effect, as depicted in Figure 13, the state variables supplied by the multibody code in 

which the pantograph is defined, are the position of the contact strip extremities, ar  and 

br . With these coordinates, the catenary subsystem evaluates the contact and returns, as 

its state variables, the resulting contact force vector, cf , and its point of application cr  on 

the collector strip.  



22 

 

 

Figure 13: State variable exchange between catenary and pantograph subsystems. 

The compatibility between the heterogeneous integration procedures imposes that the 

state variables, or a reliable prediction, are readily available at each evaluate time step. 

This is guaranteed by a state variable time interpolation/extrapolation scheme presented 

in Figure 14. The accuracy and stability of this procedure relies on the integration step 

used on both systems and in ensuring that the maximum time step size of the multibody 

pantograph sub-system never exceeds the catenary fixed time step [35,61]. 

t n

t n+1 1

2
3

4

5

6

Catenary Pantograph

1. Interpolation of Ra and Rb to time tn+1 from 

neighbouring pantograph time steps.

2. Communication of Ra and Rb to catenary.

3. Solve catenary time step for time tn+1.

4. Communication of fc and Rd to 

pantograph.

5. Extrapolation of fc and Rd from last 

catenary time steps.

6. Continue extrapolation to solve next  

pantograph time steps until time>tn+2.

   

Figure 14: Sate variable time interpolation/extrapolation in pantograph-catenary co-simulation. 

6 Case Studies 

To demonstrate the approach proposed here to handle the pantograph-catenary dynamics 

for general geometry railway tracks, two case scenarios are considered. One is a realistic 

case where the catenary complete layout and track geometry are obtained through the 

project data of a catenary line that is currently in operation. The second case is an exercise 

following the insertion of a catenary model in tracks with different curvature. In both 

cases the pantograph-catenary contact quality is evaluated through the statistical analysis 

of the developed contact forces filtered at 0-20 Hz, following the standards EN50367 and 

EN50119. Also, as both catenary system used here are designed for high speed operation, 
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all the simulations consider a vehicle speed of 300 km/h, where the pantograph uplift 

force is tuned for a mean contact force of 157.3 N on a straight track. 

6.1 Existing Catenary Network 

Since the procedure presented here is able to cope with any generalised trajectory of the 

track, the first case study concerns a realistic catenary associated to the track geometry, 

described in Figure 15. The catenary layout and specifications are taken directly from the 

technical plans of a catenary system in current operation. The pantograph model is that 

of the overhead equipment commonly used for high speed trains in operation on the track. 

  

Figure 15: Track geometry considered on the realistic case. 

  

Both the general catenary design characteristics and pantograph lumped mass 

parameters are presented in Table 2. The technical designs establish no pre-sag in this 

catenary system and for the track interval considered here a constant alternating stagger 

of (+200,-200) mm is specified.  

Catenary Pantograph 

Contact wire tension [N] 20000 m1 [kg] 5.58 

Messenger wire tension [N] 16250 m2 [kg] 8.78 

Contact wire height [m] 5.3 m3 [kg] 7.75 

Encumbrance [m] 1.25 k1 [N/m] 178.45 

Stagger [mm] (+200,-200) k2 [N/m] 15487.00 

Span lengths [m] 60-52 k3 [N/m] 7000.00 

Damping α [1/s] 0.0125 c1 [Ns/m] 108.39 

Damping β [s] 0.0001 c2 [Ns/m] 0.09 

Vehicle roof top height [m] 4.05 c3 [Ns/m] 45.85 

Table 2: Catenary and pantograph model specifications. 

The track geometry is characterised by two curves, with a straight segment in 

between, where two catenary sections are defined. A representation of the resulting 

catenary finite element mesh of the catenary system, after being statically loaded, is 

presented in  Figure 16. 
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Figure 16: Representation of the deformed finite element catenary mesh for different. 

Two regions of interest are selected for the analysis of the catenary: one on the 

straight section of the track; and other on the curved section with a 6000 m radius track, 

being an interval containing 2 spans considered. The contact quality parameters 

associated to the contact forces and the steady arm uplifts are presented in Table 3. 

 

Track Straight R6000 
Limit 

Values  

Track Interval [m] 642-757 1833-1945  

Force maximum [N] 253.1 275.5 350 

Force minimum [N] 80.2 90.0 - 

Force amplitude [N] 172.9 185.6 - 

Force mean [N] 157.3 156.9 157.3 

Force standard deviation [N] 30.4 34.7 47.1 

Force statistical minimum [N] 66.1 52.8 - 

Steady arm uplift (642m,1833m) [m] 0.079 0.081 0.16 

Steady arm uplift (702m,1889m) [m] 0.079 0.070 0.16 

Steady arm uplift (757m,1945m) [m] 0.075 0.081 0.16 

Table 3: Contact force statistics for the contact quality evaluation considering force and steady arm uplift. 

Although the results cannot be directly compared since the spans have all different 

lengths, it can be observed that a marginal contact quality degradation occurs on the 

curved section. This is noted by the slightly higher standard deviation and contact force 

maximum. Nevertheless, all parameters are under their allowable limits. Moreover, by 

observing the contact forces developed along the track, presented in Figure 17, on the 

curved track it is possible to notice an alternating difference on the maximum peaks. 

These are found slightly before the pantograph passage over the cantilever supports and 

its effects can be related to the differences found on the steady arm uplifts. Note also that 

the higher maximum peaks coincide with the lateral offsets located in the inner side of 

the curved track. 
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Figure 17: Contact force evaluated along the track length. 

6.2 Curve Insertion Case 

The catenary and pantograph models chosen for this application case are the models 

presented on the pantograph catenary benchmark [24]. Their main specifications are 

presented in Table 4. 

 

 

 

 

 

 

 

Table 4: Benchmark catenary and pantograph model specifications. 

Three different track geometries are considered to insert the catenary model: a 

straight line; and, two scenarios that start as a straight track and transition to respectively 

a curved track with a 6000 m and 4000 m and a cross level of 110 mm and 160 mm. Each 

catenary as a total of 22 spans, being the starting straight portion on the curved tracks 

composed by 4 spans, followed by 5 spans of transition. Although the track with a 4000 

m curve radius is a tight curve for the operating speed considered, all the track geometries 

here are compliant with the European standard EN13803-1. Four catenary system setups 

with different staggers are considered. Three setups have an alternating stagger of (+200,-

200) mm and are set along each of the specified track paths. In the fourth setup, a stagger 

of (+200,0) mm on the curved portion of the 4000 m radius curved track is considered. A 

representation of the resulting catenary finite element meshes, after being statically 

loaded, is presented in Figure 18.    

Catenary Pantograph 

Contact wire tension [N] 22000 m1 [kg] 6 

Messenger wire tension [N] 16000 m2 [kg] 9 

Contact wire height [m] 5.3 m3 [kg] 7.5 

Encumbrance [m] 1.2 k1 [N/m] 160 

Stagger [mm] (+200,-200) k2 [N/m] 15500 

Span lengths [m] 55 k3 [N/m] 7000 

Damping α [1/s] 0.0125 c1 [Ns/m] 100 

damping β [s] 0.0001 c2 [Ns/m] 0.1 

Vehicle roof top height [m] 4.05 c3 [Ns/m] 45 
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Figure 18: Representation of the deformed finite element catenary mesh for different staggers: a) Straight 

track (+200,-200) mm , b) Track with 4000m curve (+200,0) mm. 

The statistical parameters resulting from the contact force evaluation on each of the 

catenary systems and the steady arm uplifts are presented in  Table 5. The region of 

interest set for the analyses [660m-770m] contains two spans where its centre cantilever 

corresponds to the imposed offset on the inner side of the curve. Comparing the results 

obtained between the straight catenary and the catenary inserted in the largest radius 

curved track, only marginal differences can be found. However, these show a slight 

tendency to contact quality degradation, which becomes clear when observing the results 

for the smaller radius curved track with the same stagger. Here, although the mean contact 

force remains close to its target, both the maximum force and standard deviation increase 

exceeding the standard limits. The negative force statistical minimum is indicative of 

probability of loss of contact, which is verified in the unfiltered results with a percentage 

of loss of contact of 4%.  

 

Track Straight R6000 R4000 R4000 
Limit 

Values  

Stagger [mm] (+200,-200) (+200,-200) (+200,-200)  (+200,0)  

Force maximum [N] 254.3 252.8 425.1 243.9 350 

Force minimum [N] 90.7 94.1 29.5 88.4 - 

Force amplitude [N] 163.6 158.7 395.7 155.5 - 

Force mean [N] 157.3 156.8 156.6 156.0 157.3 

Force standard deviation [N] 40.3 40.8 62.1 38.0 47.1 

Force statistical minimum [N] 278.3 279.3 343.0 270.1 - 

Steady arm uplift (660m) [m] 0.047 0.049 0.063 0.047 0.16 

Steady arm uplift (715m) [m] 0.047 0.049 0.033 0.053 0.16 

Steady arm uplift (770m) [m] 0.047 0.050 0.062 0.049 0.16 

Table 5: Contact force statistical evaluation and steady arm uplifts. 
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When changing the staggering to (+200,0) mm in the 4000 m radius curved track, 

the contact quality is greatly improved returning to nominal operating levels. The 

evolution of the contact forces along the track is presented in Figure 19 for the different 

scenarios. The maximum force peaks are observed near the pantograph passage under the 

cantilevers in correspondence with the steady arm uplift results. 

 

 

Figure 19: Contact force evaluated along the track length. 

In the catenary associated to the curved track with 4000 m radius and a (+200,-200) 

mm stagger it is possible to distinguish force peaks according the offset imposed on each 

support. The higher force peaks correspond to the offset imposed on the inner side of the 

curve. These stiff spots are due to the orientation of the steady arm which is controlled by 

the forces due to the contact wire, as represented in Figure 20. The steady arm orientation 

is defined by its resulting angle, θ, with the horizontal plane. The force on the steady arm, 

rf , can be decomposed in a lateral force component associated to the imposed contact 

wire stagger, latf , and a vertical force component, zf , that supports a residual part of the 

contact wire weight and set is vertical position correctly. 

 

Figure 20: Contact wire force solicitations at the steady arm. 
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The vertical force component does not change greatly from pole to pole being the 

orientation of the steady arm mainly dictated by the lateral forces which in turn depend 

on the imposed offsets at each cantilever. Figure 21, shows the lateral forces developed 

at each cantilever and the resulting steady arm orientation angle for each of the cases 

considered here. The positive lateral forces refer to the forces acting away from the pole 

being negative when acting towards the pole defining the cantilever pull-off or push-off 

configuration. Notice that these lateral forces remain constant on the straight catenary but 

in the curved tracks present an offset from pole to pole. It is also possible to observe how 

this offset develops on the curve transition. The small lateral forces on the inner side of 

the curved track with 4000 m radius and a (+200,-200) mm stagger are very low which 

results in an excessive rotation angle of the steady arm of about 62°. Consequently, this 

originates a critical stiff spot for the pantograph passage, which turns to be the main cause 

for the observed degradation of the contact quality. This is in agreement with the 

requisites described in [43] which establish a minimal lateral force of 80N and a 

maximum angle of the steady arm of 20°. By changing the staggering to (+200,0) mm 

these requisites are fulfilled and the contact quality is improved. Also notice that in the 

curved portion of the track, the lateral forces become positive on all the poles meaning 

that all the cantilevers are to be set in a pull-off configuration, as it can be observed by 

the steady arm orientations represented in Figure 18 (b).      

 

Figure 21: Lateral forces and resulting steady arm angle at each cantilever support. 
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7 Conclusions 

A novel numerical procedure for the dynamic analysis of pantograph–catenary interaction 

on generalized track trajectories is presented here. The geometric description of the track 

running surface by a moving local frame of reference is the basis to build the catenary 

finite element model and to describe the general path of the pantograph. Two 

demonstration cases are presented, one represents an existing scenario where both the 

catenary layout and track geometry are obtained from the technical designs of a current 

track in operation. The other case study presents a variation on the benchmark study of 

pantograph–catenary interaction by defining it in tracks with different curve radius and 

contact wire staggering. It is shown that for large curve radius tracks the contact quality 

is marginally affected by the curvature. For smaller radius curves, the staggering design 

plays a fundamental role in maintaining the contact quality.  

The first main contribution of the numerical tool presented here is the possibility to 

analyse more realistic catenary systems which are modelled using track and catenary 

design data of already constructed or projected railway lines, not being limited to straight 

tracks. It also provides a methodology to study the pantograph–catenary dynamics over 

curved tracks including the influence of the staggering design. Moreover, this approach 

opens the possibility to analyse novel case studies of interest to the rail industry. One is 

the influence of wind loads on the pantograph-catenary contact quality in curved tracks, 

where the wind solicitations imply a change on the lateral forces imposed by the contact 

wire at its cantilever support. There are also cases where optimisation procedures in 

conjunction with pantograph-catenary dynamic analysis applications can be used to reach 

optimised designs of pantograph or catenary systems. In such cases, considering the 

optimisation only in straight tracks might be limitative when contemplating a generalised 

track path. One other aspect of interest is the analysis of pantograph-catenary interaction 

over tracks with small radius curves, particularly on railway tracks that are to be upgraded 

for higher operational speeds, which often require a change on the contact and messenger 

wire axial tension, as well as the catenary layout geometry.  
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