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ABSTRACT The viscosity of cell membranes is a crucial parameter that affects the diffusion of 

small molecules both across and within the lipidic membrane and that is related to several diseases. 

Therefore, the possibility to measure quantitatively membrane viscosity on the nanoscale is of great 

interest. Here, we report a complete investigation of the photophysics of an amphiphilic membrane-

targeted azobenzene (ZIAPIN2) and we validate its use as viscosity probe for cell membranes. We 

exploit ZIAPIN2 the trans-cis photoisomerization to develop a molecular viscometer and to assess 

the viscosity of Escherichia coli bacteria membranes employing time-resolved fluorescence 

spectroscopy. Lifetime measurements of ZIAPIN2 in E. coli bacteria suspensions correctly indicate 

that membrane viscosity decreases as the samples were heated up. Our results report a membrane 

viscosity value in live E. coli cells going from 10 to 5 cP, increasing the temperature from 22 °C up 

to 40 °C. 
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Cell membrane viscosity alteration is related to a large number of diseases, such as atherosclerosis, 

Alzheimer's, diabetes, and cell malignancy.1,2 In general, the precise determination of viscosity at the 

molecular scale represents itself an important problem in cellular biophysics, as membrane viscosity 

influences many physiological processes, drug delivery and diffusion in cells and tissues.3 Thus, 

measuring local viscosity in a micron or sub-micron region is an important challenge, as traditional 

mechanical methods (e.g. falling-ball viscometer, vibrational viscometers, rotational viscometers) 

used for probing viscosity are not suitable for living cells. Moreover, reliable probes at the molecular 

scale are essentially missing. 

Several techniques have been exploited to estimate the viscosity of biological membranes. Most of 

them relies on spectroscopy and microscopy, so that one can infer viscosity by measuring some 

physical observables whose dependence on viscosity is known. One approach involves the 

measurement of the two-dimensional lateral diffusion coefficient, following the transport of 

fluorescent molecules. This can be done for instance exploiting Fluorescence Recovery after 

Photobleaching (FRAP),4,5 Fluorescence Correlation Spectroscopy (FCS)6,7 and single particle 

tracking.8,9 Other methodologies include the use of fluorescent probes able to modify their emission 

properties according to their microenvironment. To this end, different molecular probes have been 

synthetized to target the plasma membrane and specific organelles or cell compartments. Moreover, 

various spectroscopic observables can be linked to the viscosity of the environment. In this context, 

measurements of ratiometric fluorescence,2,10 time resolved fluorescence11–14 and steady-state and 

time-resolved fluorescence anisotropy15 have been reported as techniques for estimating the viscosity 

in living cells. In recent years, the spectroscopic characterization has been coupled to microscopy 

allowing viscosity-imaging.2 Molecules known as molecular rotors are commonly used as viscosity 

probes, and the most common molecular rotors include BODIPY-based complexes, DCVJ and 

CCVJ.16. The fluorescence emission of these compounds is strongly affected by the viscosity of the 

environment. After light excitation, a molecular rotor undergoes radiative decay emitting photons and 

non-radiative relaxation via intramolecular torsion. The latter is modified by the environment 
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viscosity so that the non-radiative decay rate is enhanced in fluid media. For this reason, both the PL 

quantum yield and the lifetime are susceptible to viscosity.  

In this work, we report a detailed investigation of the photophysics of ZIAPIN2, a recently 

synthesized membrane-targeted azobenzene,17–20 and we demonstrate and propose its use as a 

viscosity probe for the cell membrane. The class of compounds the ZIAPIN2 belongs to undergoes 

trans → cis isomerization upon illumination with visible radiation, with the reverse cis → trans 

isomerization driven either by light of a different wavelength or by thermal relaxation. ZIAPIN2, 

however, exhibits additional peculiarities, namely it is amphiphilic, and has a suitable size to match 

cell membrane thickness. Consequently, ZIAPIN2 possesses a non-covalent affinity for the plasma 

membrane. When added to cell culturing media, ZIAPIN2 locates into the cell membrane with 

relatively high efficiency (close to 80%) and long permanence (at least up to 100 h).17,19  

Here, we focus our attention on the effect of the environment viscosity onto the molecular 

photophysics. We performed an accurate spectroscopic characterization of the molecule dissolved in 

dimethyl sulfoxide (DMSO, viscosity 2.4 cP 21) and glycerol (viscosity 1400 cP 21) mixtures, in order 

to understand how the viscosity of the environment affects the isomerization properties of this 

azobenzene derivative. We conclude that ZIAPIN2 can be a reliable probe of local viscosity and we 

demonstrate this by measuring the viscosity of the bacteria cell membrane.  

The absorption spectrum of ZIAPIN2 in DMSO (Figure 1) exhibits a non-homogeneously broaden 

vibronic structure, peaking at 470 nm, corresponding to the second vibronic replica, suggesting the 

Huang-Ryss factor for the major vibrational progression to be larger than 1. Adding glycerol to the 

solution, i.e. increasing the viscosity of the environment, the spectrum looses its vibronic structure, 

apparently due to a further broadening of the vibronic replicas that merge into a Gaussian lineshape. 

Furthermore, going from a 100% DMSO to a 100% glycerol solution, ZIAPIN2 absorption peak shifts 

to the red by 20 nm. The emission spectrum (Figure 1A) undergoes a larger bathochromic shift, upon 

increasing of the glycerol fraction in the solution, passing from 525 nm to 590 nm. Therefore, the 

Stokes shift becomes larger in a more viscous solvent, going from 55 nm in DMSO to 100 nm in the 
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glycerol solution. The bathochromic shift in emission is typical of fluorophores that aggregate when 

dissolved in specific solvents. However, we have already reported that when ZIAPIN2 aggregates in 

water,18 it has an emission peak at 620 nm, that is at longer wavelengths than what observed for the 

molecule in pure glycerol. This argues against aggregation and points to an intramolecular 

mechanism. We conjecture that upon optical absorption the molecule undergoes a substantial 

geometrical relaxation before emission, and that the excited state S1 is stabilized in less fluid media.22 

Furthermore, we observe that the photoluminescence (PL) intensity of the fluorophore increases 

markedly in presence of glycerol (Figure 1B), an effect which clearly indicates that viscosity hinders 

the isomerization reaction, favoring the radiative decay. 

This last hypothesis is confirmed by inspection of the transient absorption measurement (Figure S1) 

and by the excitation-emission profiles shown in Figure 2A-C. We obtained such profiles recording 

the PL intensity at a fixed emission wavelength, selected in the range 500 - 600 nm, with 10 nm step, 

and scanning the excitation wavelength over the spectral band 300 – 550 nm. If the excitation profile 

overlaps with the absorption spectrum, the Vavilov-Kasha rule is fulfilled:23 following absorption, 

the molecule relaxes to the lower excited state before emission takes place. In the trans isomer, 

however, the radiative deactivation competes with the isomerization path. The trajectory of the wave 

Figure 1. Absorption spectra (solid line) and emission spectra (dotted line) of ZIAPIN2 in DMSO 

and glycerol mixtures, normalized to the maximum (A) and with respect to the sample absorption 

around 470 nm (B). The emission spectra were acquired exciting the samples at 470 nm. 
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packet, initially placed in the Franck-Condon region of the excited potential energy surfaces (PES), 

branches into two paths, as depicted in Figure 2D.24 The most likely is the diabatic path to the conical 

intersection connecting to the cis isomer ground state. The other one, with minor probability, reaches 

a minimum in the PES, from which radiative decay to the ground state (emission peaked at 580 nm) 

can take place. Upon photoexcitation, the cis isomer population builds up, as a consequence of the 

isomerization. The cis isomer in turn absorbs light and re-emits if the excitation reaches the second 

excited state S2, (absorption at 370 nm). For absorption transitions occurring at longer wavelength, 

i.e. ending up into the S1 state, the cis isomer follows the diabatic trajectory back to the conical 

Figure 2. Excitation - emission profiles of ZIAPIN2 in (A) DMSO, (B) glycerol and (C) 

75% DMSO – 25% glycerol mixture. For each curve in plots (A-C) the emission wavelength is fixed 

at a value between 500 and 600 nm, with 10 nm steps. The dotted lines represent the absorption 

spectra of the two isomers of the molecule, that have been superimposed to the excitation profiles. 

The scheme in (D) (adapted from 34) shows the potential energy surfaces (PES) and an indication of 

the allowed optical transitions (solid arrows), while the dotted arrows represents the non-radiative 

transitions. Between S0 and S1 there is a conical intersection, responsible for the Kasha’s rule 

violation. 
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intersection with S0. Note that emission from S2 in the cis isomer is an example of anti-Kasha 

behavior. Indeed, the second excited state S2 has two local minima close to the trans and cis 

geometries. It has been shown that from S2 the molecule can reach S1, due to thermal relaxation, and 

then arrives on the ground state without emission of photons.25,26 To highlight different relaxation 

paths, we superimposed the absorption spectra of the two isomers to the PL excitation profiles. We 

used the absorption spectrum of the trans isomer measured in DMSO (same as Figure 1), and the 

absorption spectrum of the cis isomer as taken from ref. 18. Interestingly, the excitation-emission 

profiles (Figure 2A-C) exhibit different features, depending on the viscosity of the environment. 

When ZIAPIN2 is dissolved in DMSO (Figure 2A), the excitation profile shows a maximum around 

370 nm, corresponding to the absorption band of the cis conformation of the molecule, which has the 

anti-Kasha PL emission peak around 500 nm. According to the picture described above the absorption 

peak of the trans conformer is not clearly distinguishable due to the efficient isomerization, even if 

the trans population is predominant at room temperature. On the other hand, when ZIAPIN2 is 

dissolved in a high viscous medium (100% glycerol, Figure 2B), the excitation profile has a maximum 

around 480 nm, associated with PL peaked around 580 nm, and a second excitation maximum at 

330 nm. Both these features are a fingerprint of the trans isomer absorption. We infer that viscosity 

hampers, or dramatically slows down, the pedal-like torsion of the azobenzene unit leading to 

isomerization. Upon absorption, the most likely trajectory of the wave packet is towards the emitting 

site. In intermediate conditions, that is when the molecule is dissolved in a mixture of DMSO and 

glycerol (75% DMSO, 25% glycerol, Figure 2C), both the trans and the cis isomer spectral features 

are present. 

The previous discussion suggests that ZIAPIN2 fluorescence, being strongly sensitive to the 

viscosity of the environment, is a good candidate for building a molecular viscometer. In addition, 

given its strong affinity for biological cell membranes, ZIAPIN2 can be a tool for estimating viscosity 

in lipid bilayers on the nanoscale. With this in mind, we selected the fluorescence lifetime as the 

spectroscopic observable that we use as viscosity indicator. To assess the validity of this choice, we 
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performed time-resolved photoluminescence (TRPL) measurements on ZIAPIN2 dissolved in the 

same DMSO and glycerol mixtures. Indeed, we observed that in more viscous media the fluorescence 

decay becomes slower.27 A quantitative analysis was performed in the spectral region between 550 

and 590 nm (Figure 3A), by assuming a bi-exponential decay model. The fitting results are reported 

in Table S1 and they show that both time constants 𝜏1 and 𝜏2 increase with the viscosity of the 

environment. Moreover, the weight of the faster component (𝐴1) goes down with the increase of the 

glycerol fraction. The observed behavior is combined in the mean fluorescence lifetime 𝜏𝑀, which 

increases with viscosity. This reflects the role of friction onto isomerization, which is a process that 

occurs in a few picoseconds.  

In order to construct the molecular viscometer, we built-up a calibration scale of viscosity vs. 

average lifetime 𝜏𝑀 (see Eq.(4)) by measuring the fluorescence lifetime of ZIAPIN2 in mixtures of 

known viscosity (DMSO and glycerol mixtures) in a range from 2.4 cP to 1460 cP.21 The calibration 

Figure 3. (A) PL dynamics of ZIAPIN2 in mixtures of DMSO and glycerol. The PL decays are 

plotted in the spectral region 550 - 590 nm. The scattered points represent the data while the solid 

lines the fitted curves.  (B) Fitted average fluorescence lifetime of ZIAPIN2 in DMSO and glycerol 

mixtures as function of the viscosity of the solution. The blue points represent the five different 

samples. The error bars are calculated considering the 95% confidence interval given by the PL 

decays fitting. The central dashed line is the calibration curve, obtained as regression curve of the 

five points above. (C) The decays of ZIAPIN2 in different solvents have been analyzed to validate 

the viscosity-calibration with good agreement. 
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has been achieved following these steps. Firstly, we estimated the viscosity of the mixture of DMSO 

and glycerol at room temperature (see Table S1 and Material and Methods). Secondly, we introduced 

a functional dependence of the viscosity 𝜂 onto the average fluorescence lifetime 𝜏𝑀 according to the 

power law suggested by the Förster-Hoffmann equation 28 

log 𝜏𝑀 = 𝛼 log 𝜂 + log
𝑘𝑟

𝑧
 

(1) 

where 𝑘𝑟 is the radiative decay rate and 𝛼 and 𝑧 are arbitrary constants. 

Figure 3B shows the average fluorescence lifetime as a function of the medium viscosity. The error 

bars are computed considering the 95% confidence interval on the fitted parameters and exploiting 

error propagation laws of Eq. (4). The experimental points are well aligned, and the calibration curve 

can be obtained using linear regression. The values found are 𝛼 = 0.25 ± 0.03 and 
𝑘𝑟

𝑧
 = 1.47±0.06 

(values ± standard error of the estimation), leading to

𝜂 = 10−5.87 × 𝜏𝑀
3.97 (2)

To validate the calibration curve, we examined the fluorescence decay of ZIAPIN2 in other solvents 

of known viscosity. The chosen solvents were ethylene glycol (EtGly, 18.4 cP at RT),21  and 

tetrahydrofuran (THF), 1-butanol (1-BUT), acetonitrile (ACN), exhibiting similar viscosities (0.51, 

2.96 and 0.35 cP, respectively 21) but different polarities (𝜀𝑟 7.58, 17.84 and 36.64, respectively 21). 

The results of the fittings are summarized in Table S2. Data, as reported in Figure 3C, show good 

agreement with our calibration scale. In particular, the polarity of the solvents does not have a strong 

influence on the fluorescence dynamics, corroborating the idea to adopt ZIAPIN2 as a viscosity 

probe. 

Finally, we tested our molecular viscometer in the case study of Escherichia coli (E. coli) cell 

membrane. ZIAPIN2 preferentially localizes into the cell membrane,17,18 thus we can neglect the 

contribution of the small fraction (below 20%) of molecules that eventually remain both inside and 

outside the bacterial cells. Furthermore, we considered the fluorescence decays in the spectral region 

between 550 and 590 nm, filtering out the PL peak of ZIAPIN2 in water, that is around 620 nm 
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(Figures S2-3).18 The fluorescence decay curves of ZIAPIN2 in E. coli at various temperatures are 

shown in Figure 4A, together with the fitted curves. The fitted parameters are reported in Table S3. 

Viscosity, as a function of temperature, is plotted in Figure 4B. The error bars are computed 

evaluating equation (5) at the edges of the 50% confidence interval for 𝜏𝑀. Despite the small 

variations in the decay kinetics, our viscometer allows to extract useful information.  We noticed that 

increasing the sample temperature, the fluorescence decay becomes faster, indicating that the 

ZIAPIN2 trans - cis isomerization reaction is favored, and that the membrane becomes more fluid, in 

agreement with the existing literature.29 In the selected temperature range, the viscosity changes from 

10 cP to 5 cP, denoting a reduction of E. coli membrane viscosity of around 50 % going from room 

temperature to 40 °C.  

At present, all the attempts made for estimating the viscosity of cell membranes exploited indirect 

measurement techniques that are intrinsically problematic, and no ultimate protocol has been 

proposed so far. We decided to exploit ZIAPIN2 as viscosity probe, not only because of its sensitivity 

to the environment, but also for its ability of targeting cell membranes and for its low toxicity.17 To 

Figure 4. (A) PL dynamics of ZIAPIN2 in E. Coli suspensions at different temperatures. The PL 

decays are plotted in the spectral region 550 - 590 nm. The plot shows both the data and the fitted 

curves. In the insect the fitted curves are shown in the whole acquisition time window. (B) Estimated 

viscosity of E. coli membranes at different temperatures. The points are the ones achieved using the 

ZIAPIN2 – viscometer. The error bars were obtained as explained in the text. 
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the best of our knowledge, there is only one other work reporting on viscosity of E. coli membrane.11 

In that work, however, the authors reported a viscosity of 950 cP, exceeding by almost two order of 

magnitude our estimate. Such a discrepancy might originate from several factors. Firstly, it has been 

shown that BODIPY-based probes, as the one used in 11, have PL lifetimes that are strongly 

dependent on the polarity of the environment.30,31 Moreover, the membrane consists of large 

macromolecules, which may lead to the underestimation of the bulk viscosity of the system. Indeed, 

all molecular rotors are only able to sense the local viscosity, in a volume comparable to the probe 

size.30 Furthermore, ZIAPIN2 has an average PL lifetime that ranges from tens to hundreds of 

picoseconds, which is a much shorter timescale (around two orders of magnitude) compared to other 

commercially available BODIPY-based molecular rotors. This suggests different mechanisms of 

conformational adjustment in the two molecules. Finally, it is worth reminding that the large 

biological variability could lead to a large uncertainty in the results. All these factors indicate the lack 

of reliable tools for measuring membrane viscosity and strengthen the value of our work, which aims 

at filling the gap in the present technology.  

In conclusion, we studied the photophysical properties of a recently synthesized azobenzene-based 

molecule (ZIAPIN2) showing that the isomerization mechanism is strongly dependent on the 

viscosity of the environment. In high viscous media, the isomerization is hindered, an effect that leads 

to an increase of the PL quantum yield and of the excited state lifetime. Given the amphiphilic nature 

of ZIAPIN2, we exploited these features to build a molecular viscosity sensor to probe the E. coli 

membrane. We quantitatively estimated the viscosity of the bacterial membrane at different 

temperatures. We thus deem ZIAPIN2 fluorescence properties to be a new valuable tool for 

nanoviscosity measurements in lipid membranes. 

Materials and methods 

Steady-state UV-Vis and PL measurements UV-Vis absorption measurements were 

performed using a Perkin ElmerLambda 1050 spectrophotometer, with deuterium (180–320 nm) and 
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tungsten (320–3300 nm) lamps, a monochromator and three detectors (photomultiplier 180–860 nm, 

InGaAs 860–1300 nm, and PbS 1300–3300 nm). Absorption spectra were normalized according to a 

reference spectrum taken at 100% transmission (without the sample), 0% transmission (with an 

internal shutter), and in the presence of the reference solvent. 

For the PL measurements and the excitation profiles an iHR320Horiba NanoLog Fluorometer was 

employed, equipped with a Xenon lamp, two monochromators, and two detectors (photomultiplier 

and InGaAs). Samples were excited at 470 nm. 

Time-resolved photoluminescence (TRPL) measurements TRPL measurements were 

carried out using a femtosecond laser source coupled to a streak camera detection system (Hamamatsu 

C5680). A Ti:sapphire laser (Coherent Chameleon Ultra II, pulse bandwidths of ∼140 fs, repetition 

rate of 80 MHz, and maximum pulse energy of 50 nJ) was used to pump a second-harmonic crystal 

(β-barium borate) to tune the pump wavelength to 470 nm. The measurements here shown were 

performed recording the first 130 ps of decays, with an IRF of 4.1 ps. 

When required, a Peltier cell was used in order to control the samples temperature. 

Analysis The analysis of the TRPL decay kinetics was performed in the spectral re, gion 

between 550 and 590 nm (Figure 3A), by assuming a biexponential decay model 

𝐼(𝑡) = 𝐴1 exp (−
𝑡

𝜏1
) + 𝐴2 exp (−

𝑡

𝜏2
) 

(3) 

where 𝐴1, 𝐴2, 𝜏1, and 𝜏2 are the amplitudes and lifetimes of the two exponentially decaying 

components, respectively. The curves have been fitted considering also the convolution of the 

biexponential decay with the instrument response function (IRF), that is a Gaussian with FWHM of 

4.1 ps. 

The observable of interest is the mean fluorescence lifetime 𝜏𝑀 calculated as follows

𝜏𝑀 =
𝐴1𝜏1

2 + 𝐴2𝜏2
2

𝐴1𝜏1 + 𝐴2𝜏2
 

(4) 

To estimate the viscosity of the mixture of DMSO and glycerol at room temperature, we exploited 

the Nissan-Grunberg relation with experimental parameters taken from literature.32,33 We used the 
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following expression to calculate the viscosity 𝜂𝑚𝑖𝑥 of the DMSO and glycerol mixtures, as a function 

of the molar fraction 𝑥 of the two components. 

𝜂𝑚𝑖𝑥 = exp(𝑥𝐺𝐿𝑌 ln 𝜂𝐺𝐿𝑌 + 𝑥𝐷𝑀𝑆𝑂 ln 𝜂𝐷𝑀𝑆𝑂 − 0.961𝑥𝐺𝐿𝑌 ∙ 𝑥𝐷𝑀𝑆𝑂) (5)

Sample preparation ZIAPIN2 was synthesized according to the procedure reported in 

ref. 17, and characterized by 1H-NMR in DMSO using a Bruker ARX400. The solutions were 

prepared by suspending the proper amount of ZIAPIN2 in the solvents in order to obtain a final 

concentration of 25 µM. The solvents used are DMSO and glycerol mixtures (0, 25%, 50%, 75%, 

100% v/v of glycerol), ethylene glycol, acetonitrile, 1- butanol and tetrahydrofuran. All chemicals 

were purchased from Sigma Aldrich. 

E. coli cultures Experiments were conducted using Escherichia coli (E. coli) strain 

ATCC25922. For bacterial growth, a single colony was inoculated in Luria-Bertani (LB) broth and 

incubated overnight at 37 °C with shaking at 215 rpm, until stationary phase was reached. Then, 

bacterial suspension turbidity (expressed as optical density at 600nm; OD600) was diluted to 

OD600 = 1 in LB broth, without antibiotics. Bacteria were then centrifuged, and the obtained pellet 

was resuspended in a phosphate-buffered saline (PBS) aqueous solution. ZIAPIN2 was mixed with 

the bacterial suspension to obtain a final concentration of 25 µM. After 1 h of incubation, bacteria 

were again centrifuged and resuspended in fresh PBS, in order to remove the cell-unbounded 

molecules.  

Associated Content 

Supporting Information containing transient absorption data, PL spectra and dynamics of ZIAPIN2 

in PBS water and the tables with the fitting results. 
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Figure S1. Differential transient transmittance spectra of ZIAPIN2 in (A) DMSO, (B) glycerol and (C) 
a mixture of the two (75% DMSO, 25% glycerol). Observing the spectra of panel (A) we can 
distinguish three different regions. Specifically, the spectral band between 460 nm and 500 nm 
shows a positive ∆T/T, due to the ground state bleaching (GSB) of the trans isomer of the molecule: 
after the excitation, part of the molecules is temporary stored in the excited state while others 
undergo isomerization. The spectral region between 520 nm and 560 nm exhibits a negative 
differential transmission as it corresponds to the cis form absorption band of ZIAPIN2. Finally, the 
560–620 nm region has positive ∆T/T. This last spectral region corresponds to the PL peak of the 
fluorophore and hence positive values of differential transmission are attributed to stimulated 
emission (SE). The transient absorption spectra of ZIAPIN2 in glycerol (B) is larger than zero in the 
whole spectral range under investigation. In this case the signal has a different shape from the 
previous one, with the peak of the curves shifted around 600 nm, which represents the SE band 
peak of the molecule in a viscous media. The GSB signal is reduced with respect to the SE due to the 
absence of a long-living cis isomer and a favored radiative relaxation. In the case of intermediate 
viscosity (C), the SE band displays an increase in amplitude while the band corresponding to the cis 
isomer absorption decreases in amplitude, due to the reduced isomerization quantum yield with 
respect to (A). 

These measurements were performed using a Ti:Sapphire laser with 2 mJ output energy, 1 kHz 
repetition rate, a pulse width of 100 fs and a central wavelength of 800 nm. Samples were pumped 
with 490 nm light generated with a visible optical parameter amplifier (OPA). Pump pulses were 
focused on a 200 µm spot (diameter), keeping a power of 100 µW. The white-light probe pulse was 
generated with a sapphire plate. The sample was contained in a quartz cuvette, so that the optical 
path length was 1 mm. The transmitted probe signal was collected by an optical multichannel 
amplifier (OMA).  
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Figure S2. Fluorescence spectra of ZIAPIN2 in E. Coli suspensions and PBS at different temperatures, 
in the first 130 ps of the PL decay. As ZIAPIN2 fluorescence is strongly influenced by the medium, 
there is a significant spectral shift. In a water-like environment the PL peak is moved to 620 nm due 
to the formation of aggregates.1 The huge spectral shift indicates that the molecule has a strong 
affinity for the bacteria membrane. Moreover, the fluorescence quantum yield decreases with 
temperature, being isomerization favored. The gray rectangle highlights the spectral region (550-
590 nm) where the PL dynamics have been considered for our viscometer. Here the PL contribution 
of ZIAPIN2 molecules in water is minor. 

 

 

Figure S3. (A) PL dynamics of ZIAPIN2 in PBS buffer at different temperatures. The PL decays are in 
the region 550 - 590 nm. (B) Estimated viscosity of PBS buffer at different temperatures and 
tabulated values. The viscosity estimation is achieved using the ZIAPIN2 – viscometer. The error bars 
were obtained as reported in the main text.   
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Table S1. Fitting parameters of TRPL decay dynamics of ZIAPIN2 in DMSO and glycerol 
mixtures in the spectral range 550-590 nm. The decay kinetics have been fitted with a 
biexponential model, whose two components amplitudes and lifetimes are here reported. 
The mean fluorescence lifetime was calculated as in equation (4). The second column 
reports the viscosity calculated as in equation (5). 

 
Viscosity 

(cP) 

𝝉𝝉𝟏𝟏 

(ps) 

𝑨𝑨𝟏𝟏 

(%) 

𝝉𝝉𝟐𝟐 

(ps) 

𝑨𝑨𝟐𝟐 

(%) 

𝝉𝝉𝑴𝑴 

(ps) 

𝑹𝑹𝟐𝟐 

Glycerol 0% 2.4 6 94.1 81 5.9 39 0.984 

Glycerol 25% 9.66 10 84.9 74 15.1 46 0.985 

Glycerol 50% 44.5 18 63.4 98 36.6 79 0.987 

Glycerol 75% 237 30 51.3 164 48.7 142 0.984 
Glycerol 

100% 1460 28 26.6 176 73.4 168 0.993 

 

Table S2. Fitting parameters of TRPL decay dynamics of ZIAPIN2 in four different solvents 
in the spectral range 550-590 nm. The decay kinetics have been fitted with a biexponential 
model, whose two components amplitudes and lifetimes are here reported. The mean 
fluorescence lifetime was calculated as in equation (4).  

 
𝝉𝝉𝟏𝟏 

(ps) 

𝑨𝑨𝟏𝟏 

(%) 

𝝉𝝉𝟐𝟐 

(ps) 

𝑨𝑨𝟐𝟐 

(%) 

𝝉𝝉𝑴𝑴 

(ps) 

𝑹𝑹𝟐𝟐 Tabulated 
viscosity2 

(cP) 

Ethylene glycol 16 58.8 89 41.2 74 0.988 18.3 

Acetonitrile 3 98.4 90 1.6 34 0.991 0.35 

THF 5 93.2 50 6.8 24 0.990 0.52 

1-butanol 7 83.7 47 16.3 30 0.993 2.96 
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Table S3. Fitting parameters of TRPL decay dynamics of ZIAPIN2 in E .Coli suspension at 
different temperatures in the spectral range 550-590 nm. The decay kinetics have been 
fitted with a biexponential model, whose two components amplitudes and lifetimes are 
here reported. The mean fluorescence lifetime is calculated as in equation (4). The 
viscosity has been estimated according to the viscosity calibration curve hereby proposed. 

Temperature 

(°C) 

𝝉𝝉𝟏𝟏 

(ps) 

𝑨𝑨𝟏𝟏 

(%) 

𝝉𝝉𝟐𝟐 

(ps) 

𝑨𝑨𝟐𝟐 

(%) 

𝝉𝝉𝑴𝑴 

(ps) 

𝑹𝑹𝟐𝟐 

 

Viscosity 

(cP) 

22 7 78.2 70 21.8 53 0.986 9.9 

30 7 79.1 68 20.9 51 0.986 8.0 

37 7 79.6 64 20.4 47 0.985 6.2 

40 6 78.3 60 21.7 45 0.983 5.1 
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