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ABSTRACT
In this paper we provide a description of the methods we used
as team BanaNeverAlone for the ACM RecSys Challenge 2020, or-
ganized by Twitter. The challenge addresses the problem of user
engagement prediction: the goal is to predict the probability of a
user engagement (Like, Reply, Retweet or Retweet with comment),
based on a series of past interactions on the Twitter platform. Our
proposed solution relies on several features that we extracted from
the original dataset, as well as on consolidatedmodels, such as gradi-
ent boosting for decision trees and neural networks. The ensemble
model, built using blending, and a multi-objective optimization
allowed our team to rank in position 4.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ingmethodologies→Classification and regression trees;Neu-
ral networks.
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1 INTRODUCTION
The rise to prominence of web services in the last 20 years (e.g.,
social networks, e-commerce, news services) has been accompa-
nied by the widespread use of recommender systems to help users
navigate the new wealth of options at their disposal. The ACM
RecSys Challenge 2020 [2]1 organized by Twitter, focuses on the de-
velopment of a system able to predict, given a tweet, the likelihood
a user will perform a certain action among: Like, Reply, Retweet,
and Retweet with comment. The Challenge also takes into account
user privacy and requires participants to use frequently changing
training data in which certain tweets are removed. Our team pro-
poses a hybrid solution with a different model for each action type,
tuned via multi-objective optimization.

The paper is structured as follows. In Section 2 we provide an
overview of the problem analyzing the composition of the dataset
and the metrics used in the Challenge. In Section 3 we describe how
we split the dataset in order to exploit the temporal information of
the samples. In Section 4 we list and describe the models we used
as well as the ensembling technique. In Section 5 we describe the
feature engineering step and list the most significant features we
used. In Section 6 we discuss the experimental choices we made
along with the obtained results. Lastly, in Section 7 we draw the
conclusions. We publicly release the source code of our final model
as well as the relevant documentation2.

2 PROBLEM FORMULATION
The goal of the ACM RecSys Challenge 2020 is to predict the prob-
ability that a user will engage with a given tweet. In particular,
four different user actions are possible: Like, Reply, Retweet, and
Retweet with comment (we will refer to this class as Comment).
Thus, given a ⟨user_ID, tweet_ID⟩ pair, four different predictions
(i.e., likelihoods) should be provided, one for each engagement class.

Twitter provided the participants with a dataset of 160 million
tweets and the related user engagements. The provided training
data was sampled over one week, while the test data was sampled
from the following week. Each sample of the dataset represents a
possible engagement between a user and a tweet, whichmay or may

1http://www.recsyschallenge.com/2020/
2https://github.com/MaurizioFD/recsys-challenge-2020-twitter
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not have occurred. Each possible engagement is associated with sev-
eral features, among which the user’s follower and following count,
the tweet text (represented as tokens from the BERT dictionary
[5]), the tweet creation timestamp, and a list of links present in the
tweet. If the engagement occurred, its timestamp is also available.
For the test tweets, the timestamp is not available. In the remainder
of the paper we will use positive samples to indicate engagements
that occurred and negative samples to indicate those that did not oc-
cur. In order to ensure compliance with privacy laws, samples that
were removed from the platform also had to be removed from the
dataset. Due to this, several versions of the dataset were released
during the challenge. The final training dataset contains about 121
million samples and the final test contains about 12 million samples.
The engagement classes in the provided dataset exhibit a strong
imbalance. In particular, the Like engagement is balanced while
the Reply and Comment classes are strongly unbalanced towards
the negative samples. The quota of positive samples over the total
number of samples for each engagement class is: 0.434 for the Like
class, 0.109 for the Retweet class, 0.025 for the Reply class, 0.007 for
the Comment class. Furthermore, 24% of the samples have a cold
user as engager, i.e., a user who never appeared in the training data
as engager both in positive and negative samples.

Two metrics are used to evaluate the predictions: the Relative
Cross-Entropy (RCE), which takes into account the relative im-
provement from a naive prediction baseline, and the Area Under
the Precision-Recall Curve (PRAUC). The twometrics are computed
for each engagement class separately. For each metric, the average
on the four classes is computed and the submissions ranked. The
final score on the leaderboard is calculated as the summation of the
rank obtained from the two metrics3. Each team can choose two
different sets of predictions and the best one will be automatically
chosen for the final evaluation.

3 DATA SPLIT
In order to have a local validation data, we further split the pro-
vided training data. Reproducing the same splitting protocol used
to generate the leaderboard test data, i.e., selecting only the last
days of the training data, is not an advisable strategy. Since the
engagements are distributed over a single week, removing the latest
engagements from the training data would not properly reproduce
the temporal distribution of the test data and would make impos-
sible for the model to use some of the features, such as the day of
the week in which a tweet is created. In order to overcome this, we
adopted a specifically crafted protocol. The provided training data
is split via a random holdout, 88% for the local training data and
12% for the validation. The timestamp of the validation samples is
then shifted by one week in the future, to simulate a week long
behavior. In the remainder of the paper we will refer to the local
training data as simply training data. Moreover, as stated in Section
2, the test data contains a sizable number of cold users, we thus
kept this percentage consistent in our validation data by removing
some users and their engagements as engagers from the training
data, putting them in the validation data.

3https://recsys-twitter.com/faq/

4 MODELS
The provided dataset, as well as the additional features we devel-
oped (see Section 5), mostly consist of well-structured tabular data.
For this reason, our models rely strongly on Gradient Boosting for
decision trees (GBDT). The only exception are the BERT tokens
used to represent the tweet text, which are modeled with a neural
network for natural language processing. Finally, all models are
combined in a blending ensemble.

4.1 Gradient Boosting for Decision Trees
We used two variations of Gradient Boosting for decision trees:

• XGBoost: [3] well known tool which allows to build models
using sparse datasets.

• LightGBM: [7] which allows for substantially faster training
time compared to XGBoost.

4.2 Neural Networks
A significant information source is the tweets’ text, provided in
the form of token IDs from the BERT tokenizer. BERT is a trans-
former model introduced by Google [5], particularly effective for
natural language processing. We fine-tuned a pre-trained Distil-
BERT model, a variant of BERT that gives a significant speedup
in computation time [8]. The fine-tuning process is necessary for
the model to understand the semantics of hashtags, mentions and
other domain-specific data that a pre-trained generic version could
not capture. In particular, we added two dense layers on top of the
pre-trained model (with 128 and 64 neurons respectively). Each of
the two hidden layers is followed by a dropout layer, with a high
dropout rate (0.5), to counteract overfitting in such a big model. The
first dense layer takes as input also a set of other features (50 for
Comment and 74 for the other three classes), which are normalized
with a Yeo-Johnson transformation to ensure they are normally
distributed [9]. The final model architecture is shown in Fig. 1.

4.3 Ensemble
We combined the previously described base models: LightGBM, XG-
Boost and neural networks, with the blending ensemble technique,
using a new instance of LightGBM. Each base model was trained
on the training data and produced predictions on both the valida-
tion and test data (Stage 1 of Fig. 2). We enhanced validation and
test data with the predictions given by the base models, treating
them as new features. We finally trained the ensemble model on
the validation data and generated the predictions on the test data
(Stage 2 of Fig. 2) in order to produce the submission.

5 FEATURES
Feature engineering proved to be very important to achieve com-
petitive results. In addition to the features present in the provided
dataset, we developed around 300 new features, half of which were
excluded from our final solution because they had limited impact.
In the following sections, we describe those we consider to be the
most significant.
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Figure 1: Structure of the neural net-
work model, using both text embed-
dings and a set of other features.
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Figure 2: Stages of the blending ensemble.

5.1 User Behavior Modeling
The features belonging to this category aim to represent the user’s
past behavior. Each of them was built using two different tech-
niques:

Timestamp-aware: Given a user-tweet engagement, the fea-
tures are computed using all the engagements that occurred
previously, according to the tweet creation timestamp. Note
that a user is associated to different feature values as time
progresses, modeling the sequential engagements pattern.

Cumulative: The features are not sensitive to the sequential
patterns and are computed using the whole user history. The
training data is split randomly in 20 folds. For each fold,
the user behavior features are computed using the engage-
ment data in the other 19 folds. We could observe that this
approach improved the model robustness.

The user behavior features that we developed can be split in three
main subcategories:

Number of Active and Passive Engagements. This group of fea-
tures is computed for each engagement class and is associated to a

specific user. For each sample, there are both the features referred
to the engager (active) and the creator (passive). Given a sample,
its timestamp and the user role (i.e., creator, engager), the features
count the number of engagements of each type in which the user
had the same role. The features associated to the role engager will
model how likely is the user to interact with tweets, while those for
the role creator will represent how popular the user is. The division
in engagement types further allows to model the user’s interaction
style.

Number of Engagements with Language/Hashtag. We create one
feature per engagement class, which counts the number of previous
engagements the user had with tweets of the same language of the
current one. These features provide a way to model the languages a
user speaks and therefore which are those the user may understand
and engage with in the future with higher probability. A similar
feature counts the number of previous engagements with a hashtag
and provides a semantic indicator of the user’s interests.

User Similarity. We compute a similarity between users by rep-
resenting them in an undirected graph. Each edge will connect two
nodes, i.e., users, if one engaged with a tweet created by the other
and will have a weight equal to the number of such engagements.
Four features are generated from this representation: the similarity
of directly connected users (i.e., 1-hop) and connected by a path of
length exactly two (i.e., 2-hop). Both are represented as a binary
value, if the users are connected or not, and as the summation of
the weights of the edges connecting the two users.

5.2 Tweet Text Features
The text of the tweet was modeled in different ways and used both
in the neural network models and in GBDT. For the neural network
model we used the text embeddings produced by DistilBERT, as
described in Section 4.2. In order to use the text in GBDTmodels we
created some specific features computed from the encoded tweet
tokens. The purpose of these features is to summarize some salient
text related information in a format that can be used by the GBDT
models.

Unique Words Frequency. This feature represents how much a
user tends to use repeated words from past tweets when writing a
new one. It is computed by concatenating all text the user wrote
and calculating the ratio between the number of unique tokens and
the total number of tokens. It can be useful in identifying bots and
recurrent patterns.

Tweet Topic. We identified some popular topics (COVID-19, K-
Pop, sports, etc.) and manually associated each to a list of the most
used words. Then, for each tweet we counted the number of words
of a certain topic it contains.

6 EXPERIMENTAL EVALUATION
6.1 Hyperparameter Tuning
In order to tune the hyperparameters of the models we performed a
Bayesian Optimization, whichwas proven to be an effective strategy
[1, 4, 6], using the scikit-learn library4.

4https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html
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Figure 3: Distribution of the predictions for the Comment
class generated by the two models, one with high PRAUC
and the other with high RCE.

Table 1: Performance of the models on the validation data.
NN-S1 and NN-S2 refer to the two instances of the neural
network on different subsamples of the training data.

PRAUC
Model Like Retweet Reply Comment
XGBoost 0.7992 0.5391 0.1704 0.0615
LightGBM 0.8201 0.5469 0.1714 0.0650
NN-S1 0.7775 0.4934 0.1428 0.0336
NN-S2 0.7755 0.4889 0.1412 0.0309

NN 4-labels 0.7629 0.4734 0.1185 0.0264
RCE

Model Like Retweet Reply Comment
XGBoost 28.98 29.75 18.55 11.96
LightGBM 32.86 30.48 18.76 12.39
NN-S1 25.62 25.97 14.40 6.54
NN-S2 25.17 25.68 14.78 3.95

NN 4-labels 23.02 24.45 12.55 5.23

Since the submissions to the Challenge are evaluated with two
metrics we developed a custom objective function to be used during
the hyperparameter tuning. This choice was further motivated as a
way to mitigate two other issues. First, the high class unbalance for
engagement type Reply and Comment tended to steer the model
to simply predict an engagement probability of zero. Second, an
algorithm providing a constant prediction, regardless of its value,
is able to achieve an extremely high PRAUC (higher than 0.5) in
those classes, but a very low RCE. The effect is especially marked
for the Comment class where a constant prediction model achieves
a PRAUC of 0.5037, more than 6 times the PRAUC of the winning
approaches of 0.0796. In order to address those issues we combined
the two metrics and penalized models with high PRAUC but no
discriminative power. The objective function is defined as follows:

obj(PRAUC,RCE) =

{
RCE · PRAUC, if RCE ≥ 0
RCE/PRAUC, otherwise

(1)

This objective function, combined with the stochastic nature
of the Bayesian Optimization allowed us to identify two optimal
solutions for the Comment class, one of which has a high PRAUC
(Comment-P) while the other a high RCE (Comment-R). Fig. 3

visualizes their differences on the prediction distribution. The two
Comment models have the same mean 0.0076, but a very different
standard deviation: 0.0088 for Comment-P and 0.0166 for Comment-
R. In this case a higher PRAUC is associated to a greatly reduced
variance.

6.2 Performance Analysis
Gradient Boosting for Decision Trees. Throughout the various

experiments and hyperparameter settings we tried, LightGBM al-
ways provided better predictions than XGBoost. Table 1 shows the
performance of the XGBoost and LightGBM models that had the
best results on the validation data. We also noticed that the RCE of
the GBDT models for the Like class on the test data was about 50%
lower than the validation one.

Neural Networks. We explored different variations on how to
train the neural network model presented in Section 4.2. An initial
solution was to train a network with 4 output neurons, one for
each engagement class. This approach allowed us to leverage cor-
relations between labels and save computation time, with respect
to training a different model for every single class. However, we
observed that further improvements could be obtained by using
a mixed strategy. In our final solution we trained a network with
two sigmoid outputs for the Like and the Retweet engagements,
while we used two separate, single output networks, for the Reply
and Comment engagements. The main drawback of the neural net-
work models was that training and computing the predictions were
very time consuming. In order to mitigate the computational cost,
we independently trained two instances of each network on two
small random subsamples of the training data (S1 and S2), each of
which was composed by four million samples. This allowed us to
parallelize the training process, ensuring that a higher number of
training samples could be explored in a smaller amount of time.
Table 1 compares the local performance of a neural model with 4
output neurons against the mixed strategy we adopted.

Ensemble. Initially, each ensemble model contained the base
models scores for each one of the four labels. Due to the previously
discussed discrepancy between validation and test performance of
the GBDT models on the Like class, we decided to remove their
scores from the ensemble. For the same reason, in the final ensemble
for the Like class we opted not to use any score we inferred using
the GBDTmodels. We used, instead, only the neural network scores
along with the features described in Section 5. A visualization of
the scores and features used in the ensemble for each class can be
found in Fig. 4.

We had the possibility to submit two different solutions to be
evaluated on the final leaderboard. The two submissions we made
included the exact same predictions for the Like, Retweet and Reply
classes, while they differed in the Comment ones. One submission
included the predictions given by the Comment-P ensemble model
and the other included those given by the Comment-R ensemble
model. The performance on the validation data and the leaderboard
test of each final ensemble model is reported in Table 2.

Feature Importance. In order to measure the contribution of the
features we used in our final models, we computed the permutation
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Figure 4: Final ensemblemodel for the Like class on the right
and for the other three labels on the left. In blue the neural
networks scores, in red the GBDT model ones and in yellow
the features.

Table 2: Performance of the final ensemble models on local
validation data and on the leaderboard. Since the submission
containingComment-Rwas not the best one, its PRAUCand
RCE values are missing from the final leaderboard.

Final Validation Leaderboard
Model PRAUC RCE PRAUC RCE
Like 0.8134 31.56 0.7531 21.20
Reply 0.2029 21.29 0.1850 18.71
Retweet 0.5631 32.37 0.5042 27.21

Comment-P 0.1264 9.41 0.1237 8.34
Comment-R 0.0688 13.77 * *

importance5 of each feature. Its value is the ∆RCE between the
correct model score and that of a model trained with that feature
randomly-shuffled, keeping the others unchanged. The process
was repeated 5 times per feature. Higher values indicate more
important features. By analyzing the results6 we noticed that the
neural networks scores are highly relevant, which may be because
they are the only model that is able to process the text of the tweets.
In the case of Comment-P the model relies almost exclusively on
the base models scores. Regarding the features we described in
Section 5, a feature that was useful for all the final ensemble models
is the number of previous passive negative engagements (Section
5.1), reaching an importance of 16.148 in the Like model.

7 CONCLUSION
The goal of the ACM RecSys Challenge 2020 was to predict the
probability of an user’s engagement to a given tweet. We combined
the information captured directly by the features extracted from the
dataset with the predictions given by different GBDT and neural
network models, trained with features that allowed us to model
aspects such as users’ behavior or their similarity. We also defined a
dedicated objective function to tune our models that allowed us to
achieve a reasonable trade-off between a high PRAUC score while
maintaining a model with discriminative power in the Comment

5https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
6The results are available in the online material we release in our Github repository:
https://github.com/MaurizioFD/recsys-challenge-2020-twitter

label predictions. The blending ensemble technique we used pro-
vided an improvement with respect to the performance of the single
models in both local and leaderboard evaluations, in such a way
that we were able to reach the 4th position in the final leaderboard.
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