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We investigate the nonlocal version of the Abels-Garcke-Grün (AGG) system, 
which describes the motion of a mixture of two viscous incompressible fluids. This 
consists of the incompressible Navier-Stokes-Cahn-Hilliard system characterized by 
concentration-dependent density and viscosity, and an additional flux term due to 
interface diffusion. In particular, the Cahn-Hilliard dynamics of the concentration 
(phase-field) is governed by the aggregation/diffusion competition of the nonlocal 
Helmholtz free energy with singular (logarithmic) potential and constant mobility. 
We first prove the existence of global strong solutions in general two-dimensional 
bounded domains and their uniqueness when the initial datum is strictly separated 
from the pure phases. The key points are a novel well-posedness result of strong 
solutions to the nonlocal convective Cahn-Hilliard equation with singular potential 
and constant mobility under minimal integral assumption on the incompressible 
velocity field, and a new two-dimensional interpolation estimate for the L4(Ω)
control of the pressure in the stationary Stokes problem. Secondly, we show that any 
weak solution, whose existence was already known, is globally defined, enjoys the 
propagation of regularity and converges towards an equilibrium (i.e., a stationary 
solution) as t → ∞. Furthermore, we demonstrate the uniqueness of strong solutions 
and their continuous dependence with respect to general (not necessarily separated) 
initial data in the case of matched densities and unmatched viscosities (i.e., the 
nonlocal model H with variable viscosity, singular potential and constant mobility). 
Finally, we provide a stability estimate between the strong solutions to the nonlocal 
AGG model and the nonlocal Model H in terms of the difference of densities.
© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).

r é s u m é

Nous étudions la version non locale du système d’Abels-Garcke-Grün (AGG), qui 
décrit l’évolution d’un mélange de deux fluides incompressibles. Il est constitué 
du système de Navier-Stokes-Cahn-Hilliard incompressible caractérisé par des 
densités et viscosités dépendant de la concentration, et d’un terme de flux 
additionnel dû à la diffusion d’interface. En particulier, la dynamique de Cahn-
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Hilliard de la concentration (champ de phase) est gouvernée par la compétition 
aggrégation/diffusion de l’énergie libre de Helmholtz non locale avec potentiel 
singulier (logarithmique) et mobilité constante. Nous démontrons d’abord l’existence 
globale de solutions fortes dans un domaine borné de dimension deux, ainsi que 
leur unicité lorsque la donnée initiale est strictement séparée des phases pures. Les 
points clefs sont un nouveau résultat sur le caractère bien-posé de solutions fortes de 
l’équation de Cahn-Hilliard convective avec potentiel singulier et mobilité constante 
sous une hypothèse intégrale minimale sur le champ de vitesse incompressible et 
une nouvelle estimation d’interpolation en dimension deux pour le contrôle L4(Ω)
de la pression dans le problème de Stokes stationnaire. Dans un deuxième temps, 
nous montrons que toute solution faible, dont l’existence est déjà connue, est définie 
globalement, propage la régularité et converge vers un équilibre (i.e., une solution 
stationnaire) lorsque t → ∞. De plus, nous montrons l’unicité des solutions fortes 
et leur dépendance continue par rapport à des données initiales générales (pas 
nécessairement séparées) dans le cas de densités égales et viscosités différentes 
(i.e., the modèle H non local avec viscosité variable, potentiel singulier et mobilité 
constante). Finalement, nous donnons une estimation de stabilité entre les solutions 
fortes du modèle AGG non local et le modèle H non local en terme de la différence 
des densités.
© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction and main results

In the Diffuse Interface theory, the motion of a mixture of two incompressible viscous Newtonian fluids 
and the evolution of the interface separating the bulk phases have been originally modeled by the so-called 
Model H (see, e.g., [7,41,43]). This leads to the following Navier-Stokes-Cahn-Hilliard system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ∂tu + ρ(u · ∇)u − div (ν(φ)Du) + ∇Π = −div (∇φ⊗∇φ) ,
divu = 0,
∂tφ + u · ∇φ = div (m(φ)∇μ),
μ = −Δφ + Ψ′(φ),

(1.1)

in Ω × (0, ∞). Here, Ω is a bounded domain in Rd, d = 2, 3, u represents the (volume averaged) velocity, 
Du = (∇u+(∇u)T )/2 is the symmetric strain tensor, Π denotes the pressure and φ is the order parameter 
(i.e., the relative concentration difference of the two mixture components). Also ν(·) > 0 is the viscosity of 
the mixture, ρ is the constant mixture density, m(·) ≥ 0 is the mobility function, and Ψ is the Flory-Huggins 
double-well potential defined by

Ψ(s) = α

2 ((1 + s) ln(1 + s) + (1 − s) ln(1 − s)) − α0

2 s2 = F (s) − α0

2 s2, ∀ s ∈ [−1, 1], (1.2)

where the two positive parameters α, α0 satisfy the relations 0 < α < α0. This potential, in particular, 
ensures the existence of physical solutions, that is, solutions such that φ ∈ [−1, 1]. One of the fundamental 
modeling assumptions of (1.1) is that the densities of both components match and thereby the density of 
the mixture ρ is constant. This restricts the applicability of the model to those fluid mixtures having a non-
negligible difference between the two densities ρ1, ρ2 > 0. To overcome it, the so-called Abels-Garcke-Grün 
(AGG) system has been introduced in the seminal work [9] as a thermodynamically consistent generalization 
of the Model H, allowing to treat fluids with unmatched densities. The AGG model reads as follows

http://creativecommons.org/licenses/by-nc-nd/4.0/
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t(ρ(φ)u) + div (u ⊗ (ρ(φ)u + J)) − div (ν(φ)Du) + ∇Π = −div (∇φ⊗∇φ) ,
divu = 0,
∂tφ + u · ∇φ = div (m(φ)∇μ),
μ = −Δφ + Ψ′(φ),

(1.3)

in Ω × (0, ∞), where

ρ(φ) = ρ1
1 + φ

2 + ρ2
1 − φ

2 , J = −ρ1 − ρ2

2 m(φ)∇μ. (1.4)

System (1.3) is usually supplemented with the boundary and initial conditions

{
u = 0, ∂nφ = ∂nμ = 0, on ∂Ω × (0,∞),
u|t=0 = u0, φ|t=0 = φ0, in Ω,

(1.5)

where n is the unit outward normal vector to ∂Ω.
In both Model H and AGG model, the fluid mixture is driven by the capillary forces −div (∇φ ⊗ ∇φ), 

accounting for the surface tension effect, together with a partial diffusive mixing. The latter is assumed in 
the interfacial region and it is modeled by div (m(φ)∇μ). The specificity of the AGG model compared to 
the Model H lies in the presence of the flux term J. In contrast to the one-phase flow, the (average) density 
ρ(φ) in (1.3) does not satisfy the continuity equation with respect to the flux associated with the velocity 
u. Instead, the density satisfies the continuity equation with a flux given by the sum of the transport term 
ρ(φ)u and the term J, which is due to the diffusion of the concentration in the unmatched densities case1

(see also [37] and the references therein). Notice that we recover (1.1) when ρ1 = ρ2 in (1.3)-(1.4).
Concerning the mathematical analysis of the AGG model (1.3)-(1.5), the existence of global weak solutions 

were proven in [5] and [6] in the case of strictly positive and degenerate mobility m(·), respectively. The 
existence of global weak solutions has been extended in [4] to viscous non-Newtonian binary fluids (with 
constant mobility) and in [31] to the case of dynamic boundary conditions (with strictly positive mobility). 
The convergence of a fully discrete numerical scheme to weak solutions was shown in [42]. More advanced 
issues related to the well-posedness, regularity and longtime behavior have obtained a renewed interest in 
the last years. In [12], the local well-posedness of strong solutions has been proven in three dimensions for 
polynomial-like potentials Ψpol and strictly positive mobility. We point out that the solution in [12] may not 
satisfy |φ(x, t)| ≤ 1 in the space-time domain. In [37], the well-posedness of (local-in-time) strong solutions 
in two dimensional bounded domains has been obtained for the logarithmic potential (1.2) and constant 
mobility. In this case, φ takes its values in the physical range [−1, 1]. If the boundary conditions are periodic 
then the strong solutions are globally defined in time (see [37]). The case of bounded three-dimensional 
domains has been investigated in [38], where the well-posedness of local strong solutions is shown. More 
recently, the propagation of regularity in time of any weak solutions in three dimensions and its stabilization 
towards an equilibrium state as t → ∞ have been achieved in [8] in the case of constant mobility (see also 
[2,39] for the matched density case). In the latter, the authors also discussed the global well-posedness in 
bounded two-dimensional domains and the deep quench limit. We conclude this part by mentioning that 
the realm of Diffuse Interface (phase field) models for fluid mixtures has been widely deepened in the past 
decades. Several models have been proposed to describe binary mixtures with non-constant density relying 
on different assumptions. We refer the interested reader to the models derived, e.g., in [16,36,45,51,56,59]
and the analysis carried out in [1,3,15,40,47].

1 Indeed, ρ = ρ (φ) satisfies the continuity equation ∂tρ + div (ρu + J) = 0.
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The evolution of the phase-field variable in both Model H and AGG model is modeled by the local 
Cahn-Hilliard equation driven by divergence-free drift. The chemical potential μ in (1.3) is defined as the 
first variation of the Ginzburg-Landau free energy

Eloc(φ) =
∫
Ω

1
2 |∇φ|2 + Ψ(φ) dx. (1.6)

The free energy Eloc(φ) only focuses on short range interactions between particles. Indeed, the gradient 
square term accounts for the fact that the local interaction energy is spatially dependent and varies across 
the interfacial surface due to spatial inhomogeneities in the concentration. Going back to the general ap-
proach of statistical mechanics, the mutual short and long-range interactions between particles are described
through convolution integrals weighted by interactions kernels. Based on this ancient approach (see [55]), 
Giacomin and Lebowitz ([33–35]) observed that a physically more rigorous derivation leads to a nonlocal 
dynamics, which is the nonlocal Cahn-Hilliard equation. In particular, this equation is rigorously justified 
as a macroscopic limit of microscopic phase segregation models with particle-conserving dynamics. In this 
case, the gradient term is replaced by a nonlocal spatial interaction integral, namely

Enloc(φ) =
∫
Ω

F (φ(x)) dx− 1
2

∫
Ω

∫
Ω

K(x− y)φ(x)φ(y) dx dy, (1.7)

where K is a sufficiently smooth symmetric interaction kernel. As shown in [34] (see also [29] and the 
references therein), the energy Eloc can be seen as an approximation of Enloc, as long as we suitably redefine 
Ψ as Ψ̃(x, s) = F (s) − (K ∗ 1)(x)s2/2. The physical relevance of nonlocal interactions was already pointed 
out in the pioneering paper [55] (see also [46, 4.2] and references therein) and studied for different kind of 
evolution equations, mainly Cahn-Hilliard and phase field systems, see, e.g., [14,18,27,28,30,48–50]. In this 
context, the nonlocal AGG model we want to analyze reads as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t(ρ(φ)u) + div (u ⊗ (ρ(φ)u + J)) − div (ν(φ)Du) + ∇Π = μ∇φ,

divu = 0,
∂tφ + u · ∇φ = div (m(φ)∇μ),
μ = F ′(φ) −K ∗ φ,

(1.8)

in Ω × (0, ∞), where F , ρ and J are given in (1.2) and (1.4). System (1.8) is endowed with the boundary 
and initial conditions {

u = 0, ∂nμ = 0 on ∂Ω × (0,∞),
u|t=0 = u0, φ|t=0 = φ0 in Ω.

(1.9)

Regarding the mathematical analysis of the nonlocal AGG system, there are much fewer contributions 
than in the local case. The nonlocal AGG system (1.8)-(1.9) has only been analyzed so far in [22] and in 
[23]. In the former, the existence of weak solutions is shown in the case of singular (logarithmic) potential 
and strictly positive mobility in two and three dimensional bounded domains. In the latter, the existence of 
weak solutions is proven in the case of singular potential and degenerate mobility. Another nonlocal variant, 
focused on fractional diffusion, has been investigated in [10], where the authors proved the existence of 
weak solutions in two and three dimensional bounded domains in the case of a singular nonlocal free energy 
and strictly positive mobility. More precisely, the “diffusive” term |∇φ|2 in Eloc is replaced by a singular 
nonlocal operator which controls the H

α
2 (Ω) norm of the concentration φ for α ∈ (0, 2) (as a consequence, 

Δφ in (1.3)4 is replaced by a regional fractional Laplacian). More recently, the authors in [11] have shown 
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that such weak solutions converge to those of (1.3) in the setting introduced in [19]-[20]. In addition, 
in [23, Theorem 3.5], the author also proved that, under suitable assumptions on the initial datum, the 
kernel K, the potential F and the degenerate mobility, the concentration function φ enjoys the regularity 
L2(0, T ; H2(Ω)) ∩H1(0, T ; L2(Ω)) in two dimensions (cf. Theorem 1.3 for weak solutions reported below). In 
particular, it is worth pointing out that the assumptions (A4) and (A1b) in [23], i.e. m(·)F ′′(·) ∈ C1([−1, 1])
such that m(·)F ′′(·) is strictly positive, allows to rewrite (1.8)3,4 as

∂tφ + u · ∇φ = div (m(φ)F ′′(φ)∇φ−∇K ∗ φ) , in Ω × (0,∞), (1.10)

where the main diffusion operator is a second-order divergence form operator with positive and bounded 
coefficients. On the other hand, if m is constant (or even non-degenerate) at the endpoints ±1, the prod-
uct mF ′′(·) no longer enjoys the typical cancellation effect seen with phase segregation phenomena when 
m (±1) = 0 (see [25]). In particular, the (variable) diffusion coefficient mF ′′(·) in (1.10) is highly singular 
and unbounded since mF ′′(s) = αm(1 − s2)−1, owing to (1.2). To the best of our knowledge, there are yet 
no results concerning the global well-posedness for the nonlocal AGG model (1.8)-(1.9) in dimension two in 
the case of singular potentials and constant mobility. As a matter of fact, the same open questions remain 
still unresolved even for the nonlocal Model H with unmatched viscosities and logarithmic-like potential, 
which corresponds to (1.8)-(1.9) with ρ1 = ρ2. In fact, beyond the global existence of weak solution for 
the nonlocal Model H established in [26], the uniqueness of weak solutions, their propagation of regularity 
and their longtime behavior in two dimensions has been discussed in [24] and [28] in the case of constant 
viscosity only.

The aim of the present paper is to present the first well-posedness result concerning the nonlocal AGG 
model (with unmatched densities and viscosities) in presence of singular-like potentials and constant mobil-
ity. In fact, following [29], we consider a general class of entropy potentials, commonly employed for complex 
binary particle systems experiencing long range interactions. This class generalizes the classical logarithmic 
density function (1.2). Recall that the latter is uniquely generated by Boltzmann-Gibbs statistics of macro-
scopic mixing of the fluid constituents. To this end, let us first state the main assumptions, which will be 
adopted throughout our analysis:

(H1) Ω is a bounded domain in R2 with boundary ∂Ω of class C2.
(H2) The interaction kernel K ∈ W 1,1(R2) is such that K(x) = K(−x) for all x ∈ R2.
(H3) F ∈ C([−1, 1]) ∩ C2(−1, 1) fulfills

lim
s→−1

F ′(s) = −∞, lim
s→1

F ′(s) = +∞, F ′′(s) ≥ α, ∀ s ∈ (−1, 1).

We extend F (s) = +∞ for any s /∈ [−1, 1]. Without loss of generality, F (0) = 0 and F ′(0) = 0. In 
particular, this entails that F (s) ≥ 0 for any s ∈ [−1, 1].

(H4) We assume2 that F ′′ is monotone non-decreasing on [1 − ε0, 1), for some ε0 > 0 and there exist 
p ∈ [2, ∞) and a continuous function h : (0, 1) → R+, h (δ) = o(δ4/p), as δ → 0+, such that⎧⎨⎩F ′′(s) ≤ CeC|F ′(s)|β , for all s ∈ (−1, 1),

F ′′ (1 − 2δ)h (δ) ≥ 1, for all δ ≤ ε0

2 ,
(1.11)

for some C > 0 and β ∈ [1, 2).
(H5) The mobility is constant and equal to unity, i.e., m ≡ 1.

2 Without loss of generality we also assume that F ′′ is symmetric on (−1, 1), see [29]. Other statistical entropy density functionals 
(that can be more singular at ±1 than the logarithmic density (1.2)) from information theory are included in this study.
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(H6) The density values ρ1 and ρ2 are positive. The viscosity ν ∈ W 1,∞(R) satisfies

0 < ν∗ ≤ ν(s) ≤ ν∗, ∀ s ∈ R,

for some positive values ν∗, ν∗.

Remark 1.1. The logarithmic convex function F in (1.2) fulfills (H3) and (H4) (cf. [29]). A common form 
for the viscosity is the following

ν(s) = ν1
1 + s

2 + ν2
1 − s

2 , s ∈ [−1, 1],

which can be easily extended on the whole R in such way to comply with ((H6)). Many other examples of 
entropy densities satisfying (H3) and (H4) (including the Tsallis entropy) can be found in [29, Sections 6.2, 
6.3].

Remark 1.2. Among radially symmetric kernels K that satisfy (H2) are Newtonian, Bessel and Riesz like 
potentials. For instance, consider for x ∈ R2\ {0}, the Bessel potential

bs (|x|) = e−|x|

(2π) 2s/2Γ
(
s
2
)
Γ
( 3−s

2
) ∞∫

0

e−|x|t
(
t + t2

2

) 1−s
2

dt,

where Γ is the Gamma function and s > 0. Note that on R2, (I − Δ)−s/2
υ = bs∗υ. In particular, bs behaves 

as the Riesz potential, asymptotically as |x| → 0+, since

bs (|x|) = Γ (2 − s)
2sπs/2

1
|x|2−s (1 + o (1)) , if 0 < s < 2.

Logarithmically behaving kernels are also included in this analysis, as

b2 (|x|) = − 1
2π log |x| (1 + o (1)) , as |x| → 0+.

Other smooth kernels (i.e., either Gaussian or multimodal probability density functions) are allowed. We 
also refer the interested readers to [13].

Before proceeding with the statements of the main results, we report the only available result for the 
nonlocal AGG system (1.8)-(1.9), which concerns the existence of weak solutions on any fixed time interval 
(0, T ) proven in [22]. For the sake of completeness, we report it in the original form with the non-degenerate 
mobility. We refer the reader to Section 2 for functional space notation. For instance, (·, ·) will denote the 
inner product in L2(Ω; R2) and in L2(Ω; R2×2).

Theorem 1.3. Let (H1)-(H3) and (H6) hold and let m ∈ C1,1
loc (R) such that 0 < m∗ ≤ m(s) ≤ m∗ for all 

s ∈ R for some m∗ and m∗. Assume that u0 ∈ L2
σ(Ω) and φ0 ∈ L∞(Ω) with F (φ0) ∈ L1(Ω) and |φ0| < 1. 

Then, for any T > 0, there exists a weak solution to (1.8)-(1.9) in (0, T ) such that
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(i) The pair (u, φ) satisfies the properties

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u ∈ Cw([0, T ];L2
σ(Ω)) ∩ L2(0, T ;H1

0,σ(Ω)),

φ ∈ L∞(Ω × (0, T )) ∩ L2(0, T ;H1(Ω)) with |φ| < 1 a.e. in Ω × (0, T ),

∂t (ρ(φ)u) ∈ L
4
3 (0, T ;V 2

0,σ(Ω)′), ∂tφ ∈ L2(0, T ;H1(Ω)′),

μ = F ′(φ) −K ∗ φ ∈ L2(0, T ;H1(Ω)).

(1.12)

(ii) The solution (u, φ) fulfills the system in weak sense:

〈∂t(ρ(φ)u),w〉V 2
0,σ(Ω) − (ρ(φ)u ⊗ u, Dw) + (ν(φ)Du, Dw) − (u, (J · ∇)w) = − (φ∇μ,w) , (1.13)

〈∂tφ, v〉H1(Ω) − (φu,∇v) + (m(φ)∇μ,∇v) = 0, (1.14)

for any w ∈ V 2
0,σ(Ω), v ∈ H1(Ω) and almost everywhere in (0, T ).

(iii) The initial conditions u(·, 0) = u0 and φ(·, 0) = φ0 hold in Ω.
(iv) The energy inequality

E(u(t), φ(t)) +
t∫

s

∥∥∥√ν(φ(τ))Du(τ)
∥∥∥2

L2(Ω)
+

∥∥∥√m(φ)∇μ(τ)
∥∥∥2

L2(Ω)
dτ ≤ E(u(s), φ(s)) (1.15)

holds for all t ∈ [s, T ) and almost all s ∈ [0, T ) (including s = 0), where the total energy is defined as

E(u, φ) := 1
2

∫
Ω

ρ(φ)|u|2 dx +
∫
Ω

F (φ) dx− 1
2

∫
Ω

(K ∗ φ)φ dx. (1.16)

Remark 1.4. The result of [22, Theorem 1] actually holds for a slightly different model than (1.8). Indeed, 
the nonlocal Helmholtz free energy considered in [22] is

E�
nloc(φ) = 1

4

∫
Ω

∫
Ω

K(x− y) (φ(x) − φ(y))2 dx dy +
∫
Ω

F (φ) − α0

2 φ2 dx.

As a consequence, the chemical potential is μ = aφ − K ∗ φ + F ′(φ) − α0φ. On the other, as explained 
in [28] the two problems are strictly related and [22, Theorem 1] can be extended also to the problem in 
our analysis. More precisely, the two models are equivalent as long as we suppose α0(x) = a(x), where 
a(x) = K ∗ 1, and the differences in the analysis provided in [22] are related only to lower order terms.

Our first main result concerns the global existence and uniqueness of strong solutions to (1.8)-(1.9).

Theorem 1.5. Let the assumptions (H1)-(H6) hold. Assume that u0 ∈ H1
0,σ(Ω), φ0 ∈ H1(Ω), with |φ0| < 1, 

F ′(φ0) ∈ L2(Ω) and F ′′(φ0)∇φ0 ∈ L2(Ω; R2). Then, there exists a global strong solution (u, Π, φ) : Ω ×
[0, ∞) → R2 ×R × [−1, 1] to (1.8)-(1.9) such that:
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(i) The solution (u, Π, φ) satisfies the properties⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ BC([0,∞);H1
0,σ(Ω)) ∩ L2

uloc([0,∞);V 2
0,σ(Ω)) ∩H1

uloc([0,∞);L2
σ(Ω)),

Π ∈ L2
uloc([0,∞);H1

(0)(Ω)),

φ ∈ BCw([0,∞);H1(Ω)) ∩ Lq
uloc([0,∞);W 1,p(Ω)), q = 2p

p− 2 , ∀ p ∈ (2,∞),

φ ∈ L∞(0,∞;L∞(Ω)) : |φ(x, t)| < 1 for a.a. x ∈ Ω, ∀ t ∈ [0,∞),
∂tφ ∈ L∞(0,∞;H1(Ω)′) ∩ L2(0,∞;L2(Ω)), F ′(φ) ∈ L∞(0,∞;H1(Ω)),
μ ∈ BCw([0,∞);H1(Ω)) ∩ L2

uloc([0,∞);H2(Ω)) ∩H1
uloc([0,∞);H1(Ω)′).

(1.17)

(ii) (u, Π, φ) fulfills the system (1.8) almost everywhere in Ω ×(0, ∞) and the boundary condition ∂nμ = 0
almost everywhere on ∂Ω × (0, ∞).

(iii) (u, Π, φ) is such that u(·, 0) = u0 and φ(·, 0) = φ0 in Ω.
(iv) For any τ > 0, there exists δ = δ(τ) ∈ (0, 1) (depending on the norm of the initial datum) such that

sup
t∈[τ,∞)

‖φ(t)‖L∞(Ω) ≤ 1 − δ. (1.18)

Moreover, if we additionally assume that ‖φ0‖L∞(Ω) ≤ 1 − δ0, for some δ0 ∈ (0, 1), then there exists 
δ� > 0 such that

sup
t∈[0,∞)

‖φ(t)‖L∞(Ω) ≤ 1 − δ�. (1.19)

As a consequence, ∂tμ ∈ L2
uloc([0, ∞); L2(Ω)), and (u, φ) is unique and depends continuously on the initial 

data in L2
σ(Ω) × L2(Ω) on [0, T ], for any T > 0. More precisely, if (uj , Πj , φj) is the strong solutions to 

(1.8)-(1.9) originating from the initial datum (uj
0, φ

j
0), j = 1, 2, then

‖u1(t) − u2(t)‖2
L2(Ω) + ‖(φ1(t) − φ2(t)‖2

L2(Ω) ≤ C
(
‖u1

0 − u2
0‖2

L2(Ω) + ‖φ1
0 − φ2

0‖2
L2(Ω)

)
e
∫ T
0 H(τ) dτ , (1.20)

for any t ∈ [0, T ], where C > 0 is a constant depending on the norms of both the initial data and

H(t) = C
(
1 + ‖∂tu2(t)‖2

L2(Ω) + ‖∇u2(t)‖4
L4(Ω) + ‖u2(t)‖2

H2(Ω) + ‖∇φ2(t)‖4
L4(Ω)

)
. (1.21)

Remark 1.6 (Unique continuation property). Let us consider two strong solutions according Theorem 1.5
which depart from the same initial data with φ0 not necessarily strictly separated. If there exists τ̃ > 0 such 
that the two solutions coincide at t = τ̃ , they coincide over the entire interval [τ̃ , ∞). In fact, since both 
solutions are strictly separated in [τ̃ , ∞) by (1.18), the claim follows from (1.20).

The strategy of our proof relies on two new tools. First, we show a novel well-posedness result of strong 
solutions to the nonlocal Cahn-Hilliard system driven by an incompressible velocity field:

∂tφ + u · ∇φ = Δμ, μ = F ′(φ) −K ∗ φ, in Ω × (0,∞), (1.22)

∂nμ = 0, on ∂Ω × (0,∞), φ(0) = φ0, in Ω.

We recall that the regularity achieved in [28, Lemma 6.1] has been obtained by assuming that

u ∈ L2(0, T ;L∞
σ (Ω)) ∩H1(0, T ;L2

σ(Ω)).
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To the best of our knowledge, no other results in the case of singular potential and constant mobility are 
available. In Theorem 4.1, we prove the existence and uniqueness of the strong solutions (1.22) under the 
solely assumption that u ∈ L4(0, T ; L4

σ(Ω)), which holds when u just belongs to the Leray-Hopf class. In 
doing so, we exploit the specific form of the chemical potential μ to rewrite the apparently unmanageable 

term 
∫
Ω

u · ∇φ ∂tμ dx (cf. (4.35)). The second tool is a new interpolation estimate for the pressure of the 

Stokes operator given in Lemma 3.1 which improves [39, Lemma B.2]. Once these two preliminary results 
are proven, the strong couplings in (1.8) are handled through a suitable approximation scheme to obtain 
global-in-time higher-order Sobolev/energy estimates. Finally, we mention that it is unlikely to study the 
three-dimensional case in the functional framework considered in Theorem 1.5. Indeed, assuming that μ
and u satisfy the properties (1.17), in three-dimensions the nonlinear term (∇μ · ∇)u does not even belong 
to L2(0, T ; L2(Ω; R3)).

Our second main result regards the global behavior and propagation of regularity of any weak solution. 
Weak uniqueness or weak-strong uniqueness results are not available in this context, therefore we need to 
exploit a different proof to obtain that any weak solution enjoys an instantaneous propagation of regularity 
and converges to an equilibrium, i.e., to a stationary state as time goes to +∞.

Theorem 1.7. Let the assumptions (H1)-(H6) hold. Assume that u0 ∈ L2
σ(Ω) and φ0 ∈ L∞(Ω) with F (φ0) ∈

L1(Ω) and |φ0| < 1. For any T > 0, we consider a weak solution (u, φ) to (1.8)-(1.9) defined on Ω × [0, T )
given by Theorem 1.3. Then, (u, φ) is uniquely extended to Ω × [0, ∞) and, for any τ > 0, (u, φ) is a strong 
solution on [τ, +∞). More precisely, for any τ > 0, (u, φ) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ BC([τ,∞);H1
0,σ(Ω)) ∩ L2

uloc([τ,∞);V 2
0,σ(Ω)) ∩H1

uloc([τ,∞);L2
σ(Ω)),

Π ∈ L2
uloc([τ,∞);H1

(0)(Ω)),

φ ∈ L∞(τ,∞;H1(Ω)) ∩ Lq
uloc([τ,∞);W 1,p(Ω)), q = 2p

p− 2 , ∀ p ∈ (2,∞),

φ ∈ L∞(τ,∞;L∞(Ω)) : |φ(x, t)| < 1 for a.a. x ∈ Ω, ∀ t ∈ [τ,∞),
∂tφ ∈ L∞(τ,∞;H1(Ω)′) ∩ L2(τ,∞;L2(Ω)), F ′(φ) ∈ L∞(τ,∞;H1(Ω)),
μ ∈ BCw([τ,∞);H1(Ω)) ∩ L2

uloc([τ,∞);H2(Ω)) ∩H1
uloc([τ,∞);H1(Ω)′),

(1.23)

and the energy identity

E(u(t), φ(t)) +
t∫

τ

∥∥∥√ν(φ(s))Du(s)
∥∥∥2

L2(Ω)
+ ‖∇μ(s)‖2

L2(Ω)) ds = E(u(τ), φ(τ)) (1.24)

holds for every 0 < τ ≤ t < ∞. Moreover, there exists a constant δ = δ(τ) ∈ (0, 1), also depending on φ0, 
such that

sup
t∈[τ,+∞)

‖φ(t)‖L∞(Ω) ≤ 1 − δ.

If, in addition, F is real analytic in (−1, 1), then (u(t), φ(t)) → (0, φ∞) in L2
σ(Ω) × L∞(Ω) as t → +∞, 

where φ∞ ∈ L∞(Ω) ∩H1(Ω) is a solution to the stationary nonlocal Cahn-Hilliard equation

⎧⎪⎨⎪⎩
F ′(φ∞) −K ∗ φ∞ = μ∞, in Ω,
1
|Ω|

∫
φ∞(x)dx = φ0, μ∞ ∈ R. (1.25)
Ω



C.G. Gal et al. / J. Math. Pures Appl. 178 (2023) 46–109 55
Remark 1.8. The convergence to a single equilibrium stated in Theorem 1.7 also holds for the global strong 
solutions constructed in Theorem 1.5.

Let us now consider the matched densities case, i.e. ρ = ρ1 = ρ2. Both Theorems 1.5 and 1.7 remain true 
for the nonlocal Navier-Stokes-Cahn-Hilliard (NSCH) system with unmatched viscosities, singular potential 
and constant mobility (also called nonlocal Model H, see [24,28]). Thanks to the aforementioned novel 
interpolation result (see Lemma 3.1 below), we prove the following continuous dependence estimate for 
strong solutions to the nonlocal NSCH. In particular, this guarantees the uniqueness of strong solutions 
(not necessarily “separated” as in Theorem 1.5) to the nonlocal NSCH system. This result has been an open 
question since [24] where only the constant viscosity case was considered.

Theorem 1.9. Let the assumptions (H1)-(H6) hold. Suppose that (u1, Π1, φ1) and (u2, Π2, φ2) are two strong 
solutions given by Theorem 1.5 with constant density ρ = ρ1 = ρ2 > 0 corresponding to the initial data 
(u1

0, φ
1
0) and (u2

0, φ
2
0), respectively. Then, there holds

‖u1(t) − u2(t)‖2
H−1

σ (Ω) + ‖φ1(t) − φ2(t)‖2
H1(Ω)′

≤ C
(
‖u1

0 − u2
0‖2

H−1
σ (Ω) + ‖φ1

0 − φ2
0‖2

H1(Ω)′
)

eS(t) + R(t)
∣∣∣φ1

0 − φ
2
0

∣∣∣ eS(t) + Ct
∣∣∣φ1

0 − φ
2
0

∣∣∣2 eS(t),
(1.26)

for all t > 0, where

S(t) = C

t∫
0

(
1 + ‖u1(s)‖4

L4(Ω) + ‖u2(s)‖4
L4(Ω) + ‖Du2(s)‖4

L4(Ω) + ‖∇φ1(s)‖4
L4(Ω)

)
ds

and

R(t) = C

t∫
0

(
‖F ′(φ1(s))‖L1(Ω) + ‖F ′(φ2(s))‖L1(Ω)

)
ds,

as well as some positive constant C depending on the norm of the initial data.

Finally, we estimate the difference between the strong solutions to the nonlocal AGG model and the 
nonlocal Model H originating from the same initial datum, in terms of the density values. In particular, the 
following result gives a rigorous justification of the nonlocal Model H as the constant density approximation
of the nonlocal AGG model:

Theorem 1.10. Let the assumptions (H1)-(H6) hold. Given an initial datum (u0, φ0) as in Theorem 1.5, we 
consider a strong solution (u, Π, φ) to the AGG model and the strong solution (uH , ΠH , φH) to the AGG 
model with constant density ρ > 0 (nonlocal Model H). Then, for any given T > 0, there exists a constant 
C > 0, that depends on the norm of the initial datum, the time T and the parameters of the systems, such 
that

sup
t∈[0,T ]

‖u(t) − uH(t)‖H−1
σ (Ω) + sup

t∈[0,T ]
‖φ(t) − φH(t)‖H1(Ω)′ ≤ C

(∣∣∣∣ρ1 − ρ2

2

∣∣∣∣ +
∣∣∣∣ρ1 + ρ2

2 − ρ

∣∣∣∣) . (1.27)

Remark 1.11. Assuming that ρ1 = ρ and ρ2 = ρ + ε, for some (small) ε > 0, estimate (1.27) reads

sup ‖u(t) − uH(t)‖H−1
σ (Ω) + sup ‖φ(t) − φH(t)‖H1(Ω)′ ≤ Cε.
t∈[0,T ] t∈[0,T ]
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2. Mathematical setting

Let Ω be a bounded domain of class C2 in R2. The Sobolev spaces of functions u : Ω → R and of 
vector fields u : Ω → Rd (d ∈ N) are denoted by W k,p(Ω) and W k,p(Ω; Rd), respectively, where k ∈ N and 
1 ≤ p ≤ ∞. For simplicity of notation, we will denote their norms by ‖ · ‖Wk,p(Ω) in both cases. If p = 2, the 
Hilbert spaces W k,2(Ω) and W k,2(Ω; Rd) are denoted by Hk(Ω) and Hk(Ω; Rd), respectively, with norm 
‖ · ‖Hk(Ω). We will adopt the notation (·, ·) for the inner product in L2(Ω) and in L2(Ω; Rd). The dual spaces 
of W k,p(Ω) and W k,p(Ω; Rd) (as well as Hk(Ω) and Hk(Ω; Rd)) are denoted by W k,p(Ω)′ and W k,p(Ω; Rd)′, 
respectively, and the duality product by 〈·, ·〉Wk,p(Ω) and 〈·, ·〉Wk,p(Ω;Rd). In addition, we define the linear 
subspaces

L2
(0)(Ω) =

{
u ∈ L2(Ω) : u = (u, 1)

|Ω| = 0
}
, H1

(0)(Ω) = H1(Ω) ∩ L2
(0)(Ω)

and

H−1
(0) (Ω) =

{
u ∈ H1(Ω)′ : u = |Ω|−1 〈u, 1〉 = 0

}
,

endowed with the norms of L2(Ω), H1(Ω) and H1(Ω)′, respectively. By the Poincaré-Wirtinger inequality, it 
follows that 

(
‖∇u‖2

L2(Ω) + |u|2
) 1

2 is a norm in H1(Ω), that is equivalent to ‖u‖H1(Ω). The Laplace operator 
A0 : H1

(0)(Ω) → H−1
(0) (Ω) defined by 〈A0u, v〉H1

(0)(Ω) = (∇u, ∇v), for any v ∈ H1
(0)(Ω), is a bijective map 

between H1
(0)(Ω) and H−1

(0) (Ω). We denote its inverse by N = A−1
0 : H−1

(0) (Ω) → H1
(0)(Ω), namely for any 

u ∈ H−1
(0) (Ω), Nu is the unique function in H1

(0)(Ω) such that (∇Nu, ∇v) = 〈u, v〉H1
(0)(Ω) for any v ∈ H1

(0)(Ω). 
As a consequence, for any u ∈ H−1

(0) (Ω), we set ‖u‖∗ := ‖∇Nu‖L2(Ω), which is a norm in H−1
(0) (Ω), that is 

equivalent to the canonical dual norm. In turn, 
(
‖u − u‖2

∗ + |u|2
) 1

2 is a norm H1(Ω)′, that is equivalent 
to ‖u‖H1(Ω)′ . Moreover, by the regularity theory for the Laplace operator with homogeneous Neumann 
boundary conditions, there is a constant C > 0 such that

‖∇Nu‖H1(Ω) ≤ C‖u‖L2(Ω), ∀u ∈ L2
(0)(Ω). (2.1)

Lastly, we report the following Gagliardo-Nirenberg and Agmon inequalities

‖u‖L4(Ω) ≤ C‖u‖
1
2
L2(Ω)‖u‖

1
2
H1(Ω), ∀u ∈ H1(Ω), (2.2)

‖u‖L∞(Ω) ≤ C‖u‖
1
2
L2(Ω)‖u‖

1
2
H2(Ω), ∀u ∈ H2(Ω), (2.3)

‖u‖W 1,4(Ω) ≤ C‖u‖
1
2
L∞(Ω)‖u‖

1
2
H2(Ω), ∀u ∈ H2(Ω), (2.4)

for some suitable constants C > 0 depending only on Ω.
Next, we introduce the solenoidal function spaces

Lp
σ(Ω) = {u ∈ Lp(Ω;R2) : divu = 0 in Ω, u · n = 0 on ∂Ω}, ∀ p ∈ (1,∞),

W 1,p
0,σ (Ω) = {u ∈ W 1,p(Ω;R2) : divu = 0 in Ω, u = 0 on ∂Ω}, ∀ p ∈ (1,∞).

We recall that Lp
σ(Ω) and W 1,p

0,σ (Ω) corresponds to the completion of C∞
0,σ(Ω; R2), namely the space of 

divergence-free vector fields in C∞
0 (Ω; R2), in the norm of Lp(Ω; R2) and W 1,p(Ω; R2), respectively. For 

simplicity of notation, we will also use ‖ · ‖Lp(Ω) and ‖ · ‖W 1,p(Ω) to denote the norms in Lp
σ(Ω) and W 1,p

0,σ (Ω), 
respectively. The space H1

0,σ(Ω) = W 1,2
0,σ (Ω) is endowed with the inner product and norm (u, v)H1

0,σ(Ω) =
(∇u, ∇v) and ‖u‖H1 (Ω) = ‖∇u‖L2(Ω), respectively. By the Korn inequality,
0,σ
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‖∇u‖L2(Ω) ≤
√

2‖Du‖L2(Ω) ≤
√

2‖∇u‖L2(Ω), ∀u ∈ H1
0,σ(Ω). (2.5)

The Stokes operator is A = −PΔ, with domain D(A) = V 2
0,σ(Ω), where V 2

0,σ(Ω) := H2(Ω; R2) ∩H1
0,σ(Ω)

and P is the Leray orthogonal projector from L2(Ω) onto L2
σ(Ω). We denote by A−1 the inverse map of the 

Stokes operator. In particular, A−1 is an isomorphism between H−1
σ (Ω) = H1

0,σ(Ω)′ and H1
0,σ(Ω) such that, 

for any u ∈ H−1
σ (Ω), A−1u is the unique function in H1

0,σ(Ω) such that (∇A−1u, ∇v) = 〈u, v〉H1
0,σ(Ω) for 

any v ∈ H1
0,σ(Ω). Then, it follows that ‖u‖� := ‖∇A−1u‖L2(Ω) is an equivalent norm on H−1

σ (Ω). By the 
regularity theory of the Stokes operator, there exists a constant C such that

‖u‖H2(Ω) ≤ C‖Au‖L2(Ω), ∀u ∈ V 2
0,σ(Ω). (2.6)

Then, we define ‖u‖V 2
0,σ(Ω) = ‖Au‖L2(Ω), which is a norm in V 2

0,σ(Ω), that is equivalent to ‖u‖H2(Ω).
Let X be a real Banach space and consider an interval I ⊆ [0, ∞). The Banach space BC(I; X) consists 

of all bounded and continuous f : I → X equipped with the supremum norm. The subspace BUC(I; X)
denotes the set of all bounded and uniformly continuous functions f : I → X. We denote by BCw(I; X)
the topological vector space of all bounded and weakly continuous functions f : I → X. If I is a compact 
interval, then we simply use the notation C(I; X) or Cw(I; X). The set C∞

0 (I; X) denotes the vector space of 
all smooth functions f : I → X whose support is compactly embedded in I. Given p ∈ [1, ∞], the Lebesgue 
space Lp(I; X) denotes the set of all strongly measurable f : I → X that are p-integrable/essentially 
bounded. In particular, Lp

uloc([0, ∞); X) is the set of all strongly measurable f : [0, ∞) → X such that

‖f‖Lp
uloc([0,∞);X) = sup

t≥0
‖f‖Lq(t,t+1;X) < ∞.

The Bochner spaces W 1,p(I; X) consists of all f ∈ Lp(I; X) with ∂tf ∈ Lp(I; X). If p = 2, then H1(I; X) =
W 1,2(I; X). In a similar way, we also define H1

uloc([0, ∞); X).
In the following sections, we will denote by C a generic positive constant, which may even vary within 

the same line, possibly depending on Ω as well as on the parameters of the system.

3. Interpolation estimate for the L4-norm of the pressure in the Stokes problem

The regularity theory of the Stokes operator ensures that, for any f ∈ L2
σ(Ω) ⊂ L2(Ω; R2), there exist 

u = A−1f ∈ V 2
0,σ(Ω) and P ∈ H1

(0)(Ω) such that

−Δu + ∇P = f , a.e. in Ω. (3.1)

We refer the reader to [32] and the references therein for the comprehensive theory. The Lp-norms of 
the pressure P are usually controlled by the norms of negative Sobolev spaces of the external force f
(see, for instance, [32, Lemma IV.2.1]). Notwithstanding these results are sharp from the viewpoint of 
the regularity theory of steady Stokes flows, an estimate of the Lp-norms of P in terms of the norms in 
H−1

σ (Ω) = (H1
0,σ(Ω))′ and in L2

σ(Ω) of f is more effective for some purposes in the context of evolutionary 
Navier-Stokes flows. A first interpolation result for the L2-norm of the pressure P was established in [39, 
Lemma B.2]. We present a novel interpolation result for the L4-norm of the pressure P , which improves the 
one in [39, Lemma B.2]. This is essential to perform some crucial estimates in the sequel in order to deal 
with the low regularity guaranteed by the nonlocal setting.

Lemma 3.1. Let Ω be a bounded domain in R2 of class C2. There exists C such that
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‖P‖L4(Ω) ≤ C‖∇A−1f‖
1
2
L2(Ω)‖f‖

1
2
L2(Ω), ∀ f ∈ L2

σ(Ω), (3.2)

where P is the pressure in (3.1).

Proof. We know from [32, Lemma IV.2.1]) that there exists C such that

‖P‖L4(Ω) ≤ C‖f‖W−1,4(Ω), (3.3)

where W−1,4(Ω; R2) = (W 1, 43
0 (Ω; R2))′ and W

1, 43
0 (Ω; R2) is the completion of C∞

0 (Ω; R2) with respect to the 

norm of W 1, 43 (Ω; R2). In order to estimate the right-hand side in (3.3), let us consider v ∈ W
1, 43
0 (Ω; R2). 

By using the integration by parts and the properties of P , we have

(f ,v) = (P (−Δ)A−1f ,v) = ((−Δ)A−1f ,Pv) = (∇A−1f ,∇Pv) −
∫
∂Ω

(
∇A−1f n

)
· Pv dσ. (3.4)

Since f ∈ L2
σ(Ω), we observe from (2.6) that ‖A−1f‖H2(Ω) ≤ C‖f‖L2(Ω). By using this fact, together with 

(2.2) and the continuity of the projection operator P from W
1, 43
0 (Ω; R2) onto W 1, 43 (Ω; R2) ∩L2

σ(Ω), we easily 
infer that

(∇A−1f ,∇Pv) ≤ ‖∇A−1f‖L4(Ω)‖Pv‖
W 1, 43 (Ω)

≤ C‖∇A−1f‖
1
2
L2(Ω)‖f‖

1
2
L2(Ω)‖v‖W 1, 43

0 (Ω)
.

Next, by the interpolation trace estimate, there exists C such that

‖f‖L2(∂Ω) ≤ C‖f‖
1
2
L2(Ω)‖f‖

1
2
H1(Ω), ∀ f ∈ H1(Ω). (3.5)

Furthermore, we also report the following trace estimate (see [32, Thm II.4.1], with n = 2, m = 1, q = 4/3
and r = 2): there exists C such that

‖f‖L2(∂Ω) ≤ C‖f‖
W 1, 43 (Ω)

, ∀ f ∈ W 1, 43 (Ω). (3.6)

Thus, exploiting (3.5) and (3.6), together with (2.6), we obtain∣∣∣∣∣∣
∫
∂Ω

(
∇A−1f n

)
· Pv dσ

∣∣∣∣∣∣ ≤ C‖∇A−1f‖L2(∂Ω)‖Pv‖L2(∂Ω)

≤ C‖∇A−1f‖
1
2
L2(Ω)‖∇A−1f‖

1
2
H1(Ω)‖Pv‖

W 1, 43 (Ω)

≤ C‖∇A−1f‖
1
2
L2(Ω)‖f‖

1
2
L2(Ω)‖v‖W 1, 43

0 (Ω)
.

Therefore, we deduce that

‖f‖W−1,4(Ω) = sup
0�=v∈W

1, 43
0 (Ω;R2)

|(f ,v)|
‖v‖

W
1, 43
0 (Ω)

≤ C‖∇A−1f‖
1
2
L2(Ω)‖f‖

1
2
L2(Ω), (3.7)

which entails the desired conclusion in light of (3.3). �
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Remark 3.2. A similar result can be obtained in the three-dimensional case. Replacing the L4-norm with 
the L3-norm of P and exploiting the corresponding Gagliardo-Nirenberg and trace estimates in dimension 
three, one can repeat word by word the arguments of the above proof to obtain

‖P‖L3(Ω) ≤ C‖∇A−1f‖
1
2
L2(Ω)‖f‖

1
2
L2(Ω), ∀ f ∈ L2

σ(Ω).

4. The nonlocal Cahn-Hilliard equation with divergence-free drift

Let u be a divergence-free vector field. We consider the initial-boundary value problem for the nonlocal 
Cahn-Hilliard equation with divergence-free drift⎧⎪⎪⎨⎪⎪⎩

∂tφ + u · ∇φ = Δμ, μ = F ′(φ) −K ∗ φ, in Ω × (0, T ),
∂nμ = 0, on ∂Ω × (0, T ),
φ(·, 0) = φ0, in Ω.

(4.1)

We present herein novel well-posedness and regularity results under minimal assumptions on the velocity 
field for the system (4.1) (cf. with the analysis in [28]). Beyond its own interest per se, these statements will 
play an essential role in the proof of Theorem 1.5.

Theorem 4.1. Let the assumptions (H1)-(H5) hold and let T > 0. Assume that u ∈ L4(0, T ; L4
σ(Ω)) and 

φ0 ∈ L∞(Ω) with F (φ0) ∈ L1(Ω) and |φ0| < 1. Then, there exists a unique weak solution to (4.1) such that⎧⎪⎪⎨⎪⎪⎩
φ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′),
φ ∈ L∞(Ω × (0, T )) : |φ| < 1 a.e. in Ω × (0, T ),
μ ∈ L2(0, T ;H1(Ω)), F ′(φ) ∈ L2(0, T ;H1(Ω)),

(4.2)

which satisfies

〈∂tφ, v〉H1(Ω) − (φu,∇v) + (∇μ,∇v) = 0, ∀ v ∈ H1(Ω), a.e. in (0, T ),

μ = F ′(φ) −K ∗ φ, a.e. in Ω × (0, T ),
(4.3)

and φ(·, 0) = φ0 almost everywhere in Ω. The weak solution fulfills the energy identity

Enloc(φ(t)) +
t∫

0

‖∇μ(τ)‖2
L2(Ω) dτ +

t∫
0

∫
Ω

φu · ∇μ dx dτ = Enloc(φ0), ∀ t ∈ [0, T ]. (4.4)

In addition, given two weak solutions φ1 and φ2 corresponding to the initial data φ1
0 and φ2

0, respectively, 
we have∥∥φ1 − φ2∥∥

C([0,T ];H1(Ω)′)

≤
(∥∥φ1

0 − φ2
0
∥∥
H1(Ω)′ +

∣∣∣φ1
0 − φ2

0

∣∣∣ 1
2 ‖Λ‖

1
2
L1(0,T ) + CT

1
2

∣∣∣φ1
0 − φ2

0

∣∣∣) exp
(
C

(
T + ‖u‖4

L4(0,T ;L4(Ω))

))
,

(4.5)

for all t ∈ [0, T ], where Λ = 2 
∥∥F ′(φ1)

∥∥
L1(Ω) + 2 

∥∥F ′ (φ2)∥∥
L1(Ω) and C only depends on α, K and Ω.

Furthermore, the following regularity results hold:
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(i) If additionally φ0 ∈ H1(Ω) such that F ′(φ0) ∈ L2(Ω) and F ′′(φ0)∇φ0 ∈ L2(Ω; R2), then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ ∈ L∞(0, T ;L∞(Ω)) : |φ(x, t)| < 1 for a.a. x ∈ Ω, ∀ t ∈ [0, T ],

φ ∈ L∞(0, T ;H1(Ω)) ∩ Lq(0, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφ ∈ L4(0, T ;H1(Ω)′) ∩ L2(0, T ;L2(Ω)),
μ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)′),
F ′(φ) ∈ L∞(0, T ;H1(Ω)), F ′′(φ) ∈ L∞(0, T ;Lp(Ω)), ∀ p ∈ [2,∞).

(4.6)

In particular, we have the estimates

‖∇μ‖L∞(0,T ;L2(Ω))

≤

⎛⎜⎝‖F ′′(φ0)∇φ0 −∇K ∗ φ0‖L2(Ω) + C

⎛⎝ T∫
0

‖u(τ)‖2
L2(Ω) + ‖∇μ(τ)‖2

L2(Ω) dτ

⎞⎠
1
2
⎞⎟⎠

× exp

⎛⎝C

T∫
0

‖u(τ)‖4
L4(Ω) dτ

⎞⎠ =: Ξ1,

(4.7)

T∫
0

‖∂tφ(τ)‖2
L2(Ω) + ‖∇μ(τ)‖2

H1(Ω) dτ

≤ C

⎛⎝‖F ′′(φ0)∇φ0 −∇K ∗ φ0‖2
L2(Ω) + C

T∫
0

‖u(τ)‖2
L2(Ω) + ‖∇μ(τ)‖2

L2(Ω) dτ

⎞⎠
×

⎛⎝1 +
T∫

0

‖u(τ)‖4
L4(Ω) dτ

⎞⎠ exp

⎛⎝C

t∫
0

‖u(τ)‖4
L4(Ω) dτ

⎞⎠ =: Ξ2,

(4.8)

and the bounds

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

‖μ‖L∞(0,T ;H1(Ω)) + ‖φ‖L∞(0,T ;H1(Ω)) + ‖F ′(φ)‖L∞(0,T ;H1(Ω)) ≤ Q
(
φ0,Ξ1, α, ‖K‖W 1,1(R2),Ω

)
,

‖F ′′(φ)‖L∞(0,T ;Lp(Ω)) ≤ Q
(
p, φ0,Ξ1, α, ‖K‖W 1,1(R2),Ω

)
, ∀ p ∈ [2,∞),

‖φ‖Lq(0,T ;Lp(Ω)) ≤ Q
(
φ0,Ξ1,Ξ2, α, ‖K‖W 1,1(R2),Ω, T

)
, q = 2p

p− 2 , ∀ p ∈ (2,∞),

‖μ‖L2(0,T ;H2(Ω)) + ‖∂tμ‖L2(0,T ;H1(Ω)′) ≤ Q
(
φ0,Ξ1,Ξ2, α, ‖K‖W 1,1(R2),Ω, T

)
,

(4.9)
where C only depends on α, K and Ω and Q is a generic increasing and continuous function of its 
arguments. Moreover, if u ∈ L∞(0, T ; L2

σ(Ω)), we also have ∂tφ ∈ L∞(0, T ; H1(Ω)′).

(ii) Let the assumptions of (i) hold. Suppose also ‖φ0‖L∞(Ω) ≤ 1 − δ0, for some δ0 ∈ (0, 1). Then, there 
exists δ > 0 such that

sup
t∈[0,T ]

‖φ(t)‖L∞(Ω) ≤ 1 − δ. (4.10)

As a consequence, ∂tμ ∈ L2(0, T ; L2(Ω)) and μ ∈ C([0, T ]; H1(Ω)).
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Remark 4.2. The existence of (at least) one weak solution to (4.1) satisfying (4.2), (4.3) as well as (4.4)
holds under the milder regularity u ∈ L2(0, T ; L2

σ(Ω)). We refer the reader to the proof of Theorem 4.1 (see 
below).

Remark 4.3. In the case (i) above, the assumption φ0 ∈ H1(Ω) can be relaxed by only requiring that ∇φ0 ∈
L1

loc(Ω). Indeed, it implies that ∇φ0 is measurable. Then, ‖∇φ0‖L2(Ω) < ∞ follows from F ′′(φ0)∇φ0 ∈
L2(Ω; R2) due to the strict convexity of F . Besides, our set of assumptions in the case (i) entails that 
F ′(φ0) ∈ H1(Ω) (similarly to [21, Theorem 4.1]). In fact, we first observe that the chain rule ∇F ′(φ0) =
F ′′(φ0)∇φ0 holds almost everywhere in Ω. More precisely, by exploiting the approximation φk

0 of the initial 
datum provided in the proof of Theorem 4.1, it can be shown (cf. also [44, Lemma 3.2]) that∫

Ω

F ′(φ0) ∂iϕdx = lim
k→∞

∫
Ω

F ′(φk
0) ∂iϕdx = − lim

k→∞

∫
Ω

F ′′(φk
0)∂iφk

0 ϕdx = − lim
k→∞

∫
Ω

F ′′(φ0)∂iφ0ϕdx

for any i = 1, 2 and ϕ ∈ C∞
0 (Ω). Then, owing to this, we immediately infer that F ′(φ0) ∈ H1(Ω). On the 

other hand, by the previous reasoning together with the Fatou lemma, it is possible to show that φ0 ∈ H1(Ω)
with F ′(φ0) ∈ H1(Ω) guarantees that F ′′(φ0)∇φ0 ∈ L2(Ω; R2).

Remark 4.4. In the case (i), the separation property holds for positive times. More precisely, for any 0 <
τ ≤ T there exists δ = δ(τ) ∈ (0, 1) such that it holds

sup
t∈[τ,T ]

‖φ(t)‖L∞(Ω) ≤ 1 − δ. (4.11)

Although we only have φ0 ∈ H1(Ω), thereby φ0 might not be strictly separated. Nevertheless, since μ ∈
L2(0, T ; H2(Ω)) and K ∗φ ∈ L∞(Ω × (0, T )), we observe that F ′(φ) ∈ L2(0, T ; L∞(Ω)). In turn, this implies 
for any τ > 0 there exists τ∗ ∈ (0, τ) such that F ′(φ(τ�)) ∈ L∞(Ω), which gives ‖φ0‖L∞(Ω) < 1. Thus, 
(4.11) also follows from (ii).

Remark 4.5. In light of the assumptions in Theorem 4.1, while in the case (i), the assumption ‖φ0‖L∞(Ω) < 1
in (ii) is ensured if (additionally) φ0 ∈ W 1,p(Ω) for some p > 2. In fact, by Remark 4.3, F ′(φ0) ∈ H1(Ω). 
Then, the Trudinger-Moser inequality and the assumption (H4) (exactly as in [28, Theorem 5.2]) ensure 
that F ′′(φ0) ∈ Lr(Ω) for every r ∈ [2, ∞). Thus, by the chain rule in Remark 4.3, we conclude

‖∇F ′(φ0)‖Ls(Ω) ≤ ‖F ′′(φ0)‖
L

sp
p−s (Ω)

‖∇φ0‖Lp(Ω) < ∞, where s ∈ (2, p).

Since s > 2, F ′(φ0) ∈ W 1,s(Ω) ↪→ L∞(Ω) implies that the initial datum φ0 is strictly separated from ±1.

Remark 4.6. The existence of a weak solution to (4.1) and the first part of the regularity result (cf. (i) 
above) of Theorem 4.1 can be readily extended in three dimensions by requiring that u ∈ L4(0, T ; L6

σ(Ω)).

Proof of Theorem 4.1. The proof is divided into several steps.

Uniqueness and continuous dependence estimate. Let us consider two weak solutions φ1 and φ2 satisfying 
(4.2) and (4.3), and originating from two initial data φ1

0 and φ2
0 (where possibly φ1

0 �= φ2
0). Setting φ = φ1−φ2

and μ = F ′(φ1) − F ′(φ2) −K ∗ φ, it is easy to realize that

〈∂tφ, v〉H1(Ω) − (φu,∇v) + (∇μ,∇v) = 0, ∀ v ∈ H1(Ω), a.e. in (0, T ). (4.12)

Taking v = N (φ − φ), we find
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1
2

d
dt

∥∥φ− φ
∥∥2
∗ +

(
u · ∇φ,N

(
φ− φ

))
+

(
μ, φ− φ

)
= 0.

Exploiting (H2) and (H3), together with Young inequality, we have

(
μ, φ− φ

)
≥ α‖φ‖2

L2(Ω) −
(
F ′ (φ1)− F ′ (φ2) , φ)− (

K ∗ φ, φ− φ
)

= α‖φ‖2
L2(Ω) −

(
F ′ (φ1)− F ′ (φ2) , φ)− (

∇K ∗ φ,∇N
(
φ− φ

))
≥ α‖φ‖2

L2(Ω) −
(
F ′ (φ1)− F ′ (φ2) , φ)− ‖K‖W 1,1(R2)‖φ‖L2(Ω)

∥∥φ− φ
∥∥
∗

≥ 3α
4 ‖φ‖2

L2(Ω) − C‖φ− φ‖2
∗ −

∣∣∣φ1 − φ2
∣∣∣ (‖F ′(φ1)‖L1(Ω) + ‖F ′(φ2)‖L1(Ω)

)
.

(4.13)

Concerning the convective term, by (2.1) and (2.2), we obtain

∣∣(u · φ,∇N
(
φ− φ

))∣∣ ≤ C‖u‖L4(Ω)‖φ‖L2(Ω)
∥∥∇N

(
φ− φ

)∥∥ 1
2
L2(Ω)

∥∥φ− φ
∥∥ 1

2
L2(Ω)

≤ α

8 ‖φ‖
2
L2(Ω) + C‖u‖2

L4(Ω)
(
‖φ‖ + C

∣∣φ∣∣) ∥∥φ− φ
∥∥
∗

≤ α

4 ‖φ‖
2
L2(Ω) + C‖u‖4

L4(Ω)
∥∥φ− φ

∥∥2
∗ + C

∣∣φ∣∣2 .
(4.14)

Then, recalling the conservation of mass, i.e. φi(t) = φi
0 for all t ∈ [0, T ] and i = 1, 2, we are led to

d
dt‖φ‖

2
H1(Ω)′ + α‖φ‖2

L2(Ω) ≤ C
(
1 + ‖u‖4

L4(Ω)

)
‖φ‖2

H1(Ω)′ + Λ
∣∣φ(0)

∣∣ + C
∣∣φ(0)

∣∣2 ,
where Λ = 2 

∥∥F ′ (φ1)∥∥
L1(Ω) + 2 

∥∥F ′ (φ2)∥∥
L1(Ω). Therefore, an application of Gronwall’s Lemma implies 

(4.5), which, in particular, entails the uniqueness of the weak solutions.

Definition of the regularized problem. Let us consider a sequence {uk}k∈N ⊂ C∞
0 ((0, T ); C∞

0,σ(Ω; R2)) such 
that uk → u in L4(0, T ; L4

σ). We assume first that φ0 ∈ H1(Ω) ∩ L∞(Ω) with ‖φ0‖L∞(Ω) ≤ 1 and |φ0| < 1. 
For any k ∈ N, we introduce the Lipschitz function hk : R → R, k ∈ N such that

hk(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 + 1

k
, s < −1 + 1

k
,

s, s ∈
[
−1 + 1

k
, 1 − 1

k

]
,

1 − 1
k
, s > 1 − 1

k
.

We define φk
0 := hk(φ0). It follows from the Stampacchia superposition principle [52] that φk

0 ∈ H1(Ω) ∩
L∞(Ω) such that ∇φk

0 = ∇φ0 ·χ[−1+ 1
k ,1− 1

k ](φ0) almost everywhere in Ω, where χA(·) is the indicator function 
of the set A. By definition, we have

∣∣φk
0
∣∣ ≤ |φ0| ,

∣∣∇φk
0
∣∣ ≤ |∇φ0| , a.e. in Ω. (4.15)

As a consequence, we infer that φk
0 → φ0 in H1(Ω) as k → ∞. Observe also that 

∣∣∣φk
0

∣∣∣ → ∣∣φ0
∣∣. Then, there 

exist � > 0 and k > 0 such that ∣∣∣φk
0

∣∣∣ ≤ 1 −�, ∀ k > k. (4.16)

Thanks to Theorem A.1, there exists a sequence of functions {φk, μk}k∈N satisfying
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φk ∈ L∞(0, T ;H1(Ω) ∩ L∞(Ω)) : sup
t∈[0,T ]

‖φk(t)‖L∞(Ω) ≤ 1 − δk,

φk ∈ Lq(0, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφ
k ∈ L∞(0, T ;H1(Ω)′) ∩ L2(0, T ;L2(Ω)),

μk ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

(4.17)

where δk ∈ (0, 1) depends on k. The solutions satisfy

∂tφ
k + uk · ∇φk = Δμk, μk = F ′(φk) −K ∗ φk, a.e. in Ω × (0, T ). (4.18)

In addition, ∂nμ
k = 0 almost everywhere on ∂Ω × (0, T ) and φk(·, 0) = φk

0 almost everywhere in Ω.

Energy estimates. Integrating (4.18)1 over Ω × (0, t) for any t ∈ (0, T ], we obtain the conservation of mass

φk(t) = φk
0 , ∀ t ∈ [0, T ]. (4.19)

We multiply (4.18)1 by μk and integrate over Ω. By exploiting the convexity of F , the regularity (4.17) and 
[18, Proposition 4.2], we obtain

d
dtEnloc(φk) +

∫
Ω

uk · ∇φk μk dx +
∫
Ω

|∇μk|2 dx = 0. (4.20)

Since divu = 0 in Ω × (0, T ) and u · n = 0 on ∂Ω × (0, T ), by using the uniform bound ‖φk(t)‖L∞(Ω) ≤ 1, 
we find ∣∣∣∣∣∣

∫
Ω

uk · ∇φk μk dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

uk · ∇μk φk dx

∣∣∣∣∣∣ ≤ 1
2

∫
Ω

|∇μk|2 dx + 1
2

∫
Ω

|uk|2 dx.

Then, we easily infer from (4.20) that

Enloc(φk(t)) + 1
2

t∫
0

‖∇μk(τ)‖2
L2(Ω) dτ ≤ Enloc(φk

0) + 1
2

t∫
0

‖uk(τ)‖2
L2(Ω) dτ, ∀ t ∈ [0, T ]. (4.21)

We observe that 0 ≤ F (s) ≤ C, for s ∈ [−1, 1]. By the Young inequality, we also have that |(K ∗ u, u)| ≤
‖K‖L1(R2)‖u‖L1(Ω)‖u‖L∞(Ω), for any u ∈ L∞(Ω). Therefore, we simply deduce that

T∫
0

‖∇μk(τ)‖2
L2(Ω) dτ ≤ C +

T∫
0

‖uk(τ)‖2
L2(Ω) dτ, (4.22)

where C depends on Ω, F and K, but is independent of k. Along the proof, we will adopt the same 
agreement for all the other constants C appearing in the following subsections. Next, we compute the 
gradient of (4.18)2. In light of the regularity (4.17), we notice that F ′(φk(t)) ∈ H1(Ω) almost everywhere 
in (0, T ) and, in particular, ∇F ′(φ) = F ′′(φk)∇φ almost everywhere in Ω × (0, T ) by the Stampacchia 
superposition principle [52]. Then, by the convexity of F , we have∫ ∣∣F ′′(φk)∇φk

∣∣2 dx ≤ ‖∇μk‖L2(Ω) + ‖∇K ∗ φk‖L2(Ω). (4.23)

Ω
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Thus, we infer from (H2) and the uniform L∞ bound of φk that

‖∇φk‖L2(Ω) ≤ C
(
1 + ‖∇μk‖L2(Ω)

)
. (4.24)

Thanks to (4.22), the above inequality entails that

T∫
0

‖∇φk(τ)‖2
L2(Ω) dτ ≤ C(1 + T ) + C

T∫
0

‖uk(τ)‖L2(Ω) dτ. (4.25)

In addition, by duality in (4.18), we easily infer that

‖∂tφk‖H1(Ω)′ ≤ ‖uk‖L2(Ω) + ‖∇μk‖L2(Ω), (4.26)

which implies that

T∫
0

‖∂tφk(τ)‖2
H1(Ω)′ dτ ≤ C +

T∫
0

‖uk(τ)‖2
L2(Ω) dτ. (4.27)

Existence of weak solutions. Let us consider k ≥ k such that (4.16) holds. As such, we have from (4.19)
that |φk(t)| ≤ 1 − ξ for all t ∈ [0, T ] uniformly in k. Then, recalling that uk → u in L4(0, T ; L4

σ(Ω)) ↪→
L2(0, T ; L2

σ(Ω)), we infer from (4.22), (4.25) and (4.27) that

‖φk‖L∞(Ω×(0,T )) ≤ 1, ‖φk‖L2(0,T ;H1(Ω)) + ‖∂tφk‖L2(0,T ;H1(Ω)′) + ‖∇μk‖L2(0,T ;L2(Ω)) ≤ C. (4.28)

In order to recover a uniform estimate of the full H1 norm of μk, we multiply (4.18)2 by φk − φk and 
integrate over Ω. By the generalized Poincaré inequality, the assumption (H2) and the uniform L∞ bound 
of φk, we find ∣∣∣∣∣∣

∫
Ω

F ′(φk)
(
φk − φk

)
dx

∣∣∣∣∣∣ ≤ C
(
1 + ‖∇μk‖L2(Ω)

)
.

We report that there exist two positive constants C1
F and C2

F such that (see, e.g. [53])

‖F ′(φk)‖L1(Ω) ≤ C1
F

∣∣∣∣∣∣
∫
Ω

F ′(φk)
(
φk − φk

)
dx

∣∣∣∣∣∣ + C2
F , (4.29)

where C1
F and C2

F only depends on F , Ω and �. Then, we conclude that

‖μk‖L1(Ω) + ‖F ′(φk)‖L1(Ω) ≤ C
(
1 + ‖∇μk‖L2(Ω)

)
. (4.30)

Thus, we deduce from (4.30), the Poincaré-Wirtinger inequality and the definition of μk that

‖μk‖L2(0,T ;H1(Ω)) + ‖F ′(φk)‖L2(0,T ;H1(Ω)) ≤ C. (4.31)

Therefore, we infer from the Banach-Alaoglu theorem and the Aubin-Lions theorem that
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φk ⇀ φ weakly� in L∞(Ω × (0, T )), φk ⇀ φ weakly in L2(0, T ;H1(Ω)),

φk → φ strongly in L2(0, T ;L2(Ω)), ∂tφ
k ⇀ ∂tφ weakly in L2(0, T ;H1(Ω)′),

μk ⇀ μ weakly in L2(0, T ;H1(Ω)), F ′(φk) ⇀ ξ weakly in L2(0, T ;H1(Ω)).

(4.32)

Clearly, the limit function φ satisfies |φ(x, t)| ≤ 1 almost everywhere in Ω × (0, T ). Thanks to the strong 
convergence in (4.32), we infer that φk → φ almost everywhere in Ω × (0, T ). Then, F ′(φk) → F̃ ′(φ) almost 
everywhere in Ω × (0, T ), where F̃ ′(s) = F ′(s) if s ∈ (−1, 1) and F̃ ′(±1) = ±∞. An application of the Fatou 
lemma, together with (4.31), entails that F̃ ′(φ) ∈ L2(0, T ; L2(Ω)). In turn, it also implies that |φ(x, t)| < 1
almost everywhere in Ω × (0, T ). In addition, this is sufficient to conclude that ξ = F ′(φ) ∈ L2(0, T ; H1(Ω)). 
Finally, passing to the limit as k → ∞ in (4.18), we obtain that φ is a weak solution to (4.1) fulfilling (4.2), 
(4.3), while corresponding to φ0 ∈ H1(Ω) ∩ L∞(Ω) with ‖φ0‖L∞(Ω) ≤ 1 and |φ0| < 1.

In order to conclude this part, we are left to deal the general case where the initial datum φ0 only belongs 
to L∞(Ω) with ‖φ0‖L∞(Ω) ≤ 1 and |φ0| < 1. To this aim, by classical mollification there exists a sequence 
{φm

0 }m∈N such that φm
0 ∈ C∞(Ω): −1 ≤ φm

0 (x) ≤ 1 for all x ∈ Ω, for any m ∈ N, and φm
0 → φ0 strongly 

in Lr(Ω), for any r ∈ [1, ∞), φm
0 ⇀ φ0 weakly� in L∞(Ω), and |φm

0 | < 1. By the previous analysis, there 
exists a weak solution φm for any m ∈ N. Then, since E(φm

0 ) is uniformly bounded in m and the lower 
semicontinuity of the norm with respect to the weak convergence, it is straightforward to deduce (4.28) and 
(4.31) by replacing φk and μk with φm and μm. Thus, arguing as before, the sequence φm converges as in 
(4.32) to a limit function φ satisfying (4.2) and (4.3), as well as φ(0) = φ0 in Ω.

Finally, concerning the energy identity, the convexity of F , the assumption (H2), the regularity (4.2) and 
[18, Proposition 4.2] entail that

Enloc(φ(t)) − Enloc(φ0) =
t∫

0

〈∂tφ(τ), μ(τ)〉 dτ, for all t ∈ [0, T ].

Owing to this, (4.4) directly follows from choosing v = μ in (4.3) and integrating the resulting equation in 
[0, t] for any 0 ≤ t ≤ T .

Sobolev estimates. We first observe that the regularity of the approximated solutions {φk, μk}k∈N in (4.17)
(in particular, the strict separation property) allows us to compute the time and the spatial derivatives of 
(4.18)2, which gives

∂tμ
k = F ′′(φk)∂tφk −K ∗ ∂tφk, ∇μk = F ′′(φk)∇φk −∇K ∗ φk, a.e. in Ω × (0, T ). (4.33)

In addition, the map t → ‖∇μk(t)‖2
L2(Ω) belongs to AC([0, T ]) and the chain rule

d
dt

1
2‖∇μk‖2

L2(Ω) =
〈
∂tμ

k,Δμk
〉
H1

(0)(Ω)

holds almost everywhere in (0, T ). Thus, multiplying (4.18)1 by ∂tμk, integrating over Ω, and exploiting 
(4.33), we obtain

1
2

d
dt‖∇μk‖2

L2(Ω) +
∫
Ω

F ′′(φk)|∂tφk|2 dx−
∫
Ω

K ∗ ∂tφk ∂tφ
k dx +

∫
Ω

uk · ∇φk ∂tμ
k dx = 0. (4.34)

We rewrite the key term (uk · ∇φk, ∂tμk). By using (4.33) and the fact that uk ∈ C∞
0 ((0, T ); C∞

0,σ(Ω; R2)), 
we observe that
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∫
Ω

uk · ∇φk ∂tμ
k dx =

∫
Ω

(
uk · ∇φk

)
F ′′(φk) ∂tφk dx−

∫
Ω

(
uk · ∇φk

)
K ∗ ∂tφk dx

=
∫
Ω

uk · ∇
(
F ′(φk)

)
∂tφ

k dx−
∫
Ω

(
uk · ∇φk

)
K ∗ ∂tφk dx

=
∫
Ω

(
uk · ∇μk

)
∂tφ

k dx +
∫
Ω

(
uk ·

(
∇K ∗ φk

))
∂tφ

k dx

−
∫
Ω

(
uk · ∇φk

)
K ∗ ∂tφk dx

=
∫
Ω

(
uk · ∇μk

)
∂tφ

k dx +
∫
Ω

(
uk ·

(
∇K ∗ φk

))
∂tφ

k dx

+
∫
Ω

(
uk · ∇(K ∗ ∂tφk)

)
φk dx.

(4.35)

By exploiting the assumption (H2) and the uniform L∞ bound of φk, we have

∣∣∣∣∣∣
∫
Ω

(
uk ·

(
∇K ∗ φk

))
∂tφ

k dx

∣∣∣∣∣∣ ≤ ‖uk‖L2(Ω)‖∇K ∗ φk‖L∞(Ω)‖∂tφk‖L2(Ω)

≤ ‖uk‖L2(Ω)‖K‖W 1,1(R2)‖φk‖L∞(Ω)‖∂tφk‖L2(Ω)

≤ α

8 ‖∂tφ
k‖2

L2(Ω) + C‖uk‖2
L2(Ω).

(4.36)

Similarly, we also find

∣∣∣∣∣∣
∫
Ω

(
uk · ∇(K ∗ ∂tφk)

)
φk dx

∣∣∣∣∣∣ ≤ ‖uk‖L2(Ω)‖∇K ∗ ∂tφk‖L2(Ω)‖φk‖L∞(Ω)

≤ ‖uk‖L2(Ω)‖K‖W 1,1(R2)‖∂tφk‖L2(Ω)‖φk‖L∞(Ω)

≤ α

8 ‖∂tφ
k‖2

L2(Ω) + C‖uk‖2
L2(Ω).

(4.37)

In order to control the first term (uk · ∇μk, ∂tφk) on the right-hand side in (4.35), we need a preliminary 
estimate of the H1 norm of ∇μk. To this end, let us first observe from (4.18) that μk−μk = N (∂tφk+u·∇φk). 
Then, in light of (2.1), we find

‖∇μk‖H1(Ω) ≤ C
(
‖∂tφk‖L2(Ω) + ‖uk · ∇φk‖L2(Ω)

)
. (4.38)

In order to estimate the second term on the right-hand side in (4.38), we deduce from (4.33) that

uk · ∇φk = 1
F ′′(φk)

(
uk · ∇μk + uk · (∇K ∗ φk)

)
, a.e. in Ω × (0, T ). (4.39)

By the strict convexity of F , we notice that F ′′(s)−1 ≤ α−1 for any s ∈ (−1, 1). By using (H2), (2.2) and 
the uniform L∞ bound of φk, we obtain
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‖uk · ∇φk‖L2(Ω) ≤
2
α

(
‖uk · ∇μk‖L2(Ω) + ‖u ·

(
∇K ∗ φk

)
‖L2(Ω)

)
≤ C‖uk‖L4(Ω)‖∇μk‖L4(Ω) + C‖uk‖L2(Ω)‖∇K ∗ φk‖L∞(Ω)

≤ C‖uk‖L4(Ω)‖∇μk‖
1
2
L2(Ω)‖∇μk‖

1
2
H1(Ω) + C‖uk‖L2(Ω)‖K‖W 1,1(R2)‖φk‖L∞(Ω)

≤ C‖uk‖L4(Ω)‖∇μk‖
1
2
L2(Ω)‖∇μk‖

1
2
H1(Ω) + C‖uk‖L2(Ω).

(4.40)

Then, combining (4.38) and (4.40), we arrive at

‖∇μk‖H1(Ω) ≤ C
(
‖∂tφk‖L2(Ω) + ‖uk‖2

L4(Ω)‖∇μk‖L2(Ω) + ‖uk‖L2(Ω)

)
. (4.41)

Now, by using (2.2) and (4.41), we find

∣∣∣∣∣∣
∫
Ω

(
uk · ∇μk

)
∂tφ

k dx

∣∣∣∣∣∣ ≤ ‖uk‖L4(Ω)‖∇μk‖L4(Ω)‖∂tφk‖L2(Ω)

≤ ‖uk‖L4(Ω)‖∇μk‖
1
2
L2(Ω)‖∇μk‖

1
2
H1(Ω)‖∂tφ

k‖L2(Ω)

≤ ‖uk‖L4(Ω)‖∇μk‖
1
2
L2(Ω)‖∂tφ

k‖
3
2
L2(Ω) + ‖uk‖2

L4(Ω)‖∇μk‖L2(Ω)‖∂tφk‖L2(Ω)

+ ‖uk‖
1
2
L2(Ω)‖u

k‖L4(Ω)‖∇μk‖
1
2
L2(Ω)‖∂tφ

k‖L2(Ω)

≤ α

8 ‖∂tφ
k‖2

L2(Ω) + C‖uk‖4
L4(Ω)‖∇μk‖2

L2(Ω) + C‖uk‖2
L2(Ω).

(4.42)

Concerning the last term (K∗∂tφk, ∂tφk) in (4.34), by exploiting (H2), the properties of the Laplace operator 
A0 and (4.26), we are led to

∫
Ω

K ∗ ∂tφk ∂tφ
k dx ≤ ‖∇K ∗ ∂tφk‖L2(Ω)‖∇N∂tφ‖L2(Ω)

≤ α

8 ‖∂tφ‖
2
L2(Ω) + C

(
‖uk‖2

L2(Ω) + ‖∇μk‖2
L2(Ω)

)
.

(4.43)

Inserting the estimates (4.36), (4.37), (4.42) and (4.43) in (4.34), and recalling (H3), we eventually deduce 
that

1
2

d
dt‖∇μk‖2

L2(Ω) + α

2 ‖∂tφ
k‖2

L2(Ω) ≤ C
(
1 + ‖uk‖4

L4(Ω)

)
‖∇μk‖2

L2(Ω) + C‖uk‖2
L2(Ω). (4.44)

Therefore, the Gronwall lemma entails that

‖∇μk(t)‖2
L2(Ω) ≤

⎛⎝‖∇μk(0)‖2
L2(Ω) + C

t∫
0

‖uk(τ)‖2
L2(Ω) + ‖∇μk(τ)‖2

L2(Ω) dτ

⎞⎠ eC
∫ t
0 ‖u(τ)‖4

L4(Ω) dτ
, (4.45)

for all t ∈ [0, T ]. Furthermore, integrating in time (4.41) and (4.44) on [0, T ], and using (4.45), we also 
obtain
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T∫
0

‖∂tφk(τ)‖2
L2(Ω) + ‖∇μk(τ)‖2

H1(Ω) dτ

≤ C

⎛⎝‖∇μk(0)‖2
L2(Ω) + C

T∫
0

‖uk(τ)‖2
L2(Ω) + ‖∇μk(τ)‖2

L2(Ω) dτ

⎞⎠
×

⎛⎝1 +
T∫

0

‖uk(τ)‖4
L4(Ω) dτ

⎞⎠ exp

⎛⎝C

T∫
0

‖uk(τ)‖4
L4(Ω) dτ

⎞⎠ .

(4.46)

Before concluding this step, we derive a further estimate for the Lp norms of ∇φk. We know that μk ∈
L2(0, T ; H2(Ω)). Then it follows by comparison in (4.33)2 and by the Sobolev embedding H1(Ω) ↪→ Lp(Ω)
for any p ∈ [2, ∞) that F ′′(φk)∇φk ∈ L2(0, T ; Lp(Ω)). This allows us to rigorously multiply (4.33)2 by 
|∇φk|p−2∇φk and integrate over Ω. As a result, we get∫

Ω

F ′′(φk)|∇φk|p dx =
∫
Ω

|∇φk|p−2∇φk · ∇μk dx +
∫
Ω

|∇φk|p−2∇φk · ∇K ∗ φk dx.

By using the assumption (H2), the Hölder inequality and the Young inequalities, together with uniform L∞

bound of φk, it is easily seen that∫
Ω

F ′′(φk)|∇φk|p dx ≤ C
(
1 + ‖∇μk‖pLp(Ω)

)
, (4.47)

for some C depending on p. This entails, in particular, that

‖∇φk‖Lp(Ω) ≤ C
(
1 + ‖∇μk‖Lp(Ω)

)
. (4.48)

Finally, we highlight that all the constants C in (4.45), (4.46) and (4.47) are also independent of the velocity 
field uk and the initial condition φk

0 . In fact, they only depend on α, K and Ω. This completes the proof of 
Theorem 4.1.

Regularity. The case (i). By definition of φk
0 , it is easily seen that φk

0 → φ0 and ∇φk
0 → ∇φ almost 

everywhere in Ω. In light of (4.15), we also have that F ′′(φk
0)|∇φk

0 | ≤ F ′′(φ0)|∇φ0| almost everywhere in Ω. 
Since F ′′(φ0)∇φ0 ∈ L2(Ω; R2) by assumption, we simply deduce that∫

Ω

|F ′′(φk
0)∇φk

0 − F ′′(φ0)∇φ0|2 dx → 0,

namely, F ′′(φk
0)∇φk

0 → F ′′(φ0)∇φ0 in L2(Ω; R2). On the other hand, it is straightforward to prove that 
K ∗ φk

0 → K ∗ φ0 in H1(Ω). In addition, it is possible to show from (4.17) and (4.18) that ∇μk(0) =
F ′′(φk

0)∇φk
0 −∇K ∗ φk

0 in Ω. Therefore, we deduce that ∇μk(0) → F ′′(φ0)∇φ0 −∇K ∗ φ0 in L2(Ω; R2). As 
an immediate consequence, we get

‖∇μk(0)‖L2(Ω) → ‖F ′′(φ0)∇φ0 −∇K ∗ φ0‖L2(Ω), as k → ∞. (4.49)

Next, recalling that uk → u in L4(0, T ; L4
σ) and the uniform estimate (4.22), we infer from (4.45) and (4.46)

that

‖∇μk‖L∞(0,T ;L2(Ω)) + ‖∂tφk‖L2(0,T ;L2(Ω)) + ‖∇μk‖L2(0,T ;H1(Ω)) ≤ C. (4.50)
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Thanks to (4.30), we obtain

‖μk‖L∞(0,T ;H1(Ω)) + ‖μk‖L2(0,T ;H2(Ω)) ≤ C. (4.51)

Concerning the concentration φk, we deduce from (4.48), (4.51) and the interpolation inequality

‖u‖Lq(0,T ;Lp(Ω)) ≤ C‖u‖L∞(0,T ;L2(Ω))‖u‖L2(0,T ;H1(Ω)),

where q = 2p
p− 2 and p ∈ (2, ∞), that

‖φk‖L∞(Ω×(0,T )) ≤ 1, ‖φk‖L∞(0,T ;H1(Ω)) + ‖φk‖Lq(0,T ;W 1,p(Ω)) ≤ C. (4.52)

In a similar way, by comparison in (4.18), we are led to

‖F ′(φk)‖L∞(0,T ;H1(Ω)) + ‖F ′(φk)‖Lq(0,T ;W 1,p(Ω)) ≤ C. (4.53)

Furthermore, recalling (4.26), we obtain from u ∈ L4(0, T ; L4
σ(Ω)) and (4.51) that

‖∂tφk‖L4(0,T ;H1(Ω)′) ≤ C. (4.54)

Also, by the assumption (H4), an application of the Trudinger-Moser inequality and the estimate (4.53) (cf. 
[28, Theorem 5.2]) entails that

‖F ′′(φk)‖L∞(0,T ;Lp(Ω)) ≤ Cp, ∀ p ∈ [2,∞). (4.55)

Notice that ∂tF ′(φk) = F ′′(φk)∂tφk. Owing to this, for any v ∈ H1(Ω), we have∣∣〈∂tF ′(φk), v〉
∣∣ ≤ ‖F ′′(φk)‖L4(Ω)‖∂tφk‖L2(Ω)‖v‖L4(Ω), (4.56)

which, in turn, implies that

‖∂tF ′(φk)‖L2(0,T ;H1(Ω)′) ≤ C. (4.57)

Thus, in light of (4.33) and (4.50), we immediately deduce that

‖∂tμk‖L2(0,T ;H1(Ω)′) ≤ C. (4.58)

Exploiting the above uniform estimates (4.50)-(4.58), by a compactness argument (simpler than the one for 
the existence of weak solutions), we pass to the limit in (4.18) as k → ∞ obtaining that the limit function 
φ is a strong solution to (4.1) satisfying (4.6). In particular, (4.1)1 holds almost everywhere in Ω × (0, T ), 
(4.1)2 holds almost everywhere in ∂Ω × (0, T ). Since the map t → {x ∈ Ω : |φ(x, t)| = 1} is continuous 
in [0, T ] and F ′(φ) ∈ L∞(0, T ; H1(Ω)), we observe that |{x ∈ Ω : |φ(x, t)| = 1}| = 0 for all t ∈ [0, T ]. 
Besides, the estimates (4.7), (4.8) and (4.9) follow from (4.30), (4.45), (4.46), (4.48), (4.49), (4.56) and the 
lower semicontinuity of the norm with respect to the weak convergence. In particular, to get the estimates 
(4.7)-(4.8), we need that, up to subsequences,

T∫
0

‖∇μk(τ)‖2
L2(Ω) dτ →

T∫
0

‖∇μ(τ)‖2
L2(Ω) dτ as k → ∞. (4.59)
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This easily follows from (4.51) and (4.58) by means of the Aubin-Lions Lemma. Nevertheless, in more 
general cases, such as when Ω ⊂ R3, one cannot rely on the summability on ∂tμ. Therefore, we propose a 
more general and direct proof of (4.59), avoiding the use of Aubin-Lions Lemma, by exploiting the energy 
identity (4.20). First notice that, by the above convergences,

T∫
0

∫
Ω

uk · ∇μk φk dxdτ →
T∫

0

∫
Ω

u · ∇μφdxdτ,

and

Enloc(φ(T )) ≤ lim inf
k→∞

Enloc(φk(T )).

Therefore, by using (4.20), we deduce that

Enloc(φ(T )) + lim inf
k→∞

T∫
0

‖∇μk(τ)‖2
L2(Ω) dτ ≤ lim inf

k→∞

⎛⎝Enloc(φk(T )) +
T∫

0

‖∇μk(τ)‖2
L2(Ω) dτ

⎞⎠
≤ lim inf

k→∞

⎛⎝Enloc(φk
0) +

T∫
0

∫
Ω

uk · ∇μk φk dxdτ

⎞⎠
= Enloc(φ0) +

T∫
0

∫
Ω

u · ∇μφdxdτ.

On the other hand, we also have the following energy identity

Enloc(φ(T )) +
T∫

0

‖∇μ(τ)‖2
L2(Ω) dτ = Enloc(φ0) +

T∫
0

∫
Ω

u · ∇μφdxdτ.

By the chain of inequalities above, we infer that

T∫
0

‖∇μ(τ)‖2
L2(Ω) dτ ≥ lim inf

k→∞

T∫
0

‖∇μk(τ)‖2
L2(Ω) dτ

which implies, together with the convergence ∇μk ⇀ ∇μ weakly in L2(0, T ; L2(Ω; R2)), up to a subsequence, 
that

T∫
0

‖∇μ(τ)‖2
L2(Ω) dτ = lim inf

k→∞

T∫
0

‖∇μk(τ)‖2
L2(Ω) dτ.

From this, we clearly obtain (4.59) up to a subsequence.
Finally, if we also assume u ∈ L∞(0, T ; L2

σ(Ω)) then, by comparison in (4.1) (cf. (4.26)), it is easily seen 
that ∂tφ ∈ L∞(0, T ; H1(Ω)′), which concludes the proof related to the case (i).

Separation property and further regularity. The case (ii). We may first argue as in the proof of [29, Theorem 
4.1] to conclude with (4.11) through a direct argument (see Remark 4.4). Then, following [54, Corollary 4.5], 
we can also modify that proof slightly upon eliminating the cut-off function ηn, instead by testing (4.12) with 
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v := φn (t) = (φ (t) − kn)+, for the increasing sequence kn := 1 − δ − δ2−n n→∞→ 1 − δ, 1 − 2δ < kn < 1 − δ, 
where 0 < δ < δ0/2 (this implies that φn (0) = 0, for all n ∈ N0). Moreover, the drift term becomes

Z :=
∫
Ω

φu · ∇φndx =
∫
Ω

u · ∇ (φn)2 dx = 0, (4.60)

so that one has3

1
2‖φn(t)‖2

L2(Ω) + F ′′ (1 − 2δ)
t∫

0

‖∇φn‖2
L2(Ω) ds ≤

t∫
0

∫
An(s)

(∇K ∗ φ) · ∇φndx ds,

for all t ∈ [0, 1], assuming T ≥ 1 without loss of generality. This inequality allows us to make minor changes 
in the arguments employed in [29, Theorem 4.1] to deduce that ‖φ‖L∞([0,1]×Ω) ≤ 1 −δ, and to exploit (4.11)
to obtain (4.10).

Next, setting the difference quotient ∂h
t f(t) = h−1 (f(t + h) − f(t)) for 0 < t < T − h, we write

∂h
t μ(t) = ∂h

t φ(t)

⎛⎝ 1∫
0

F ′′(sφ(t + h) + (1 − s)φ(t)) ds

⎞⎠−K ∗ ∂h
t φ(t), for a.a. t in (0, T ).

In light of (4.10), it easily follows that ‖sφ(· + h) − (1 − s)φ‖L∞(Ω×(0,T−h)) ≤ 1 − δ for all s ∈ (0, 1). 
Owing to this, and using the properties of K (see (H2)) and the basic inequality ‖∂h

t φ‖L2(0,T−h;L2(Ω)) ≤
‖∂tφ‖L2(0,T ;L2(Ω)), we deduce that

‖∂h
t μ‖L2(0,T−h;L2(Ω)) ≤ C,

where C is independent of h. This entails that ∂tμ ∈ L2(0, T ; L2(Ω)). In turn, recalling that μ ∈
L2(0, T ; H2(Ω)), we also obtain μ ∈ C([0, T ]; H1(Ω)). The proof of Theorem 4.1 is thus concluded. �
5. Proof of Theorem 1.5

First of all, we rewrite the nonlocal AGG model (1.8) in the non-conservative form as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ(φ)∂tu + ρ(φ)(u · ∇)u − ρ′(φ)(∇μ · ∇)u − div(ν(φ)Du) + ∇Π = μ∇φ,

divu = 0,
∂tφ + u · ∇φ = Δμ,

μ = F ′(φ) −K ∗ φ,

(5.1)

in Ω × (0, T ), which is endowed with the boundary and initial conditions (1.9).

5.1. The approximate problem: the semi-Galerkin scheme

Let us consider the family of eigenvalues {λj}∞j=1 and corresponding eigenfunctions {wj}∞j=1 of the Stokes 
operator A. For any integer m ≥ 1, let Vm denote the finite-dimensional subspaces of L2

σ(Ω) defined as 
Vm = span{w1, · · · , wm}. The orthogonal projection on Vm with respect to the inner product in L2

σ(Ω) is 

3 Here An (t) := {x ∈ Ω : φ (x, t) ≥ kn}, t ∈ [0, 1].
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denoted by Pm. Recalling that Ω is a C2-domain, we have that wj ∈ V 2
0,σ(Ω) for all j ∈ N. In addition, the 

following inequalities hold

‖v‖H1(Ω) ≤ Cm‖v‖L2(Ω), ‖v‖H2(Ω) ≤ Cm‖v‖L2(Ω) ∀v ∈ Vm. (5.2)

Let us fix T > 0. For any m ∈ N, we claim that there exists an approximate solution (um, φm) to system 
(1.8)-(1.9) in the following sense:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

um ∈ C([0, T ];Vm) ∩H1(0, T ;Vm),
φm ∈ L∞(Ω × (0, T )) : |φm(x, t)| < 1 a.e. in Ω × (0, T ),

φm ∈ L∞(0, T ;H1(Ω)) ∩ Lq(0, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφm ∈ L∞(0, T ;H1(Ω)′) ∩ L2(0, T ;L2(Ω)),
μm ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)′),
F ′(φm) ∈ L∞(0, T ;H1(Ω)), F ′′(φm) ∈ L∞(0, T ;Lp(Ω)), ∀ p ∈ [2,∞),

(5.3)

such that

(ρ(φm)∂tum,w) + (ρ(φm)(um · ∇)um,w) + (ν(φm)Dum,∇w)

− ρ1 − ρ2

2 ((∇μm · ∇)um,w) = − (φm∇μm,w) ,
(5.4)

for all w ∈ Vm, in [0, T ], and

∂tφm + um · ∇φm = Δμm, μm = F ′(φm) −K ∗ φm, a.e. in Ω × (0, T ). (5.5)

In addition, the approximate solution (um, φm) satisfies the boundary and initial conditions

{
um = 0, ∂nμm = 0 on ∂Ω × (0, T ),
um(·, 0) = Pmu0, φ(·, 0) = φ0 in Ω.

(5.6)

5.2. Existence of the approximate solutions

We perform a fixed point argument to determine the existence of the approximate solutions satisfying 
(5.4)-(5.6) as in [37,38]. To this aim, we suppose that v ∈ C([0, T ]; Vm) is given. Then the corresponding 
convective nonlocal Cahn-Hilliard system reads as

∂tφm + v · ∇φm = Δμm, μm = F ′(φm) −K ∗ φm in Ω × (0, T ), (5.7)

with boundary and initial conditions

∂nμm = 0 on ∂Ω × (0, T ), φm(·, 0) = φ0 in Ω × (0, T ). (5.8)

Thanks to the case (i) of Theorem 4.1, there exists a unique solution φm to (5.7)-(5.8) such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φm ∈ L∞(Ω × (0, T )) : |φm| < 1 a.e. in Ω × (0, T ),

φm ∈ L∞(0, T ;H1(Ω)) ∩ Lq(0, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφm ∈ L∞(0, T ;H1(Ω)′) ∩ L2(0, T ;L2(Ω)),
μm ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)′),
F ′(φm) ∈ L∞(0, T ;H1(Ω)), F ′′(φm) ∈ L∞(0, T ;Lp(Ω)), ∀ p ∈ [2,∞).

(5.9)

Moreover, on account of (4.4), by repeating line by line the proof of Theorem 4.1 (cf. energy estimates), we 
find

T∫
0

‖∇μm(τ)‖2
L2(Ω) dτ ≤ C +

T∫
0

‖v(τ)‖2
L2(Ω) dτ. (5.10)

where C depends only on Ω, F and K, but is independent of m as all the other constants C in the sequel 
of this proof.

We now make the ansatz

um(x, t) =
m∑
j=1

amj (t)wj(x), ∀ (x, t) ∈ Ω × [0, T ],

as the solution to the Galerkin approximation of (5.4), that is,

(ρ(φm)∂tum,wl) + (ρ(φm)(v · ∇)um,wl) + (ν(φm)Dum,∇wl)

− ρ1 − ρ2

2 ((∇μm · ∇)um,wl) = − (φm∇μm,wl) , ∀ l = 1, . . . ,m,
(5.11)

satisfying the initial condition um(·, 0) = Pmu0.
Arguing as in [37, Section 4], we introduce Am(t) = (am1 (t), . . . , amm(t))T and we observe that (5.11) is 

equivalent to the system of differential equations

Mm(t) d
dtA

m + Lm(t)Am = Gm(t),

where the matrices Mm(t), Lm(t) and the vector Gm(t) are defined as follows:

(Mm(t))lj =
∫
Ω

ρ(φm(t))wj · wl dx,

(Lm(t))lj =
∫
Ω

ρ(φm(t))(v(t) · ∇)wj · wl + ν(φm(t))Dwj : ∇wldx

−
∫
Ω

(
ρ1 − ρ2

2

)
(∇μm(t) · ∇)wj · wl,

(G(t))l = −
∫
Ω

φm(t)∇μm(t) · wl dx,

as well as Am(0) = ((u0,w1), . . . , (u0,wm))T . The regularity properties in (5.9) imply that both φm and 
μm belongs to Cw([0, T ]; H1(Ω)) ∩C([0, T ]; Lp(Ω)) for any p ∈ [1, ∞) (cf. [58]). In turn, since ρ(·) is a linear 
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function and ν is globally Lipschitz, ρ(φm) and ν(φm) also belong to C([0, T ]; Lp(Ω)) for any p ∈ [1, ∞). As 
such, we immediately observe that, for any s, t ∈ [0, T ],

|(Mm(t))lj − (Mm(s))lj | ≤ ‖wj‖L∞(Ω)‖wl‖L∞(Ω)

∫
Ω

|ρ(φm(t)) − ρ(φm(s))|dx −→
s→t

0.

Since Vm ⊂ V 2
0,σ(Ω), we observe that

(Gm(t))l − (Gm(s))l = −
∫
Ω

(φm(t) − φm(s))∇μm(t) · wl dx−
∫
Ω

(μm(t) − μm(s))∇φm(s) · wl dx.

Then, recalling that φm and μm belongs to Cw([0, T ]; H1(Ω)), we infer that

|(Gm(t))l − (Gm(s))l| ≤ ‖wl‖L∞(Ω)‖∇μm(t)‖L2(Ω)‖φm(t) − φm(s)‖L2(Ω)

+ ‖wl‖L∞(Ω)‖∇φm(s)‖L2(Ω)‖μm(t) − μm(s)‖L2(Ω) −→
s→t

0.

Furthermore, exploiting once again that Vm ⊂ V 2
0,σ(Ω), we notice that∣∣∣∣∣∣

∫
Ω

ρ(φm(t))(v(t) · ∇)wj · wl dx−
∫
Ω

ρ(φm(s))(v(s) · ∇)wj · wl dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ω

(ρ(φm(t)) − ρ(φm(s))) (v(t) · ∇)wj · wl dx +
∫
Ω

ρ(φm(s))((v(t) − v(s)) · ∇)wj · wl dx

∣∣∣∣∣∣
≤ ‖ρ(φm(t)) − ρ(φm(s))‖L3(Ω)‖v(t)‖L2(Ω)‖∇wj‖L6(Ω)‖wl‖L∞(Ω)

+ ‖ρ(φm(s))‖L6(Ω)‖v(t) − v(s)‖L2(Ω)‖∇wj‖L3(Ω)‖wl‖L∞(Ω) −→
s→t

0

and∣∣∣∣∣∣
∫
Ω

(ν(φm(t)) − ν(φm(s)))Dwj : ∇wl dx

∣∣∣∣∣∣ ≤ ‖ν(φm(t)) − ν(φm(s))‖L2(Ω)‖Dwj‖L4(Ω)‖∇wl‖L4(Ω) −→
s→t

0.

On the other hand, integrating by parts and exploiting the boundary conditions, we have∫
Ω

(∇μm(t) · ∇)wj · wl dx = −
∫
Ω

μ(t)Δwj · wl dx−
∫
Ω

μ(t)∇wj : ∇wl dx.

Thus, we find∣∣∣∣∣∣
∫
Ω

(∇(μm(t) − μm(s)) · ∇)wj · wl dx

∣∣∣∣∣∣ ≤ C‖wj‖H2(Ω)‖wl‖H2(Ω)‖μm(s) − μm(t)‖L2(Ω) −→
s→t

0.

Thus, we derive that Mm and Lm belong to C([0, T ]; Rm×m) and Gm ∈ C([0, T ]; Rm). Furthermore, being ρ
strictly positive, we also have that Mm is positive definite and thus the inverse (Mm)−1 ∈ C([0, T ]; Rm×m). 
Thus, the existence and uniqueness theorem for systems of linear ODEs guarantees that there exists a 
unique solution um ∈ C1([0, T ]; Vm).
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Next, multiplying (5.11) by aml and summing over l, we obtain∫
Ω

ρ(φm)∂t
(
|um|2

2

)
dx +

∫
Ω

ρ(φm)v · ∇
(
|um|2

2

)
dx +

∫
Ω

ν(φm)|Dum|2 dx

−
∫
Ω

(
ρ1 − ρ2

2

)
∇μm · ∇

(
|um|2

2

)
dx = −

∫
Ω

φm∇μm · um dx.

Arguing exactly as in [37, Section 4.2] and exploiting (5.5), we deduce that

d
dt

∫
Ω

ρ(φm) |um|2
2 dx +

∫
Ω

ν(φm)|Dum|2 dx = −
∫
Ω

φm∇μm · um dx. (5.12)

By the Poincaré-Korn (see (2.5)) and the Young inequalities, as well as |φm| < 1 almost everywhere in Ω ×
(0, T ), we infer by the divergence theorem that

−
∫
Ω

φm∇μm · um dx =
∫
Ω

μm∇φm · um dx

=
∫
Ω

F ′(φm)∇φm · um dx−
∫
Ω

K ∗ φm∇φm · um dx

=
∫
Ω

∇(F (φm)) · um dx

︸ ︷︷ ︸
=0

+
∫
Ω

φm∇K ∗ φm · um dx

≤ ‖φm‖L∞(Ω)‖∇K‖L1(R2)‖φm‖L2(Ω)‖um‖L2(Ω)

≤
√

2
λ1

‖∇K‖L1(R2)|Ω| 12 ‖Dum‖L2(Ω)

≤ ν∗
2 ‖Dum‖2 +

‖∇K‖2
L1(R2)|Ω|
ν∗λ1

.

(5.13)

Here we have used that ∇F (φm) = F ′(φm)∇φm almost everywhere in Ω × (0, T ) (see Remark 4.3). We are 
thus led to the differential inequality

d
dt

∫
Ω

ρ(φm) |um|2
2 dx + ν∗

2 ‖Dum‖2 ≤
‖∇K‖2

L1(R2)|Ω|
ν∗λ1

.

Integrating the above inequality in time, with s ∈ [0, T ] and exploiting the upper and lower bounds of ρ, 
we get

max
t∈[0,T ]

‖um(t)‖2
L2(Ω) ≤

ρ∗

ρ∗
‖u0‖2

L2(Ω) +
2‖∇K‖2

L1(R2)|Ω|T
ν∗λ1

=: M2. (5.14)

Let us now introduce the closed ball

X :=
{
u ∈ C([0, T ];Vm) : ‖u‖C([0,T ];Vm) ≤ M

}
,

and define the map
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S : X → X, S(v) := um.

We need now to show that S is compact. To this aim, we control the time derivative of um. In particular, 
multiplying (5.11) by d (aml ) /dt and summing over l, we have

ρ∗‖∂tum‖2
L2(Ω) ≤ −(ρ(φm)(v · ∇)um, ∂tum) − (ν(φm)Dum,∇∂tum)

+ ρ1 − ρ2

2 ((∇μm · ∇)um, ∂tum) − (φm∇K ∗ φm, ∂tum).

Here, we have used that −(φ∇μm, ∂tum) = −(φm∇K ∗ φm, ∂tum) (cf. (5.13)). By exploiting (5.2) and the 
global bound |φm| ≤ 1 almost everywhere in Ω × (0, T ), we obtain

ρ∗‖∂tum‖2
L2(Ω) ≤ ρ∗‖v‖L4(Ω)‖∇um‖L4(Ω)‖∂tum‖L2(Ω) + ν∗‖Dum‖L2(Ω)‖∇∂tum‖L2(Ω)

+
∣∣∣∣ρ1 − ρ2

2

∣∣∣∣ ‖∇μm‖L2(Ω)‖∇um‖L4(Ω)‖∂tum‖L4(Ω)

+ ‖φm‖L∞(Ω)‖∇K ∗ φm‖L2(Ω)‖∂tum‖L2(Ω)

≤ C‖∇v‖L2(Ω)‖um‖H2(Ω)‖∂tum‖L2(Ω) + C‖Dum‖L2(Ω)‖∇∂tum‖L2(Ω)

+ C‖∇μm‖L2(Ω)‖um‖H2(Ω)‖∇∂tum‖L2(Ω) + ‖∇K‖L1(R2)‖φm‖L2(Ω)‖∂tum‖L2(Ω)

≤ Cm‖v‖L2(Ω)‖um‖L2(Ω)‖∂tum‖L2(Ω) + Cm‖um‖L2(Ω)‖∂tum‖L2(Ω)

+ Cm‖∇μm‖L2(Ω)‖um‖L2(Ω)‖∂tum‖L2(Ω) + ‖∇K‖L1(R2)|Ω| 12 ‖∂tum‖L2(Ω)

≤ Cm‖∂tum‖L2(Ω)

(
M2 + M

(
1 + ‖∇μm‖L2(Ω)

)
+ ‖∇K‖L1(R2)|Ω| 12

)
≤ ρ∗

2 ‖∂tum‖2
L2(Ω) + Cm

(
M4 + M2

(
1 + ‖∇μm‖2

L2(Ω)

)
+ ‖∇K‖2

L1(R2)|Ω|
)
.

Then, integrating over [0, T ] and using (5.10), we deduce that

T∫
0

‖∂tum(τ)‖2 dτ ≤ 2
ρ∗

[
Cm(M2 + M4)T + CmM2

(
C + ‖v‖2

L2(0,T ;L2(Ω))

)
+ Cm‖∇K‖2

L1(R2)|Ω|T
]

≤ 2
ρ∗

[
Cm(M2 + M4)T + CmM2 (C + M2T

)
+ Cm‖∇K‖2

L1(R2)|Ω|T
]

=: M̃2,

namely

‖∂tum‖2
L2(0,T ;Vm) ≤ M̃, (5.15)

Recalling that Vm is finite dimensional, the Aubin-Lions Lemma entails C([0, T ]; Vm) ∩H1(0, T ; Vm) c
↪→

C([0, T ]; Vm). Therefore, since S : X → Y , where Y = {u ∈ X : ‖∂tum‖2
L2(0,T ;Vm) ≤ M̃}, it follows that 

the map S is compact (more precisely, S(X) is compact in C([0, T ]; Vm)).
In order to complete our fixed point argument, we are left to show that S : X → X is continuous. To this 

aim, we consider a sequence {vn}∞n=1 ⊂ X such that vn → v� in C([0, T ]; Vm); consequently, there exists a 
sequence {(φn, μn)}∞n=1 and (φ�, μ�) that solve the convective nonlocal Cahn-Hilliard equation (5.7)-(5.8), 
where v is replaced by vn and v�, respectively. Following the uniqueness argument performed in the proof 
of Theorem 4.1, we obtain



C.G. Gal et al. / J. Math. Pures Appl. 178 (2023) 46–109 77
1
2

d
dt ‖φn − φ�‖2

∗ + 3α
4 ‖φn − φ�‖2

L2(Ω)

≤ C ‖φn − φ�‖2
∗ + (φn(vn − v�),∇N (φn − φ�)) + (v�(φn − φ�),∇N (φn − φ�)).

Here we have used that φn = φ� = φ0. In light of v� ∈ C([0, T ]; Vm) and (5.2), we notice that

|(v�(φn − φ�),∇N (φn − φ�))| ≤ C‖v�‖L∞(Ω)‖φ‖L2(Ω) ‖∇N (φn − φ�)‖L2(Ω)

≤ α

4 ‖φ‖
2
L2(Ω) + CmM2 ‖φn − φ�‖2

∗ .

Since |φn| < 1 almost everywhere in Ω × (0, T ), we also find

| (φn(vn − v�),∇N (φn − φ�)) | ≤ ‖φn‖L∞(Ω)‖vn − v�‖L2(Ω) ‖∇N (φn − φ�)‖L2(Ω)

≤ C‖φn − φ�
∥∥2
∗ + C‖vn − v�

∥∥2
L2(Ω) .

Thus, we obtain

1
2

d
dt ‖φn − φ�‖2

∗ + α

2 ‖φn − φ�‖2
L2(Ω) ≤ C ‖φn − φ�‖2

∗ + C ‖vn − v�‖2
L2(Ω)

and the Gronwall Lemma yields

‖φn − φ�‖2
L∞(0,T ;H1(Ω)′) + ‖φn − φ�‖2

L2(0,T ;L2(Ω)) ≤ CeCT
(
T + T 2) ‖vn − v�‖2

C([0,T ];Vm) −→
n→∞

0. (5.16)

On the other hand, recalling that {vn}n and v� belong to X, by the regularity (i) in Theorem 4.1 (more 
precisely, (4.7)-(4.8)) we infer that

‖∂tφn‖L∞(0,T ;H1(Ω)′) + ‖∂tφn‖L2(0,T ;L2(Ω)) + ‖μn‖L∞(0,T ;H1(Ω)) + ‖∇μn‖L2(0,T ;H1(Ω)) ≤ C, (5.17)

‖∂tφ�‖L∞(0,T ;H1(Ω)′) + ‖∂tφ�‖L2(0,T ;L2(Ω)) + ‖μ�‖L∞(0,T ;H1(Ω)) + ‖∇μ�‖L2(0,T ;H1(Ω)) ≤ C. (5.18)

On account of the estimates (4.30), (4.48), by repeating the argument used to obtain (4.53), (4.55) and 
(4.58), we find that

‖φn‖L∞(0,T ;H1(Ω)) + ‖∂tμn‖L2(0,T ;H1(Ω)′) + ‖F ′(φn)‖L∞(0,T ;H1(Ω)) + ||F ′′(φn)‖L∞(0,T ;Lp(Ω)) ≤ C, (5.19)

‖φ�‖L∞(0,T ;H1(Ω)) + ‖∂tμ�‖L2(0,T ;H1(Ω)′) + ‖F ′(φ�)‖L∞(0,T ;H1(Ω)) + ||F ′′(φ�)‖L∞(0,T ;Lp(Ω)) ≤ C, (5.20)

for any p ∈ [2, ∞). Here, the C depends on p, but it is independent of n. Then, we first observe from 
Lebesgue’s interpolation, the global bound in L∞(Ω × (0, T )) of φn and φ�, and (5.16) that

‖φn − φ∗‖L4(0,T ;L4(Ω)) −→
n→∞

0. (5.21)

Furthermore, in light of the above estimates, the Aubin-Lions lemma ensures that (up to subsequences) 
μn − μ� → μ∞ as n → ∞ in L2(0, T ; L2(Ω)). We claim that μ∞ ≡ 0. In fact, since φn → φ� (up to 
a subsequence) almost everywhere in Ω × (0, T ), we deduce from (5.19) and (5.20) that F ′(φn) ⇀ F ′(φ�)
weakly in L2(Ω ×(0, T )). Also, it is easily seen that K ∗φn → K ∗φ� in L2(Ω ×(0, T )). Thus, we immediately 
infer that μ∞ ≡ 0. More precisely, we have

‖μn − μ�‖L2(0,T ;L2(Ω)) −→ 0. (5.22)

n→∞
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We now define un = S(vn) ∈ Y , for any n ∈ N, and u� = S(v�) ∈ Y . We set u = un −u�, Φ = φn − φ�, 
V = vn − v�, Θ = μn − μ�, and we observe that

(ρ(φn)∂tu,w) + ((ρ(φn) − ρ(φ�))∂tu�,w) + (ρ(φn)(vn · ∇)un − ρ(φ�)(v� · ∇)u�,w) + (ν(φn)Du,∇w)

+ ((ν(φn) − ν(φ�))Du�,∇w) − ρ1 − ρ2

2 ((∇μn · ∇)un − (∇μ� · ∇)u�,w) = (μn∇φn − μ�∇φ�,w),

for all w ∈ Vm and in [0, T ]. Choosing then w = u, we obtain

1
2

d
dt

∫
Ω

ρ(φn)|u|2 dx +
∫
Ω

ν(φn)|Du|2 dx

= ρ1 − ρ2

4

∫
Ω

∂tφn|u|2 dx− ρ1 − ρ2

2

∫
Ω

Φ(∂tu� · u) dx

−
∫
Ω

(ρ(φn)(vn · ∇)un − ρ(φ�)(v� · ∇)u�) · u dx−
∫
Ω

(ν(φn) − ν(φ�))Du� : ∇u dx

+ ρ1 − ρ2

2

∫
Ω

((∇μn · ∇)un − (∇μ� · ∇)u�) · u dx +
∫
Ω

(μn∇φn − μ�∇φ�) · u dx.

Thanks to the embedding H1
0,σ(Ω) ↪→ L4(Ω; R2), by exploiting (5.2), we have

∣∣∣∣∣∣ρ1 − ρ2

4

∫
Ω

∂tφn|u|2 dx

∣∣∣∣∣∣ ≤ C‖∂tφn‖L2(Ω)‖u‖2
L4(Ω) ≤ Cm‖∂tφn‖L2(Ω)‖u‖2

L2(Ω),

and ∣∣∣∣∣∣ρ1 − ρ2

2

∫
Ω

Φ(∂tu� · u) dx

∣∣∣∣∣∣ ≤ C‖Φ‖L4(Ω)‖∂tu�‖L2(Ω)‖u‖L4(Ω)

≤ Cm‖∂tu�‖2
L2(Ω)‖u‖2

L2(Ω) + Cm‖Φ‖2
L4(Ω).

Similarly, recalling that vn, v�, un, u� ∈ X,

−
∫
Ω

(ρ(φn)(vn · ∇)un − ρ(φ�)(v� · ∇)u�) · u dx

= −ρ1 − ρ2

2

∫
Ω

Φ((vn · ∇)un) · u dx−
∫
Ω

ρ(φ�)(v · ∇)un) · u dx−
∫
Ω

ρ(φ�)(v� · ∇)u) · u dx

≤ C‖Φ‖L4(Ω)‖vn‖L∞(Ω)‖∇un‖L2(Ω)‖u‖L4(Ω) + C‖v‖L4(Ω)‖∇un‖L2(Ω)‖u‖L4(Ω)

+ C‖v�‖L4(Ω)‖∇u‖L2(Ω)‖u‖L4(Ω)

≤ CmM2‖Φ‖L4(Ω) ‖u‖L2(Ω) + CmM‖v‖L2(Ω)‖u‖L2(Ω) + CmM‖u‖2
L2(Ω)

≤ Cm

(
1 + M2) ‖u‖2

L2(Ω) + CmM2
(
‖Φ‖2

L4(Ω) + ‖V‖2
L2(Ω)

)
.

Since ν ∈ W 1,∞(R), we get
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−
∫
Ω

(ν(φn) − ν(φ�))Du� : ∇u dx ≤ C‖Φ‖L4(Ω)‖Du�‖L2(Ω)‖∇u‖L4(Ω)

≤ CmM2‖u‖2
L2(Ω) + Cm‖Φ‖2

L4(Ω).

On the other hand, observing that

ρ1 − ρ2

2

∫
Ω

((∇μn · ∇)un − (∇μ� · ∇)u�) · u dx

= ρ1 − ρ2

2

∫
Ω

((∇μn · ∇)u + (∇Θ · ∇)u�) · u dx

= −ρ1 − ρ2

2 ((μn∇u,∇u) + (μnu,Δu)) − ρ1 − ρ2

2 ((Θ∇u�,∇u) + (Θu,Δu�)) ,

we infer from (5.2) and (5.19) that∣∣∣∣∣∣ρ1 − ρ2

2

∫
Ω

((∇μn · ∇)un − (∇μ� · ∇)u�) · u dx

∣∣∣∣∣∣
≤ C‖μn‖L2(Ω)‖∇u‖2

L4(Ω) + C‖μn‖L2(Ω)‖u‖L∞‖Δu‖L2(Ω)

+ C‖Θ‖L2(Ω)‖∇u�‖L4(Ω)‖∇u‖L4(Ω) + C‖Θ‖L2(Ω)‖u‖L∞(Ω)‖Δu�‖L2(Ω)

≤ Cm

(
1 + M2) ‖u‖2

L2(Ω) + Cm‖Θ‖2
L2(Ω).

Finally, using again (5.2) and (5.19)-(5.20), we get∫
Ω

(μn∇φn − μ�∇φ�) · u dx =
∫
Ω

(−Φ∇μn + Θ∇φ�) · u dx

≤ ‖∇μn‖L2(Ω)‖Φ‖L4(Ω)‖u‖L4(Ω) + ‖Θ‖L2(Ω)‖∇φ�‖L2(Ω)‖u‖L∞(Ω)

≤ Cm‖u‖2
L2(Ω) + Cm

(
‖Θ‖2

L2(Ω) + ‖Φ‖2
L4(Ω)

)
.

Combining the above inequalities and recalling that ρ ≥ ρ∗, we are thus led to the differential inequality

d
dt

∫
Ω

ρ(φn)|U|2 dx ≤ H1(t)
∫
Ω

ρ(φn)|U |2 dx + H2(t),

where

H1 := Cm

(
1 + ‖∂tφn‖2

L2(Ω) + ‖∂tu�‖2
L2(Ω)

)
, H2 := Cm

(
1 + ‖Φ‖2

L4(Ω) + ‖Θ‖2
L2(Ω) + ‖v‖2

L2(Ω)

)
.

Hence, the Gronwall lemma entails

max
t∈[0,T ]

‖u(t)‖2
L2(Ω) ≤

1
ρ∗

e
∫ T
0 H1(τ) dτ

T∫
0

H2(τ) dτ. (5.23)

Note that H1 ∈ L1(0, T ) and H2 ∈ L1(0, T ), thanks to (5.15) and (5.17)-(5.20). In addition, in light of 
vn → ṽ in C([0, T ]; Vm) and (5.21)-(5.22), we deduce that from (5.23) that un → u� in C([0, T ]; Vm), 
implying that the map S is continuous.
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In conclusion, we can apply the Schauder fixed point theorem to S. This gives the existence of an 
approximate solution (um, φm) in [0, T ] satisfying (5.3)-(5.6).

5.3. Uniform estimates independent of the approximation parameter

Integrating (5.5)1 over Ω, we find

φm(t) = 1
|Ω|

∫
Ω

φm(t) dx = 1
|Ω|

∫
Ω

φ0 dx, ∀ t ∈ [0, T ].

Taking w = um in (5.4) and arguing as above, we get

d
dt

∫
Ω

1
2ρ(φm)|um|2 dx +

∫
Ω

ν(φm)|Dum|2 dx =
∫
Ω

μm∇φm · um dx.

Let us recall that φm satisfies the energy identity (4.4), i.e.,

Enloc(φm(t)) +
t∫

0

‖∇μm(τ)‖2
L2(Ω) dτ +

t∫
0

∫
Ω

φm um · ∇μm dx dτ = Enloc((φ0), ∀ t ∈ [0, T ].

Therefore, we have

d
dtE(um, φm) +

∫
Ω

ν(φm)|Dum|2 dx +
∫
Ω

|∇μm|2 dx = 0, (5.24)

where

E(um, φm) =
∫
Ω

1
2ρ(φm)|um|2 dx + Enloc(φm).

Notice that, being |φm| < 1 almost everywhere in Ω × (0, T ), Enloc(φm) ≥ −Ce almost everywhere in (0, T ), 
where Ce is independent of m. Then, we can define Ê(um, φm) = E(um, φm) + Ce ≥ 0. We now integrate 
(5.24) with respect to time in [0, T ] and we obtain

Ê(um(t), φm(t)) +
t∫

0

∫
Ω

ν(φm)|Dum(τ)|2 dx dτ +
t∫

0

∫
Ω

|∇μm(τ)|2 dx dτ = Ê(Pmu0, φ0). (5.25)

By the properties of Pm, we immediately deduce that

Ê(Pmu0, φ0) ≤ Ce + ρ∗
2 ‖u0‖2

L2(Ω) + Enloc(φ0).

Therefore, we conclude that

‖um‖L∞(0,T ;L2(Ω)) + ‖um‖L2(0,T ;H1(Ω)) ≤ CE , ‖∇μm‖L2(0,T ;H) ≤ CE , (5.26)

where CE is independent of m. Owing to (5.26), the embedding L∞(0, T ; L2
σ(Ω)) ∩ L2(0, T ; H1

0,σ(Ω)) ↪→
L4(0, T ; L4

σ(Ω)) and the assumptions on φ0, we can apply (i) of Theorem 4.1. In particular, (4.7)-(4.9)
entails that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖φm‖L∞(0,T ;H1(Ω)) + ‖F ′(φm)‖L∞(0,T ;H1(Ω)) ≤ C,

‖φm‖Lq(0,T ;W 1,p(Ω)) ≤ Cp, q = 2p
p− 2 , ∀ p ∈ (2,∞),

‖∂tφm‖L∞(0,T ;H1(Ω)′) + ‖∂tφm‖L2(0,T ;L2(Ω)) ≤ C,

‖μm‖L∞(0,T ;H1(Ω)) + ‖μm‖L2(0,T ;H2(Ω)) + ‖μm‖H1(0,T ;H1(Ω)′) ≤ C,

||F ′′(φm)‖L∞(0,T ;Lp(Ω)) ≤ Cp, ∀ p ∈ [2,∞).

(5.27)

Next, taking w = ∂tum in (5.4), we find

1
2

d
dt

∫
Ω

ν(φm)|Dum|2 dx +
∫
Ω

ρ(φm)|∂tum|2 dx

= −
∫
Ω

ρ(φm)((um · ∇)um) · ∂tum dx +
∫
Ω

ν′(φm)∂tφm|Dum|2 dx

+ ρ1 − ρ2

2

∫
Ω

((∇μm · ∇)um) · ∂tum dx +
∫
Ω

μm∇φm · ∂tum dx.

(5.28)

In addition, following [37,39], we can choose w = Aum in (5.4), obtaining

−1
2(ν(φm)Δum,Aum) = −(ρ(φm)∂tum,Aum) − (ρ(φm)(um · ∇)Aum)

+ ρ1 − ρ2

2 ((∇μm · ∇)um,Aum)

+ (μm∇φm,Aum) + (ν′(φm)Dum∇φm,Aum).

By the regularity theory of the Stokes operator, there exists πm ∈ C([0, T ]; H1) such that −Δum +∇πm =
Aum almost everywhere in Ω × (0, T ). Furthermore, Lemma 3.1 implies that

‖πm‖L4(Ω) ≤ C‖∇um‖
1
2
L2(Ω)‖Aum‖

1
2
L2(Ω).

Since (ν(φm)∇πm, Aum) = −(ν′(φm)πm∇φm, Aum), we arrive at

1
2(ν(φm)Aum,Aum) = −(ρ(φm)∂tum,Aum) − (ρ(φm)(um · ∇)um,Aum)

+ ρ1 − ρ2

2 ((∇μm · ∇)um,Aum) + (μm∇φm,Aum)

+ (ν′(φm)Dum∇φm,Aum) − 1
2(ν′(φm)πm∇φm,Aum).

(5.29)

Let us now estimate the terms on the right-hand side in (5.28) and (5.29). Set ω1 a positive constant whose 
value will be determined later on. By using (2.2) and (5.26), we have∣∣∣∣∣∣

∫
Ω

ρ(φm)((um · ∇)um) · ∂tum dx

∣∣∣∣∣∣ ≤ ρ∗‖um‖L4(Ω)‖∇um‖L4(Ω)‖∂tum‖L2(Ω)

≤ ρ∗
8 ‖∂tum‖2

L2(Ω) + ν∗ω1

32 ‖Aum‖2
L2(Ω) + C‖Dum‖4

L2(Ω)

and
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∣∣∣∣∣∣
∫
Ω

ν′(φm)∂tφm|Dum|2 dx

∣∣∣∣∣∣ ≤ C‖∂tφm‖L2(Ω)‖Dum‖2
L4(Ω)

≤ ν∗ω1

32 ‖Aum‖2
L2(Ω) + C‖∂tφm‖2

L2(Ω)‖Dum‖2
L2(Ω).

Exploiting (2.2) once again, together with (5.27), we obtain∣∣∣∣∣∣ρ1 − ρ2

2

∫
Ω

((∇μm · ∇)um) · ∂tum dx

∣∣∣∣∣∣
≤ C‖∇μm‖L4(Ω)‖∇um‖L4(Ω)‖∂tum‖L2(Ω)

≤ C‖∇μm‖
1
2
L2(Ω)‖∇μm‖

1
2
H1(Ω)‖Dum‖

1
2
L2(Ω)‖Aum‖

1
2
L2(Ω)‖∂tum‖L2(Ω)

≤ ρ∗
8 ‖∂tum‖2

L2(Ω) + ν∗ω1

32 ‖Aum‖2
L2(Ω) + C‖∇μm‖2

H1(Ω)‖Dum‖2
L2(Ω)

and ∣∣∣∣∣∣
∫
Ω

μm∇φm · ∂tum dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

φm∇μm · ∂tum dx

∣∣∣∣∣∣ ≤ ρ∗
8 ‖∂tum‖2 + C‖∇μm‖2

L2(Ω).

Arguing as in the proof of [37, Section 4] related to the terms I8 and I9, we find

|(ρ(φm)∂tum,Aum)| ≤ 2ω1(ρ∗)2

ρ∗
‖Aum‖2

L2(Ω) + ρ∗
8ω1

‖∂tum‖2
L2(Ω)

and

|(ρ(φm)(um · ∇)um,Aum)| ≤ ν∗
32‖Aum‖2

L2(Ω) + C‖Dum‖4
L2(Ω).

Proceeding as above, we get∣∣∣∣ρ1 − ρ2

2 ((∇μm · ∇)um,Aum)
∣∣∣∣ ≤ C‖∇μm‖L4(Ω)‖∇um‖L4(Ω)‖Aum‖L2(Ω)

≤ C‖∇μm‖
1
2
L2(Ω)‖∇μm‖

1
2
H1(Ω)‖Dum‖

1
2
L2(Ω)‖Aum‖

3
2
L2(Ω)

≤ ν∗
32‖Aum‖2

L2(Ω) + C‖∇μm‖2
H1(Ω)‖Dum‖2

L2(Ω)

and

|(μm∇φm,Aum)| = |(φm∇μm,Aum)| ≤ ν∗
32‖Aum‖2

L2(Ω) + C‖∇μm‖2
L2(Ω).

By ν′ ∈ W 1,∞(R) and (5.27), it follows that

|(ν′(φm)Dum∇φm,Aum)| ≤ C‖Dum‖L4(Ω)‖∇φm‖L4(Ω)‖Aum‖L2(Ω)

≤ C‖Dum‖
1
2
L2(Ω)‖Aum‖

3
2
L2(Ω)‖∇φm‖L4(Ω)

≤ ν∗
32‖Aum‖2

L2(Ω) + C‖∇φm‖4
L4(Ω)‖Dum‖2

L2(Ω).
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Lastly, by (2.2) and (5.27), we infer that

|(ν′(φm)πm∇φm,Aum)| ≤ C‖πm‖L4(Ω)‖∇φm‖L4(Ω)‖Aum‖L2(Ω)

≤ C‖∇um‖
1
2
L2(Ω)‖Aum‖

3
2
L2(Ω)‖∇φm‖L4(Ω)

≤ ν∗
32‖Aum‖2

L2(Ω) + C‖∇φm‖4
L4(Ω)‖Dum‖2

L2(Ω).

Adding up (5.28) with (5.29) multiplied by ω1, and taking into account the previous estimates, we end up 
with

d
dtHm + ρ∗

2 ‖∂tum‖2
L2(Ω) +

(
ν∗ω1

4 − 2ω2
1(ρ∗)2

ρ∗

)
‖Aum‖2

L2(Ω) ≤ DmHm + Qm,

where

Hm(t) := 1
2

∫
Ω

ν(φm(t))|Dum(t)|2 dx,

Dm(t) := C
(
1 + ‖Dum(t)‖2

L2(Ω) + ‖∂tφm(t)‖2
L2(Ω) + ‖∇μm(t)‖2

H1(Ω) + ‖∇φm(t)‖4
L4(Ω)

)
,

Qm(t) := C‖∇μm(t)‖2
L2(Ω).

In turn, setting ω1 = ν∗ρ∗
16(ρ∗)2 > 0,

d
dtHm + ρ∗

2 ‖∂tum(t)‖2
L2(Ω) + ν∗ω1

8 ‖Aum(t)‖2
L2(Ω) ≤ DmHm + Qm. (5.30)

Observe now that, by (5.26) and (5.27), Dm ∈ L1(0, T ) and Qm ∈ L1(0, T ). Thus, an application of the 
Gronwall lemma gives

Hm(t) ≤

⎛⎝Hm(0) +
T∫

0

Qm(τ) dτ

⎞⎠ exp

⎛⎝ T∫
0

Dm(τ) dτ

⎞⎠ , ∀ t ∈ [0, T ]. (5.31)

By the properties of the projector Pm and (5.26) and (5.27), we observe that

Hm(0) ≤ C‖u0‖2
H1

0,σ(Ω),

T∫
0

Qm(τ) dτ ≤ C,

T∫
0

Dm(τ) dτ ≤ C.

Thus, we conclude from (5.30) and (5.31) that

‖um‖L∞(0,T ;H1
0,σ(Ω)) + ‖∂tum‖L2(0,T ;L2

σ(Ω)) + ‖um‖L2(0,T ;V 2
0,σ(Ω)) ≤ C. (5.32)

5.4. Passage to the limit and existence of global strong solutions

Thanks to the estimates (5.26), (5.27) and (5.32) (which are uniform with respect to the parameter m), 
we deduce the following convergences (up to subsequences)
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um ⇀ u weakly� in L∞(0, T ;H1
0,σ(Ω)),

um ⇀ u weakly in L2(0, T ;V 2
0,σ(Ω)) ∩H1(0, T ;L2

σ(Ω)),

φm ⇀ φ weakly� in L∞(0, T ;H1(Ω)) ∩ L∞(Ω × (0, T )),

φm ⇀ φ weakly in Lq(0, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

φm ⇀ φ weakly in H1(0, T ;L2(Ω) ∩W 1,∞(0, T ;H1(Ω)′),

μm ⇀ μ weakly� in L∞(0, T ;H1(Ω)),

μm ⇀ μ weakly in L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)′).

(5.33)

By means of Aubin-Lions Lemma, we have the following strong convergences,

um → u strongly in L2(0, T ;H1
0,σ(Ω)),

φm → φ strongly in C([0, T ];Lp(Ω)), ∀ p ∈ [2,∞),

μm → μ strongly in L2(0, T ;H1(Ω)).

(5.34)

As an immediate consequence, we infer that

ρ(φm) → ρ(φ) strongly in C([0, T ];Lp(Ω)), ∀ p ∈ [2,∞),

ν(φm) → ν(φ) strongly in C([0, T ];Lp(Ω)), ∀ p ∈ [2,∞).
(5.35)

On the other hand, we only know so far that φ ∈ L∞(Ω × (0, T )) is such that ‖φ‖L∞(Ω×(0,T )) ≤ 1. But, 
due to the convergence (up to a subsequence) φm → φ almost everywhere in Ω × (0, T ) and (5.27), the 
Fatou lemma entails that F ′(φ)2 ∈ L2(0, T ; L2(Ω)). In turn, this gives that |φ| < 1 almost everywhere in 
Ω × (0, T ). Owing to this, it is possible to show that

F ′(φm) ⇀ F ′(φ) weakly� in L∞(0, T ;H1(Ω)). (5.36)

The above properties are sufficient to show the convergence of the nonlinear terms in (5.4)-(5.5). Then, in a 
standard way, we pass to the limit as m → ∞ in (5.4)-(5.5). Reasoning now as in [37], we infer the existence 
of a pressure Π ∈ L2(0, T ; H1

(0)(Ω)), such that

∇Π = −ρ(φ)∂tu − ρ(φ)(u · ∇)u + ρ′(φ)(∇μ · ∇)u + div(ν(φ)Du) + μ∇φ,

almost everywhere in Ω × (0, T ).
Concerning the separation property, thanks to the regularity (1.17) on [0, T ], we infer from Remark 4.4

(cf. also Theorem 4.1) that, for any 0 < τ ≤ T , there exists δ = δ(τ) ∈ (0, 1) such that it holds

sup
t∈[τ,T ]

‖φ(t)‖L∞(Ω) ≤ 1 − δ. (5.37)

Instead, if we additionally assume ‖φ0‖ ≤ 1 − δ0, for some δ0 ∈ (0, 1), then an application of Theorem 4.1, 
case (ii) implies that there exists δ� > 0 (depending also on δ0) such that the solution φ satisfies (1.19).

In order to complete the proof of the existence, we are left to discuss the globality of the solution 
(u, Π, φ). In fact, we have only shown so far the existence of a solution (u, Π, φ) to (1.8)-(1.9) defined on 
a given time interval [0, T ] for any fixed T > 0. Nevertheless, we can easily construct a global solution 
(u, Π, φ) to (1.8)-(1.9) defined on the time interval [0, ∞) and satisfying (i)-(iv). Indeed, we first consider 
the solution (u1, Π1, φ1) defined on [0, 1] originating from (u0, φ0). Next, we notice that u1(1) ∈ H1

0,σ(Ω)
and φ1(1) ∈ H1(Ω) ∩ L∞(Ω) with |φ1(1)| < 1. In addition, in light of (5.37), ‖φ1(1)‖L∞(Ω) ≤ 1 − δ, for 
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some δ > 0. Thanks to the proof above, for any n ∈ N with n ≥ 2, there exists a solution (un, Πn, φn) to 
(1.8)-(1.9) defined in the time interval [1, n]. In particular, by the uniqueness property proven in the (next) 
Subsection 5.5, we have that un = uk, Πn = Πk, φn = φk in [1, n], provided that n < k. Therefore, we 
obtain the solution (u, Π, φ) defined in [0, ∞) by setting

(u(t),Π(t), φ(t)) =
{

(u1(t),Π1(t), φ1(t)), t ∈ [0, 1],
(un(t),Πn(t), φn(t)), t ∈ [1, n], ∀n ≥ 2.

(5.38)

Finally, we observe that (u, Π, φ) satisfies the energy equality

E(u(t), φ(t)) +
t∫

τ

∥∥∥√ν(φ(s))|Du(s)
∥∥∥2

L2(Ω)
+ ‖∇μ(s)‖2

L2(Ω)) ds = E(u(τ), φ(τ))

for every 0 < τ ≤ t < ∞, which clearly follows from the regularity in each interval [0, T ] (cf. (5.33)-(5.35)). 
This implies that u ∈ L∞(0, ∞; L2

σ(Ω)) ∩L2(0, ∞; H1
0,σ(Ω)) and ∇μ ∈ L2(0, ∞; L2(Ω; R2)). By interpolation, 

it follows that u ∈ L4(0, ∞; L4
σ(Ω)). Then, in light of Theorem 4.1, we deduce from the estimates (4.7)-(4.8)

as T → ∞ that ∇μ ∈ L∞(0, ∞; L2(Ω; R2)) and ∂tφ ∈ L2(0, ∞; L2(Ω)). By (4.9), we also infer that

φ ∈ L∞(0,∞;H1(Ω)) ∩ Lq
uloc([0,∞);W 1,p(Ω)), q = 2p

p− 2 , p ∈ (2,∞),

∂tφ ∈ L∞(0,∞;H1(Ω)′), F ′(φ) ∈ L∞(0,∞;H1(Ω)), F ′′(φ) ∈ L∞(0,∞;Lp(Ω)), p ∈ [2,∞),

μ ∈ BCw([0,∞);H1(Ω)) ∩ L2
uloc([0,∞);H2(Ω)) ∩H1

uloc([0,∞);H1(Ω)′).

Moreover, by Remark (4.4), there exists δ > 0 such that sup
t∈[τ,∞)

‖φ(t)‖L∞(Ω) ≤ 1 − δ. On the other hand, 

recalling that u is the limit of the approximate solutions um in [0, n] for each n ∈ N and that each um

satisfies (5.30), it is easily seen from the uniform Gronwall lemma that

u ∈ L∞(0,∞;H1
0,σ(Ω)) ∩H1

uloc([0,∞);L2
σ(Ω)) ∩ L2

uloc([0,∞);V 2
0,σ(Ω)),

and, in turn, Π ∈ L2
uloc([0, ∞); H1

(0)(Ω)). The proof of the existence of global strong solutions in the statement 
of Theorem 1.5 is thus concluded.

5.5. Continuous dependence estimate for “separated” strong solutions

Consider two sets of initial data (u1
0, φ

1
0) and (u2

0, φ
2
0) satisfying the assumptions of Theorem 1.5. In 

particular, we consider “separated” initial data, i.e. ‖φi
0‖L∞(Ω) < 1 for i = 1, 2. We denote by (uj, Πj , φj), 

j = 1, 2, the strong solutions to (1.8)-(1.9) originating from (uj
0, φ

j
0). Clearly both the solutions satisfy 

(1.17) and the statement (iv) of Theorem 1.5. Let us set u = u1 − u2, P = Π1 − Π2, Φ = φ1 − φ2 and 
Θ = F ′(φ1) − F ′(φ2) −K ∗ Φ. These functions satisfy the system

ρ(φ1)∂tu + (ρ(φ1) − ρ(φ2)∂tu2 + ρ(φ1)(u1 · ∇)u + ρ(φ1)(u · ∇)u2 + (ρ(φ1) − ρ(φ2))(u2 · ∇)u2

− ρ1 − ρ2

2 (∇μ1 · ∇)u − ρ1 − ρ2

2 (∇Θ · ∇)u2 − div (ν(φ1)Du) − div (ν((φ1) − ν(φ2))Du2) + ∇P

= μ1∇Φ + Θ∇φ2,

∂tΦ + u1 · ∇Φ + u · ∇φ2 = ΔΘ,

(5.39)

almost everywhere in Ω × (0, T ). We observe that
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−
∫
Ω

∂tρ(φ1)
|u|2
2 dx +

∫
Ω

ρ(φ1)(u1 · ∇u) · u dx− ρ1 − ρ2

2

∫
Ω

(∇μ1 · ∇)u · u dx = 0, (5.40)

∫
Ω

(∇Θ · ∇)u2 · u dx = −
∫
Ω

ΘΔu2 · u dx−
∫
Ω

Θ∇u2 : ∇u dx, (5.41)

and

∫
Ω

(μ1∇Φ + Θ∇φ2) · u dx = −
∫
Ω

Φ(∇K ∗ φ1) · u dx−
∫
Ω

φ2(∇K ∗ Φ) · u dx. (5.42)

Multiplying (5.39)1 by u and integrating over Ω, we find (cf. [37, Equation 6.3])

d
dt

∫
Ω

ρ(φ1)
2 |u|2 dx +

∫
Ω

ν(φ1)|DU|2 dx

= −
∫
Ω

(ρ(φ1) − ρ(φ2)∂tu2 · u dx−
∫
Ω

ρ(φ1)(u · ∇)u2 · u dx−
∫
Ω

(ρ(φ1) − ρ(φ2))(u2 · ∇)u2 · u dx

−
∫
Ω

(ν(φ1) − ν(φ2))Du2 : ∇u dx− ρ1 − ρ2

2

∫
Ω

ΘΔu2 · u dx− ρ1 − ρ2

2

∫
Ω

Θ∇u2 : ∇u dx

−
∫
Ω

Φ(∇K ∗ φ1) · u dx−
∫
Ω

φ2(∇K ∗ Φ) · Udx.

(5.43)

By the strict convexity of F , we notice that

∫
Ω

∇Θ · ∇Φ dx =
∫
Ω

F ′′(φ1)|∇Φ|2 dx +
∫
Ω

(F ′′(φ1) − F ′′(φ2))∇φ2 · ∇φ dx−
∫
Ω

∇K ∗ Φ · ∇Φ dx

≥ α‖∇Φ‖2
L2(Ω) +

∫
Ω

(F ′′(φ1) − F ′′(φ2))∇φ2 · ∇φ dx−
∫
Ω

∇K ∗ Φ · ∇Φ dx.

Then, multiplying (5.39)2 by Φ and integrating over Ω, we obtain

1
2

d
dt‖Φ‖2

L2(Ω) + α‖∇Φ‖2
L2(Ω)

=
∫
Ω

φ2(u · ∇Φ) dx +
∫
Ω

∇K ∗ Φ · ∇Φ dx−
∫
Ω

(F ′′(φ1) − F ′′(φ2))∇φ2 · ∇φ dx.
(5.44)

Adding together (5.43) and (5.44) and exploiting the hypothesis (H6), we arrive at
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d
dt

⎛⎝∫
Ω

ρ(φ1)
2 |u|2 dx + 1

2‖Φ‖2
L2(Ω)

⎞⎠ + ν∗‖Du‖2
L2(Ω) + α‖∇Φ‖2

L2(Ω)

≤ −
∫
Ω

(ρ(φ1) − ρ(φ2)∂tu2 · u dx−
∫
Ω

ρ(φ1)(u · ∇)u2 · u dx−
∫
Ω

(ρ(φ1) − ρ(φ2))(u2 · ∇)u2 · u dx

−
∫
Ω

(ν(φ1) − ν(φ2))Du2 : ∇u dx− ρ1 − ρ2

2

∫
Ω

ΘΔu2 · u dx− ρ1 − ρ2

2

∫
Ω

Θ∇u2 : ∇u dx

−
∫
Ω

Φ(∇K ∗ φ1) · u dx−
∫
Ω

φ2(∇K ∗ Φ) · Udx +
∫
Ω

φ2(u · ∇Φ) dx

+
∫
Ω

∇K ∗ Φ · ∇Φ dx−
∫
Ω

(F ′′(φ1) − F ′′(φ2))∇φ2 · ∇φ dx.

(5.45)

By using (1.4), (2.2) and (2.5), we obtain∣∣∣∣∣∣
∫
Ω

(ρ(φ1) − ρ(φ2)∂tu2 · u dx

∣∣∣∣∣∣ ≤ C‖Φ‖L4(Ω)‖∂tu2‖L2(Ω)‖u‖L4(Ω)

≤ C‖∂tu2‖L2(Ω)‖Φ‖
1
2
L2(Ω)

(
‖Φ‖

1
2
L2(Ω) + ‖∇Φ‖

1
2
L2(Ω)

)
‖u‖

1
2
L2(Ω)‖Du‖

1
2
L2(Ω)

≤ ν∗
12‖Du‖2

L2(Ω) + α

10‖∇Φ‖2
L2(Ω)

+ C
(
1 + ‖∂tu2‖2

L2(Ω)

)(
‖Φ‖2

L2(Ω) + ‖u‖2
L2(Ω)

)
.

In a similar way, by (1.17) and (2.2), we have∣∣∣∣∣∣
∫
Ω

ρ(φ1)(u · ∇)u2 · u dx

∣∣∣∣∣∣ ≤ C‖u‖L4(Ω)‖∇u2‖L2(Ω)‖u‖L4(Ω)

≤ ν∗
12‖Du‖2

L2(Ω) + C‖u‖2
L2(Ω).

Thanks to (1.4), (1.17) and (2.3), it follows that∣∣∣∣∣∣
∫
Ω

(ρ(φ1) − ρ(φ2))(u2 · ∇)u2 · u dx

∣∣∣∣∣∣ ≤ C‖Φ‖L4(Ω)‖u2‖L∞(Ω)‖∇u2‖L2(Ω)‖u‖L4(Ω)

≤ C(‖Φ‖L2(Ω) + ‖∇Φ‖L2(Ω))‖u2‖
1
2
H2(Ω)‖u‖

1
2
L2(Ω)‖Du‖

1
2
L2(Ω)

≤ ν∗
12‖Du‖2

L2(Ω) + α

10‖∇Φ‖2
L2(Ω)

+ C‖u2‖2
H2(Ω)‖u‖2

L2(Ω) + C‖Φ‖2
L2(Ω).

Next, recalling that the separation property of φ1 and φ2 implies that |F ′(φ1) − F ′(φ2)| ≤ C|φ| almost 
everywhere in Ω × (0, T ) for some universal constant C (depending only on the norms of the initial data), 
and by using the assumption on K, we infer that∣∣∣∣∣∣ρ1 − ρ2

2

∫
ΘΔu2 · u dx

∣∣∣∣∣∣ =
∣∣∣∣ρ1 − ρ2

2

∣∣∣∣
∣∣∣∣∣∣
∫

(F ′(φ1) − F ′(φ2))Δu2 · u dx−
∫

(K ∗ Φ)Δu2 · u dx

∣∣∣∣∣∣

Ω Ω Ω
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≤ C‖Φ‖L4(Ω)‖Δu2‖L2(Ω)‖u‖L4(Ω)

≤ C‖Φ‖
1
2
L2(Ω)

(
‖Φ‖

1
2
L2(Ω) + ‖∇Φ‖

1
2
L2(Ω)

)
‖Δu2‖L2(Ω)‖u‖

1
2
L2(Ω)‖Du‖

1
2
L2(Ω)

≤ ν∗
12‖Du‖2

L2(Ω) + α

10‖∇Φ‖2
L2(Ω)

+ C
(
1 + ‖Δu2‖2

L2(Ω)

)(
‖Φ‖2

L2(Ω) + ‖u‖2
L2(Ω)

)
.

Similarly, we find∣∣∣∣∣∣ρ1 − ρ2

2

∫
Ω

Θ∇u2 : ∇u dx

∣∣∣∣∣∣ =
∣∣∣∣ρ1 − ρ2

2

∣∣∣∣
∣∣∣∣∣∣
∫
Ω

(F ′(φ1) − F ′(φ2))∇u2 : ∇u dx−
∫
Ω

(K ∗ Φ)∇u2 : ∇u dx

∣∣∣∣∣∣
≤ C‖Φ‖L4(Ω)‖∇u2‖L4(Ω)‖∇u‖L2(Ω)

≤ C‖Φ‖
1
2
L2(Ω)

(
‖Φ‖

1
2
L2(Ω) + ‖∇Φ‖

1
2
L2(Ω)

)
‖∇u2‖L4(Ω)‖∇u‖L2(Ω)

≤ ν∗
12‖Du‖2

L2(Ω) + α

10‖∇Φ‖2
L2(Ω) + C

(
1 + ‖∇u2‖4

L4(Ω)

)
‖Φ‖2

L2(Ω)

and ∣∣∣∣∣∣
∫
Ω

(ν(φ1) − ν(φ2))Du2 : ∇u dx

∣∣∣∣∣∣ ≤ C‖Φ‖L4(Ω)‖Du2‖L4(Ω)‖∇u‖L2(Ω)

≤ ν∗
12‖Du‖2

L2(Ω) + α

10‖∇Φ‖2
L2(Ω) + C

(
1 + ‖∇u2‖4

L4(Ω)

)
‖Φ‖2

L2(Ω).

Due to the boundedness property ‖φj‖L∞(Ω) ≤ 1 and (H2), we also have∣∣∣∣∣∣
∫
Ω

Φ(∇K ∗ φ1) · u dx +
∫
Ω

φ1(∇K ∗ Φ) · udx

∣∣∣∣∣∣ ≤ C
(
‖φ1‖L∞(Ω) + ‖φ2‖L∞(Ω)

)
‖Φ‖L2(Ω)‖u‖L2(Ω)

≤ C
(
‖Φ‖2

L2(Ω) + ‖u‖2
L2(Ω)

)
,∣∣∣∣∣∣

∫
Ω

φ2(u · ∇Φ) dx

∣∣∣∣∣∣ ≤ ‖φ2‖L∞(Ω)‖u‖L2(Ω)‖∇Φ‖L2(Ω) ≤
α

10‖∇Φ‖2
L2(Ω) + C‖u‖2

L2(Ω),

and ∣∣∣∣∣∣
∫
Ω

∇K ∗ Φ · ∇Φ dx

∣∣∣∣∣∣ ≤ α

10‖∇Φ‖2
L2(Ω) + C‖Φ‖2

L2(Ω).

Lastly, using the separation property, we observe that |F ′′(φ1) − F ′′(φ2)| ≤ C|φ| almost everywhere in 
Ω × (0, T ) for some universal constant C. Combining this fact and (2.2), we get∣∣∣∣∣∣

∫
Ω

(F ′′(φ1) − F ′′(φ2))∇φ2 · ∇φ dx

∣∣∣∣∣∣ ≤ C‖Φ‖L4(Ω)‖∇φ2‖L4(Ω)‖∇Φ‖L2(Ω)

≤ C‖Φ‖
1
2
2

(
‖Φ‖

1
2
2 + ‖∇Φ‖

1
2
2

)
‖∇φ2‖L4(Ω)‖∇Φ‖L2(Ω)
L (Ω) L (Ω) L (Ω)
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≤ α

10‖∇Φ‖2
L2(Ω) + C

(
1 + ‖∇φ2‖4

L4(Ω)

)
‖Φ‖2

L2(Ω).

Therefore, adding up the above estimates, we deduce that

d
dt

⎛⎝∫
Ω

ρ(φ1)
2 |u|2 dx + 1

2‖Φ‖2
L2(Ω)

⎞⎠ ≤ H(·)

⎛⎝∫
Ω

ρ(φ1)
2 |u|2 dx + 1

2‖Φ‖2
L2(Ω)

⎞⎠ ,

where H(·) is defined by (1.21). Note that H ∈ L1(0, T ) owing to (1.17). In conclusion, an application of the 
Gronwall lemma gives uniqueness of strong solutions as well as (1.20). The proof of Theorem 1.5 is hereby 
complete.

6. Proof of Theorem 1.7: Propagation of regularity for weak solutions

Let (u, φ) be a weak solution on [0, T ] satisfying (i)-(iv) as ensured by Theorem 1.3 and let τ ∈ (0, T ) be 
fixed. Since F ′(φ) ∈ L2(0, T ; H1(Ω)), exploiting the conservation of mass and (1.12), there exists τ1 ∈ (0, τ)
such that

φ(τ1) ∈ H1(Ω),
∣∣∣φ(τ1)

∣∣∣ < 1, and F ′(φ(τ1)) ∈ H1(Ω).

Recalling now that Cw([0, T ]; L2
σ) ∩ L2(0, T ; H1

0,σ(Ω)) ↪→ L4(0, T ; L4
σ(Ω)), an application of Theorem 4.1

(see also Remark 4.3) entails that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ ∈ L∞(τ1, T ;L∞(Ω)) : |φ(x, t)| < 1 for a.a. x ∈ Ω, ∀ t ∈ [τ1, T ],

φ ∈ L∞(τ1, T ;H1(Ω)) ∩ Lq(τ1, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφ ∈ L∞(τ1, T ;H1(Ω)′) ∩ L2(τ1, T ;L2(Ω)),
μ ∈ L∞(τ1, T ;H1(Ω)) ∩ L2(τ1, T ;H2(Ω)) ∩H1(τ1, T ;H1(Ω)′),
F ′(φ) ∈ L∞(τ1, T ;H1(Ω)), F ′′(φ) ∈ L∞(τ1, T ;Lp(Ω)), ∀ p ∈ [2,∞),

(6.1)

which satisfies

∂tφ + u · ∇φ = Δμ, μ = F ′(φ) −K ∗ φ, a.e. in Ω × (τ1, T ), (6.2)

as well as

E(φ(t)) +
t∫

τ1

‖∇μ(τ)‖2
L2(Ω) dτ +

t∫
τ1

∫
Ω

φu · ∇μ dx dτ = E(φτ1), ∀ t ∈ [τ1, T ]. (6.3)

In addition, there exists τ2 ∈ (τ1, τ) such that

sup
t∈[τ2,T ]

‖φ(t)‖L∞(Ω) ≤ 1 − δ. (6.4)

Furthermore, we also have

∂tμ ∈ L2(τ2, T ;L2(Ω)) and μ ∈ C([τ2, T ];H1(Ω)). (6.5)

It is worth pointing out that the uniqueness of weak solutions in Theorem 4.1 guarantees that φ and the 
solution originating from φ(τ1) coincide.
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Next, in light of the above propagation of regularity of the concentration, we improve the regularity of 
the restriction of ∂t(ρ(φ)u) to divergence free test functions (not the full distributional time derivative of 
ρ(φ)u). To this end, we first recall from (1.14) that

〈∂t(ρ(φ)u),v〉V 2
0,σ(Ω) = (f ,v), ∀v ∈ V 2

0,σ(Ω), (6.6)

for almost any t ∈ (τ1, T ), where

(f ,v) = (ρ(φ)u ⊗ u,∇v) − (ν(φ)Du,∇v) − ρ1 − ρ2

2 (u ⊗∇μ,∇v) + (μ∇φ,v).

Thanks to (6.1), we find that

|(f ,v)| ≤ C
(
‖u‖2

L4(Ω) + ‖Du‖L2(Ω) + ‖∇μ‖L4(Ω)‖u‖L4(Ω) + ‖μ‖L4(Ω)‖∇φ‖L2(Ω)

)
‖v‖H1

0,σ(Ω)

≤ C
(
1 + ‖∇u‖L2(Ω) + ‖∇μ‖H1(Ω)

)
‖v‖H1

0,σ(Ω),

for any v ∈ V 2
0,σ(Ω) and almost any t ∈ (τ1, T ). Since V 2

0,σ(Ω) is dense in H1
0,σ(Ω), the functional f has a 

unique extension to H1
0,σ(Ω). As a result, we deduce that f ∈ L2(τ1, T ; H1

0,σ(Ω)′). By definition of the weak 
time derivative, this clearly entails that ∂t(ρ(φ)u)|H1

0,σ(Ω) ∈ L2(τ1, T ; H1
0,σ(Ω)′) and

〈∂t(ρ(φ)u),v〉H1
0,σ(Ω) = (f ,v), ∀v ∈ H1

0,σ(Ω), (6.7)

almost everywhere in (τ1, T ). As a consequence, we can apply [23, Lemma 5.3] which gives that the chain 
rule

〈∂t(ρ(φ)u),u〉H1
0,σ(Ω)′ = 1

2
d
dt

∫
Ω

ρ(φ)|u|2 dx + 1
2

∫
Ω

∂tρ(φ)|u|2 dx

holds almost everywhere in (τ1, T ). Then, since u ∈ L2(0, T ; H1
0,σ(Ω)) is now allowed as a test function in 

(6.7), we obtain

1
2

d
dt

∫
Ω

ρ(φ)|u|2 dx + 1
2

∫
Ω

∂tρ(φ)|u|2 dx−
∫
Ω

ρ(φ)u ⊗ u : ∇u dx

+
∫
Ω

ν(φ)|Du|2 dx + ρ1 − ρ2

2

∫
Ω

u · (∇μ · ∇)u dx =
∫
Ω

μ∇φ · u dx,

almost everywhere in (τ1, T ). Thanks to (6.2), we observe that

ρ1 − ρ2

2

∫
Ω

∂tφ
|u|2
2 dx−

∫
Ω

ρ(φ)u · ∇
(
|u|2
2

)
dx + ρ1 − ρ2

2

∫
Ω

∇μ · ∇
(
|u|2
2

)
dx = 0.

Thus, after an integration in time, we reach

1
2

∫
Ω

ρ(φ(t))|u(t)|2 dx +
t∫

0

∥∥∥√ν(φ(s))Du(s)
∥∥∥2

L2(Ω)
ds−

t∫
0

∫
Ω

μ∇φ · u dx ds

= 1
2

∫
Ω

ρ(φ(τ1))|u(τ1)|2 dx,
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for all t ∈ [τ1, T ]. In light of (6.3), we find the energy identity

E(u(t), φ(t)) +
t∫

τ1

∥∥∥√ν(φ(s))Du(s)
∥∥∥2

L2(Ω)
+ ‖∇μ(s)‖2

L2(Ω) ds = E(u(τ1), φ(τ1)), ∀ τ1 ≤ t ≤ T.

Next, owing to the energy identity, and exploiting (6.1) and (6.4), there exists τ3 ∈ (τ2, τ), such that

u(τ3) ∈ H1
0,σ(Ω), φ(τ3) ∈ H1(Ω), F ′(φ(τ3)) ∈ H1(Ω), ‖φ(τ3)‖L∞(Ω) ≤ 1 − δ.

An application of Theorem 1.5 yields the existence of a unique global strong solution 
(
ũ, Π̃, φ̃

)
to (1.8)-(1.9)

on [τ3, ∞) departing from the initial datum (u(τ3), φ(τ3)). Our aim is to show that actually 
(
ũ(t), φ̃(t)

)
coincides with (u(t), φ(t)) on [τ3, T ]. To achieve it, we argue similarly to the proof of the uniqueness for 
strong “separated” solutions given in Subsection 5.5. In particular, we will only show the main differ-
ences. For the clarity of presentation, we set (u1(t), φ1(t)) = (u(t + τ3), φ(t + τ3)) for t ∈ [0, T − τ3] and 
(u2(t+τ3), φ2(t+τ3)) = (ũ(t), φ̃(t)) for t ∈ [0, ∞). The initial data become (u1(0), φ1(0)) = (u2(0), φ2(0)) =
(u(τ3), φ(τ3)). Furthermore, we recall that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ Cw([0, T − τ3];L2
σ) ∩ L2(0, T − τ3;H1

0,σ(Ω)), ∂t(ρ(φ1)u1) ∈ L2(0, T − τ3;H1
0,σ(Ω)′),

φ1 ∈ L∞(0, T − τ3;H1(Ω)) ∩ Lq(0, T − τ3;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφ1 ∈ L∞(0, T − τ3;H1(Ω)′) ∩ L2(0, T − τ3;L2(Ω)),
μ1 ∈ L∞(0, T − τ3;H1(Ω)) ∩ L2(0, T − τ3;H2(Ω)) ∩H1(0, T − τ3;H1(Ω)′),
F ′(φ1) ∈ L∞(0, T − τ3;H1(Ω)).

(6.8)

Thanks to (6.2) and (6.8), (6.7) can be rewritten as follows

〈∂t(ρ(φ)u),w〉H1
0,σ(Ω) −

∫
Ω

∂tρ(φ1)u1 · w dx +
∫
Ω

(ρ(φ1)u1 · ∇)u1 · w dx

−
∫
Ω

(ρ′(φ1)∇μ1 · ∇)u1 · w dx +
∫
Ω

ν(φ1)Du1 : Dw dx = −
∫
Ω

φ1(∇K ∗ φ1) · w dx,
(6.9)

for any w ∈ H1
0,σ(Ω) and almost any t ∈ (τ1, T ). At the same time, the pair (u2, φ2) satisfies (1.17) as well 

as

ρ(φ2)∂tu2 + ρ(φ2)(u2 · ∇)u2 − ρ′(φ2)(∇μ2 · ∇)u2 − div (ν(φ2)Du2) + ∇Π2 = μ2∇φ2,

∂tφ2 + u2 · ∇φ2 = Δμ2, μ2 = F ′(φ2) −K ∗ φ2,
(6.10)

almost everywhere in Ω × (0, T − τ3). Moreover, it is essential to notice that both φ1 and φ2 are strictly 
separated since the initial concentration φ(τ2) is strictly separated, i.e. ‖φi(t)‖L∞(Ω) ≤ 1 − δ, for all t ∈
[0, T − τ3], i = 1, 2, for some δ ∈ (0, 1).

We now set (u, Φ) = (u1 − u2, φ1 − φ2) in [0, T − τ3]. It follows from (6.9) and (6.10) that this pair 
satisfies the weak formulation:
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〈∂t(ρ(φ1)u),w〉H1
0,σ(Ω) − (∂tρ(φ1)u1,w) + (∂t(ρ(φ1)u2),w) − (ρ(φ2)∂tu2,w)

+ (ρ(φ1)(u1 · ∇)u,w) + (ρ(φ1)(u · ∇)u2,w) + ((ρ(φ1) − ρ(φ2))(u2 · ∇)u2,w)

− ρ1 − ρ2

2 ((∇μ1 · ∇)u,w) − ρ1 − ρ2

2 ((∇Θ · ∇)u2,w) + (ν(φ1)Du,∇w)

+ ((ν(φ1) − ν(φ2))Du2,∇w) = (μ1∇Φ,w) + (Θ∇φ2,w),

(6.11)

for any w ∈ H1
0,σ(Ω), in (0, T − τ3), and

∂tΦ + u1 · ∇Φ + u · ∇φ2 = ΔΘ, Θ = F ′(φ1) − F ′(φ2) −K ∗ Φ a.e. in Ω × (0, T − τ3). (6.12)

As next step, we take w = u in (6.11) and apply the chain rule formula in [23, Lemma 5.3] with ρ̂ = ρ(φ1)
and u on the interval (0, T − τ3). Clearly, we have ρ̂ ∈ H1(0, T − τ3; L2(Ω)) and u ∈ L∞(0, T − τ3; L2

σ(Ω)) ∩
L2(0, T − τ3; H1

0,σ(Ω)). We now claim that ∂t(ρ̂u) ∈ L2(0, T ; H1
0,σ(Ω)′). In fact, by definition, we have

∂t(ρ̂u) = ∂t(ρ(φ1)u1) − ∂t(ρ(φ1)u2).

Observe that ∂t(ρ(φ1)u1) ∈ L2(0, T ; H1
0,σ(Ω)′) by the first part of the proof. Moreover, ∂t(ρ(φ1)u2) ∈

L2(0, T ; H1
0,σ(Ω)′) by (6.8) and u2 ∈ L2(0, ∞; V 2

0,σ(Ω)) ∩H1(0, ∞; L2
σ(Ω)). Therefore, by using [23, Lemma 

5.3], the chain rule

〈∂t(ρ(φ1)u),u〉H1
0,σ(Ω) = 1

2
d
dt

∫
Ω

ρ(φ)1|u|2 dx + 1
2

∫
Ω

∂tρ(φ1)|u|2 dx

holds almost everywhere in (0, T − τ3). Also, we observe that

− (∂tρ(φ1)u1,u) + (∂t(ρ(φ1)u2),u) = −
∫
Ω

∂tρ(φ1)|u|2 dx + (ρ(φ1)∂tu2,u).

Thus, exploiting the above relations and (5.40)-(5.42), we find (cf. (5.43))

d
dt

∫
Ω

ρ(φ1)
2 |u|2 dx +

∫
Ω

ν(φ1)|Du|2 dx

= −
∫
Ω

(ρ(φ1) − ρ(φ2)∂tu2 · u dx−
∫
Ω

ρ(φ1)(u · ∇)u2 · u dx−
∫
Ω

(ρ(φ1) − ρ(φ2))(u2 · ∇)u2 · u dx

−
∫
Ω

(ν(φ1) − ν(φ2))Du2 : ∇u dx− ρ1 − ρ2

2

∫
Ω

ΘΔu2 · u dx− ρ1 − ρ2

2

∫
Ω

Θ∇u2 : ∇u dx

−
∫
Ω

Φ(∇K ∗ φ1) · u dx−
∫
Ω

φ2(∇K ∗ Φ) · u dx.

(6.13)

The rest of the argument follows by repeating line by line the proof of the continuous dependence estimate 
for “separated” strong solutions given in Subsection 5.5. As a result, we obtain the following differential 
inequality

d
dt

⎛⎝∫
ρ(φ1)

2 |u|2 dx + 1
2‖Φ‖2

L2(Ω)

⎞⎠ ≤ K(t)

⎛⎝∫
ρ(φ1)

2 |u|2 dx + 1
2‖Φ‖2

L2(Ω)

⎞⎠

Ω Ω
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almost everywhere in (0, T − τ3), where K is defined as in (1.21).
By the regularity of the strong solution u2, it immediately follows that K̃ ∈ L1(0, T − τ3). Then, 

we conclude from the Gronwall lemma that (u1(t), φ1(t)) = (u2(t), φ2(t)) on [0, T − τ3], and thereby 
(u(t), φ(t)) = (ũ(t), φ̃(t)) on [τ3, T ]. So, setting Π(t) = Π̃(t) on [τ3, ∞), we have that (u, Π, φ) is a “separated” 
strong solution on [τ, ∞) ⊂ [τ3, ∞).

In the last part, we demonstrate that any weak solution converges to an equilibrium, i.e., a minimum 
of the nonlocal Helmholtz free energy (1.7). To this end, we first observe from the previous part and 
Theorem 4.1-(ii) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ BUC([1,∞);H1
0,σ(Ω)) ∩ L2

uloc([1,∞);V 2
0,σ(Ω)) ∩H1

uloc([1,∞);L2
σ(Ω)),

φ ∈ L∞(1,∞;L∞(Ω)) such that sup
t∈[1,+∞)

‖φ(t)‖L∞(Ω) ≤ 1 − δ,

φ ∈ Cw([1,∞);H1(Ω)) ∩ Lq
uloc([1,∞);W 1,p(Ω)), q = 2p

p− 2 , p ∈ (2,∞),

∂tφ ∈ L∞(1,∞;H1(Ω)′) ∩ L2(1,∞;L2(Ω)),
μ ∈ BUC([1,∞);H1(Ω)) ∩ L2

uloc([1,∞);H2(Ω)) ∩H1
uloc([1,∞);L2(Ω)).

(6.14)

In addition, the energy identity

E(u(t), φ(t)) +
t∫

1

∥∥∥√ν(φ(s))Du(s)
∥∥∥2

L2(Ω)
+ ‖∇μ(s)‖2

L2(Ω)) ds = E(u(1), φ(1)) (6.15)

holds for every t ≥ 1. Thanks to the separation property, the classical theory for second-order parabolic 
semilinear equations (cf. [28, Corollary 5.6] and the references therein) entails that there exists γ ∈ (0, 1)
such that

φ ∈ BUC([2,∞), Cγ(Ω)). (6.16)

Now we define the ω-limit set of (u, φ) as

ω(u, φ) =
{
(v,Φ) ∈ L2

σ(Ω) × L∞(Ω) : ∃ tn ↗ ∞ s.t. (u(tn), φ(tn)) → (v,Φ) in L2
σ(Ω) × L∞(Ω)

}
.

In light of (6.14) and (6.16), it follows that ω(u, φ) is non-empty, compact and connected in L2
σ(Ω) ×L∞(Ω). 

Also, we observe that any (v, Φ) ∈ ω(u, φ) is such that ‖Φ‖C(Ω) ≤ 1 − δ.
Next, we claim that

ω(u, φ) ⊂
{
(0, φ∞) : φ∞ ∈ Cγ(Ω) solves (1.25)

}
. (6.17)

Arguing as in [8, Section 3], subtracting the Helmholtz free energy equation (cf. (4.4))

Enloc(φ(t)) +
t∫

1

‖∇μ(s)‖2
L2(Ω) dτ +

t∫
1

∫
Ω

φu · ∇μ dx ds = Enloc(φ(1)), ∀ t ∈ [1,∞), (6.18)

from (6.15) we have, for all t ∈ (1, ∞),

Ekin(u(t), φ(t)) +
t∫ ∥∥∥√ν(φ(s))Du(s)

∥∥∥2

L2(Ω)
ds = Ekin(u(1), φ(1)) +

t∫ ∫
φu · ∇μ dx dτ. (6.19)
1 1 Ω
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Let us set ε > 0. We observe from (6.15) that u ∈ L2(0, ∞; H1
0,σ(Ω)) and ∇μ ∈ L2(0, ∞; L2(Ω; R2)), there 

exists T > 0 such that ‖u(T )‖L2(Ω) ≤ ε and ‖∇μ‖L2((T,∞;L2(Ω)) ≤ ε. Then, we infer that

max
t∈[T,∞)

∫
Ω

1
2ρ(φ(t))|u(t)|2 dx + ν∗

∞∫
T

‖Du(s)‖2
L2(Ω) ds

≤
∫
Ω

1
2ρ(φ(T ))|u(T )|2 dx +

∞∫
T

‖φ(s)‖L∞(Ω)‖u(s)‖L2(Ω)‖∇μ(s)‖L2(Ω) ds

≤ ρ∗

2 ‖u(T )‖2
L2(Ω) + ν∗

2

∞∫
T

‖Du(s)‖2
L2(Ω) ds + C

∞∫
T

‖∇μ(s)‖2
L2(Ω) ds

≤ ρ∗

2 ε2 + ν∗
2

∞∫
T

‖Du(s)‖2
L2(Ω) ds + Cε2,

which gives that

max
t∈[T,∞)

‖u(t)‖L2(Ω) ≤ 2Cε,

where C is independent of T and ε. Thus, u(t) → 0 as t ↗ ∞.
Let us now consider tn ↗ ∞ and let (u(tn), φ(tn) → (0, φ∞) in L2

σ(Ω) × L∞(Ω) as n → ∞. We now set 
(un(t), φn(t)) = (u(t + tn), φ(t + tn)) for t ∈ [1, ∞). Clearly, un(t) → 0 in L2

σ(Ω) as n → ∞. Also, since 
un is uniformly bounded in L∞(0, ∞; L2

σ(Ω)) ∩L2(0, ∞; H1
σ(Ω)), and exploiting Theorem 4.1, (6.14), (6.16)

and (6.18), it is easy to deduce that

‖φn‖L∞(0,T ;C(Ω)) ≤ 1 − δ, ‖φn‖L2(0,T ;H1(Ω)) ≤ C, ‖∂tφn‖L2(0,T ;H1(Ω)′) ≤ C, ‖μn‖L2(0,T ;H1(Ω)) ≤ C

for some C independent of n and for any T > 0, where μn(t) = μ(t + tn). Then, φn converges to φ′ strongly 
in L2(0, T ; L2(Ω)) for any T > 0 and μn converges to μ′ weakly in L2(0, T ; H1(Ω)) for any T > 0. It follows 
that φ′ is a weak solution to (4.1) in the sense of Theorem 4.1 with chemical potential μ′, divergence-
free drift v = 0, and initial datum φ′(0) = φ∞. In addition, we have Enloc(φn(t)) → Enloc(φ′(t)) for 
almost every t ∈ [1, ∞) as n → ∞. However, since u ∈ L2(0, ∞; H1

0,σ(Ω)) and ∇μ ∈ L2(0, ∞; L2(Ω; R2)), 
φu · ∇μ ∈ L1(0, ∞; L1(Ω)). Then, the limit E∞ := lim

t→∞
Enloc(φ(t)) exists and is unique. Therefore, we 

infer that Enloc(φ′(t)) = E∞ almost everywhere in [1, ∞). We conclude from the energy equality of φ′ that 
∇μ′ = 0 for almost every t ∈ [1, ∞), and thereby ∂tφ′(t) = 0 for almost every t ∈ [1, ∞). As such, φ′(t) ≡ φ∞
for all t ∈ [1, ∞) and

F ′(φ∞) −K ∗ φ∞ = μ∞ in Ω, for some μ∞ ∈ R.

This proves (6.17). We are left to show that the whole weak solution converges to (0, φ∞) as t goes to +∞. 
We know that, thanks to (6.15), the limit energy E∞ is constant on ω(u, φ). Thus, we deduce from (1.24)
that, for all t > 0,

E∞ +
+∞∫
t

∥∥∥√ν(φ(s))Du(s)
∥∥∥2

L2(Ω)
+ ‖∇μ(s)‖2

L2(Ω)) ds = E(u(t), φ(t))

from which we deduce (see (1.16))
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+∞∫
t

‖∇μ(s)‖2
L2(Ω)) ds ≤ E(u(t), φ(t)) − E∞

= E(u(t), φ(t)) − Enloc(φ∞)

= 1
2

∫
Ω

ρ(φ)|u|2 + Enloc(φ(t)) −Enloc(φ∞).

(6.20)

To conclude, we now need the real analyticity of the potential F in order to apply a suitable version of 
the Łojasiewicz-Simon inequality (see, for instance [30, Lemma 2.20]). This amounts to say that there is 
θ ∈ (0, 1/2] and T0 > 0 sufficiently large such that

|Enloc(φ(t)) − Enloc(φ∞)|1−θ ≤ C‖μ− μ‖L2(Ω)) ≤ C‖∇μ‖L2(Ω)), ∀ t ≥ T0, (6.21)

for some C > 0. Therefore, we get from (6.20) and (6.21) that (see also (1.4))

|E(u(t), φ(t)) − E∞|1−θ ≤ C(‖u‖L2(Ω)) + ‖∇μ‖L2(Ω))), ∀ t ≥ T0.

We can now argue as in [8, Sec. 6] to infer that (u(t), φ(t)) converges to (0, φ∞) in L2
σ(Ω) × L∞(Ω) as 

t → +∞. The proof of Theorem 1.7 is hereby complete.

7. Proof of Theorem 1.9: Improved continuous dependence estimate for matched densities

We consider two sets of initial data (u1
0, φ

1
0) and (u2

0, φ
2
0) which satisfy the assumptions of Theorem 1.5, 

respectively, with constant density ρ = ρ1 = ρ2 > 0 (i.e., we consider the nonlocal Model H). We denote 
by (u1, Π1, φ1) and (u2, Π2, φ2) the corresponding strong solutions provided by Theorem 1.5. Let us set 
u = u1 − u2, P = Π1 − Π2, Φ = φ1 − φ2, Θ = μ1 − μ2 = F ′(φ1) − F ′(φ2) −K ∗ Φ, which solve

ρ∂tu + ρdiv (u1 ⊗ u) + ρdiv (u ⊗ u2) − div (ν(φ1)Du) − div ((ν(φ1) − ν(φ2))Du2) + ∇P

= μ1∇Φ + Θ∇φ2,

∂tΦ + u1 · ∇Φ + u · ∇φ2 = ΔΘ,

(7.1)

almost everywhere in Ω × (0, ∞). Multiplying (7.1)1 by A−1u and (7.1)2 by N (Φ −Φ) (notice that, by the 
conservation of mass, Φ is constant), integrating over Ω and adding the resulting equations together, we 
find the identity

d
dt

(
ρ

2‖u‖
2
� + 1

2‖Φ − Φ‖2
∗

)
+ (Θ,Φ − Φ) + (ν(φ1)Du,∇A−1u)

= ρ(u1 ⊗ u,∇A−1u) + ρ(u ⊗ u2,∇A−1u) −
(
(ν(φ1) − ν(φ2))Du2,∇A−1u

)
− (u1 · ∇Φ,N (Φ − Φ)) − (u · ∇φ2,N (Φ − Φ)) + (μ1∇Φ,A−1u) + (Θ∇φ2,A−1u).

(7.2)

Arguing as in [39, proof of Theorem 3.1], we observe that(
ν(φ1)Du,∇A−1u

)
=

(
ν(φ1)∇u, DA−1u

)
= −

(
u,div (ν(φ1)DA−1u)

)
= −

(
u, ν′(φ1)DA−1u∇φ1

)
− 1

2
(
u, ν(φ1)ΔA−1u

)
= −

(
u, ν′(φ1)DA−1u∇φ1

)
+ 1

2 (u, ν(φ1)u) − 1
2 (u, ν(φ1)∇π) ,
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where the artificial pressure π ∈ L∞(0, T ; H1
(0)(Ω)) is associated to the Stokes problem −ΔA−1U +∇π = u

in Ω × (0, ∞). Thanks to the above relation and by (4.13) and (5.42), we obtain the differential inequality

d
dt

(
ρ

2‖u‖
2
� + 1

2‖Φ − Φ‖2
∗

)
+ ν∗

2 ‖u‖2
L2(Ω) + 3α

4 ‖φ‖2
L2(Ω)

≤ C‖φ− φ‖2
∗ +

∣∣∣φ1 − φ2
∣∣∣ (‖F ′(φ1)‖L1(Ω) + ‖F ′(φ2)‖L1(Ω)

)
+ ρ(u1 ⊗ u,∇A−1u)

− ρ(u ⊗ u2,∇A−1u) −
(
(ν(φ1) − ν(φ2))Du2,∇A−1u

)
+

(
u, ν′(φ1)DA−1u∇φ1

)
+ 1

2 (u, ν(φ1)∇π) − (u1 · ∇Φ,N (Φ − Φ)) − (u · ∇φ2,N (Φ − Φ))

− (Φ(∇K ∗ φ1),A−1u) − (φ2(∇K ∗ Φ),A−1u).

(7.3)

By using (2.2) and (2.6), we have∣∣∣∣∣∣ρ
∫
Ω

u1 ⊗ u : ∇A−1u dx

∣∣∣∣∣∣ ≤ C‖u1‖L4(Ω)‖u‖L2(Ω)‖∇A−1u‖L4(Ω)

≤ ν∗
24‖u‖

2
L2(Ω) + C‖u1‖4

L4(Ω)‖u‖2
�

and ∣∣∣∣∣∣ρ
∫
Ω

u ⊗ u2 : ∇A−1u dx

∣∣∣∣∣∣ ≤ ‖u2‖L4(Ω)‖u‖L2(Ω)‖∇A−1u‖L4(Ω)

≤ ν∗
24‖u‖

2
L2(Ω) + C‖u2‖4

L4(Ω)‖u‖2
� .

In a similar way, recalling the assumption (H6), we find∣∣∣∣∣∣
∫
Ω

(ν(φ1) − ν(φ2))Du2 : ∇A−1u dx

∣∣∣∣∣∣ ≤ C‖Φ‖L2(Ω)‖Du2‖L4(Ω)‖∇A−1u‖L4(Ω)

≤ α

16‖Φ‖2
L2(Ω) + ν∗

24‖u‖
2
L2(Ω) + C‖Du2‖4

L4(Ω)‖u‖2
�

and ∣∣∣∣∣∣
∫
Ω

ν′(φ1)u ·
(
DA−1u

)
∇φ1 dx

∣∣∣∣∣∣ ≤ C‖u‖L2(Ω)‖∇A−1u‖L4(Ω)‖∇φ1‖L4(Ω)

≤ ν∗
24‖u‖

2
L2(Ω) + C‖∇φ1‖4

L4(Ω)‖u‖2
� .

Exploiting now Lemma 3.1, we obtain∣∣∣∣∣∣12
∫
Ω

ν(φ1)u · ∇π dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣12
∫
Ω

ν′(φ1)u · ∇φ1π dx

∣∣∣∣∣∣
≤ C‖u‖L2(Ω)‖∇φ1‖L4(Ω)‖π‖L4(Ω)

≤ C‖u‖L2(Ω)‖∇φ1‖L4(Ω)‖∇A−1u‖
1
2
2 ‖u‖

1
2
2
L (Ω) L (Ω)
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≤ ν∗
24‖u‖

2
L2(Ω) + C‖∇φ1‖4

L4(Ω)‖u‖2
� .

Next, arguing exactly as in (4.14), we get

∣∣∣∣∣∣
∫
Ω

u1 · ∇Φ · N (Φ − Φ)) dx

∣∣∣∣∣∣ ≤ α

16‖Φ‖2
L2(Ω) + C‖u1‖4

L4(Ω)‖Φ − Φ‖2
∗ + C

∣∣Φ∣∣2 .
Since ‖φ2‖L∞(Ω×(0,∞)) ≤ 1, we infer that

∣∣∣∣∣∣
∫
Ω

u · ∇φ2 N (Φ − Φ)) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

φ2u · ∇N (Φ − Φ)) dx

∣∣∣∣∣∣ ≤ ν∗
24‖u‖

2
L2(Ω) + C‖Φ − Φ‖2

∗.

Lastly, by (H2) and ‖φi‖L∞(Ω×(0,∞)) ≤ 1 for i = 1, 2, we deduce that

∣∣∣∣∣∣
∫
Ω

Φ(∇K ∗ φ1) · A−1u dx

∣∣∣∣∣∣ ≤ ‖∇K ∗ φ1‖L∞(Ω)‖Φ‖L2(Ω)‖A−1u‖L2(Ω) ≤
α

16‖Φ‖2
L2(Ω) + C‖u‖2

�

and ∣∣∣∣∣∣
∫
Ω

φ2(∇K ∗ Φ) · A−1u dx

∣∣∣∣∣∣ ≤ ‖φ2‖L∞(Ω)‖∇K ∗ Φ‖L2(Ω)‖A−1u‖L2(Ω) ≤
α

16‖Φ‖2
L2(Ω) + C‖u‖2

� .

Combining (7.3) with above inequalities, we are led to

d
dt

(
ρ

2‖u‖
2
� + 1

2‖Φ − Φ‖2
∗

)
≤ Λ1(t)

(
ρ

2‖u‖
2
� + 1

2‖Φ − Φ‖2
∗

)
+ Λ2(t)

∣∣Φ∣∣ + C
∣∣φ∣∣2 ,

where

Λ1(t) := C
(
1 + ‖u1(t)‖4

L4(Ω) + ‖u2(t)‖4
L4(Ω) + ‖Du2(t)‖4

L4(Ω) + ‖∇φ1(t)‖4
L4(Ω)

)
and

Λ2(t) := ‖F ′(φ1(t))‖L1(Ω) + ‖F ′(φ2(t))‖L1(Ω).

Owing to (1.17), it is easily seen that Λj ∈ L1(0, T ) for j = 1, 2. Thus, it follows from the Gronwall lemma 
that (1.26) holds. The proof of Theorem 1.9 is thus concluded.

8. Proof of Theorem 1.10: Matched versus unmatched density

Let us fix T > 0. Consider (u, Π, φ) and (uH , ΠH , φH) the strong solutions to the nonlocal AGG model 
with density ρ(φ) and to the nonlocal Model H with constant density ρ > 0 (i.e. (1.8)-(1.9)) with ρ = ρ1 = ρ2, 
respectively. We assume that both (u, Π, φ) and (uH , ΠH , φH) originate from the same initial datum (u0, φ0). 
Therefore, setting v = u − uH , Q = Π − ΠH , Φ = φ − φH , we have
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(
ρ1 + ρ2

2

)
∂tv +

(
ρ1 − ρ2

2 φ

)
∂tu +

(
ρ1 + ρ2

2 − ρ

)
∂tuH + ρ(φ)(u · ∇)u − ρ(uH · ∇)uH

−
(
ρ1 − ρ2

2

)
((∇μ · ∇)u) − div (ν(φ)Dv) − div ((ν(φ) − ν(φH)DuH) + ∇Q

= μ∇φ− μH∇φH ,

∂tΦ + u · ∇Φ + v · ∇φH = ΔM,

(8.1)

almost everywhere in Ω × (0, T ) where M = μ −μH = F ′(φ) −F ′(φH) −K ∗Φ. Multiplying (8.1)1 by A−1V
and integrating over Ω, we find(

ρ1 + ρ2

4

)
d
dt‖v‖

2
� + (ν(φ)Dv,∇A−1v) = −ρ1 − ρ2

2 (φ∂tu,A−1v)

−
(
ρ1 − ρ2

2 − ρ

)
(∂tuH ,A−1v) − ((ρ(φ)(u · ∇)u − ρ(uH · ∇)uH),A−1v)

+ ρ1 − ρ2

2 ((∇μ · ∇)u,A−1v) − ((ν(φ) − ν(φH))DuH ,∇A−1v)

− (Φ(∇K ∗ φ),A−1v) − (φH(∇K ∗ Φ),A−1v).

(8.2)

Observe now that (cf. [39, Section 3])

(ν(φ)Dv,∇A−1v) = −
(
v, ν′(φ)DA−1v∇φ

)
+ 1

2 (v, ν(φ)v) + 1
2
(
v, ν′(φ)Π̃∇φ

)
, (8.3)

where the artificial pressure is determined by the Stokes problem −ΔA−1v + ∇Π̃ = v almost everywhere 
in Ω × (0, T ). On the other hand, multiplying (8.1)2 by NΦ (notice that Φ ≡ 0 by the conservation of mass, 
since the two solutions originate from the same initial data) and integrating over Ω, we obtain (cf. (4.13))

1
2

d
dt‖Φ‖2

∗ + 3α
4 ‖Φ‖2

L2(Ω) ≤ C‖Φ‖2
∗ + (Φu,∇NΦ) + (φHv,∇Nϕ). (8.4)

Here C stands for a generic positive constant which may depend on given quantities and which may vary 
even within the same line. Adding (8.2) and (8.4) together, and exploiting (8.3), we end up with

d
dt

((
ρ1 + ρ2

4

)
‖v‖2

� + 1
2‖Φ‖2

∗

)
+ ν∗

2 ‖v‖2
L2(Ω) + 3α

4 ‖Φ‖2
L2(Ω)

≤ −ρ1 − ρ2

2 (φ∂tu,A−1v) −
(
ρ1 − ρ2

2 − ρ

)
(∂tuH ,A−1v)

− ((ρ(φ)(u · ∇)u − ρ(uH · ∇)uH),A−1v) + ρ1 − ρ2

2 ((∇μ · ∇)u,A−1v)

− ((ν(φ) − ν(φH))DuH ,∇A−1v) +
(
v, ν′(φ)DA−1v∇φ

)
− 1

2
(
v, ν′(φ)Π̃∇φ

)
+ (Φu,∇NΦ) + (φHv,∇NΦ) − (Φ(∇K ∗ φ),A−1v) − (φH(∇K ∗ Φ),A−1v).

(8.5)

Since ‖φ‖L∞(Ω×(0,T )) ≤ 1, we have∣∣∣∣∣∣ρ1 − ρ2

2

∫
Ω

φ∂tu · A−1v

∣∣∣∣∣∣ ≤ C

∣∣∣∣ρ1 − ρ2

2

∣∣∣∣2 ‖∂tu‖2
L2(Ω) + C‖v‖2

� ,

and
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∣∣∣∣∣∣
(
ρ1 − ρ2

2 − ρ

)∫
Ω

∂tuH ·A−1v dx

∣∣∣∣∣∣ ≤ C‖v‖2
� + C

∣∣∣∣ρ1 − ρ2

2 − ρ

∣∣∣∣2 ‖∂tuH‖2
L2(Ω).

Integrating by parts, we find

−
∫
Ω

(ρ(φ)(u · ∇)u − ρ(uH · ∇)uH) · A−1v dx

= −
∫
Ω

ρ(φ)(v · ∇)u · A−1v dx−
∫
Ω

(ρ(φ) − ρ)(uH · ∇)uH · A−1v dx−
∫
Ω

ρ(φ)(uH · ∇)v · A−1v dx

= −
∫
Ω

ρ(φ)(v · ∇)u · A−1v dx−
∫
Ω

(ρ(φ) − ρ)(uH · ∇)uH · A−1v dx +
∫
Ω

ρ(φ)(uH · ∇)A−1v · v dx

+ ρ1 − ρ2

2

∫
Ω

(∇φ · uH)
(
v · A−1v

)
dx.

Then, recalling that uH ∈ L∞(0, ∞; H1
0,σ(Ω)), we obtain

∣∣∣∣∣∣
∫
Ω

ρ(φ)(v · ∇)u · A−1v dx

∣∣∣∣∣∣ ≤ C‖v‖L2(Ω)‖∇u‖L4(Ω)‖A−1v‖L4(Ω)

≤ ν∗
28‖v‖

2
L2(Ω) + C‖∇u‖2

L4(Ω)‖v‖2
�

and ∣∣∣∣∣∣−
∫
Ω

(ρ(φ) − ρ)(uH · ∇)uH · A−1v dx

∣∣∣∣∣∣ ≤ ‖ρ(φ) − ρ‖L∞(Ω)‖uH‖L4(Ω)‖∇uH‖L2(Ω)‖A−1v‖L4(Ω)

≤ C

(∣∣∣∣ρ1 − ρ2

2

∣∣∣∣ +
∣∣∣∣ρ1 + ρ2

2 − ρ

∣∣∣∣)2

+ C‖v‖2
� .

On the other hand, by (2.2), (2.3), (2.4) and (2.6), we infer that∣∣∣∣∣∣
∫
Ω

ρ(φ)(uH · ∇)A−1v · v dx

∣∣∣∣∣∣ ≤ C‖uH‖L4(Ω)‖∇A−1v‖L4(Ω)‖v‖L2(Ω)

≤ ν∗
28‖v‖

2
L2(Ω) + C‖v‖2

�

and ∣∣∣∣∣∣
∫
Ω

(∇φ · uH)
(
v · A−1v

)
dx

∣∣∣∣∣∣ ≤
∣∣∣∣ρ1 − ρ2

2

∣∣∣∣ ‖uH‖L4(Ω)‖v‖L2(Ω)‖A−1v‖L∞(Ω)‖∇φ‖L4(Ω)

≤ C

∣∣∣∣ρ1 − ρ2

2

∣∣∣∣ ‖v‖ 3
2
L2(Ω)‖v‖

1
2
� ‖∇φ‖L4(Ω)

≤ ν∗
28‖v‖

2
L2(Ω) + C‖∇φ‖4

L4(Ω)‖v‖2
� ,
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as well as∣∣∣∣∣∣
∫
Ω

(ν(φ) − ν(φH))DuH : ∇A−1v dx

∣∣∣∣∣∣ ≤ C‖Φ‖L2(Ω)‖DuH‖L4(Ω)‖∇A−1v‖L4(Ω)

≤ C‖Φ‖L2(Ω)‖DuH‖L4(Ω)‖v‖
1
2
� ‖v‖

1
2
L2(Ω)

≤ α

12‖Φ‖2
L2(Ω) + ν∗

28‖v‖
2
L2(Ω) + C‖DuH‖4

L4(Ω)‖v‖2
� .

In a similar way, by using assumption (H6), we also get∣∣∣∣∣∣
∫
Ω

ν′(φ)v · (DA−1v∇φ) dx

∣∣∣∣∣∣ ≤ C‖v‖L2(Ω)‖∇A−1v‖L4(Ω)‖∇φ‖L4(Ω)

≤ ν∗
28‖v‖

2
L2(Ω) + C‖∇φ‖4

L4(Ω)‖v‖2
� .

Since u ∈ L∞(0, ∞; H1
0,σ(Ω)), it is easily seen that∣∣∣∣∣∣ρ1 − ρ2

2

∫
Ω

(∇μ · ∇)u ·A−1v dx

∣∣∣∣∣∣ ≤
∣∣∣∣ρ1 − ρ2

2

∣∣∣∣ ‖∇μ‖L4(Ω)‖∇u‖L2(Ω)‖A−1v‖L4(Ω)

≤ C‖v‖2
� + C

∣∣∣∣ρ1 − ρ2

2

∣∣∣∣2 ‖∇μ‖2
L4(Ω).

Now, exploiting Lemma 3.1, we get∣∣∣∣∣∣
∫
Ω

ν′(φ)v · ∇φΠ̃ dx

∣∣∣∣∣∣ ≤ C‖V‖L2(Ω)‖∇φ‖L4(Ω)‖Π̃‖L4(Ω)

≤ C‖v‖L2(Ω)‖∇φ‖L4(Ω)‖∇A−1v‖
1
2
L2(Ω)‖v‖

1
2
L2(Ω)

≤ ν∗
28‖v‖

2
L2(Ω) + C‖∇φ‖4

L4(Ω)‖v‖2
� .

Finally, as in the proof of Theorem 1.9, we have∣∣∣∣∣∣
∫
Ω

Φu · ∇NΦ dx

∣∣∣∣∣∣ ≤ α

12‖Φ‖2
L2(Ω) + C‖u‖4

L4(Ω)‖Φ‖2
∗

and ∣∣∣∣∣∣
∫
Ω

φHv · ∇NΦ dx

∣∣∣∣∣∣ ≤ ν∗
28‖v‖

2
L2(Ω) + C‖Φ‖2

∗,

as well as ∣∣∣∣∣∣
∫

Φ(∇K ∗ φ) · A−1v dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

φH(∇K ∗ Φ) ·A−1v dx

∣∣∣∣∣∣ ≤ α

12‖Φ‖2
L2(Ω) + C‖v‖2

� .
Ω Ω
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Combining the above estimates, we arrive at

d
dt

((
ρ1 + ρ2

4

)
‖v‖2

� + 1
2‖Φ‖2

∗

)
+ ν∗

4 ‖v‖2
L2(Ω) + α

2 ‖Φ‖2
L2(Ω)

≤ R1

((
ρ1 + ρ2

4

)
‖v‖2

� + 1
2‖Φ‖2

∗

)
+ R2

(∣∣∣∣ρ1 − ρ2

2

∣∣∣∣2 +
∣∣∣∣ρ1 + ρ2

2 − ρ

∣∣∣∣2
)
,

where

R1 := C
(
1 + ‖∇u‖2

L4(Ω) + ‖∇uH‖4
L4(Ω) + ‖∇φ‖4

L4(Ω)

)
,

R2 := C
(
1 + ‖∂tuH‖2

L2(Ω) + ‖∂tu‖2
L2(Ω) + ‖∇μ‖2

L4(Ω)

)
.

Notice that C depends on the norm of the initial data and the time T . An application of the Gronwall 
lemma yields

‖v(t)‖2
� + ‖Φ(t)‖2

∗ ≤

(∣∣ρ1−ρ2
2

∣∣2 +
∣∣ρ1+ρ2

2 − ρ
∣∣2)

min{ρ1+ρ2
4 , 1

2}

t∫
0

e
∫ t
s
R1(τ) dτR2(s) ds, ∀ t ∈ [0, T ].

Therefore, in light of (1.17), the above inequality implies the desired conclusion (1.27). The proof of Theo-
rem 1.10 is finished.
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Appendix A. Global “separated” solutions to (4.1) with smooth divergence free drift

In this Appendix, we establish the existence of global regular solutions to the nonlocal Cahn-Hilliard 
equation with smooth divergence-free drift. More precisely, we aim to construct solutions to (4.1) satisfying 
the separation property for all times.

Theorem A.1. Let the assumptions (H1)-(H5) hold and let T > 0 be given. If u ∈ D(0, T ; C∞
0,σ(Ω; R2)) and 

φ0 ∈ H1(Ω) ∩ L∞(Ω) with ‖φ0‖L∞(Ω) < 1 and |φ0| < 1, then there exists a solution φ to (4.1) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ ∈ L∞(0, T ;H1(Ω) ∩ L∞(Ω)) : sup
t∈[0,T ]

‖φ(t)‖L∞(Ω) ≤ 1 − δ,

φ ∈ Lq(0, T ;W 1,p(Ω)), q = 2p
p− 2 , ∀ p ∈ (2,∞),

∂tφ ∈ L∞(0, T ;H1(Ω)′) ∩ L2(0, T ;L2(Ω)),
μ ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

(A.1)

where δ ∈ (0, 1) depends on T , u and φ0. Any solution satisfying the above properties is a strong solution, 
that is,
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∂tφ + u · ∇φ = Δμ, μ = F ′(φ) −K ∗ φ, a.e. in Ω × (0, T ),

∂nμ = 0, a.e. on ∂Ω × (0, T ), φ(·, 0) = φ0, a.e. in Ω.
(A.2)

Proof. Let us first introduce the Yosida approximation of the singular potential F . For any λ > 0, we define 

Fλ : R → R such that Fλ(s) = λ

2 |Aλs|2 +F (Jλ(s)) where Jλ = (I + λF ′)−1 and Aλ = 1
λ

(I−Jλ). We report 
the following main properties (see [17] and [28, Section 3]):

(a1) for any λ > 0, Fλ ∈ C2,1
loc (R) such that Fλ(0) = F ′

λ(0) = 0;
(a2) for any 0 < λ� ≤ 1, there exists C� > 0 such that

Fλ(s) ≥ 1
4λ�

s2 − C�, ∀ s ∈ R, ∀λ ∈ (0, λ�]; (A.3)

(a3) Fλ is convex with

F ′′
λ (s) ≥ α

1 + α
, ∀ s ∈ R;

(a4) for any λ > 0, F ′
λ is Lipschitz on R with constant 1

λ
;

(a5) as λ → 0, Fλ(s) → F (s) for all s ∈ R, |F ′
λ(s)| → |F ′(s)| for s ∈ (−1, 1) and F ′

λ converges uniformly to 
F ′ on any compact subset of (−1, 1); furthermore, |F ′

λ(s)| → +∞ for every |s| ≥ 1.

Let us now fix λ� to be positive and sufficiently small. We will choose λ� will be defined later on. We claim 
that, for any λ ∈ (0, λ�), there exists a function φλ such that

φλ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′), (A.4)

which satisfies the variational formulation

〈∂tφλ, v〉 − (φλ u,∇v) + (∇μλ,∇v) = 0, ∀ v ∈ H1(Ω), a.e. in (0, T ), (A.5)

where μλ = F ′
λ(φλ) −K ∗ φλ ∈ L2(0, T ; H1(Ω)), as well as φ(·, 0) = φ0(·) in Ω. The proof of the existence 

of the approximating solution φλ is carried out by the Galerkin scheme. The argument is rather standard 
and we refer the reader to [21,28].

Conservation of mass and energy estimates. First, taking v = 1 in (A.5), we obtain that φλ(t) = φ0 for all 
t ∈ [0, T ]. Since ‖φ0‖L∞(Ω) < 1 by assumption, we clearly infer that |φλ(t)| = |φ0| < 1 for all t ∈ [0, T ]. 
Next, we define the energy functional Eλ : L2(Ω) → R as follows

Eλ(u) :=
∫
Ω

Fλ(u) dx− 1
2

∫
Ω

(K ∗ u) u dx.

In light of (a1) and (a4), it is easily seen that |Fλ(s)| ≤ 1
λ
s2 for all s ∈ R. In turn, this gives that

Eλ(u) ≤
(

1
λ

+
‖K‖W 1,1(R2)

2

)
‖u‖2

L2(Ω), (A.6)

thus Eλ is well defined in L2(Ω). Moreover, by the assumption on the kernel K in (H2) and (a2), for any 
λ < λ�, we have
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Eλ(u) ≥ 1
4λ�

‖u‖2
L2(Ω) − Cλ� |Ω| − 1

2‖K ∗ u‖L2(Ω)‖u‖L2(Ω)

≥
(

1
4λ�

−
‖K‖W 1,1(R2)

2

)
‖u‖2

L2(Ω) − Cλ� |Ω|.
(A.7)

Hence, setting λ� ≤
[
4
(

1 +
‖K‖W 1,1(R2)

2

)]−1

, we are led to

Eλ(u) ≥ ‖u‖2
L2(Ω) − Cb, ∀u ∈ L2(Ω), ∀λ ∈ (0, λ�], (A.8)

where Cb > 0 is a constant independent of λ as well as any other constant in the sequel unless it is explicitly 
pointed out. Let us now take v = μλ in (A.5). By using (A.4), (A.6), [18, Proposition 4.2] and the definition 
of μλ, we obtain

d
dtEλ(φλ) + ‖∇μλ‖2

L2(Ω) +
∫
Ω

φλ u · ∇μλ dx = 0.

Thanks to (A.8), we easily get∣∣∣∣∣∣
∫
Ω

φλ u · ∇μλ dx

∣∣∣∣∣∣ ≤ ‖u‖L∞(Ω)‖φλ‖L2(Ω)‖∇μλ‖L2(Ω)

≤ 1
2‖∇μλ‖2

L2(Ω) + 1
2‖u‖

2
L∞(Ω) (Cb + Eλ(φλ)) .

Then, we find

d
dtEλ(φλ) + 1

2‖∇μλ‖2
L2(Ω) ≤

1
2‖u‖

2
L∞(Ω) (Cb + Eλ(φλ)) . (A.9)

In light of the general properties of the Yosida approximation of a convex function (see, in particular, [57, 
Proposition 1.8, Chapter IV]), we recall that Fλ(s) is increasing in λ towards F (s) for all s ∈ R. Since 
‖φ0‖L∞(Ω), we infer that Eλ(φ0) ≤ E(φ0) < ∞. Therefore, it follows from the Gronwall lemma applied to 
(A.9) that

Eλ(φλ(t)) ≤

⎛⎝E(φ0) + Cb

2

T∫
0

‖u(τ)‖2
L∞(Ω) dτ

⎞⎠ exp

⎛⎝ T∫
0

u(τ)‖2
L∞(Ω) dτ

⎞⎠ , ∀ t ∈ [0, T ]. (A.10)

Combining (A.8) with (A.10), and integrating (A.9) on [0, T ], we obtain

max
t∈[0,T ]

‖φλ(t)‖2
L2(Ω) + 1

2

T∫
0

‖∇μλ(τ)‖2
L2(Ω) dτ

≤ 2

⎛⎝Cb + E(φ0) + Cb

2

T∫
0

‖u(τ)‖2
L∞(Ω) dτ

⎞⎠ exp

⎛⎝ T∫
0

u(τ)‖2
L∞(Ω) dτ

⎞⎠ .

(A.11)

Next, recalling that F ′
λ is Lipschitz and φλ(t) ∈ H1(Ω) for almost every t ∈ [0, T ], it follows from [52]

that ∇F ′
λ(φλ(t)) = F ′′

λ (φλ(t))∇φλ(t) for almost every x ∈ Ω and t ∈ [0, T ]. By definition of μλ and (a3), we 
clearly have
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(
α

1 + α

)2 ∫
Ω

|∇φλ|2 dx ≤ 2‖∇μλ‖2
L2(Ω) + 2‖K‖2

W 1,1(R2)‖φλ‖2
L2(Ω). (A.12)

Let us now control μλ. Multiplying μλ by φλ − φλ and integrating over Ω, we find∫
Ω

F ′
λ(φλ)

(
φλ − φλ

)
dx =

∫
Ω

μλ

(
φλ − φλ

)
dx +

∫
Ω

K ∗ φλ

(
φλ − φλ

)
dx.

Observing that (μλ, φλ − φλ) = 0, we infer from the properties of K, the Poincaré inequality, (A.16) and 
the conservation of mass that∫

Ω

F ′
λ(φλ)

(
φλ − φλ

)
dx =

∫
Ω

(μλ − μλ)
(
φλ − φλ

)
dx +

∫
Ω

K ∗ φλ

(
φλ − φλ

)
dx

≤ C
(
1 + ‖∇μλ‖L2(Ω)

)
.

Now, we recall from [28, Proof of Theorem 3.4] (which is inspired by [53]) that

‖F ′
λ(φλ)‖L1(Ω) ≤ C1

∣∣∣∣∣∣
∫
Ω

F ′
λ(φλ)

(
φλ − φλ

)
dx

∣∣∣∣∣∣ + C2, (A.13)

where Cj , j = 1, 2, are positive constants that only depend on F , Ω and φ0. Then, combining the above 
estimates with (A.13), we have

|μλ| ≤
1
|Ω|

⎛⎝∫
Ω

|F ′
λ(φλ)|dx +

∣∣∣∣∣∣
∫
Ω

K ∗ φλ dx

∣∣∣∣∣∣
⎞⎠

≤ C1

|Ω|

∣∣∣∣∣∣
∫
Ω

F ′
λ(φλ)

(
φλ − φλ

)
dx

∣∣∣∣∣∣ + C2

|Ω| +
C‖K‖L1(R2)

|Ω| ‖φλ‖L2(Ω)

≤ C
(
1 + ‖∇μλ‖L2(Ω)

)
,

(A.14)

where C depends on F , Ω, φ0, E(φ0) and ‖u‖L2(0,T ;L∞(Ω)). On the other hand, concerning ∂tφλ, it is 
immediate to check that

‖∂tφλ‖H1(Ω)′ ≤ ‖φλ‖L2(Ω)‖u‖L∞(Ω) + ‖∇μλ‖L2(Ω). (A.15)

Therefore, owing to (A.11), (A.12), (A.14) and (A.15), we obtain

‖φλ‖L∞(0,T ;L2(Ω)) + ‖∇φλ‖L2(0,T ;L2(Ω)) + ‖∂tφλ‖L2(0,T ;H1(Ω)′) + ‖μλ‖L2(0,T ;H1(Ω)) ≤ C. (A.16)

In addition, we get by comparison that

‖F ′
λ(φλ)‖L2(0,T ;H1(Ω)) ≤ C. (A.17)

Sobolev estimates. We derive higher-order Sobolev estimates following the argument used in [21]. To this 
aim, we introduce the difference quotient ∂h

t f(t) = h−1 (f(t + h) − f(t)) and the shift Shf(t) = f(t +h) for 
0 < t < T − h. Subtracting now the weak formulation (A.5) evaluated at time t from the one at time t + h, 
dividing by h and choosing N∂h

t φλ as test function, we obtain
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1
2

d
dt‖∂

h
t φλ‖2

∗ −
∫
Ω

Shφλ ∂
h
t u · ∇N∂tφλ dx−

∫
Ω

∂h
t φλ u · ∇N∂h

t φλ dx +
∫
Ω

∂h
t μλ∂

h
t φλ dx = 0. (A.18)

By (a3), we have∫
Ω

∂h
t μλ∂

h
t φλ dx =

∫
Ω

1
h

(
F ′
λ(Shφλ) − F ′

λ(φλ)
)
∂h
t φλ dx−

∫
Ω

(
K ∗ ∂h

t φλ

)
∂h
t φλ dx

≥ α

1 + α
‖∂h

t φλ‖2
L2(Ω) −

∫
Ω

(
K ∗ ∂h

t φλ

)
∂h
t φλ dx.

(A.19)

Also, we observe that (cf. (4.13))

(K ∗ ∂h
t φλ, ∂

h
t φλ) ≤ ‖∇K ∗ ∂h

t φλ‖L2(Ω)‖∇N∂h
t φλ‖L2(Ω)

≤ α

4(1 + α)‖∂
h
t φλ‖2

L2(Ω) + C‖∂h
t φλ‖2

∗.
(A.20)

On the other hand, we infer from (2.1), (2.2) and (A.11) that∣∣∣∣∣∣
∫
Ω

Shφλ ∂
h
t u · ∇N∂tφλ dx

∣∣∣∣∣∣ ≤ ‖∂h
t u‖L4(Ω)‖Shφλ‖L2(Ω)‖∇N∂h

t φλ‖L4(Ω)

≤ α

4(1 + α)‖∂
h
t φλ‖2

L2(Ω) + C‖∂h
t u‖2

L4(Ω)

and ∣∣∣∣∣∣
∫
Ω

∂h
t φλ u · ∇N∂h

t φλ dx

∣∣∣∣∣∣ ≤ α

4(1 + α)‖∂
h
t φλ‖2

L2(Ω) + C‖u‖2
L∞(Ω)‖∂h

t φλ‖2
∗.

Therefore, we derive from (A.18) that

1
2

d
dt‖∂

h
t φλ‖2

∗ + α

4(1 + α)‖∂
h
t φλ‖2

L2(Ω) ≤ C
(
1 + ‖u‖2

L∞(Ω)

)
‖∂h

t φ
k
λ‖2

∗ + C‖∂h
t u‖2

L4(Ω). (A.21)

Recalling that φλ(t) ≡ φ0, and thereby ∂tφ(t) ≡ 0, for all t ∈ [0, T ], we infer from (A.5) that

1
2

d
dt‖φλ − φ0‖2

∗ −
∫
Ω

φλ u · ∇N (φλ − φ0) dx +
∫
Ω

μ (φλ − φ0) dx = 0. (A.22)

Observing that ∫
Ω

(F ′
λ(φλ) − F ′

λ(φ0)) (φλ − φ0) dx ≥ 0,

and exploiting (A.11), we obtain

−
∫

μ (φλ − φ0) dx = −
∫

F ′
λ(φλ) (φλ − φ0) dx +

∫
K ∗ φλ (φλ − φ0) dx
Ω Ω Ω
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≤
∫
Ω

F ′
λ(φ0) (φλ − φ0) dx +

∫
Ω

K ∗ φλ (φλ − φ0) dx

≤ ‖∇F ′
λ(φ0)‖L2(Ω)‖∇N (φλ − φ0)‖L2(Ω)

+ ‖∇K‖L1(R2)‖φλ‖L2(Ω)‖∇N (φλ − φ0)‖L2(Ω)

≤ C(1 + ‖∇F ′
λ(φ0)‖L2(Ω))‖φλ − φ0‖∗.

Similarly, we have∣∣∣∣∣∣
∫
Ω

φλ u · ∇N (φλ − φ0) dx

∣∣∣∣∣∣ ≤ ‖u‖L∞(Ω)‖φλ‖L2(Ω)‖φλ − φ0‖∗ ≤ C‖u‖L∞(Ω)‖φλ − φ0‖∗.

In conclusion, integrating (A.22) in (0, t) for t ∈ (0, T ), we find

1
2‖φλ(t) − φ0‖2

∗ ≤ C
(
1 + ‖∇F ′

λ(φ0)‖L2(Ω) + ‖u‖L∞(0,T ;L∞(Ω))
) t∫

0

‖φk
λ(s) − φ0,k‖∗ ds (A.23)

and a well-known version of the Gronwall lemma (see [17, Lemma A.5]) implies that

1
2‖φλ(t) − φ0‖∗ ≤ t

(
1 + ‖∇F ′

λ(φ0)‖L2(Ω) + ‖u‖L∞(0,T ;L∞(Ω))
)
, ∀ t ∈ (0, T ).

In order to obtain an uniform estimate in λ, we are left to control ‖∇F ′
λ(φ0)‖L2(Ω). To this aim, we first 

recall from [28, Lemma 3.10] that

F ′′
λ (s) = 1

λ

[
1 − 1

1 + λF ′′(Jλ(s))

]
, ∀ s ∈ (−1, 1),

where Jλ is the resolvent operator. In light of [57, Chapter IV, Proposition 1.7], Jλ(s) → s for all s ∈ (−1, 1), 
which entails that F ′′

λ (s) → F ′′(s) for all s ∈ (−1, 1). Furthermore, since Jλ(0) = 0 (cf. F ′(0) = 0) 
and Jλ is a contraction, Jλ is bounded on compact subset of (−1, 1) independently of λ. Observing that 
F ′′
λ (s) ≤ F ′′(Jλ(s)), it follows that F ′′

λ (s) is also bounded on compact subset of (−1, 1) independently of λ. 
In particular, since ‖φ0‖L∞(Ω) < 1, we have that ‖F ′′

λ (φ0)‖L∞(Ω) ≤ CF , where CF is independent of λ. By 
Lebesgue’s dominated convergence theorem, we infer that

lim
λ→0

‖∇F ′
λ(φ0)‖L2(Ω) = lim

λ→0
‖F ′′

λ (φ0)∇φ0‖L2(Ω) = ‖F ′′(φ0)∇φ0‖L2(Ω) ≤ CF ‖φ0‖H1(Ω). (A.24)

Therefore, choosing t = h in (A.23) and exploiting (A.24) and u ∈ C∞
0 ((0, T ); C∞

0,σ(Ω; R2)), we conclude 
that ‖∂h

t φλ(0)‖∗ ≤ C. Now, an application of Gronwall’s lemma to (A.21) entails that

max
t∈[0,T−h]

‖∂h
t φλ(t)‖2

∗ +
T∫

0

‖∂h
t φλ(τ)‖2

L2(Ω) dτ

≤ C

⎛⎝‖∂h
t φλ(0)‖2

∗ +
T∫

0

‖∂h
t u(τ)‖2

L4(Ω) dτ

⎞⎠ exp

⎛⎝CT + C

T∫
0

‖u(τ)‖2
L∞(Ω) dτ

⎞⎠ .

Recalling the inequality ‖∂h
t u‖L2(0,T−h;L4(Ω)) ≤ ‖∂tu‖L2(0,T ;L4(Ω)), we conclude that
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‖∂h
t φλ‖L∞(0,T ;H1(Ω)′) + ‖∂h

t φλ‖L2(0,T ;L2(Ω)) ≤ C,

where C is also independent of h. Passing then to the limit as h → 0, this gives

‖∂tφλ‖L∞(0,T ;H1(Ω)′) + ‖∂tφλ‖L2(0,T ;L2(Ω)) ≤ C. (A.25)

Next, by comparison in (A.5) and using (A.14), we easily obtain that

‖μλ‖L∞(0,T ;H1(Ω)) + ‖F ′
λ(φλ)‖L∞(0,T ;H1(Ω)) ≤ C.

In addition, by elliptic regularity, we have

‖μλ‖H2(Ω) ≤ C
(
‖∂tφλ‖L2(Ω) + ‖u · ∇φλ‖L2(Ω)

)
≤ C

(
‖∂tφλ‖L2(Ω) + ‖u‖L∞(Ω)‖∇φλ‖L2(Ω)

)
.

Thus, thanks to (A.16) and (A.25), we also infer that

‖μλ‖L2(0,T ;H2(Ω)) ≤ C, (A.26)

Finally, recalling that F ′′
λ (φλ)∇φλ = ∇μλ + ∇K ∗ φλ almost everywhere in Ω × (0, T ), we find (cf. also 

(4.48))

‖∇φλ‖Lp(Ω) ≤ C
(
1 + ‖∇μλ‖Lp(Ω)

)
. (A.27)

Then, by making use of the interpolation inequality ‖u‖Lq(0,T ;Lp(Ω)) ≤ C‖u‖L∞(0,T ;L2(Ω))‖u‖L2(0,T ;H1(Ω)), 

where q = 2p
p− 2 and p ∈ (2, ∞), and by using (A.27) and (A.26), we are led to

‖φλ‖Lq(0,T ;W 1,p(Ω)) ≤ C, q = 2p
p− 2 , ∀ p ∈ (2,∞). (A.28)

Passage to the limit and further regularities. Thanks to the above estimates (A.16)-(A.17), (A.25)-(A.26)
and to the convergence properties (a5), we deduce by standard compactness arguments and by passing to 

the limit as λ → 0 in (A.5) that there exist φ ∈ L∞(0, T ; H1(Ω)) ∩Lq(0, T ; W 1,p(Ω)), where q = 2p
p− 2 and 

p ∈ (2, ∞), such that ∂tφ ∈ L∞(0, T ; H1(Ω)′) ∩L2(0, T ; L2(Ω)) and μ ∈ L∞(0, T ; H1(Ω)) ∩L2(0, T ; H2(Ω)), 
which satisfy the problem (A.2). Furthermore, by a classical argument for singular potentials (see, e.g., the 
proof of [28, Theorem 3.15]), we deduce that φ ∈ L∞(Ω × (0, T )) such that |φ| < 1 almost everywhere in 
Ω × (0, T ). By comparison in (A.2)1, we infer that F ′(φ) ∈ L∞(0, T ; H1(Ω)). In light of assumption (H4), 
arguing as in [29] we find F ′′(φ) ∈ L∞(0, T ; Lp(Ω)) for all p ∈ [2, ∞). Owing to this regularity, we can recast 
the argument in [29, Section 4.1] for the advective case by observing that the corresponding drift term 
vanishes once again (i.e., Z = 0, cf. (4.60), see the proof of Theorem 4.1, (ii)). This yields the existence of 
a constant δ > 0 such that ‖φ‖L∞(Ω×(0,T )) ≤ 1 − δ. To conclude this proof, we are left to show an estimate 
for ∂tμ. We observe that

∂h
t μ = ∂h

t φ

⎛⎝ 1∫
0

F ′′(sShφ + (1 − s)φ) ds

⎞⎠−K ∗ ∂h
t φ, 0 < t ≤ T − h. (A.29)

By the separation property, ‖sShφ +(1 −s)φ)‖L∞(Ω×(0,T−h)) ≤ 1 −δ for all s ∈ (0, 1). Then, by the properties 
of K and exploiting that ‖∂h

t φ‖L2(0,T−h;L2(Ω)) ≤ ‖∂tφ‖L2(0,T ;L2(Ω)), we obtain that ‖∂h
t μ

k‖L2(0,T−h;L2(Ω)) ≤
C, where C > 0 is independent of h. This implies that ∂tμ ∈ L2(0, T ; L2(Ω)). The proof of Theorem A.1 is 
now completed. �



108 C.G. Gal et al. / J. Math. Pures Appl. 178 (2023) 46–109
References

[1] H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, 
Commun. Math. Phys. 289 (2009) 45–73, https://doi .org /10 .1007 /s00220 -009 -0806 -4.

[2] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. 
Ration. Mech. Anal. 194 (2009) 463–506, https://doi .org /10 .1007 /s00205 -008 -0160 -2.

[3] H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J. 
Math. Anal. 44 (2012) 316–340, https://doi .org /10 .1137 /110829246.

[4] H. Abels, D. Breit, Weak solutions for a non-Newtonian diffuse interface model with different densities, Nonlinearity 29 
(2016) 3426–3453, https://doi .org /10 .1088 /0951 -7715 /29 /11 /3426.

[5] H. Abels, D. Depner, H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompress-
ible fluids with different densities, J. Math. Fluid Mech. 15 (2013) 453–480, https://doi .org /10 .1007 /s00021 -012 -0118 -x.

[6] H. Abels, D. Depner, H. Garcke, On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility, Ann. 
Inst. Henri Poincaré, Anal. Non Linéaire 30 (2013) 1175–1190, https://doi .org /10 .1016 /j .anihpc .2013 .01 .002.

[7] H. Abels, H. Garcke, Weak solutions and diffuse interface models for incompressible two-phase flows, in: Handbook of 
Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018, pp. 1267–1327.

[8] H. Abels, H. Garcke, A. Giorgini, Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-
Cahn–Hilliard model with unmatched densities, Math. Ann. (2023), https://doi .org /10 .1007 /s00208 -023 -02670 -2.

[9] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible 
two-phase flows with different densities, Math. Models Methods Appl. Sci. 22 (2012) 1150013, https://doi .org /10 .1142 /
S0218202511500138.

[10] H. Abels, Y. Terasawa, Weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with 
different densities and nonlocal free energies, Math. Methods Appl. Sci. 43 (2020) 3200–3219, https://doi .org /10 .1002 /
mma .6111.

[11] H. Abels, Y. Terasawa, Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched 
densities, Discrete Contin. Dyn. Syst., Ser. S 15 (2022) 1871–1881, https://doi .org /10 .3934 /dcdss .2022117.

[12] H. Abels, J. Weber, Local well-posedness of a quasi-incompressible two-phase flow, J. Evol. Equ. 21 (2021) 3477–3502, 
https://doi .org /10 .1007 /s00028 -020 -00646 -2.

[13] J. Bedrossian, N. Rodríguez, A.L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-
Segel models with degenerate diffusion, Nonlinearity 24 (2011) 1683–1714, https://doi .org /10 .1088 /0951 -7715 /24 /6 /001.
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