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A B S T R A C T

This work proposes a new Energy Management System (EMS) for Battery Energy Storage Systems (BESS).
The goal is to make a BESS profitable in the new environment considering massive use of batteries that
can be foreseen in the next future, due to the predictive increase of clean energy resources. The developed
EMS considers two levels of optimization. The first level models the participation of the BESS in an Ancillary
Service Market and schedules the BESS. The second level, the most innovative, is responsible for optimally
distributing the power set-points obtained previously among the various battery banks considering, in addition
to the battery aging, also the different efficiencies of battery banks, converters, and transformers. Moreover,
this second-level manages both active and reactive power flows, and losses. Both optimization algorithms
have been modeled as Mixed Integer Linear Programming (MILP) and implemented in GAMS using CPLEX as
a solver. The results are encouraging: compared with the common industrial practice in which the load profile
is equally shared among the individual batteries within a BESS, the two new proposed EMS strategies guarantee
for a long period of operation (10-years) a consistent reduction in the number of batteries replacement (around
47%), thus ensuring significant cost savings. Moreover, the proposed BESS model accurately approximates the
real physical behavior of the system, leading to an average error in State-of Energy (SoE) evaluation below
0.6%, which is almost one order of magnitude lower than the ones obtained by simpler models from literature
with degradation only SoE-dependent.
1. Introduction

1.1. State of art and goals

The need for an energy transition towards clean and sustainable
resources has promoted Renewable Energy Sources (RES) during the
last decade and will continue to do so in the future. The intermit-
tency of some RES highlights the difficulty of their integration. In this
framework, the usage of Battery Energy Storage Systems (BESS) will
greatly benefit the RES exploitation due to their high-power capacity
and fast response to frequency and voltage variations [1]; indeed, a
grid-forming BESS has a response time of few milliseconds [2], while
the coordinated response from the plant controller, for both grid-
forming and grid-following converter-interfaced BESS is lower than
100 milliseconds [3]. Therefore, the use of an Energy Management
System (EMS) that optimally dispatches the individual batteries within
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a BESS by accurately considering their physical characteristics (degra-
dation, variable efficiencies) to extend BESS lifetime while fulfilling
BESS role within the power systems is becoming crucial. This is even
more important nowadays, since BESS are assumed to provide not
only a balancing of RES uncertainties, but many other services related
to security of power system with a large RES integration (frequency
regulation, synthetic inertia, grid forming, etc.); in the future, therefore,
a more intensive use of BESS is expected, that will lead to a significant
degradation of performances and reduction of BESS lifetime [4]. Hence,
in the present paper, the goal is to provide an optimization model
for BESS plant operation considering an accurate representation of the
BESS physical model, in particular capacity degradation and loss of
efficiency.

Lithium-ion (Li-ion) batteries are accepted energy storage technolo-
gies due to their high energy density and Coulombic efficiency. The
capacity of Li-ion batteries fades over time due to degradation processes
vailable online 20 January 2023
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Nomenclature

First level: Sets

𝑡 Set of time
𝛥𝑡𝐵𝑆𝑃 Subset of 𝑡 defining the periods when an

upward offer must be submitted to the
market

First level: Parameters∗

�̃� Battery capacity lost due to SEI formation
[–]

𝛽 SEI film ratio [–]
𝛥𝑡 Time interval [h]
�̃�𝑐ℎ𝑔 Battery charging efficiency [%]
�̃�𝑐𝑜𝑛𝑣 Converter efficiency [%]
�̃�𝑑𝑖𝑠 Battery discharging efficiency [%]
�̃�𝑡𝑟 Transformer efficiency [%]
̃𝐶𝑅 Maximum CR [h−1]
̃𝐷𝑜𝐷 Maximum value of DoD [–]

�̃�
𝐷𝑜𝐷

Maximum value of DoD stress factor [–]
�̃�
𝑖𝑑

Maximum value of idle degradation [–]
�̃�
𝑜𝑝

Maximum value of operating degradation
[–]

�̃� Battery maximum energy capacity [MWh]
�̃�
𝑐ℎ𝑔

Battery maximum charging power [MW]
�̃�
𝑃𝑜𝐶

Maximum power at PoC [MW]
̃𝑆𝑜𝐸 Battery maximum SoE [pu]

�̃�𝑏𝑢𝑦,𝐴𝑆𝑀
𝑡 ASM purchase price at time 𝑡 [e]

�̃�𝑏𝑢𝑦,𝐵𝑀
𝑡 BM purchase price at time 𝑡 [e]

�̃�𝑏𝑢𝑦
𝑡 Purchase price at time 𝑡 [e]

�̃�𝑠𝑒𝑙𝑙,𝐴𝑆𝑀
𝑡 ASM selling price at time 𝑡 [e]

�̃�𝑠𝑒𝑙𝑙,𝐵𝑀
𝑡 BM selling price at time 𝑡 [e]

�̃�𝑠𝑒𝑙𝑙
𝑡 Selling price at time 𝑡 [e]

�̃� 𝑐ℎ𝑔 Battery minimum discharging power [MW]
̃𝑆𝑜𝐸 Battery minimum SoE [pu]

𝐴𝑄 Accepted Quantity [MW]
̃𝐶𝑅𝑟𝑒𝑓 Reference CR [h−1]

�̃�𝑏𝑎𝑡 Cost of the battery [e]
�̃�𝛿1,2,3 DoD stress factors coefficients [–]
�̃�𝐶𝑅 CR stress factor coefficient [–]
�̃�𝑆𝑜𝐸 SoE stress factor coefficient [–]
�̃�𝑇 𝑒𝑚𝑝 Temperature stress factor coefficient [–]
�̃� 𝑡𝑖𝑚𝑒 Time stress factor coefficient [–]
�̃�𝑖𝑛𝑖𝑡 Battery initial life [%]
𝑀𝑃𝐴𝑆𝑀

𝑡 Maximum equivalent power to purchase the
quantity P𝛥𝑡 from ASM at time 𝑡 [MW]

𝑀𝑃𝐵𝑀
𝑡 Maximum equivalent power to purchase the

quantity P𝛥𝑡 from BM at time 𝑡 [MW]
𝑀𝑆𝐴𝑆𝑀

𝑡 Maximum equivalent power to sell the
quantity P𝛥𝑡 to ASM at time 𝑡 [MW]

𝑀𝑆𝐵𝑀
𝑡 Maximum equivalent power to sell the

quantity P𝛥𝑡 to BM at time 𝑡 [MW]
�̃�𝐿𝐿,𝑛𝑒𝑤 Slope of life loss function for a new battery

[–]

occurring alongside the main electrochemical reactions [5], reducing
their lifetime. Moreover, the efficiency also decades during operation
cycling and leads to a drop in power performances [6]. Hence, both
2

�̃�𝐿𝐿,𝑜𝑙𝑑 Slope of life loss function for an old battery
[–]

�̃�𝐿𝐿 Slope of life loss function [–]
�̃�𝑐𝑦 Maximum number of cycles at maximum

DoD [–]
�̃�𝑐𝑦 Number of cycles [–]
�̃� 𝑖𝑛𝑡 Number of time intervals contained in two

hours [–]
̃𝑆𝑜𝐸𝑟𝑒𝑓 Reference SoE [pu]

First level: Variables

𝐵𝑅𝐿𝑡 Battery remaining life at time 𝑡 [%]
𝐶𝑑
𝑡 Battery degradation cost at time 𝑡 [e]

𝐶𝑅𝑡 Battery C-rate at time 𝑡 [h−1]
𝑑𝐶𝑅
𝑡 CR stress factor at time 𝑡 [–]

𝑑𝐷𝑜𝐷
𝑡 DoD stress factor at time 𝑡 [–]

𝑑𝑖𝑑𝑡 Battery idle degradation at time 𝑡 [–]
𝑑𝑜𝑝𝑡 Battery operational degradation at time 𝑡

[–]
𝑑𝑆𝑜𝐸𝑡 SoE stress factor at time 𝑡 [–]
𝑑𝑇 𝑒𝑚𝑝𝑡 Temperature stress factor at time 𝑡 [–]
𝑑𝑡𝑖𝑚𝑒𝑡 Time stress factor at time 𝑡 [–]
𝑑𝑡 Battery degradation at time 𝑡 [–]
𝐷𝑜𝐷𝑡 Battery depth-of-discharge at time 𝑡 [pu]
𝐷𝑄𝑑𝑆𝑜𝐸 ,𝑑𝐶𝑅

𝑡 Square of the difference between SoE stress
factor and CR stress factor at time 𝑡 [–]

𝐸𝑡 Battery energy at time 𝑡 [MWh]
𝑓 𝑑,𝑛 Cycling aging test data [%]
𝑓 𝑑,𝑡 Calendar aging test data [%]
𝐿𝑖𝑑
𝑡 Life loss in idle condition at time 𝑡 [%]

𝐿𝑜𝑝
𝑡 Life loss in operating condition at time 𝑡 [%]

𝐿𝑡 Battery life loss at time 𝑡 [%]
𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣
𝑡 Converter charging power at time 𝑡 [MW]

𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 Charging power at PoC from ASM at time 𝑡

[MW]
𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀
𝑡 Charging power at PoC from BM at time 𝑡

[MW]
𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶
𝑡 Charging power at PoC at time 𝑡 [MW]

𝑃 𝑐ℎ𝑔
𝑡 Battery charging power at time 𝑡 [MW]

𝑃 𝑑𝑖𝑠,𝑐𝑜𝑛𝑣
𝑡 Converter discharging power at time 𝑡

[MW]
𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 Discharging power at PoC to ASM at time 𝑡

[MW]
𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀
𝑡 Discharging power at PoC to BM at time 𝑡

[MW]
𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶
𝑡 Discharging power at PoC at time 𝑡 [MW]

𝑃 𝑑𝑖𝑠
𝑡 Battery discharging power at time 𝑡 [MW]

𝑃𝑟𝑡 Profits at time 𝑡 [e]
𝑅𝑡 Revenues at time 𝑡 [e]
𝑆𝑜𝐸𝑡 State of energy of battery at time 𝑡 [pu]
𝑆𝑄𝑑𝑆𝑜𝐸 ,𝑑𝐶𝑅

𝑡 Square of the sum of SoE stress factor and
CR stress factor at time 𝑡 [–]

accurate capacity degradation and efficiency models are important
for optimal battery operation and to assess correctly the economic
feasibility of a BESS system.

Last, as far as the authors know, the industrial common practice
of the BESS plant owners does not apply any optimization strategy to
define the scheduling of single batteries: usually, the EMS distributes
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𝑍𝑏𝑢𝑦,𝐴𝑆𝑀
𝑡 Binary variable equal to 1 when the system

purchases energy from ASM at time 𝑡
𝑍𝑏𝑢𝑦,𝐵𝑀

𝑡 Binary variable equal to 1 when the system
purchases energy from BM at time 𝑡

𝑍𝑐ℎ𝑔
𝑡 Binary variable equal to 1 when the battery

is charging at time 𝑡
𝑍𝑑𝑖𝑠

𝑡 Binary variable equal to 1 when the battery
is discharging at time 𝑡

𝑍 𝑖𝑑
𝑡 Binary variable equal to 1 when the battery

is in idle condition at time 𝑡
𝑍𝑜𝑝

𝑡 Binary variable equal to 1 when the battery
is in operating condition at time 𝑡

𝑍𝑠𝑒𝑙𝑙,𝐴𝑆𝑀
𝑡 Binary variable equal to 1 when the system

sells energy to ASM at time 𝑡
𝑍𝑠𝑒𝑙𝑙,𝐵𝑀

𝑡 Binary variable equal to 1 when the system
sells energy to BM at time 𝑡

Second level: Sets

𝑐 Set of clusters
𝑠 Set of batteries
𝑡 Set of time

Second level: Parameters

�̃�𝑠 Capacity lost due to SEI formation of battery
𝑠 [–]

𝛽𝑠 SEI film ratio of battery 𝑠 [–]
𝛥𝑡 Time interval [h]
𝛾 ′, 𝜉′, 𝜆′ Converter losses parameters [–]
�̃�𝑠 Maximum energy capacity of battery 𝑠

[MWh]
�̃�𝑖𝑛𝑖𝑡
𝑠 Initial life of battery 𝑠 [%]

𝑃 𝑓𝑒
𝑐 Iron losses of transformer 𝑐 [MW]

𝑃 𝑃𝑜𝐶
𝑡 Active power at PoC at time 𝑡 [MW]

�̃�ℎ𝑦𝑠𝑡
𝑐 Hysteresis losses of transformer 𝑐 [MVAr]

�̃�𝑃𝑜𝐶
𝑡 Reactive power at PoC at time 𝑡 [MVAr]

�̃�𝑠,𝑡𝑟
𝑐 Series resistance of transformer 𝑐 [Ω]
̃𝑆𝑜𝐻𝑓

𝑠 State of health resistance growth factor of
battery 𝑠 [–]

𝑉 𝑛,𝑠𝑒𝑐
𝑐 Secondary side nominal voltage of trans-

former 𝑐 [kV]
𝑉𝑠 Nominal voltage of battery 𝑠 [kV]
�̃�𝑠,𝑡𝑟

𝑐 Series reactance of transformer 𝑐 [Ω]

Second level: Variables

𝜂𝑡𝑟𝑐,𝑡 Efficiency of transformer 𝑐 at time 𝑡 [%]
𝐴𝑐𝑜𝑛𝑣
𝑠,𝑡 Apparent power through converter 𝑠 at time

𝑡 [MVA]
𝐵𝑅𝐿𝑠,𝑡 Battery remaining life of battery 𝑠 at time 𝑡

[%]
𝐶𝑅2

𝑠,𝑡 Square of CR of battery 𝑠 at time 𝑡 [h−2]
𝐷𝑜𝑏𝑗

𝑡 Second level objective variable [–]
𝑑𝑠,𝑡 Degradation of battery 𝑠 at time 𝑡 [–]
𝐷𝑄𝑅𝑏𝑎𝑡 ,𝐶𝑅2

𝑠,𝑡 Square of the difference between battery
resistance and square of CR for battery 𝑠 at
time 𝑡 [–]

the power to be exchanged with the network evenly among them,
without any prioritization. While this strategy can be acceptable in case
of BESS equipped with perfectly equal batteries (same type, same aging,
3

𝐼𝑐𝑜𝑛𝑣𝑠,𝑡 Current through converter 𝑠 at time 𝑡 [A]
𝐼𝑠𝑒𝑐′𝑐,𝑡 Series current at the secondary side of

transformer 𝑐 at time 𝑡 [A]
𝐿𝑠,𝑡 Life loss of battery 𝑠 at time 𝑡 [%]
𝑃 𝑐ℎ𝑔,𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 Active charging power at secondary side of

transformer 𝑐 at time 𝑡 [MW]
𝑃 𝑑𝑖𝑠,𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 Active discharging power at secondary side

of transformer 𝑐 at time 𝑡 [MW]
𝑃 𝑗𝑜𝑢𝑙𝑒,𝑡𝑟
𝑐,𝑡 Joule losses of transformer 𝑐 at time 𝑡 [MW]

𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡
𝑠,𝑡 Joule losses of battery 𝑠 at time 𝑡 [MW]

𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 Losses of converter 𝑠 at time 𝑡 [MW]

𝑃 𝑡𝑟,𝑝𝑟𝑖𝑚
𝑐,𝑡 Active power at primary side of transformer

𝑐 at time 𝑡 [MW]
𝑃 𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 Active power at secondary side of trans-

former 𝑐 at time 𝑡 [MW]
𝑄𝑐ℎ𝑔,𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡 Reactive charging power at secondary side
of transformer 𝑐 at time 𝑡 [MVAr]

𝑄𝑑𝑖𝑠,𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 Reactive discharging power at secondary

side of transformer 𝑐 at time 𝑡 [MVAr]
𝑄𝑓𝑙𝑢𝑥,𝑡𝑟

𝑐,𝑡 Magnetic flux losses of transformer 𝑐 at time
𝑡 [MVAr]

𝑄𝑡𝑟,𝑝𝑟𝑖𝑚
𝑐,𝑡 Reactive power at primary side of trans-

former 𝑐 at time 𝑡 [MVAr]
𝑄𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡 Reactive power at secondary side of trans-
former 𝑐 at time 𝑡 [MVAr]

𝑅𝑏𝑎𝑡,𝑎
𝑠,𝑡 Resistance 𝑎 of battery 𝑠 at time 𝑡 [Ω]

𝑅𝑏𝑎𝑡,𝑏
𝑠,𝑡 Resistance 𝑏 of battery 𝑠 at time 𝑡 [Ω]

𝑅𝑏𝑎𝑡
𝑠,𝑡 Resistance of battery 𝑠 at time 𝑡 [Ω]

𝑆𝑜𝐸𝑎
𝑠,𝑡 State of energy 𝑎 of battery 𝑠 at time 𝑡 [pu]

𝑆𝑜𝐸𝑏
𝑠,𝑡 State of energy 𝑏 of battery 𝑠 at time 𝑡 [pu]

𝑆𝑜𝐸𝑠,𝑡 State of energy of battery 𝑠 at time 𝑡 [pu]
𝑆𝑄𝑅𝑏𝑎𝑡 ,𝐶𝑅2

𝑠,𝑡 Square of the sum of battery resistance and
square of CR for battery 𝑠 at time 𝑡 [–]

𝑍𝑎
𝑠,𝑡 Binary variable equal to 1 when the SoE of

battery 𝑠 at time 𝑡 is lower than 0.5
𝑍𝑏

𝑠,𝑡 Binary variable equal to 1 when the SoE of
battery 𝑠 at time 𝑡 is higher than 0.5

𝑍𝑜𝑝
𝑠,𝑡 Binary variable equal to 1 when the battery

𝑠 is in operating condition at time 𝑡
* To facilitate reading, parameters are indicated with the symbol,
whereas the variables without.

etc.), in case of BESS equipped with batteries of different characteristics
it can lead to sub-optimal operation: the BESS overall efficiency will
be lower and older batteries will need to be replaced sooner. The
latter factor is very important nowadays because, as battery prices are
still decreasing [7], the industrial practice tends to delay as much as
possible any battery replacement. To point out the importance of this
issue, it is worth mentioning the expected exploitation of second-life
batteries in future BESSs, that will result in the presence of different
batteries in the same BESS. Therefore, a way to optimally manage the
single battery within a BESS power set-point, with the goal to delay as
much as possible their replacement, while considering both capacity
degradation and reduction of efficiency, is also investigated in this
paper.

1.2. Bibliography review

Numerous market studies already exist in the literature with the
aim of performing a short or long-term economic analysis. Due to
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their fast reacting behavior, batteries have been studied within a mar-
ket framework as primary frequency regulation provider [8–10], for
secondary and tertiary regulation services [11,12] and for other ser-
vices [13–17]. In [18] models for batteries in the Ancillary Services
Market (ASM) have been presented. However, these papers focus on
the services provided and model BESS in a very basic manner; none of
them consider capacity degradation over lifetime whereas efficiency is
assumed constant. The effects on BESS for participation to regulation
services and to frequency control is shown in [19,20] respectively,
where also premature aging is considered, with reference to the Italian
ASM; however, neither study does optimize the BESS scheduling and
aging is considered with a very simplified approach.

Detailed physical models able to capture accurately the capacity
degradation phenomena are available in literature, but they are never
directly used in any optimization tool for BESS operation due to their
complexity and significant non-linearity. Complete physical models
can be found in [21,22], that focus on semi-empirical models while
suggesting temperature, State of Energy (SoE), time, C-Rate (CR), and
Depth of Discharge (DoD) as the factors which affect calendar and
cyclic degradation in Li-ion batteries, while also considering the Solid
Electrolyte Interphase (SEI) film formation in the early period of battery
life. However, optimization models considering some of the above
mentioned adverse effects, in a simplified manner, can be found in
the literature. In [23], capacity degradation is calculated only in a
post-optimization process starting from the SoE optimized profile and
using the Rainflow-Counting-Algorithm (RCA) [24] and, therefore, it is
not considered for optimal scheduling of batteries. In [25], a whole-
life-cycle battery model has been implemented for providing multiple
functional services in power systems based on the battery remaining
life; it considers a simplified degradation model based on the maximum
number of cycles at a certain DoD value, ignoring the other factors.
In [26,27], stochastic dynamic programming models have been inves-
tigated considering all the stress factors for the operating conditions,
but ignoring idle degradation; moreover, the models are non-linear, and
therefore hardly applicable to large scale problems with discrete vari-
ables. Paper [28] explores a linear optimization model describing the
characteristics of several types of batteries; it describes the SoE as the
main stress factor which affects the battery capacity fading. In [29], a
Mixed Integer Linear Problem (MILP) degradation model is considered,
but it is only DoD-dependent. Ref. [30] explores a piecewise linear
function for the degradation cost based on a linear approximation of
the RCA dividing battery capacity into segments for setting the energy
capacity limits; however, only the DoD is considered as degradation
factor. Ref. [31] proposes a MILP model in which degradation and
efficiency effects are considered through an external loop that updates
the parameters for the following MILP execution, therefore providing a
reduced level of accuracy for the desired phenomena; moreover, the
iterative process could take a long time, not suitable for operating
optimization.

Concerning the reduction of battery efficiency, a physical model
is explained in [32] that indicates SoE and State-of-Health (SoH) as
the major factors influencing it. On the other hand, most optimization
studies found in literature consider constant component efficiencies,
and only a few treat them as variable over time. Paper [33] defines a
cost function considering energy conversion losses and cycle-induced
capacity reduction to calculate the marginal costs as a function of
charging and discharging operations, therefore only CR-dependent.
Ref. [34] considers a variable efficiency for the converter and battery
system, but only as a function of the SoE. In [35], a trade-off between
grid economics and storage health considering battery variable effi-
ciency is studied; however, the battery internal resistance is considered
constant and efficiency is assumed dependent only on CR. Therefore,
these articles do not consider all the factors for decreasing efficiency
listed above, but only some taken individually.

Lastly, due to the recent gradual opening in some countries of
4

voltage support services, the reactive power flow problem has also been
investigated. Papers [14,36,37] study different control strategies to deal
with both active and reactive power. Here, it is shown that inverter-
based operation of the BESS offers flexibility in absorbing or injecting
active and/or reactive power, but, this aspect must be integrated in
the physical model of BESS since the reactive power can substantially
influence the losses in the BESS components (hence their efficiencies),
especially in optimization studies. Regarding this last problem, the
papers previously analyzed in the bibliography review do not consider
the reactive power flow effects on the physical model. However, this is
studied separately in articles such as [38–40] where active and reactive
power flows are integrated into optimization models, but the level of
modeling of the components is very simplified compared with others,
which this can lead to non-efficient BESS working conditions.

1.3. Paper contribution

The lack in literature of a complete MILP model that considers all
the physical aspects highlighted in [21,22,32] motivates the methodol-
ogy proposed in this paper, whose aim is to define a tractable linear
model for the operation of BESS considering all the aforementioned
aspects. Hence, since it is necessary to define a market environment for
BESS plant, it is considered BESS participates in the ASM, thus being
subject to adverse effects like capacity degradation and reduction of
efficiency over time. The choice of this market comes from its intrinsic
structure, which guarantees a sufficient high variation in the charging
and discharging profiles of the BESS. Tests of various approximation
levels will show the importance of modeling all factors. To maximize
the BESS profitability, the optimization procedure will first define the
bids on the ASM and then share the resulting power profile among the
different batteries of the BESS. In terms of representation, the BESS is
modeled in detail, including all the main electrical components from
the Point of Connection (PoC) to the batteries, while the representation
of the external grid is neglected; the service provided to the grid is
considered in terms of power profile request at PoC, which of course
depend on the type of grid: distribution or transmission.

The optimization problem is therefore divided into two hierarchical
levels. The first level performs an economical evaluation of profitability
for the BESS participation in ASM and it gives a BESS optimal active
power profile as output. Market modeling is not the focus of this
paper: it depends on the type of services considered, the regulations,
and could be different in different countries and for different voltage
levels (distribution or transmission). For illustrative purposes, in the
paper, the Italian ASM, that acts at transmission level, is considered and
modeled, assuming that the BESS is operating as Virtual Power Plant
(VPP), and in particular as Mixed Aggregate Virtual Units (UVAM, in
Italian) [41]. The UVAM in Italy is seen by the market operator as a
unique economic offer, or bid, that aggregates a mix of resources. In
this paper, UVAM is considered made of BESS only, but, in general, the
first level optimization problem can be extended with the constraints
modeling other resources (like renewable or conventional plants, pro-
sumers, etc.). In the latter case, the BESS profiles would be optimized
together with other resources profiles, but the proposed BESS model,
that is the main contribution of this paper, will not change. Therefore,
the same proposed model can be used for any application, either for
distribution or transmission networks, once the service to be provided
is defined.

The second level deals with the distribution of the load profile
resulting from the first level optimization among the single batteries
which make up the BESS. At this stage, which is the main part of
this study, the detailed model of capacity degradation and efficiency
reduction for batteries, together with efficiency variation for converters
and transformers, are considered. The second level can be optimized
both in one-shot, which allows an optimal solution for the entire
considered period, or through a rolling horizon optimization [42,43].

The use of the rolling horizon guarantees both shorter computation
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times and greater robustness to any change of the dispatching profile
and it is the solution adopted here.

The use of two hierarchical independent optimization levels allows
greater flexibility of the model: in fact, the first level defines the BESS
schedule based on the adopted market rules (operation environment),
while the second level is independent of the type of market imple-
mented. It is worth noticing that the optimization problem only re-
quires information typically available to EMS operators and designers,
thus adding practical industrial value to the proposed procedure.

Summarizing, the novel contributions of the paper are:

• the implementation of an optimization model for the operation of
a BESS fully considering the physical models of:

– the capacity degradation of batteries depending on SoE, CR,
DoD, time as stress factors and the SEI formation in the
life-loss calculation steps;

– the optimization model proposed is a linearization of [21,
22] and is designed to minimize the use of additional integer
variables and get computation times compatible with real
life operation;

– the variable efficiency model of batteries, converters, and
transformers considering all physical factors that influence
them (e.g., for batteries, SoE, SoH, and CR).

While this has been enforced above, the following additional
contributions can also been considered at the second level opti-
mization side:

• an improvement of the current industrial practice, that currently
shares evenly the loading among different batteries of a BESS,
through the introduction of two new EMS strategies for the op-
timal battery set-point definition;

• the consideration in the linear optimization problem of the re-
active power flows as they have a significant impact on losses,
especially on converters, opening the possibility for future volt-
age/reactive power control strategy integration.

The rest of the paper is organized as follows: Section 2 describes
the two-level optimization model as Mixed Integer Non Linear Pro-
gramming (MINLP), Section 3 presents the linearization techniques to
get a MILP optimization model, Section 4 summarizes the input data
identification, the simulation results, and a comparison with literature
models. Lastly, Section 5 highlights the conclusions.

2. Complete MINLP model

2.1. First optimization level

The goal of the first level is to define a profitable load profile for
the BESS involved in the UVAM, which then will have to be optimally
managed by the second level. Fig. 1 shows the scheme considered and
related variables adopted for the first level; in particular, the plant
equivalent converter and transformer represent the aggregate of the
single components, which from a mathematical point of view are added
together, and will be considered individually in the second optimization
level (Fig. 2). It worth reminding that UVAM can also contain other
type of resources; they can be added here considering their correspond-
ing models and their effect would consist in additional power injections
at PoC level in Fig. 1 or at the secondary side of the plant equivalent
transformer. The rest of the model would be the same. In a more
complex context, it is possible that UVAM is made of multiple plants
of the type shown in Fig. 1. In this case, the model formulated here
would characterize any one of them and their power profiles would be
linked by the economic objective that would consider the sum of these
profiles. In this case, decomposition techniques can be applied to effi-
ciently solve the problem, like the Dantzig–Wolfe decomposition [44],
5

already successfully applied in aggregator context [45]. b
The first level objective function is the profit maximization:

𝑀𝑎𝑥 𝛥𝑡
∑

𝑡
𝑃𝑟𝑡 = (1)

= 𝑀𝑎𝑥 𝛥𝑡
∑

𝑡
(−�̃�𝑠𝑒𝑙𝑙

𝑡 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶
𝑡 − �̃�𝑏𝑢𝑦

𝑡 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶
𝑡 − 𝐶𝑑

𝑡 )

Problem (1) optimizes the trade-off between the potential revenues
that can be obtained by discharging power in the grid and the costs due
to energy purchase and the degradation.

Problem (1) is subject to several constraints:

2.1.1. BESS electrochemical model
SoE evolution, considering battery efficiency, is described by (2):

𝑆𝑜𝐸𝑡 = 𝑆𝑜𝐸𝑡−1 +
𝛥𝑡

�̃�

(

𝑃 𝑐ℎ𝑔
𝑡 �̃�𝑐ℎ𝑔 +

𝑃 𝑑𝑖𝑠
𝑡

�̃�𝑑𝑖𝑠
)

(2)

To avoid over-charging and over-discharging, SoE is kept within a
certain range, specified by the manufacturer:

̃𝑆𝑜𝐸 ≤ 𝑆𝑜𝐸𝑡 ≤
̃𝑆𝑜𝐸 (3)

Constraints (4) limit the battery charging and discharging power
within their bounds, whereas (5) prevents charging and discharging at
the same time, and (6) from being simultaneously in operating and idle
conditions:

0 ≤ 𝑃 𝑐ℎ𝑔
𝑡 ≤ �̃�

𝑐ℎ𝑔
𝑍𝑐ℎ𝑔

𝑡 (4a)

�̃� 𝑑𝑖𝑠𝑍𝑑𝑖𝑠
𝑡 ≤ 𝑃 𝑑𝑖𝑠

𝑡 ≤ 0 (4b)

𝑐ℎ𝑔
𝑡 +𝑍𝑑𝑖𝑠

𝑡 ≤ 1 (5)

𝑜𝑝
𝑡 = 𝑍𝑐ℎ𝑔

𝑡 +𝑍𝑑𝑖𝑠
𝑡 (6a)

𝑜𝑝
𝑡 = 1 −𝑍 𝑖𝑑

𝑡 (6b)

The CR is the unit used to measure the speed at which a battery is
ully charged or discharged; for example, charging at a CR of 1C means
hat the battery is charged from 0%–100% in one hour. Hence, CR is
he power that would deliver the complete capacity of a battery over
n hour; it can be expressed as:

𝑅𝑡 =
𝑃 𝑐ℎ𝑔
𝑡 − 𝑃 𝑑𝑖𝑠

𝑡

�̃�
(7)

Power flows through the battery, converter, and transformer are
expressed in (8):

𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣
𝑡 =

𝑃 𝑐ℎ𝑔
𝑡

�̃�𝑐𝑜𝑛𝑣
(8a)

𝑑𝑖𝑠,𝑐𝑜𝑛𝑣
𝑡 = 𝑃 𝑑𝑖𝑠

𝑡 �̃�𝑐𝑜𝑛𝑣 (8b)

𝑐ℎ𝑔,𝑃 𝑜𝐶
𝑡 =

𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣
𝑡
�̃�𝑡𝑟

(8c)

𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶
𝑡 = 𝑃 𝑑𝑖𝑠,𝑐𝑜𝑛𝑣

𝑡 �̃�𝑡𝑟 (8d)

.1.2. Battery degradation model
Battery degradation is a very complicated process and its closed

orm modeling is a problem not yet completely solved [46]. How-
ver, the remaining life of battery can be described by the following
xperimentally validated equation [21]:

𝑅𝐿𝑡 = �̃�𝑒−𝛽𝑑𝑡 + (1 − �̃�)𝑒−𝑑𝑡 (9)

uring the early period of Li-ion battery life, a SEI film is formed due to
he consumption of certain number of Li-ions [47], leading to a higher
egradation rate. The formation of this film stops once the SEI has
tabilized and hence, the degradation rate becomes lower: in general,

elow 90%, the parameter �̃� becomes 0 [21].
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Fig. 1. Scheme of the considered first level.
Fig. 2. Second level BESS schematic representation.
In (9), the cumulative degradation function is used to define the
combined effect of the stress factors; in this model, it is distinguished
between operational and idle degradation factors [48]:

𝑑𝑡 = 𝑑𝑜𝑝𝑡 + 𝑑𝑖𝑑𝑡 (10)

where:

𝑑𝑜𝑝𝑡 = 𝑑𝑡𝑖𝑚𝑒𝑡 + 𝑑𝐶𝑅
𝑡 𝑑𝐷𝑜𝐷

𝑡 𝑑𝑆𝑜𝐸𝑡 𝑑𝑇 𝑒𝑚𝑝𝑡 (11a)

𝑑𝑖𝑑𝑡 = 𝑑𝑡𝑖𝑚𝑒𝑡 𝑑𝑆𝑜𝐸𝑡 𝑑𝑇 𝑒𝑚𝑝𝑡 (11b)

Since a battery cannot be both in idle and operating condition due
to (6), at a particular time instance the effect of either 𝑑𝑜𝑝𝑡 or 𝑑𝑖𝑑𝑡 will
be zero. Therefore, (10) can be better rewritten as:

𝑑𝑡 = 𝑑𝑜𝑝𝑡 𝑍𝑜𝑝
𝑡 + 𝑑𝑖𝑑𝑡 𝑍𝑖𝑑

𝑡 (12)

The degradation cost in (1), i.e. 𝐶𝑑
𝑡 , can then be expressed as:

𝐶𝑑
𝑡 = �̃�𝑏𝑎𝑡𝐿𝑡 (13)

where:

𝐿𝑡 = �̃�𝑖𝑛𝑖𝑡 − 𝐵𝑅𝐿𝑡 (14)

By expressing the degradation cost as in (13), it is possible to evaluate
the fraction of the initial investment cost ‘‘virtually’’ lost due to degra-
dation; in this way, as for (1), the battery will make offers only if the
operation cost is lower than the possible revenue.

The components of (11) are given by:
6

• SoE stress factor
The formula for determining the SoE stress factor of (11) is [21]:

𝑑𝑆𝑜𝐸 (𝑆𝑜𝐸) = 𝑒�̃�
𝑆𝑜𝐸 (𝑆𝑜𝐸− ̃𝑆𝑜𝐸𝑟𝑒𝑓 ) (15)

To obtain the value of �̃�𝑆𝑜𝐸 , we can write that [21]:

𝑑𝑆𝑜𝐸 ( ̃𝑆𝑜𝐸𝐴)

𝑑𝑆𝑜𝐸 ( ̃𝑆𝑜𝐸𝑟𝑒𝑓 )
=

𝑓 𝑑,𝑡(𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝐴)

𝑓 𝑑,𝑡(𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝑟𝑒𝑓 )
(16)

where 𝑓 𝑑,𝑡 represents the aging data function and ̃𝑆𝑜𝐸𝐴 rep-
resents a generic SoE value for which the stress factor 𝑑𝑆𝑜𝐸 is
calculated. From (15), we have that:

𝑑𝑆𝑜𝐸 (𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝑟𝑒𝑓 ) = 1 (17)

and (16) becomes:

𝑑𝑆𝑜𝐸 ( ̃𝑆𝑜𝐸𝐴) =
𝑓 𝑑,𝑡(𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝐴)

𝑓 𝑑,𝑡(𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝑟𝑒𝑓 )
(18)

The left-hand side of (18) was substituted in (15) and the value
of �̃�𝑆𝑜𝐸 was determined. The right-hand side of (18) can be
determined using curve fitting technique on the calendar aging
test data provided by the manufacturer.

• CR stress factor
The formula for determining the CR stress factors is [22]:

𝑑𝐶𝑅(𝐶𝑅) = 𝑒�̃�
𝐶𝑅(𝐶𝑅− ̃𝐶𝑅𝑟𝑒𝑓 ) (19)
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A similar procedure used for the identification of �̃�𝑆𝑜𝐸 can be
adopted for �̃�𝐶𝑅, using cycling aging test data.

• DoD stress factor
The empirical formula for DoD stress factor is [21]:

𝑑𝐷𝑜𝐷(𝐷𝑜𝐷) = 1
�̃�𝛿1𝐷𝑜𝐷�̃�𝛿2 + �̃�𝛿3

(20)

• Time stress factor
The formula for time stress factor is adopted from [22]:

𝑑𝑡(𝑡) = �̃� 𝑡𝑖𝑚𝑒𝑡 (21)

To obtain the value of �̃� 𝑡𝑖𝑚𝑒, similar steps as those taken for �̃�𝑆𝑜𝐸

and �̃�𝐶𝑅 can be adopted:

�̃� 𝑡𝑖𝑚𝑒 =
𝑓 𝑑,𝑡(𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝐴)

𝑡 𝑑𝑆𝑜𝐸 ( ̃𝑆𝑜𝐸𝐴)
(22)

The values of 𝑓 𝑑,𝑡(𝑆𝑜𝐸 = ̃𝑆𝑜𝐸𝐴) are determined from the calendar
test data and 𝑑𝑆𝑜𝐸 ( ̃𝑆𝑜𝐸𝐴) from (15).

• Temperature stress factor
The formula for determining the temperature stress factors is [22]:

𝑑𝑇 𝑒𝑚𝑝(𝑇 𝑒𝑚𝑝) = 𝑒�̃�
𝑇 𝑒𝑚𝑝(𝑇 𝑒𝑚𝑝− ̃𝑇 𝑒𝑚𝑝𝑟𝑒𝑓 ) (23)

Similar steps followed for the identification of �̃�𝑆𝑜𝐸 can be
adopted for �̃�𝑇 𝑒𝑚𝑝, using cycling aging test data at different
temperatures.

2.1.3. Market model
To simulate the participation of the BESS in a real electricity mar-

ket, for illustrative purposes, the Italian UVAM case has been consid-
ered [49]. In case of a market or, more generally, a service designed
differently, the equations described here could be partially, or com-
pletely, changed, without altering the proposed physical model of the
BESS. The system described in Section 2.1.1 can participate in both the
ASM and Balancing Market (BM) services, and can make both upwards
and downwards bids (so it can both buy or sell energy) according to
historical price data. In this stage, for simplification, all the bids made
by the BESS are assumed to be accepted.

When the system bids on the market, the bidded quantity must be
greater than or equal to the minimum Accepted Quantity (AQ), equal
to 1 MW [49]:

𝐴𝑄𝑍𝑐ℎ𝑔
𝑡 ≤ 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶

𝑡 ≤ �̃�
𝑃𝑜𝐶

𝑍𝑐ℎ𝑔
𝑡 (24a)

− �̃�
𝑃𝑜𝐶

𝑍𝑑𝑖𝑠
𝑡 ≤ 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶

𝑡 ≤ −𝐴𝑄𝑍𝑑𝑖𝑠
𝑡 (24b)

The offer must be held for at least 2 h [49]; this commitment can
e mathematically described by (25):
𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 ≥ 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀

𝑡−𝑖 − 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡−�̃� 𝑖𝑛𝑡 (25a)

𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀
𝑡 ≥ 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀

𝑡−𝑖 − 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀
𝑡−�̃� 𝑖𝑛𝑡 (25b)

𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 ≤ 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀

𝑡−𝑖 − 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡−�̃� 𝑖𝑛𝑡 (25c)

𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀
𝑡 ≤ 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀

𝑡−𝑖 − 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀
𝑡−�̃� 𝑖𝑛𝑡 (25d)

hat represent a series of systems of inequalities in which 𝑖 = 1,… , �̃� 𝑖𝑛𝑡,
nd �̃� 𝑖𝑛𝑡 = 2 ℎ. Appendix details the mechanism of (25).

An upward offer on the BM for at least 4 consecutive hours between
:00 pm and 8:00 pm must be submitted every day from Monday to
riday [49]; this is represented by (26):
𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀
𝑡∈𝛥𝑡𝐵𝑆𝑃

≤ −𝐴𝑄 (26)

The objective function (1) can then be rewritten as:

𝑎𝑥 𝛥𝑡
∑

𝑡
( − �̃�𝑏𝑢𝑦,𝐴𝑆𝑀

𝑡 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 + (27)

𝑏𝑢𝑦,𝐵𝑀 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀 𝑠𝑒𝑙𝑙,𝐴𝑆𝑀 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀
7

− �̃�𝑡 𝑃𝑡 − �̃�𝑡 𝑃𝑡 +
− �̃�𝑠𝑒𝑙𝑙,𝐵𝑀
𝑡 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀

𝑡 − 𝐶𝑑
𝑡 )

here 𝐶𝑑
𝑡 is given by (13).

Eqs. (28) split the active power at the PoC into the ASM and BM
omponents, depending on the prices in a particular time step:

𝑐ℎ𝑔,𝑃 𝑜𝐶
𝑡 = 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀

𝑡 + 𝑃 𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀
𝑡 (28a)

𝑑𝑖𝑠,𝑃 𝑜𝐶
𝑡 = 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀

𝑡 + 𝑃 𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀
𝑡 (28b)

The maximum amount of power the system can buy or sell through
he markets is set by (29):

𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 ≤ 𝑀𝑃𝐴𝑆𝑀

𝑡 𝑍𝑏𝑢𝑦,𝐴𝑆𝑀
𝑡 (29a)

𝑐ℎ𝑔,𝑃 𝑜𝐶,𝐵𝑀
𝑡 ≤ 𝑀𝑃𝐵𝑀

𝑡 𝑍𝑏𝑢𝑦,𝐵𝑀
𝑡 (29b)

𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐴𝑆𝑀
𝑡 ≤ 𝑀𝑆𝐴𝑆𝑀

𝑡 𝑍𝑠𝑒𝑙𝑙,𝐴𝑆𝑀
𝑡 (29c)

𝑑𝑖𝑠,𝑃 𝑜𝐶,𝐵𝑀
𝑡 ≤ 𝑀𝑆𝐵𝑀

𝑡 𝑍𝑠𝑒𝑙𝑙,𝐵𝑀
𝑡 (29d)

Eqs. (30) guarantee that the system can only participate in one
arket for each time interval:
𝑏𝑢𝑦,𝐴𝑆𝑀
𝑡 +𝑍𝑏𝑢𝑦,𝐵𝑀

𝑡 ≤ 1 (30a)
𝑠𝑒𝑙𝑙,𝐴𝑆𝑀
𝑡 +𝑍𝑠𝑒𝑙𝑙,𝐵𝑀

𝑡 ≤ 1 (30b)

Finally, (31) describe the maximum number of charging and dis-
harging cycles referred to the maximum DoD:

∑

𝑡
𝑃 𝑐ℎ𝑔
𝑡 ≤ �̃�𝑐𝑦( ̃𝑆𝑜𝐸 − ̃𝑆𝑜𝐸)�̃� (31a)

∑

𝑡
𝑃 𝑑𝑖𝑠
𝑡 ≥ −�̃�𝑐𝑦( ̃𝑆𝑜𝐸 − ̃𝑆𝑜𝐸)�̃� (31b)

where:

�̃� = �̃�
𝑐ℎ𝑔

�̃�𝑖𝑛𝑖𝑡

̃𝐶𝑅
(32)

Eq. (32) indicates that lower the initial life, lower the amount of
energy that the battery can exchange during operation is.

2.1.4. Comments about the first level
For the sake of simplicity, for the first level the authors considered a

variable degradation/constant efficiency model as for (8), being aware
that this assumption may lead to possible error by comparing the exact
non-linear model [50]. However, this choice stems from the fact that
the first level could be a tool with which the aggregator dispatches
an aggregate of individual plants; this possibility can lead to large
problems, which is not even too unrealistic given that in Italy within a
UVAM there can be several plants. There is also a ‘‘practical’’ problem
in having the aggregator have the data from all possible merged plants
available; this is because the aggregator generally does not own the
BESS [51]. The choice to consider variable degradation makes it possi-
ble to use (13) to estimate the operating cost when the BESS is used. In
any case, as will be shown in Section 4.3, the modeling detail proposed
in the article for the second level compensates for the inaccuracies that
result from the first level.

2.1.5. Summary of the first level
Considering the above equations, the first optimization level can be

summarized as:
𝑂𝐹 ∶ (27)
𝑠.𝑡. ∶ (2)–(9), (11)–(15), (19)–(21), (24)–(26), (28)–(32).
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2.2. Second optimization level

In the second level, the BESS follows the scheduled output of the
first level, whereas the EMS distributes the total power exchanged
among all the batteries with the objective of minimizing their indi-
vidual capacity degradation. Fig. 2 shows the scheme of the second
level: batteries are assumed to be connected to their own converter
and converters are assumed to be linked to a transformer. All the
transformers are connected to the PoC.

To model the scheme, the following sets have been introduced:

• battery and converters variables are indexed through the 𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑠𝑒𝑡𝑠 (s,t), since each battery bank has its own converter;

• transformers variables are indexed through the 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑠𝑒𝑡𝑠
(c,t).

The second level optimization problem is described by:

𝑀𝑖𝑛 𝛥𝑡
∑

𝑡
𝐷𝑜𝑏𝑗

𝑡 (33)

As stated in the Introduction, three different strategies are defined.
The three strategies are characterized by the definition of 𝐷𝑜𝑏𝑗

𝑡 :

(A) 𝐷𝑜𝑏𝑗
𝑡 =

∑

𝑠 𝐿𝑠,𝑡 : Strategy A simulates the current industrial appli-
cation: the load profile is equally shared among the individual
batteries of the BESS:

𝑃 𝑐ℎ𝑔
𝑠,𝑡 = 𝑃 𝑐ℎ𝑔

𝑠+1,𝑡 (34)

𝑃 𝑑𝑖𝑠
𝑠,𝑡 = 𝑃 𝑑𝑖𝑠

𝑠+1,𝑡 (35)

(B) 𝐷𝑜𝑏𝑗
𝑡 =

∑

𝑠
𝑑𝑠,𝑡
�̃�𝑖𝑛𝑖𝑡
𝑠

: Strategy B goal is to align batteries to a common
SoH level. 𝑑𝑠,𝑡 is a representation of the degraded conditions
of the batteries, regardless of their SoH. The term 𝐿𝑖𝑛𝑖𝑡

𝑠 aims at
equalizing the batteries, since it forces to use newer ones over
older ones;

(C) 𝐷𝑜𝑏𝑗
𝑡 =

∑

𝑠
𝐿𝑠,𝑡
�̃�𝑖𝑛𝑖𝑡
𝑠

: in Strategy C, we integrate the life-loss variable
𝐿𝑠,𝑡 in the objective function, weighting it, as in Strategy B, with
𝐿𝑖𝑛𝑖𝑡
𝑠 to favor the use of newer batteries over the old ones. The

explicit presence of 𝐿𝑠,𝑡 takes into account the zeroing of the
parameter �̃�𝑠 once a battery gets older and reaches stable SEI.

The model is completed by the following constraints. Eq. (36)
mposes that the overall power on PoC side is given by the sum of the
owers at primary side of the transformers:

̃𝑃𝑜𝐶
𝑡 =

∑

𝑐
𝑃 𝑡𝑟,𝑝𝑟𝑖𝑚
𝑐,𝑡 (36a)

̃𝑃𝑜𝐶
𝑡 =

∑

𝑐
𝑄𝑡𝑟,𝑝𝑟𝑖𝑚

𝑐,𝑡 (36b)

q. (36b) does not come from the first level, but it represents the
mposed reactive power request from the grid, and it is treated as a
iven input for the second level.

From a theoretical point of view, the reactive power flow within
ESS would affect the amount of active power that the BESS can
xchange in the market according to the formula 𝑃 2

𝑀𝐴𝑋 = 𝐴2
𝑀𝐴𝑋 −𝑄2,

limit imposed, among others, by the capability of the converters.
owever, considering that currently in many countries (including Italy)

here is not yet a voltage regulation service requirement, which would
timulate important amounts of reactive power to the BESS, the amount
f reactive power inside the plant is mostly given by reactive losses
nd, hence, has small values. Therefore, a constant 𝑃𝑀𝐴𝑋 calculated
t nominal power factor has been considered, in order to cover the
on-null reactive power flows.

Eqs. (37) are written for the transformers and link the secondary
ide active and reactive power variables to the primary ones through
he efficiencies, that are now variables:

𝑡𝑟,𝑝𝑟𝑖𝑚
𝑐,𝑡 = 𝑃 𝑐ℎ𝑔,𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡 𝜂𝑡𝑟𝑐,𝑡 +
𝑃 𝑑𝑖𝑠,𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡

𝑡𝑟 (37a)
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𝜂𝑐,𝑡 e
𝑄𝑡𝑟,𝑝𝑟𝑖𝑚
𝑐,𝑡 = 𝑄𝑐ℎ𝑔,𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡 𝜂𝑡𝑟𝑐,𝑡 +
𝑄𝑑𝑖𝑠,𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡

𝜂𝑡𝑟𝑐,𝑡
(37b)

𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 = 𝑃 𝑐ℎ𝑔,𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡 + 𝑃 𝑑𝑖𝑠,𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 (37c)

𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 = 𝑄𝑐ℎ𝑔,𝑡𝑟,𝑠𝑒𝑐

𝑐,𝑡 +𝑄𝑑𝑖𝑠,𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 (37d)

In (38), the active and the reactive power of transformers are
ivided among the converters connected:

𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 =

∑

𝑠∈𝑐
(𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣

𝑠,𝑡 + 𝑃 𝑑𝑖𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 ) (38a)

𝑡𝑟,𝑠𝑒𝑐
𝑐,𝑡 =

∑

𝑠∈𝑐
(𝑄𝑐ℎ𝑔,𝑐𝑜𝑛𝑣

𝑠,𝑡 +𝑄𝑑𝑖𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 ) (38b)

Finally, (2)–(8) in Section 2.1.1, (9)–(32) in Section 2.1.2 can
e extended for the whole set of batteries. In this case, the battery
fficiency is considered as a time dependent variable.

Fig. 3 summarizes the proposed complete two-levels optimization
odel scheme: for each day, historical price data and the initial status

f the system (represented by the average values of BRL and SoE) are
iven as input to the first level, which determines a profitable load
rofile by weighting the trade-off between the degradation cost and
he profits from participating in the market. The resulting profile is
iven as input to the second level, which define the set-points of the
ingle batteries within the BESS by considering detailed modeling of
egradation and losses; at the end of the day, information about the
ndividual BRL and SoE are monitored as used for the following day.

.2.1. Summary of the second level
Considering the above equations, the second optimization level can

e summarized as:
𝑂𝐹 ∶ (33)
𝑠.𝑡. ∶ (2)–(9), (11)–(15), (19)–(21), (32), (36)–(38).

. Proposed MILP model

Eqs. (2), (8), (9), (11), (12), (15), (19), (20), and (37), introduced
n Section 2, are non-linear, resulting, in the presence of many compo-
ents, in a large MINLP model which is difficult to solve in reasonable
ime. For this reason, the linearization of the model is proposed in this
ection and a numerically tractable MILP model is obtained, without
osing the accuracy inherent to the MINLP model.

Several linearization methods exist in the literature, such as, for ex-
mple, Special Order Set of Type One and Two (SOS1 and SOS2) [52],
nd the Constraint Cost Variable (CCV) method [53]. Many of these
echniques rely on the use of many additional binary variables which
an significantly increase the complexity of the MILP problem: using
oo many will also lead to an intractable MILP model. Instead, the CCV
ethod does not require the introduction of additional binary variables,

ut it requires the non-linear function to be convex. However, as it
ill be clarified further, the non-linear model shown in Section 2 is
ot directly suited for the CCV method, as many of the functions or
haracteristics are not convex. Therefore, to take full advantage of the
CV method, the non-linear equations of the model have been made
onvex when necessary and possible.

.1. Degradation

This subsection refers to the linearization of the first level; the same
quations are valid for the second level by adding the set 𝑠.
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Fig. 3. Proposed two-level model scheme.
3.1.1. Cumulative degradation function and stress factors
In (11a), 𝑑𝑜𝑝𝑡 includes 𝑑𝑡𝑖𝑚𝑒𝑡 ; since the latter is comparatively less

than the product, it can be neglected. Also, temperature stress factor
is neglected considering an efficient cooling system implemented.

In (11a) there is a product of three continuous variables 𝑑𝐶𝑅
𝑡 𝑑𝐷𝑜𝐷

𝑡
𝑑𝑆𝑜𝐸𝑡 , which is difficult to be handled in a linear model; in particular,
there is not a clear way to multiply more than two continuous variables
in a linearized fashion. Therefore, a worst-case scenario has been taken
for the value of DoDs, considering the highest DoD and using it to
calculate 𝑓𝐷𝑜𝐷 through (20). This approximation can overestimate the
stress factor, being on the safe side for evaluating degradation:

�̃�
𝐷𝑜𝐷

( ̃𝐷𝑜𝐷) = 1

�̃�𝛿1 ̃𝐷𝑜𝐷
�̃�𝛿2

+ �̃�𝛿3

(39)

The linearized stress factors are now used for the formulation of a
cumulative degradation function in real-time, expressed as:

𝑑𝑜𝑝𝑡 = 𝑑𝑆𝑜𝐸𝑡 𝑑𝐶𝑅
𝑡 �̃�

𝐷𝑜𝐷
( ̃𝐷𝑜𝐷) (40)

The product of 𝑑𝑆𝑜𝐸𝑡 and 𝑑𝐶𝑅
𝑡 , two continuous variables, can be con-

vexified using the techniques described in [54] as:

𝑁 = 𝑄𝑀 =
(𝑄 +𝑀

2

)2
−
(𝑄 −𝑀

2

)2
(41)

where 𝑄,𝑀 are two generic continuous variables.
Therefore:

𝑑𝑆𝑜𝐸𝑡 𝑑𝐶𝑅
𝑡 = 𝑆𝑄𝑑𝑆𝑜𝐸 ,𝑑𝐶𝑅

𝑡 −𝐷𝑄𝑑𝑆𝑜𝐸 ,𝑑𝐶𝑅

𝑡 (42)

Following similar considerations, in (11b) the temperature stress
factor can be neglected; moreover, once defined 𝛥𝑡, also 𝑑𝑡𝑖𝑚𝑒𝑡 be-
comes constant and can be threaded as a parameter. Therefore, (11b)
becomes:

𝑑𝑖𝑑𝑡 = 𝑑𝑡𝑖𝑚𝑒𝑡 𝑑𝑇 𝑒𝑚𝑝𝑡 𝑑𝑆𝑜𝐸𝑡 (43)

thus becoming only SoE-dependent.
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Finally, due to the convexity of the exponential function, (15) and
(19) can be linearized through piecewise linearization [55].

In (12), there are the products 𝑑𝑜𝑝𝑡 𝑍𝑜𝑝
𝑡 and 𝑑𝑖𝑑𝑡 𝑍𝑖𝑑

𝑡 , that represents
the multiplication between a continuous variable and a binary one. Let
𝑍 be a binary variable and 𝑄 a continuous one for which 𝑄 ≤ �̃� , where
�̃� is the upper bound of 𝑄; a continuous variable 𝑌 is introduced to
replace the product 𝑌 = 𝑄𝑍. The linearization can be achieved through
the following additional constraints [54]:

𝑌 ≤ �̃�𝑍 (44a)

𝑌 ≤ 𝑄 (44b)

𝑌 ≥ 𝑄 − �̃� (1 −𝑍) (44c)

Therefore, (12) can be split into two set of equations without using
any auxiliary binary variable:

𝑑𝑡 ≤ �̃�
𝑜𝑝
𝑍𝑜𝑝

𝑡 (45a)

𝑑𝑡 ≤ �̃�
𝑜𝑝

(45b)

𝑑𝑡 ≥ 𝑑𝑜𝑝𝑡 − (1 −𝑍𝑜𝑝
𝑡 )�̃�

𝑜𝑝
(45c)

and:

𝑑𝑡 ≤ �̃�
𝑖𝑑
𝑍 𝑖𝑑

𝑡 (46a)

𝑑𝑡 ≤ �̃�
𝑖𝑑

(46b)

𝑑𝑡 ≥ 𝑑𝑖𝑑𝑡 − (1 −𝑍𝑖𝑑
𝑡 )�̃�

𝑖𝑑
(46c)

3.1.2. Life loss
Battery remaining life and life loss at the time instance 𝑡 are given

by (9) and (14) respectively. Exponents in (9) are relatively small
when considering time periods typical for operation (several hours).
For longer study periods, the use of rolling time horizon allows opti-
mization over short periods of time. Hence, in general for short time
periods, 𝛽 ∈ [101; 2 ⋅ 102], while 𝑑 ∈ [10−8; 8 ⋅ 10−5] [21,22]. Therefore,
𝑡
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𝛽 ⋅ 𝑑𝑡 is, in the worst case, 10−2. Moreover, for old batteries, since the
SEI film formation stops and the battery degrades slower, �̃� becomes
zero and 𝛽 ⋅ 𝑑𝑡 term disappears from (9). It is possible then to exploit
the linear approximation that a function 𝑔(𝑥) = 𝑒𝑓 (𝑥), with 𝑓 (𝑥) close to
zero, can be expressed as 𝑔(𝑥) = 1 + 𝑓 (𝑥). Therefore, (9) becomes,

𝐵𝑅𝐿𝑡 = �̃�(1 − 𝛽𝑑𝑡) + (1 − �̃�)(1 − 𝑑𝑡) (47)

𝐵𝑅𝐿𝑡 = 1 − 𝑑𝑡[1 + �̃�(𝛽 − 1)] (48)

Substituting (48) in (14), if the battery is new (�̃�𝑖𝑛𝑖𝑡=100%), it becomes:

𝐿𝑡 = [1 + �̃�(𝛽 − 1)]𝑑𝑡 = �̃�𝐿𝐿,𝑛𝑒𝑤𝑑𝑡 (49)

This approximation is valid as long as the exponent remains sufficiently
small; in normal applications, the simulation time intervals are not very
large and linearization is acceptable.

For an old battery, �̃� becomes zero [21]; hence, �̃�𝐿𝐿,𝑜𝑙𝑑 = 1
and (49) becomes:

𝐿𝑡 = 𝑑𝑡 (50)

Finally, 𝐿𝑡 can be divided into operating life loss, 𝐿𝑜𝑝
𝑡 , and idle life

loss, 𝐿𝑖𝑑
𝑡 , as follows:

𝐿𝑡 = 𝐿𝑜𝑝
𝑡 + 𝐿𝑖𝑑

𝑡 (51)

𝐿𝑜𝑝
𝑡 = �̃�𝐿𝐿𝑑𝑜𝑝𝑡 �̃�𝑐𝑦 (52)

𝐿𝑖𝑑
𝑡 = �̃�𝐿𝐿𝑑𝑖𝑑𝑡 (53)

3.2. Efficiencies

To avoid variables multiplication, efficiencies have been treated as
losses within the component:

𝑋𝜂 = 𝑋 − 𝐿𝑜𝑠𝑠𝑒𝑠
𝑌
𝜂

= 𝑌 − 𝐿𝑜𝑠𝑠𝑒𝑠

where X is a generic positive number and Y is a generic negative one.

.2.1. Battery
The internal resistance of the electrodes and the electrolytes of Li-

on batteries increases gradually due to repeated cycling [56,57]. Losses
ssociated with the resistance can be expressed as:
𝑙𝑜𝑠𝑠,𝑏𝑎𝑡 = 𝑅𝑏𝑎𝑡𝐼2 (54)

urrent flowing through the battery is proportional to CR:

= 𝐶𝑅 ⋅ 𝐸
𝑉

(55)

where E is the battery energy, V is the battery voltage level and CR is
defined as in (7). Resistance values mainly depend on the battery SoE
and SoH [48]. By (55), it is possible to rewrite (54) as:

𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡 = 𝑅𝑏𝑎𝑡(𝑆𝑜𝐻,𝑆𝑜𝐸)𝐶𝑅2 𝐸2

𝑉 2
(56)

The effects of SoH and SoE on the battery resistance has been split
considering that SoH of each battery varies little within an optimiza-
tion cycle and can be assumed as a parameter, ̃𝑆𝑜𝐻𝑓 . Resistance is
therefore only SoE-dependent and (56), considering 𝐸 as a parameter
through (32) and the voltage constant on the Direct Current (DC) side
of the converter, becomes:

𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡
𝑠,𝑡 = ̃𝑆𝑜𝐻𝑓

𝑠 𝑅
𝑏𝑎𝑡
𝑠,𝑡 (𝑆𝑜𝐸)𝐶𝑅2

𝑠,𝑡
�̃�

2
𝑠

𝑉 2
𝑠

(57)

Therefore, linearization of (57) is reduced to the linearization of the
𝑅𝑏𝑎𝑡
𝑠,𝑡 (𝑆𝑜𝐸)𝐶𝑅2

𝑠,𝑡 product.
Due to its convexity, 𝐶𝑅2 can be linearized using the CCV method.
10

𝑠,𝑡 w
Fig. 4. Battery resistance value as function of SoE [58].

Fig. 5. Battery resistance value as function of SoH [58].

The 𝑅𝑏𝑎𝑡(𝑆𝑜𝐸) term can be linearized starting from Fig. 4, where
battery resistance values used in this study and typical for Li-ion
batteries are plotted as a function of the SoE.

The SoE range can be divided into two subsets (0.05–0.5 and
0.5–0.9) and in each of them the resistance is a convex function:

𝑅𝑏𝑎𝑡
𝑠,𝑡 = 𝑅𝑏𝑎𝑡,𝑎

𝑠,𝑡 𝑍𝑎
𝑠,𝑡 + 𝑅𝑏𝑎𝑡,𝑏

𝑠,𝑡 𝑍𝑏
𝑠,𝑡 (58a)

𝑆𝑜𝐸𝑠,𝑡 = 𝑆𝑜𝐸𝑎
𝑠,𝑡𝑍

𝑎
𝑠,𝑡 + 𝑆𝑜𝐸𝑏

𝑠,𝑡𝑍
𝑏
𝑠,𝑡 (58b)

Eqs. (58) are used to select the two different subsets: for each time
instant, only one between 𝑍𝑎

𝑠,𝑡 and 𝑍𝑏
𝑠,𝑡 is equal to 1 and only one part of

the curve is considered. The two curves can be linearized separately by
piecewise linearization through the CCV method. The products in (58)
can be linearized as in [54].

Parameter ̃𝑆𝑜𝐻𝑓 can be calculated starting from Fig. 5, where the
esistance values are plotted as a function of the SoH as follows:

To set ̃𝑆𝑜𝐻𝑓 , the following steps have been followed:

1. for each given SoH (100%, 90%, 70%) the average value of the
resistance over the SoE range has been calculated;

2. using curve fitting, linear approximation of 𝑅(𝑆𝑜𝐻) is obtained;
3. using it, the value of ̃𝑆𝑜𝐻 is obtained by 𝑅(100%)∕𝑅(𝑆𝑜𝐻),

where SoH is the actual value before optimization.

Lastly, the product 𝑅𝑏𝑎𝑡
𝑠,𝑡 𝐶𝑅2

𝑠,𝑡 can be linearized as described in [54] and
explained earlier in (41):

𝑅𝑏𝑎𝑡
𝑠,𝑡 𝐶𝑅2

𝑠,𝑡 = 𝑆𝑄𝑅𝑏𝑎𝑡 ,𝐶𝑅2

𝑠,𝑡 −𝐷𝑄𝑅𝑏𝑎𝑡 ,𝐶𝑅2

𝑠,𝑡 (59)

with both terms modeled through piecewise linearization.
Hence, (2), suitably adapted for a system of several batteries and

considering variable efficiency, becomes:

𝑆𝑜𝐸𝑠,𝑡 = 𝑆𝑜𝐸𝑠,𝑡−1 +
𝛥𝑡

𝐸𝑠

(𝑃 𝑐ℎ𝑔
𝑠,𝑡 + 𝑃 𝑑𝑖𝑠

𝑠,𝑡 − 𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡
𝑠,𝑡 ) (60)

here 𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡 linearization is given by (57)–(59).
𝑠,𝑡
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Table 1
First level battery data.

̃𝑆𝑜𝐸𝑖𝑛𝑖𝑡 �̃�𝑖𝑛𝑖𝑡 ̃𝐶𝑅 �̃� �̃�
𝑐ℎ𝑔

�̃�
𝑑𝑖𝑠

�̃�
[pu] [%] [h−1] [MWh] [MW] [MW] [%]

0.5 95.62 1 6.88 7.2 −7.2 96.5

3.2.2. Converter
Converters losses can be classified as: conduction losses, off-state

losses and switching losses. Since the leakage current during the off-
state of the device is negligibly small, power losses during the off-state
can be neglected [59]. Conduction losses are dependent on the square
value of the current, whereas the switching ones depend on the current
and the switching frequency [60], which is constant. In general, also
the voltage at the DC bus and the modulation index have effects on the
losses; since the DC voltage has small variations with the SoE, these
last contributions can be neglected, resulting in an error lower than
0.2% [61].

Therefore, semiconductor losses can be modeled as:

𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 = �̃�𝑠,𝑡𝐼

𝑐𝑜𝑛𝑣2
𝑠,𝑡 + 𝜁𝑠,𝑡𝐼

𝑐𝑜𝑛𝑣
𝑠,𝑡 + �̃�𝑠,𝑡 (61)

where �̃�𝑠,𝑡, 𝜁𝑠,𝑡, �̃�𝑠,𝑡 are parameters that can be evaluated through ex-
perimental data; in particular, �̃�𝑠,𝑡 represents no-load losses. Since the
DC voltage can be assumed constant and current is proportional to the
apparent power through the converter, (61) becomes:

𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 = 𝛾 ′𝑠,𝑡𝐴

𝑐𝑜𝑛𝑣2
𝑠,𝑡 + 𝜁 ′𝑠,𝑡𝐴

𝑐𝑜𝑛𝑣
𝑠,𝑡 + 𝜆′𝑠,𝑡 (62)

The term 𝐴𝑐𝑜𝑛𝑣2
𝑠,𝑡 can be expressed as:

𝐴𝑐𝑜𝑛𝑣2
𝑠,𝑡 = 𝑃 𝑐𝑜𝑛𝑣2

𝑠,𝑡 +𝑄𝑐𝑜𝑛𝑣2
𝑠,𝑡 = (63)

= (𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣
𝑠,𝑡 − 𝑃 𝑑𝑖𝑠,𝑐𝑜𝑛𝑣

𝑠,𝑡 )2 +𝑄𝑐𝑜𝑛𝑣2
𝑠,𝑡

Due to their convexity, variables 𝑃 𝑐𝑜𝑛𝑣2
𝑠,𝑡 and 𝑄𝑐𝑜𝑛𝑣2

𝑠,𝑡 are linearized
through the CCV method mentioned above. Therefore, it is possible to
linearize the convex term of 𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣

𝑠,𝑡 in (62) through the CCV method,
since it depends on the sum of two convex functions [62].

Eqs. (8a) and (8b), adapted for a system of several batteries and
considering variable efficiency, become:

𝑃 𝑐ℎ𝑔
𝑠,𝑡 = 𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣

𝑠,𝑡 − 𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 𝑍𝑐ℎ𝑔

𝑠,𝑡 (64a)

𝑃 𝑑𝑖𝑠
𝑠,𝑡 = 𝑃 𝑑𝑖𝑠,𝑐𝑜𝑛𝑣

𝑠,𝑡 − 𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 𝑍𝑑𝑖𝑠

𝑠,𝑡 (64b)

The products 𝑃 𝑐ℎ𝑔,𝑐𝑜𝑛𝑣
𝑠,𝑡 𝑍𝑐ℎ𝑔

𝑠,𝑡 and 𝑃 𝑑𝑖𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 𝑍𝑑𝑖𝑠

𝑠,𝑡 are linearized through
the techniques described in [54] and illustrated by (44).

3.2.3. Transformer
Transformers losses have been modeled starting from the Cantilever

equivalent circuit, in which the shunt branch is moved to the primary
terminals [63]. Eqs. (37) become:

𝑃 𝑡𝑟𝑎𝑛𝑠,𝑝𝑟𝑖𝑚
𝑐,𝑡 = 𝑃 𝑡𝑟𝑎𝑛𝑠,𝑠𝑒𝑐

𝑐,𝑡 + 𝑃 𝑓𝑒
𝑐 + 𝑃 𝑗𝑜𝑢𝑙𝑒,𝑡𝑟

𝑐,𝑡 =

=𝑃 𝑡𝑟𝑎𝑛𝑠,𝑠𝑒𝑐
𝑐,𝑡 + 𝑃 𝑓𝑒

𝑐 + 3�̃�𝑠,𝑡𝑟
𝑐 𝐼𝑠𝑒𝑐

′2
𝑐,𝑡 (65a)

𝑄𝑡𝑟𝑎𝑛𝑠,𝑝𝑟𝑖𝑚
𝑐,𝑡 = 𝑄𝑡𝑟𝑎𝑛𝑠,𝑠𝑒𝑐

𝑐,𝑡 + �̃�ℎ𝑦𝑠𝑡
𝑐 +𝑄𝑓𝑙𝑢𝑥,𝑡𝑟

𝑐,𝑡 =

= 𝑄𝑡𝑟𝑎𝑛𝑠,𝑠𝑒𝑐
𝑐,𝑡 + �̃�ℎ𝑦𝑠𝑡

𝑐 + 3�̃�𝑠,𝑡𝑟
𝑐 𝐼𝑠𝑒𝑐

′2
𝑐,𝑡 (65b)

The term 𝐼𝑠𝑒𝑐′2𝑐,𝑡 can be expressed as:

𝐼𝑠𝑒𝑐
′2

𝑐,𝑡 =
𝑃 𝑡𝑟𝑎𝑛𝑠,𝑝𝑟𝑖𝑚2

𝑐,𝑡 +𝑄𝑡𝑟𝑎𝑛𝑠,𝑝𝑟𝑖𝑚2

𝑐,𝑡

3𝑉 𝑛,𝑠𝑒𝑐2
(66)

where terms 𝑃 𝑡𝑟𝑎𝑛𝑠,𝑝𝑟𝑖𝑚2

𝑐,𝑡 and 𝑄𝑡𝑟𝑎𝑛𝑠,𝑝𝑟𝑖𝑚2

𝑐,𝑡 are linearized through CCV
method.
11
3.2.4. Convexity and objective function
Adding the losses in the objective function allows the exploitation

of the CCV method. Therefore, (33) becomes:

𝑀𝑖𝑛 𝛥𝑡
∑

𝑡
(𝐷𝑜𝑏𝑗

𝑡 + 𝐿𝑡𝑜𝑡
𝑡 ) (67)

with:

𝐿𝑡𝑜𝑡
𝑡 =

∑

𝑠
(𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡

𝑠,𝑡 + 𝑃 𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡 )+ (68)

+
∑

𝑐
(𝑃 𝑗𝑜𝑢𝑙𝑒,𝑡𝑟

𝑐,𝑡 +𝑄𝑓𝑙𝑢𝑥,𝑡𝑟
𝑐,𝑡 ) (69)

Moreover, due to the minimization of the terms 𝐷𝑜𝑏𝑗
𝑡 and 𝑃 𝑙𝑜𝑠𝑠,𝑏𝑎𝑡

𝑠,𝑡 ,
he subtracted terms of the linearization of the product of variables
n (42), 𝐷𝑄𝑑𝑆𝑜𝐸 ,𝑑𝐶𝑅

𝑡 , and (59), 𝐷𝑄𝑅𝑏𝑎𝑡 ,𝐶𝑅2

𝑠,𝑡 , have to be included as
penalty factors, since the optimization problem, in an attempt to mini-
mize the terms, will maximize the variable to be subtracted. Therefore:

𝑓 𝑝𝑒𝑛
𝑡 =

∑

𝑠
(𝐶𝑅2

𝑠,𝑡 +𝐷𝑄𝑑𝑆𝑜𝐸 ,𝑑𝐶𝑅

𝑠,𝑡 +𝐷𝑄𝑅𝑏𝑎𝑡 ,𝐶𝑅2

𝑠,𝑡 ) (70)

and (67) becomes:

𝑀𝑖𝑛 𝛥𝑡
∑

𝑡
(𝐷𝑜𝑏𝑗

𝑡 + 𝐿𝑡𝑜𝑡
𝑡 + 𝑓 𝑝𝑒𝑛

𝑡 ) (71)

Therefore, the first level optimization linearized model is made
of: 𝑂𝐹 ∶ (27) 𝑠.𝑡. ∶ (2)–(8), (13)–(15), (19)–(21), (24)–(26), (28)–
(32), (39)–(46), (48), (51)–(53). while the second level optimization
linearized model is made of:

𝑂𝐹 ∶ (71)
𝑠.𝑡. ∶ (3)–(8), (13)–(15), (19)–(21), (32), (36), (38)–(46), (48),

(51)–(53), (57)–(60), (62)–(66), (68), (70).

4. Results

4.1. Input data

Concerning the first level, ratings and battery constraints as pro-
vided by the manufacturer are shown in Table 1.

Parameter �̃�𝑐𝑦 has been set equal to 3. To calculate the operating
cost of the BESS, monetary values have been taken from [7] and an
overall cost of 310 e

kWh has been considered. Parameters 𝜂𝑐𝑜𝑛𝑣 and 𝜂𝑡𝑟𝑎𝑛𝑠

have been assumed equal to 98% and 99%, respectively [58].
Market data, taken from [64], are referred to Italy North bidding

zone (May 2020), with parameter 𝛥𝑡𝐵𝑆𝑃 chosen between 17:00 and
20:00.

Considering the second level, a system made of five batteries, each
equipped with their own converter and connected with two identical
groups of transformers, has been considered; their data are summarized
in Table 2. Bat1, Bat2, and Bat3 are connected to the first transformer,
while Bat4 and Bat5 are connected to the second one.

Transformer data [58] is summarized in Table 3.
The reactive power profile has been defined by setting a random

value between −0.72 Mvar and +0.72 Mvar, which is the 8% of the
nominal plant size; this choice was made considering BESS operation
close to unitary power factor, as no reactive power services have been
imposed to the plant.

The MILP optimization problem has been implemented in GAMS
32.2.0 and solved using CPLEX 12.6. Simulations have been performed
on a PC with Intel®Core™i7-3770 CPU @ 3.40 GHz, RAM 8 GB.
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Table 2
Second level battery data [58].

�̃�𝑖𝑛𝑖𝑡 �̃� ̃𝑆𝑜𝐻𝑓 ̃𝑆𝑜𝐸𝑖𝑛𝑖𝑡 ̃𝑆𝑜𝐸 ̃𝑆𝑜𝐸 ̃𝐶𝑅 �̃�
𝑐ℎ𝑔

�̃� 𝑑𝑖𝑠

[%] [MWh] [–] [pu] [pu] [pu] [h−1] [MW] [MW]

Bat1 100 1.8 1.0 0.5 0.1 0.9 1 1.8 −1.8
Bat2 93 1.674 1.21 0.5 0.1 0.9 1 1.8 −1.8
Bat3 99 1.782 1.03 0.5 0.1 0.9 1 1.8 −1.8
Bat4 96 1.728 1.12 0.5 0.1 0.9 1 1.8 −1.8
Bat5 90.1 1.622 1.297 0.5 0.1 0.9 1 1.8 −1.8
A
c

t
d
S
a
l
t
m
C
≈
w

Table 3
Transformer parameters [58].
�̃�𝑛 𝑉 𝑛,𝑝 𝑉 𝑛,𝑠 �̃�𝑐𝑐 𝑃 𝑐𝑐 𝑃 𝑓𝑒 𝑖0

[MVA] [kV] [kV] [%] [kW] [kW] [%]

5.4 36 0.4 6 32 4.3 0.13

4.2. Model effectiveness evaluation

4.2.1. Short-term analysis
To verify the effectiveness of the model, the three strategies intro-

duced in 2.2 have been simulated over 31 days (744 h). For each day,
the first level sets a profitable real power load profile considering the
entire day; once defined, the profile is given as input, together with
the reactive power as described in 4.1, to the second level which splits
the profiles between the single batteries within the BESS. The second
level is simulated using the rolling horizon approach: the optimization
was considered for intervals of three hours, with time step of one hour,
using the rolling horizon along one day (the one simulated by the first
level). For each three-hours interval, only the first one is considered
applied in operation and then used as initial condition for the next
rolling horizon iteration; in other words, the first hour is optimized
while considering one hour before and two ahead.

Moreover, the sensitivity of the three strategies respect to �̃� has been
ested.

Considering the second level, Fig. 6 shows the values of cumulative
𝑠,𝑡 and cumulative 𝐿𝑠,𝑡 for Strategy A, that represents the current
ndustrial practice, in which the system does not prioritize the use of
ny battery and loads them equally. This causes a significant capacity
egradation which, as shown in Fig. 6(a), is similar for the five batter-
es; the capacity degradation is not exactly the same given the different
𝑜𝐻 𝑖𝑛𝑖𝑡 which leads to a different value of Joule losses. Also Fig. 6(b)
ighlights the similar batteries behavior: Bat5 has the same trend as
he others until the SoH value of 90% is reached. Beyond this point,
he slope �̃�𝐿𝐿 from (52)–(53) changes and Bat5 loses less life than the
thers, despite similar degradation values.

In Strategy B, the second level minimizes 𝑑𝑠,𝑡
�̃�𝑖𝑛𝑖𝑡
𝑠

, thus considering only
̃ 𝑖𝑛𝑖𝑡
𝑠 , since �̃� and 𝛽 do not influence directly 𝑑𝑠,𝑡. The values of cumu-

ative 𝑑𝑠,𝑡 and cumulative 𝐿𝑠,𝑡 are shown in Fig. 7. Strategy B simulates
he priority of using newer batteries more, without considering the
hange of slope of the 𝐿𝑠,𝑡 curve due to the zeroing of �̃�, to balance their
oH. Fig. 7(a) shows that Bat1, the newest, is the one that degrades the
ost, followed by Bat3, Bat4, Bat2 and lastly Bat5, according to their

ge ( Table 2); a similar behavior is observed in Fig. 7(b).
In Strategy C, the second optimization level minimizes 𝐿𝑠,𝑡

�̃�𝑖𝑛𝑖𝑡
𝑠

, thus
onsidering both �̃�𝑖𝑛𝑖𝑡

𝑠 and �̃� which, as described in Section 3.1.2,
nfluence 𝐿𝑠,𝑡 as it becomes 0 once the battery reaches a SoH lower than
0%. Considering the second level, the values of cumulative 𝑑𝑠,𝑡 and
umulative 𝐿𝑠,𝑡 are shown in Fig. 8: Strategy C simulates the priority of
sing newer batteries more, but also considering the change of slope of
𝑠,𝑡 curve due to the zeroing of �̃�. Fig. 8(a) shows that Bat1, the newest,

s the one that degrades the most. However, compared to Strategy B,
at5, the oldest, has a higher cumulative degradation due to the change

n slope of �̃�𝐿𝐿 from (52)–(53) which, for equal 𝑑𝑠,𝑡, leads to a lower
alue of 𝐿 . Therefore, the smaller value of the numerator of 𝐿𝑠,𝑡
12

𝑠,𝑡 �̃�𝑖𝑛𝑖𝑡
𝑠

i

Fig. 6. Strategy A: degradation results.

influences the objective function more than the smaller value of the
denominator which, as previously mentioned, would penalize the use
of older batteries. In Fig. 8(a), Bat5 curve changes slope at h = 308
and crosses the curves of Bat2, Bat4 and Bat3 at h = 478, h = 631 and
h = 735, respectively. Up to h = 308, curves in Fig. 7(a) and 8(a) are
the same, as the strategy until 𝐵𝑅𝐿𝑠,𝑡 = 90% is the same. Considering
Fig. 8(b), even if Bat5 is more used than Bat2, Bat3 and Bat4, it has
a lower cumulative 𝐿𝑠,𝑡, because of the zeroing of �̃�. As a result, Bat2,
the second oldest after Bat5, will be used less; this behavior determines
the almost horizontality of its curves in Fig. 8(a) and 8(b).

Table 4 synthesizes the results of optimization at both levels. Sim-
ulation times indicated in column ‘‘𝑡𝑠𝑖𝑚’’ are very short for Strategy

, while they are longer for the other two, although they remain
ontained.

According to Table 4, Strategy A gives the worst results both from
he point of view of profits and life loss. Between Strategies B and C
ifferences are small: life loss in Strategy C is 0.946% smaller than in
trategy B (last column), which is about 0.2% per battery, but profits
re 90 e lower (second column), which is around 0.33% of total. For
onger periods, the difference in life loss can become significant, leading
o more battery replacements. However, the simulation interval of one
onth is too short for an in-depth comparison between Strategies B and
, and is performed in the vicinity of average battery remaining life of
90%, testing the adopted strategies against SEI film formation stop,
hen �̃� becomes null; therefore, in Section 4.2.2 a wider time interval
s analyzed.
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Table 4
Simulation results.

𝑡𝑠𝑖𝑚 First level Second level
∑

𝑡 𝑃𝑟𝑡
∑

𝑡 𝑅𝑡
∑

𝑡 𝐶𝑑
𝑡

∑

𝑠,𝑡 𝑃
𝑙𝑜𝑠𝑠,𝑏𝑎𝑡
𝑠,𝑡

∑

𝑠,𝑡 𝑃
𝑙𝑜𝑠𝑠,𝑐𝑜𝑛𝑣
𝑠,𝑡

∑

𝑠,𝑡 𝑑𝑠,𝑡
∑

𝑠,𝑡 𝐿𝑠,𝑡
[h:min:s] [e] [e] [e] [MWh] [MWh] [–] [%]

Strategy A 0:10:18 27150 53020 25870 9.721 34.477 0.0413 12.655
Strategy B 1:43:27 27640 53420 25780 24.449 20.42 0.0209 7.254
Strategy C 1:07:56 27550 53270 25720 24.820 20.39 0.0212 6.308
Fig. 7. Strategy B: degradation results.

The different values in the ‘‘First level’’ columns in Table 4 depends
n the strategy adopted: even if, as stated in the Introduction, the two
evels are independent, the maximum bids that the BESS can submit
ary as a function of the remained capacity, which depends on the
econd level results of previous periods computations.

.2.2. Long-term analysis
The long-term impact of the three strategies considered is analyzed

hrough a 10-year simulation. Being interested primarily in the results
f the second level and being very difficult to estimate prior evolution
n log term for ASM and BM, the parameters related to the ASM and
M in the first optimization level are considered constant, and equal to
he ones used for short-term analysis, throughout the analyzed period.

Fig. 9, 10, and 11 show the remaining life for each of the five bat-
eries considered; here a battery is replaced when it reaches 𝐵𝑅𝐿𝑠,𝑡 =
80%.

While for Strategy A the behavior is similar to that described
in 4.2.1, the same cannot be said for Strategies B and C. A clear example
is represented around the fifth year: in Strategy B (Fig. 10), Bat2 waits
a long time before being replaced (almost a year), while in Strategy
C (Fig. 11) everything happens much more quickly. This difference
derives from the different numerator between the two strategies; in
fact, that of Strategy B is independent of �̃� and therefore the numerator
for an old battery is much stronger than a new battery one, leading, as
expected, to less use of old batteries compared to new ones (the remain-
ing old battery is significantly slowed down once Bat2 is replaced). On
13
Fig. 8. Strategy C: degradation results.

the other hand, in Strategy C the effect of the numerator also depends
on �̃�, which leads to a more uniform behavior between batteries with
different levels of BRL.

Table 5 summarizes the total number of replacements year by year;
it can be easily observed that the substitutions in Strategy A are much
higher than those in the other two, confirming the greater efficiency of
the new proposed strategies compared to the traditional one. Moreover,
the profits with Strategy A are around 2.6924 𝑀e, a lower value
than the other two strategies, which are 3.3588 𝑀efor Strategy B and
3.4696 𝑀efor Strategy C. In the decade studied (2020/2030), Strategy
B replaces slightly less batteries than Strategy C and the amount of
money saved by using Strategy B over Strategy C is around 217.25 𝑘e;
this value considers that only 20% of the whole capacity will be refilled
and that cost of the BESS is assumed to decrease along the years as
for [7]. On the other hand, the difference in profits is 110.8 𝑘e between
the two strategies in favor of Strategy B. These results show that
Strategy B would seem to be of slighter better efficiency in monetary
terms than Strategy C, since the money saved by the lower number
of replacements is greater than that not earned in terms of profits.
However, using Strategy B instead of C allows for fewer substitutions,
but more distributed over time; this latter effect must be considered by
the owner of the BESS, as it could results in a greater number of plant
maintenance periods, thus higher time with resources unavailable.

However, these conclusions highly depend on the starting price of

the BESS, on the initial remaining life of BESS batteries at the start of
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Fig. 9. Strategy A: 10 years simulation.

Fig. 10. Strategy B: 10 years simulation.

Fig. 11. Strategy C: 10 years simulation.

Table 5
Long-term analysis: Number of battery replacements for each strategy.

Year Tot.

0 1 2 3 4 5 6 7 8 9 10

A 0 5 5 5 0 5 5 5 0 5 0 35
B 0 0 5 0 4 1 1 2 1 3 0 17
C 0 1 4 0 5 0 0 5 0 5 0 20

the long-term evaluation (as it influences the nominators of the objec-
tive function, hence the relative importance given to each battery), and
on the prices in the electricity market; the latter are difficult to predict,
and therefore cannot be commented upon. On the other hand, the
BESS replacement cost reduction can be more reliable [7]; therefore,
for the considered plant configuration and starting data, and assuming
invariant ASM prices over time, replacement costs in the remaining
eight decades of the 21st century were compared to see their trend
with respect to lost profits. Fig. 12 shows the results: with the data
used in the study, it is noted that Strategy C will lead to better benefits
14

than Strategy B starting from the fifth decade (2040/2050), i.e. when f
Fig. 12. Long-term analysis: comparison over the 21st century decades of the difference
between profits and replacement costs.

the price of the batteries could be sufficiently lower to allow a greater
number of replacements to be able to offer more power (resulting in
higher profits).

Clearly, this result is dependent on the external assumptions: a
different evaluation of ASM in time or a different plant configuration
could lead to Strategy C becoming more advantageous earlier. In any
case, it is clear that the paper proposes a useful tool not only for real-
time optimal operation of BESS, but also for long-term analysis and,
therefore, planning of a BESS plant and investments.

4.3. Mathematical model validation

To validate the model from a formal point of view, the impact of
the relevant proposed linearizations and the scalability are analyzed;
for the sake of illustration, Strategy C has been chosen for the analysis.
Same qualitative results can be obtained also for Strategies A and B.

4.3.1. Linearization accuracy and impact
First, the accuracy of the linearization of the products 𝑑𝑆𝑜𝐸 ⋅ 𝑑𝐶𝑅

rom (40) and (42), and 𝑅𝑏𝑎𝑡 ⋅ 𝐶𝑅2 from (57) and (59), together with
he linear approximation of 𝑒−𝑑𝑡 from (47), (48), and (49) have been
onsidered. Table 6 shows the errors between different linearization
echniques and real values obtained considering the entire range of
ossible values of the multiplied variables. For the two linearized
roducts, the first line represents the actual product of the linearized
ariables, the second line represents the linearized product of the
inearized variables, whereas, in the third one, one of the variables
s fixed at average value, which is in line with approaches found in
iterature [28–30,34,35], where at most only one of the factors is
onsidered dependent on operating conditions, while the remaining are
ssumed constant. Clearly, the proposed approach gives more accurate
esults. In particular, the approximation of the exponential function has
ery low relative percentage errors.

Second, a comparison between the most common optimization
odel found in literature, with degradation dependent only on SoE

nd constant efficiencies of the components [28], and the proposed
odel has been carried out. Converters and transformers efficiencies
ave been set as in Section 4, whereas battery efficiency and d𝐶𝑅 have
een set equal to 98.03% and 0.94 respectively, which represent their
verage values. At the end of the optimization, the values of the power
et-points obtained have been applied to the complete, non-linear phys-
cal model of batteries using MATLAB, to simulate the actual operation
nd, therefore, understand the impact of the approximations on actual
peration. Results are summarized in Tables 7 and 8, with Strategy
applied. The proposed model better approximates the real physical
odel than the basic model, as for battery capacity degradation and

oE; in particular, in the proposed model, the maximum percentage
elative error is 0.082% for BRL, 2.83% for degradation, and 0.58%

or SoE, which are very reasonable and at least an order of magnitude
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Table 6
Linearization errors.

𝑑𝑆𝑜𝐸𝑑𝐶𝑅

𝜖𝑚𝑎𝑥𝑟,% 𝜖𝑎𝑣𝑔𝑟,%
Real prod. of Lin. var. 0.54 0.35
Lin prod. of Lin. var.a 2.35 0.41
Real prod. of Lin. 𝑑𝑆𝑜𝐸&𝑑𝐶𝑅,𝑎𝑣𝑔 [28] 64.54 27.45

𝑅𝑏𝑎𝑡𝐶𝑅2

𝜖𝑚𝑎𝑥𝑟,% 𝜖𝑎𝑣𝑔𝑟,%
Real prod. of Lin. var. 15.42 2.82
Lin prod. of Lin. var.a 19.55 2.97
Real prod. of Lin. 𝐶𝑅2&𝑅𝑏𝑎𝑡,𝑎𝑣𝑔 [35] 21.84 5.23

𝑒−𝑑𝑡

𝜖𝑚𝑎𝑥𝑟,% 𝜖𝑎𝑣𝑔𝑟,%
Lin. approx. 𝑒𝑓 (𝑥) ≈ 1 + 𝑓 (𝑥)a 5.96 10−5 1.35 10−5

aProposed model.

Table 7
Strategy C: Basic model errors.

BRL [%] d [–] SoE [pu]

GAMS Reala 𝜖𝑟,% 𝜖𝑎𝑣𝑔𝑟,% 𝜖𝑎𝑣𝑔𝑟,%

Bat1 97.23 97.52 −0.30 30.51 52.76
Bat2 91.63 91.24 0.43 9.91 24.34
Bat3 97.45 97.25 0.21 11.71 14.62
Bat4 95.45 95.34 0.11 2.67 2.14
Bat5 89.33 89.39 −0.063 24.97 18.87

aMaximum DoD considered.

Table 8
Strategy C: Proposed model errors.

BRL [%] d [–] SoE [pu]

GAMS Reala 𝜖𝑟,% 𝜖𝑎𝑣𝑔𝑟,% 𝜖𝑎𝑣𝑔𝑟,%

Bat1 98.18 98.10 0.082 1.96 0.40
Bat2 92.21 92.15 0.065 1.09 0.49
Bat3 97.34 97.28 0.062 1.38 0.58
Bat4 94.51 94.48 0.032 1.65 0.20
Bat5 89.55 89.53 0.022 2.83 0.38

aMaximum DoD considered.

smaller than their basic model counterparts, where the degradation and
SoE errors are unacceptably high.

To be noted, since in this study a constant DoD has been considered,
the values in the ‘Real’ columns have been obtained using the maximum
DoD and the correspondent stress-factor, as the goal of this stage was
to analyze the impact of the linearized product of variables.

A further comparison was made on the values of Over Operating
Limits Violation (OOLV), defined as the number of hours in which the
real physical model SoE exceeds the maximum or minimum limits im-
posed in the optimization constraints (i.e., 0.1 and 0.9 pu, respectively).
These values are of particular importance because they establish for
how many periods of time the batteries in the BESS are used more
than what was foreseen by the optimization study, thus increasing their
actual degradation. The amount of OOLV for each battery and for both
the basic and proposed models are shown in Fig. 13, for various levels
of SoE magnitude violations. For batteries from 1 to 4, the number of
violations is lower for the proposed model than for the basic one, while
for Bat5 the opposite occurs, but low values are found in both cases.
On the other hand, the magnitude of violations in the proposed model
is negligible, while in the basic model they are significant and can
result in unexpected high levels of additional degradation. Hence, this
confirms the far better accuracy of proposed model, which guarantees
15

an optimal reliability of the operation of BESS.
Fig. 13. Strategy C: number of OOLV for different SoE magnitudes violations.

Table 9
Strategy C: Comparison between different levels of modeling for 31-days simulation.

𝑡𝑠𝑖𝑚
∑

𝑡 𝑃𝑟𝑡 ̃𝐵𝑅𝐿𝑎𝑣

[h:min:s] [ke] [%]

Basic model 0:09:23 27.78 93.9659
Mod2 0:14:05 27.80 93.9612
Mod3 0:16:18 27.79 94.0098
Mod4 0:34:59 27.55 94.0353
Proposed model 1:07:56 27.55 94.1629

Table 10
Scalability of the proposed model: One day simulation.

# Bat # Var # Bin t𝑠𝑖𝑚 t𝑠𝑖𝑚,𝑎𝑣 𝑡
𝑠𝑖𝑚

– – – [h:min:s] [min:s] [min:s]

5 7321 1560 0:04:01 00:10 00:28
6 8665 1872 0:11:33 00:29 01:01
7 10009 2184 0:20:56 00:52 02:07
8 11377 2496 0:50:39 02:07 05:24
9 12721 2808 2:03:39 05:09 10:33
10 14065 3120 4:27:35 11:09 36:01

Finally, an analysis of different levels of approximations has been
carried out, starting from the basic model described earlier, and grad-
ually adding more level of detail. The intermediate models considered
are:

(i) Mod2, with constant efficiency and complete degradation, aver-
age value of battery internal resistance equal to 43.45 mΩ;

(ii) Mod3, with battery efficiency CR-dependent and complete degra-
dation, average value of battery internal resistance equal to
43.45 mΩ;

(iii) Mod4, with battery efficiency as a function of SoE and CR and
complete degradation.
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Strategy C optimization results are shown in Table 9. Simulation time
increases with the complexity of the model whereas remaining accept-
able. Moreover, 𝐵𝑅𝐿 value remains about the same with the basic

odel for all the intermediate models, while the profit gets to the same
evel with the proposed model only for Mod4. Even if the differences
ay seem small, the cumulative effect over long-term periods can be

ignificant and can result in a higher risk of additional degradation
nd important financial losses. Clearly, the proposed model brings on
mportant quality jump in modeling of BESS in optimization problems.

.3.2. Scalability
The scalability of the model is checked. Clearly, as explained in the

heoretical part, the first optimization level is not an issue as it uses
implified models to represent the BESS system in its whole and, in
ase of multiple BESS plants, decomposition techniques can be applied.
ence, the focus here is on the second level, where the batteries within
BESS are represented in detail, hence requiring many variables: for

he sake of illustration, Strategy C has been considered. The number of
atteries in the BESS system was increased from 5 batteries by adding
ne battery at a time and simulations over initial one-month period
arried. Results are summarized in Table 10 for a BESS made of up
o 10 independent batteries. As the number of batteries increases, the
alculation times get longer, given the greater number of variables
columns ‘‘# Var’’ and ‘‘# Bin’’, the last one indicates the number of
inaries). Considering an hour-by-hour calculation of the operation of
ESS, for the 10 batteries case the average time (column ‘‘𝑡𝑠𝑖𝑚,𝑎𝑣’’) is
1 min, while the maximum time (column ‘‘𝑡𝑠𝑖𝑚’’) is 36 min, which is

well within one hour. For BESS made of more than 10 batteries the
computation time increases and becomes less compatible with real-time
operations. However, for these cases, it is reasonable to assume the
clustering of similar batteries to reduce the number of control variables
and guarantee acceptable computation times.

The authors are aware that results in this Subsection in particular
are influenced by computing resources, and that the limit if 10 batteries
can be overcome with a better machine.

5. Conclusions

In this work, a new hierarchical two-level MILP optimization model
for BESS operation has been implemented. In the first level, objective
function is profit maximization, that comes from the trade-off between
the revenues and costs in the participation in the ancillary service
electricity market and the degradation cost of the batteries. In the
second level the optimal load profile defined through the first level is
distributed among the single batteries that make up the BESS; here,
an advanced and linear battery degradation model has been developed
that considers SoE, CR, time, and DoD as factors, together with SEI
film formation, operating characteristics of batteries, converters, and
transformers. Moreover, also three different EMS strategies have been
implemented and their effect on the use of the single batteries has been
studied.

The model has been tested using a realistic size BESS plant over
a 31-days rolling horizon optimization and a 10-years one; the short-
term analysis was made to verify the impact of the SEI formation on
the priority use between new and old batteries, while the long-term
one was aimed at studying its impact following battery replacements.
Results show that, depending on the chosen strategy, it is possible
either to maximize profits at a high degradation and life loss, or obtain
improved life loss of batteries for a marginal decrease of profits.

Lastly, the impact of the complete model against others, more sim-
ple and in-line with literature models, has been evaluated: the accuracy
of the linearizations and the results show very good performances of the
16

proposed one. p
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ppendix

In this Appendix, constraints (25) are explained in detail. Suppose
̃ 𝑖𝑛𝑡 = 2, which means that in the two-hours period two time inter-
als are present; moreover, a parameter 𝑡𝑎𝑐𝑐 , that is the time instant
rom which one begins to have accepted flexibility, is introduced.
et us consider, for example, constraint (25a), in which the apex
‘𝑐ℎ𝑔, 𝑃 𝑜𝐶,𝐴𝑆𝑀 ’’ is substituted with ‘‘X’’ for simplicity; for each 𝑃𝑋

𝑡
ith 𝑡 < 𝑡𝑎𝑐𝑐 , we have that 𝑃𝑋

𝑡 ≥ 0. At 𝑡 = 𝑡𝑎𝑐𝑐 we have that 𝑃𝑋
𝑡 ≥ 𝑃 𝑎𝑐𝑐 ,

here 𝑃 𝑎𝑐𝑐 is the accepted flexibility quantity; it follows that:

𝑋
𝑡 ≥

⎧

⎪

⎨

⎪

⎩

𝑃𝑋
𝑡𝑎𝑐𝑐 − 𝑃𝑋

𝑡𝑎𝑐𝑐−1 = 𝑃 𝑎𝑐𝑐

if 𝑡 = 𝑡𝑎𝑐𝑐 + 1
𝑃𝑋
𝑡𝑎𝑐𝑐−1 − 𝑃𝑋

𝑡𝑎𝑐𝑐−1 = 0
(A.1)

𝑋
𝑡 ≥

⎧

⎪

⎨

⎪

⎩

𝑃𝑋
𝑡𝑎𝑐𝑐+1 − 𝑃𝑋

𝑡𝑎𝑐𝑐 = 0
if 𝑡 = 𝑡𝑎𝑐𝑐 + 2

𝑃𝑋
𝑡𝑎𝑐𝑐 − 𝑃𝑋

𝑡𝑎𝑐𝑐 = 0

(A.2)

𝑋
𝑡 ≥

⎧

⎪

⎨

⎪

⎩

𝑃𝑋
𝑡𝑎𝑐𝑐+2 − 𝑃𝑋

𝑡𝑎𝑐𝑐+1 = −𝑃 𝑎𝑐𝑐

if 𝑡 = 𝑡𝑎𝑐𝑐 + 3
𝑃𝑋
𝑡𝑎𝑐𝑐+1 − 𝑃𝑋

𝑡𝑎𝑐𝑐+1 = 0
(A.3)

⋮

⋮

Therefore, 𝑃𝑋
𝑡 ≥ 𝑃 𝑎𝑐𝑐 when 𝑡𝑎𝑐𝑐 ≤ 𝑡 ≤ 𝑡𝑎𝑐𝑐 +1, forcing the amount of

ought power to be at least equal to the amount offered in the previous
̃ 𝑖𝑛𝑡 intervals. Similar considerations can be done for the discharging

ower.
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