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Abstract

The choice of model for operational flood forecasting is not simple because of

different process representations, data scarcity issues, and propagation of

errors and uncertainty down the modeling chain. An objective decision needs

to be made for the choice of the modeling tools. However, this decision is com-

plex because all parts of the process have inherent uncertainty. This paper pro-

vides a model selection with a filter sequence for flood forecasting applications

in data scarce regions, using Kenya as an example building on the existing lit-

erature, concentrating on six aspects: (i) process representation, (ii) model

applicability to different climatic and physiographic settings, (iii) data require-

ments and model resolution, (iv) ability to be downscaled to smaller scales,

(v) availability of model code, and (vi) possibility of adoption of the model into

an operation flood forecasting system. In addition, we review potential models

based on the proposed criteria and apply a decision tree as a filter sequence to

provide insights on the possibility of model applicability. We summarize and

tabulate an evaluation of the reviewed models based on the proposed criteria

and propose the potential model candidates for flood applications in Kenya.

This evaluation serves as an objective model preselection criterion to propose a

modeling tool that can be adopted in development and operational flood fore-

casting to the end-users of an early warning system that can help mitigate the

effects of floods in data scarce regions such as Kenya.
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1 | INTRODUCTION

Hydrological models predict the hydrological variables,
particularly river flow. In some cases, where little input

and output data exist the model can be used to estimate
the runoff and river flow in ungauged catchments
(Hrachowitz et al., 2013; Sivapalan, Takeuchi,
et al., 2003). Therefore, models are useful in applications
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such as short to extended-range flood forecasting (Alfieri
et al., 2013; Emerton et al., 2018), climate assessment
(Hattermann et al., 2017; Lu et al., 2018; Tamm
et al., 2016), hazard and risk-mapping (Artan et al., 2001;
Ward et al., 2015), drought prediction (Van Huijgevoort
et al., 2014), and water resource assessment (Dessu
et al., 2016; Mutie, 2019; Praskievicz & Chang, 2009;
Sood & Smakhtin, 2015). However, the scope of applica-
tion to extract viable information varies across different
classes of models at different spatial and temporal scales
and the intended purpose.

The choice of model for operational flood forecasting
is not simple because of different process representations,
data scarcity issues, and propagation of errors and uncer-
tainty down the modeling chain (e.g., Paul et al., 2019;
Paul, Gaur, et al., 2020). For example, the practice of
choosing a model for an application may be difficult due
to several reasons highlighted in Melsen et al. (2019):—
(i) Popular models are not tailored to specific climate or
circumstances (unless the west European climate counts,
implicitly), which makes exclusion on process presenta-
tion alone difficult; (ii) Most popular models share the
same main properties and the same weaknesses; (iii) The
community has failed to create a generalized benchmark-
ing system to rank models and model set-ups, so that
suitability has to be ascertained on a case-by-case basis;
and (iv) Model evaluation takes primarily place based on
streamflow, which in itself is too little to distinguish
between models, especially calibrated models. There is
need for a modeler to know the perceptual model
(Wagener et al., 2021)—quantitative or qualitative
description of the existing knowledge and understanding
of the catchments (Beven, 2011; Gupta et al., 2008;
Westerberg et al., 2017). For instance, Wagener et al.
(2021) illustrate a generic perceptual model included in
catchment hydrology functions. The processes herein are
dynamic and evolve with time in response to changes in
water management or land-use, climate conditions and
geomorphological changes, thus need to be integrated
into the model development. This implies that if such
changes are not taken into consideration during and/or
model development and upgrade, then the relevant pro-
cesses will not be presented adequately, thus limiting of
the application of a single model over the entire country.

Models are simplifications of reality and thus cannot
completely represent every process and aspect of the
catchment. The importance and impact of many pro-
cesses can evolve with time for example in response to
changes in water management. In addition, what is the
right approach *now* is not necessarily the right
approach in the future. Significant buy-in is required to
develop operational forecasting capacity with a specific
model, and so in recognition of changes in the impor-
tance and impact of many processes as a result of land

use change, water management etc., it may mean it is
more efficient to choose a modeling approach that can
represent a larger range of processes. When there are dis-
tinct zones of hydro-climatology within a country it could
be necessary to adopt different modeling approaches, but
this needs to be balanced against the scaling up of the
resources required to have human and technical capacity
across several different models.

Moreover, data play an important role in hydrological
modeling irrespective of the processes represented in a
model (Wahren et al., 2016). Many studies point to chal-
lenges in modeling due to data scarcity (e.g. Beck
et al., 2017; Fuka et al., 2014; Lavers et al., 2012; Najafi
et al., 2012; Quadro et al., 2013; Smith &
Kummerow, 2013; Wu et al., 2013) which limits the appli-
cations of very detailed and complex models due to inher-
ent unquantified uncertainties. Recognizing that data and
model are not independent of the errors, for brevity within
this paper we describe the aspects and the models herein
considering only those uncertainties related to model
structure (Pechlivanidis et al., 2011; Smith et al., 2015).

The choice of model depends on the intended pur-
pose, and the modeler needs to objectively select a model
based on the end-user needs for more reliable decisions
(Parker, 2020; Boelee et al., 2017; Todini, 2007). Various
hydrological models exist at different spatial and temporal
scales with diverse levels of complexity and data require-
ments. Additionally, there exists differences between
model codes and implemented modeling systems, which
may cause difficulties in the choice and application of a
particular model. A Multi Criteria Analysis (MCA
Sherlock & Duffy, 2019) is recommended to evaluate and
grade models from which, a small number of models
would be constructed, calibrated, and tested in a real-
world context and at the end, a model(s) is chosen to be
used in the operational Flood Forecasting Centre (FFC)
experiment. However, the proposed MCA relies heavily
on evaluation data, is very time consuming for the num-
ber of models available hence for data scarce regions,
and/or agencies with limited resources, (or in general) an
additional decision tree is helpful to trim down the num-
ber of options. There is the need to further evaluate the
limited selection with for example an MCA and the FFC
experiment. To aid this hypothetical modeler there is a
clear need for well-conceived and systematic strategies for
selecting model structures and establishing data require-
ments, which forms the novelty of this research.

A plethora of model reviews exist at global and conti-
nental scale applications. For example, (Devia
et al., 2015; Emerton et al., 2016; Kauffeldt et al., 2016;
Pechlivanidis et al., 2011; Salvadore et al., 2015; Sood &
Smakhtin, 2015; Trambauer et al., 2013). Most of these
reviews highlight and compare existing modeling con-
cepts and gaps but none have focused on model selection
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frameworks for final application except for Trambauer
et al. (2013) and Kauffeldt et al. (2016). Kauffeldt et al.
provide a technical review of large-scale hydrological
models for implementation in operational flood forecast-
ing at continental level. Trambauer et al. (2013) review
continental scale hydrological models highlighting their
suitability for drought forecasting in sub-Saharan Africa.
The two cited works look at model review and a selection
framework for flood and drought application at continen-
tal scales respectively and to the best of my knowledge
this is the first model overview and practical objective
model selection framework for flood applications at
national scale taking into consideration varied catchment
characteristics and data scarcity issues.

This paper is to propose a practical approach building
on Kauffeldt et al. (2016) and Trambauer et al. (2013) for
selecting a model based on a step-by-step filter sequence
following objective aspects (such as on the ability to sim-
ulate relevant processes to flood applications), as well as
considering more practical aspects such as model code
availability and ease of use at catchment scale with varied
climate characteristics. We follow the filter sequence and
develop a Venn diagram to select suitable model candi-
dates. This practical approach is applied to a case study
of developing an early warning system that can help miti-
gate the effects of floods in data scarce regions within
Kenya, where there is lack of good observations of cli-
mate variables such as precipitation, temperature etc.,
and this is a limiting factor to properly identify the limita-
tions of model applications at catchment scale.

Our paper is structured as follows. Kenyan hydrology
and applications of hydrological models to simulations of
flood process is discussed in Section 2. The decision tree is
built based on deliberations about Kenyan hydrology and
current forecasting experience in Kenya, which outlined
in Section 3. The selection of the models based on the
decision tree is outlined in Section 4. In Section 5, we
focus on specific discussions regarding model selection
and how the novelty of the decision tree. The paper then
concludes with the key contributions of the suggested pre-
selection along with recommendations for next steps to
evaluate the models objectively to improve FF in Kenya.

2 | KENYAN HYDROLOGY AND
FORECASTING

2.1 | Applying hydrological forecasting
models to the simulations of floods in
Kenya

It is important to consider the application of the hydro-
logical model when determining which model to use, due
to differences in process generations and representations

(Cloke et al., 2011). For example, floods are generated by
a range of processes related to extreme rainfall (intercep-
tion, through-flow), runoff generation process (infiltra-
tion, saturation excesses and subsurface storm flow) and
runoff routing (Rosbjerg et al., 2013). In addition, floods
in snow dominated catchments are regularly caused by
snow melt, thus, representation of this process in a
hydrological model is crucial, because requires an opti-
mal simulation of the snow related hydrological pro-
cesses such as snow accumulation and melt
(Verzano, 2009).However, this case does not apply to
Kenyan catchments.

Moreover, flood formation is a complex combination
of extreme precipitation or temperature rise or a combi-
nation of both, the retention of the water in different
storages and finally the flowing through the river net-
works. A flood peak caused by extreme rainfall in the
upstream part of a catchment, naturally reaches the
downstream part of the catchment temporally delayed
(Tallaksen & Van Lanen, 2004; Verzano, 2009). There-
fore, several effects influence the magnitude of the flood
wave in the downstream area, such as tributary contribu-
tions and retention in lakes and wetlands. The lateral
transport of water through the river network is a particu-
larly important process for the routing of discharge. This
applies for average flow conditions as well as for low or
high flows. Therefore, it is meaningful to route the water
within a hydrological model with a variable flow velocity
because the flow velocity varies with the actual river dis-
charge (Verzano, 2009) among other relevant flood gen-
erating processes. In many hydrological forecasting
systems, the treatment of the rainfall-runoff component
(traditionally the core of what is meant by hydrological
models) and the routing can be separated. If the routing
should be built in, or should be specifically modular,
could be another criteria that qualifies the models under
consideration. An operational Flood Forecasting System
(FFS) aims at producing accurate timely and valuable
flood forecast information way in advance to reduce
flood-related losses by increasing preparation time. A typ-
ical FFS requires a hydrological model, data sources, as
well as main processes and fan interactive friendly user
interface. For example, Figure 1 shows a simplified con-
ceptual model for a large-scale flood forecasting system,
the components required, and the output generated
within each component.

2.2 | Subsequent logic for the need of a
decision framework with a filter sequence
in Kenya

Both the hydroclimate and the human influences create
challenges for hydrological modeling and forecasting (Bai
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et al., 2015) because of their massive influence on the
catchment processes. For example, Kenya exhibits high
variability in physiographic and hydroclimatic conditions
(see Figure 2). The highest point is at about 5000 m a.s.l,
(mostly areas around central highlands) while the lowest
point is about 20 m a.s.l. (mainly around coastal areas).
The vegetation cover is mainly a mixed tree cover, grass,
and sparse vegetation in most of parts of the country and
shrubs and bare land in the arid and semi-arid areas of
northern Kenya. As a result, Kenya experiences different
climate-related extremes in terms of intensity, magni-
tude, and timing.

Rainfall pattern follows a bimodal rainfall seasonality
(Ongoma & Chen, 2017) with high spatiotemporal vari-
ability (Figure 3) (Hession & Moore, 2011). Three seasons
are experienced: the “long rains” of March-April-May
(MAM), nonrainy months of June-July-August (JJA) and,
the “short rains” of October-November-December (OND)
(Ogallo, 1988; Ongoma et al., 2015). About 42% of the
total annual rainfall is observed during MAM rainfall sea-
son (Ongoma & Chen, 2017), with the highest intensity
observed near the water bodies of the Indian Ocean, Lake
Victoria, and the Kenyan highlands. Freely available
packages, proposed models, and inbuilt model function-
alities of some of the commonly applied models.

There are five major basins (Marwick et al., 2014) in
Kenya (see Figure 4, left panel). These catchments are
highly influenced by settlements as well as human activi-
ties such as dam constructions and irrigation activities
(Figure 4, right panel), which have adverse effects on the
catchment response to rainfall runoff processes. At the
catchment scale, there is high variability in catchment
hydroclimatic characteristics such as surface area and
average annual rainfall (Figure 5).

Therefore, it is important to consider the variability
in catchment characteristics and the knowledge gaps in
the perceptual model (e.g., land cover changes, human
activity, data uncertainty and accounting for groundwa-
ter fluxes) when selecting a model for application as this
may influence the performance of the model. The follow-
ing section discusses the aspects to consider to objec-
tively preselect a model for application to Kenyan
catchments.

3 | MODEL SELECTION
FRAMEWORK

Selection framework in this paper follows a selection cri-
terion such as the ability to represent relevant processes,
the model structure, flexibility, complexity, availability of
the model code and the needs of the user community
(Bennett et al., 2013; Kauffeldt et al., 2016), and as such it
is more qualitative rather than quantitative. For example,
a good model should be able to represent all relevant pro-
cess such as: gross precipitation (snow, rain), interception
storage, evaporation, transpiration, snowpack storage,
snowmelt, overland flow, soil storage, recharge to shal-
low aquifer, capillary rise, intermediate flow, baseflow,
leakage to deep aquifer. However, these will require rele-
vant input datasets and more complex models(e.g. fully
distributed with numerous parameters) to effectively rep-
resent the processes, but worthy to note that increasing
the model complexity by incorporating all the above pro-
cesses does not necessarily increase the model perfor-
mance (Birkel et al., 2010; Butts et al., 2004). The
application and performance of a model may also vary
depending on the site (size and characteristics) (Bai

FIGURE 1 Conceptual large-scale hydro-meteorological forecasting system (Emerton et al., 2016)
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et al., 2015; Lanen et al., 2013). Therefore, the following
sections summarizes the aspects to aid in objective selec-
tion of a hydrological model for flood applications in

Kenyan context, considering Kenya's hydrogeology, phys-
iographic and climatic conditions discussed in Section 1.
In total six criteria were found to aid in the decision

FIGURE 2 Physiographic and hydroclimatic characteristics of Kenya

FIGURE 3 Spatial pattern of long-term mean monthly and seasonal rainfall over Kenya (1981–2016) (a) monthly (b) March-April-May

(c) June-July-August (d) October-November-December seasons, respectively

WANZALA ET AL. 5
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making. In the next subsections each of the six criteria is
evaluated in relation to Kenya represented processes and
fluxes.

A complete hydrological model would represent all
the water balance components and fluxes (e.g., as illus-
trated in Mendoza et al., 2012). The complexity of models
often results in many parameters to be determined,
which requires more data on hydrogeology (Dobler &
Pappenberger, 2013; Muleta & Nicklow, 2005). There
needs to be a compromise between model complexity
and efficiency for it to work.

More data is needed to make more complex models
more accurate. The choice of an appropriate model struc-
ture is a crucial step to accurately predict streamflow or
other variables, and to understand the dominant physical
controls on catchments' responses to climate change
(Clark et al., 2008). In Kenya, this requires more data
such as groundwater level, which is not readily available.

Some catchments especially those in the arid and
semi-arid regions of Kenya have sandy and rocky river-
beds and tend to run dry most of the dry months, for
such, the fixed velocity and river channel fields repre-
sented in some hydrological models may not apply. This
is because of failure to properly represent the roughness
index which varies not only with boundary characteris-
tics but also with flow velocity, water depth, and other
hydraulic factors (Addy & Wilkinson, 2019; Zhang
et al., 2016).

In addition, the more represented process in a model
the more the parameterization schemes. For example, a
priori estimation requires establishing parameter values
from measured physical system properties, presupposing
that the model parameters have a sufficiently reliable
representation (Beven & Pappenberger, 2003). Therefore,
parameter estimation in models of natural systems may
require measurements and tests. It then follows that, for
effective calibration for such model parameters, it
requires more computational power, which may be lack-
ing in the Kenyan operational flood forecasting center.

3.1 | Model applicability to Kenyan
hydroclimatic conditions and
physiographic settings

Processes that are most relevant for simulating flood con-
ditions in Kenya (see Barasa et al., 2018; Onyando
et al., 2003) should be represented in a model. Some extra
processes, such as channel losses, evaporation from riv-
ers, wetlands representations, are not considered impor-
tant in average conditions in some regions due to
complexity or lack of interest (Rosbjerg et al., 2013), thus
such can be discounted. This is because models incorpo-
rating such complex process require more skilled person-
nel and higher budgets to install and run. This is a
challenge in most operational systems in developing

FIGURE 4 Kenya main basins (left panel) and the ongoing human activities (constructed major and small (other) dams and irrigation

schemes) in the select catchments (left panel)
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countries including Kenya. Temperature plays an impor-
tant role in river channel and catchment evaporation. In
Kenyan case, annual means temperatures range from
15 to 35�C which highly correlates with topography, with
the lowest temperature experienced in the central high-
lands and high temperature in lowlands (Mutimba
et al., 2010) and a model incorporating such would be
best suited for such place.

Model selection, in dry and wet catchments must be
more careful due to the large performance difference in
dry catchments (Bai et al., 2015). Wet catchments runoff
simulation is significantly better than that in dry catch-
ments, (Haddeland et al., 2011), because of high nonli-
nearity and heterogeneity of rainfall–runoff processes
(Atkinson et al., 2002). In addition, high uncertainty is
introduced during model parameter estimation resulting

FIGURE 5 -Spatial distribution of the morphological and hydroclimatic characteristics per catchment

WANZALA ET AL. 7
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in significant differences in simulated runoffs behavior
(Andersson et al., 2015). Large river basins are often
strongly influenced by human activities (e.g. irrigation,
reservoirs, and groundwater use) for which information
is rarely available (Döll et al., 2009). The Kenyan case
where most basins are ungauged may increase such
uncertainty (Hrachowitz & Weiler, 2011; Sivapalan,
Takeuchi, et al., 2003).

When there are distinct zones of hydroclimatology
within a country it could be necessary to adopt different
modeling approaches, but this needs to be balanced
against the scaling up of the resources required to have
human and technical capacity across a number of differ-
ent models, which is one of the main challenges in the
Kenyan case.

3.2 | Data requirements and spatial and
temporal resolution of the model

Kenya suffers from lack of good observations of climate
and hydrological data. This is a limiting factor to properly
identify the limitations of model applications at catch-
ment scale. For example, a detailed representation of
groundwater flows and tables and soil moisture content
would be very relevant for flood forecasting. However,
there is no reliable data (such as ground water and reser-
voirs) available for research applications, thus limiting
the use of model incorporating such kind of data. As a
result, a compromise must be reached regarding model
spatial variability due to the ungauged status of most
Kenyan catchments (Trambauer et al., 2013), and allow
the use alternative freely available remote sensing data.
Applying a distributed model would require high spatial
and temporal resolution data to represent each of the
catchment HRUs whereas a lumped conceptual model
would represent an entire river basin (Krysanova
et al., 1999), but since there are sparsely or no gauging
stations in some of the catchments, then this limits the
use of most distributed models across Kenyan catch-
ments. However, limiting the models to the type that can
only run when directly calibrated on an outlet would be
a mistake. This is because there are plenty of ways to dis-
cretize in HRUs without individually calibrating each
HRU independently. There are ways to calibrate transfer
functions to enable modeling and ungauged HRUs
(Samaniego et al., 2010). There are model setups that do
not rely on calibration as a first principle (such as wflow-
sbm, Imhoff et al., 2020) and based on globally available
data. The challenge here is the transferability of the
model to suite Kenyan catchment and operations and
represents the catchment processes adequately because it
needs to be as simple as possible.

Moreover, modeling experiments on Kenyan catch-
ments may yield more plausible results if data at high fre-
quency time steps are used as it contains more
information (Ficchì et al., 2016). This is because the bet-
ter modeling of the rainfall–runoff relationship is highly
affected by subhourly dynamics of precipitation
(Paschalis et al., 2014) due to nonlinear nature of infiltra-
tion process (Blöschl & Sivapalan, 1995), such as the peak
discharge value (Gabellani et al., 2007) and runoff vol-
ume (Viglione et al., 2010). In Kenya, the temporal reso-
lution of the available reliable data may be limited to a
higher time steps (such as monthly and yearly) and this
may limit the application of a model on a subdaily/
hourly timesteps. Models incorporating higher timesteps
data such as daily and monthly are easily applicable in
Kenyan case as compared to those limited to hourly or
subdaily timesteps.

3.3 | Capability of the model to be
downscaled to a river basin scale

The issue of scale problem in hydrological models is
highlighted in Beven (1995), where the aggregation
approach toward macroscale hydrologic modeling is an
inadequate approach to the scale problem. For semi-
distributed and distributed models, grid size selection is
intricately linked to the spatial scale at which the model
will be applied. Also, when lumped approaches are
applied to considerably larger basins the integration of
the processes will naturally occur over a greater area, and
thus any differences in small-scale processes within the
basin will not be well considered. Due to lack of locally
developed models, the continental models are applied at
catchment scale, thus the need to be downscaled to suit
the grid size under application. However, for larger grids,
processes that are only important at the local scale (such
as overland flow) may not be considered in the model
structure but only if there is an extensive change in the
model grid width and this may at times introduce struc-
tural uncertainties. Some models may not be easily
downscaled to Kenyan river basins with varying spatial
scales (see Table 1) without making significant changes
in the structure of the model.

3.4 | Operational model for flood early
warning system at large scales with
potential adoption to local scale

With the increase in flood events in Africa in the recent
past, Thiemig et al. (2015) proposed a FFS for Africa
hereafter referred to AFFS. Following the illustration in

8 WANZALA ET AL.
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Figure 8, LISFLOOD, physical-based hydrological model
is selected for AFFS, which relies on historical hydrologi-
cal observations, historical as well as near real-time mete-
orological observations, real-time meteorological
forecasts, and an African GIS dataset. The four main pro-
cesses AFFS runs are: the calculation of hydrological
thresholds, the computation of the initial hydrological
conditions, of the computation of the ensemble hydrolog-
ical predictions, and the identification of flood events.
Figure 8 shows a schematic overview of AFFS with all
the components and processes. This was developed as a
prototype for Africa but never taken forward to opera-
tions and since then no literature or research on the skill
or applicability of this system has been documented.

Also, Princeton University has developed African
Flood and Monitor (AFDM) tool (Sheffield et al., 2014).
The aim is to demonstrate the potential for tracking
drought conditions across Africa using available satellite
products and modeling in data scarce region. The system
provides daily updates in near real-time (2–3 days lag) of
surface hydrology, streamflow and vegetation stress,
short-term hydrological forecasts for flooding, and sea-
sonal forecasts for drought and agricultural impacts as
demonstrated in Figure 9 (https://platform.
princetonclimate.com/platform-ng/pca/products).

The system has been installed at regional centers in
Africa more notable in West Africa (ACMAD), where it is
operational for the Niger basin using the Hype-Niger
model and the World-Hype applied to the whole West
Africa region. A schematic illustration of the FFS for the
Niger Basin in West Africa is shown in Figure 6.

Narrowing down to Kenya, the Kenya Meteorological
Department runs an operational flood forecast system in
Nzioa basin (Personal communication from Andrew
Njogu) with plans underway to upscale to other nine
additional flood prone areas spread across the other
seven basins (Athi, Galana, Sabaki, Nyando, Tana, Sondu
and Ewaso Ngiro etc.). A schematic representation of the

FFS in River Nzioa Basin in Kenya and the steps involved
is illustrated in Figure 7. The models adopted for this sys-
tem is the Soil Moisture Accounting and Routing Model
(SMAR) incorporated in the Galway Flow Forecasting
System (GFFS) (O'Connor, 2005). The GFFS is a suite of
models developed at the department of engineering
hydrology national university of Ireland, Galway,
Ireland. The five models embedded in the software are
system theoretic models; simple linear model (SLM), lin-
ear perturbation model (LPM), linearly varying gain fac-
tor model (LVGF), and artificial neural network (ANN)
and one conceptual model which is SMAR model. Ordi-
nary least square solution for (SLM, LPM, and LVGF),
conjugate gradient algorithm for ANN and Rosenbrock,
simple search and genetic optimization methods for
(SMAR) are used for calibration of the model parameters
(O'Connor, 2005).

Speaking to Njongu in an interview, he noted that the
choice and use of the SMR model was entirely subjective
mainly driven by the project funding following the push
to implement a FF system in Nzioa after subsequent
destructive flooding events. Additionally, he noted that
there is limited documented research on skill assessment
inform the choice of the SMAR model adopted for this
cause, but rather due to its simplicity and less data
requirement. Moreover, model choice is dependent on
the project funds available, and the implementers and
collaborators are likely to trial out their model of choice
based on their interests and advance the application
scope, irrespective of the underlying model performance
measures. It then follows that the choice and application
of the SMAR model in the Kenyan FFS was due to the
above reason.

With the current developments, there has been ongo-
ing initiatives spearheaded by the Kenya Water
Resources Authority—a parastatal mandated to set and
manage the water resources rules and hydrological data.
Under the ongoing project—Kenya Water Security and

FIGURE 6 Niger HYPE-model for

Niger basin and Hype world for the rest

of West Africa (https://fanfar.eu/

production/)

10 WANZALA ET AL.

 1753318x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfr3.12846 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [24/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://platform.princetonclimate.com/platform-ng/pca/products
https://platform.princetonclimate.com/platform-ng/pca/products
https://fanfar.eu/production/
https://fanfar.eu/production/


Climate Resilient Project, WRA is in the process of trial-
ing out three hydrological models (SMAR, NAM, GR4J)
in Nzoia to be incorporated into the FFEWS under devel-
opment (WRA reports). For example, an initial assess-
ment for model performance in Nzioa basin has been
started. Figure 8 shows soil moisture representation in
SMAR, GR4J and MIKE NAM over the basin.

The above highlights point to fact that a model needs
to be able to be incorporated into an operational (up and
running) system, if the main aim of the model selection
is to provide a tool for the end-users of an early warning
system that can help mitigate the effects of floods. In this
respect, a model that can easily be implemented in a fore-
casting environment is preferred. Hence, the model
should be stable, have reliable error and inconsistency
checks, be able to flag off missing data (e.g., when input
sources fail), be able to fit into an operational environ-
ment and should preferably be user friendly.

3.5 | Availability of model code and
model run-time

Code must be available for use (open source or through
agreements) with possibilities of adaptation to specific
purposes (e.g., possibility to change the represented pro-
cesses, ingested time-step and/or catchment discretiza-
tion). These adaptions are possible but not existent in
most of the freely available model codes. Code must be
actively used and developed with core developers identi-
fied to ensure that proper support can be given in initial
phases. Executable code is not enough, since changes, for
instance, reading of input data will be necessary (Paul,
Gaur, et al., 2020). Forecast deliveries run the risk of
being delayed if bug fixes or updates cannot quickly be
incorporated in the model. Key aspects are the service
level agreement struck between the model and the fore-
casting system provider, outlining a clear overview of

FIGURE 7 Overview of the flood monitoring, modeling, forecasting and dissemination for the operational flood forecasting in Nzioa

basin, Kenya (Source: Kenya Meteorological Department)

FIGURE 8 A representation of the

soil moisture evaluation in soil moisture

accounting and routing model (yellow),

GR4J (blue) and MIKE NAM (green)

over the Nzioa basin in Kenya (Source:

Kenya Meteorological Department)

WANZALA ET AL. 11
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which parts are maintained locally, and which parts are
outsourced. In addition, codes available only through
purchases may limit the use of models especially for
research and operational purposes, thus model should be
open source but then not all open-source licenses are
the same.

Some modeling communities have availed accessible
packages for some select models with dedicated functions
such as input data preparations, data processing and
transformation, calibration etc. These packages may have
all or limited functionalities for the application under
consideration, thus limiting its use. For example, Table 1
shows some of the freely available packages, the pro-
posed models to run and the package functionalities that
can be executed.

The model run-time (Central Processing Unit)—
computational time to run a simulation from model spin
up varies with different models and area of application.
For example, Astagneau et al. (2021) show how different
models and implementations can differ an order of mag-
nitude in required calculation time for the same set of
catchments (Figure 5). The computational power lacks in
many of the African National Meteorological and Hydro-
logical Services (NMHS), especially if ensemble simula-
tions, data assimilation methods, and further
computational intensive uncertainty estimation methods
are to be applied, and Kenya is not an exception.

4 | APPLICATION OF THE
SELECTION FRAMEWORK TO
KENYA'S CHOSEN CATCHMENTS

The above section outlines the aspects to consider when
selecting a suitable model for national flood forecasting
and application in Kenya. The application of selection
framework to Kenya based on the above proposed selec-
tion criteria is outlined in Table 2. There are marked dif-
ferences from catchment to catchment, which point to
the fact that a single model single initialization with all
the same parameters cannot be suitably applied at coun-
try level but rather at catchment scale, thus the need to
objectively select a model based on the user needs and
catchment processes.

4.1 | Application of decision tree to
Kenyan catchments

To assess the suitability of hydrological models with focus
to flood applications in Kenya, considering the aspects
described, Figure 9 shows a flow diagram of the filter
sequence in the selection criteria in defining model suit-
ability to this application which may suffice as a decision

tree. At the top of the decision tree are all the processes
that are deemed important in a model for effective flood
applications in Kenya. Firstly, Kenya has a large distinc-
tion in terms climates, some areas are Arid and Semi-
Arid (ASALs) for example Eastern and North-eastern
parts, whereas others are wetlands (e.g., Western and
Central highlands) (see Figure 2). Therefore, a distinction
is made in the second step for processes that are impor-
tant to the different climatic zones. Secondly, Kenya is
currently facing data scarcity due to ungauged nature of
many catchments. This, however, should not be a setback
to hydrological studies and as a result we filter the model
based on the input data availability and possibility to use
alternative data. In the third step, we explore the avail-
ability of the model code to a wider user community.
Here the concept of code executability and online updat-
ing, accessibility and the computational run time are
explored. At the fourth stage the ability of the model to
be downscaled to catchment local scale is considered.
Fixed grid sizes and limitations of applicability to certain
basin sizes are mainly considered here. Finally, we
explore the preferences of the model based on their ease
to be implemented in the forecasting system environ-
ment. However, this piece of work does not involve the
actual analysis of the models under consideration, and it
is based on the elimination method following previous
studies on the performances of the models over the
region. As a result, we present a yes/no decision tree
which has a potential implicit weighting factors of “0” or
“1” based if the model meets a certain criteria or not from
the MCA perspective. The above aspects in the selection
framework form the basis of this model overview and
selection sections. In this study, a combination of concep-
tual and process-based lumped and distributed hydrologi-
cal models are considered for further evaluation to
establish if they fit in the above aspects. The hydrological
model should be suitable to evaluate the spatial and tem-
poral occurrence of floods based on a defined indicator.
Therefore, the models considered (and described in
Appendix S1) range from the few applied or under con-
sideration for the Kenyan setup as well as the other
widely used models in studies across the African conti-
nent for FF that in our opinion would be applicable to
Kenyan case. A total of 12 rainfall-runoff models were
initially listed as potential candidates for small-scale
operational flood forecasting (see Table 3 for main refer-
ences). LISFLOOD and HYPE are included in this review
despite being developed for large-scale applications
because they were adopted for the prototype in the AFFS
and West Africa, respectively. The models were chosen
mainly based on the existing literature reviews and appli-
cation studies particularly to Africa and Kenya. Table 4
provides a summary of the evaluation of all the 12 models
based on the explained criteria herein.

12 WANZALA ET AL.
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4.2 | Actual model selection based on
decision tree

The Venn diagram (Figure 10) presents model selection
following a comprehensive evaluation carried out in
Table 4. All the models under consideration are described
and summarized in Appendix S1. Following the filter

sequence presented in Figure 4, each model is evaluated
on step by step then potential models summarized in
actual selection presented in Figure 10 shows a Venn dia-
gram following the framework presented in Figure 9 for
the models described and summarized (Appendix S1)
and the evaluation information presented in Table 4.
Table 4 evaluates all the 12 models based on the

FIGURE 9 Flow sequence to serve as a decision tree for evaluating and selecting a suitable hydrological model for flood forecasting in

Kenya, based on the proposed criteria
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framework presented in Section 2. This provides the sum-
mary statistics of each of the models based on the process
representation, data input requirements, model code
availability, ease of downscaling to Kenyan catchments,
and application of models to operational flood forecast-
ing. Out of the 12 models, only VIC and TOPMODEL do
not represent important processes for flood generation
unique to Kenyan catchments. VIC and TOPmodel were
eliminated because it could not represent groundwater
processes and requires the calibration of all the parame-
ters which in turn means that the calibration data must
be available, which is hardly the case in most of the
Kenyan catchments. As a result, they were excluded in
the final selection presented in the Venn diagram in
Figure 10. The figure shows the flow diagram of the filter
sequence which is used to filter out the 12 models to
those deemed appropriate candidates for flood applica-
tions in Kenya (Figure 10).

From the 12 models reviewed, five are considered
suitable candidates for flood applications in Kenyan
(Figure 8). The outermost circle (A) presents the
10 models under consideration excluding VIC and TOP-
MODEL. VIC and TOPMODEL were not at this point
because lack of representing important process such as
ground water (see Table 4). In addition, this category
includes all the models which can be applied to the study
catchments due to reasonable data input requirements,
model code availability, ease of downscaling to Kenyan
catchments, both in drylands—semi arid—and wetlands,
and application of models to operational flood
forecasting.

Circle B represents model selection based on data
input requirements and the number of calibrated param-
eters. At this stage, we eliminate LISFLOOD, HBV-96,
PDM, GeoSFM and MIKE SHE. LISFLOOD, MIKE SHE,
and HBV 96 and GeoSFM are fully and semi-distributed
models, respectively, with very many parameters to be
calibrated (Berglöv et al., 2009; Ma et al., 2016; van der
Knijff et al., 2010). In addition, they are run on hourly
timestep with very many data input requirements. The
calibration of many parameters will also require intensive
computer run time which may be a challenge in many
NMHS (Vema & Sudheer, 2020). The ungauged nature of
the most of operational centers in Kenya may not have
reliable data at high frequency (e.g., at hourly or even
daily timesteps). However, circle B is white area because
there is the option of alternative remotely sensed data.
These models with high data requirements in data scarce
areas, there are alternative sources of satellite and reana-
lyses datasets that are effectively utilized to force the
model with caution. This is because the datasets come
with their own uncertainties, including random and sys-
tematic errors (Fortin et al., 2015; Sun et al., 2018). Inher-
ent input uncertainties will affect the performance of
models for a given catchment, and as a result, we elimi-
nated LISFLOOD, HBV-96 and MIKE SHE at this stage.
PDM is also eliminated at this point because model con-
figuration comprises of a probability-distributed soil
moisture storage, a surface storage, and a groundwater
storage components (Moore, 2007). The latter is hardly
available input as there is no data on reservoirs and
ground water storage in Kenya's NMHS.

Circle (C) represents models which their code is easily
available as free open source. This category is meant to
rule out models whose codes are available but only in
executable format as changes for instance reading of
input data may be necessary and is not provided for in
executable model codes. The candidate models filtered
through to this step HYPE, SWAT, and SMAR have freely
available open-source codes (Paul, Gaur, et al., 2020).
GR4J and NAM source codes are available through open

TABLE 3 Twelve rainfall-runoff models listed as potential

candidates for small-scale flood applications with their main

technical references

Model Main references

GR4J (modele du Genie
Rurala 4 parametres au pas
de temps Journalier

Technical (Perrin et al., 2003)

NAM (Nedbør-Afstrømnings-
Model)

Technical (Nielsen &
Hansen, 1973)

SMAR (Soil Moisture
Accounting and Routing)

Technical O'Connor, 2005;

PDM (Probability Distribution
Model)

Technical (Goswami &
O'Connor 2010;
Moore, 2007)

SWAT (Soil Water Assessment
Tool)

Technical (Arnold et al.,
1998; Neitsch et al., 2005)

MIKE SHE (MIKE Système
Hydrologique Européen

Technical (Abbott et al.,
1986; Ma et al., 2016)

HBV-96 (Hydrologiska Byråns
Vattenbalansavdelning)

Technical (Lindström et al.,
1997)

TOPMODEL (TOPography
based hydrological)

Technical (Beven and Kirby
1979; Beven et al., 1984)

GeoSFM (Geospatial
Streamflow Simulation
Model)

(Artan et al., 2001, 2004;
Asante et al., 2008)

VIC (Variable Infiltration
Capacity)

Technical: (Gao et al., 2010;
Lohmann et al., 1996)

LISFLOOD Technical: (Burek, 2013; van
der Knijff et al., 2010)

HYPE (European Hydrological
Predictions for the
Environment

Technical: (Lindström et al.,
2010) http://hypecode.
smhi.se
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collaborations (Humphrey et al., 2016). The innermost
green circle represents models that can be applied easily
to Kenyan catchments through simplistic downscaling
and suitable for flood forecasting in different Kenyan
catchments. Regarding the last criterion as to whether
the model is suited for operational purposes, all models
reviewed are continuous simulation models and no
model is rejected at this step because we assume that, if
necessary, they can be modified to be suitable for use in
an operational environment.

5 | DISCUSSION

We provide an insight into the need to understanding of
the quantitative or qualitative description of the existing
knowledge and understanding of the catchments and
how this would influence the choice of the modeling
tools at catchment scale, acknowledging the gaps and
challenges. Models used for different applications in dif-
ferent parts of the world are reviewed based on the six
aspects, which builds on the previous works of Kauffeldt
et al. (2016) and Trambauer et al. (2013), with the aim of
assessing their suitability for flood applications in Kenya.
The two foundational works provide a technical review
of large-scale hydrological models for implementation in
operational flood forecasting highlighting their suitability
for drought forecasting at continental level, specifically in
sub-Saharan Africa. They are important and provide a
comprehensive model review and a selection framework
for flood and drought application at continental scales,
respectively. However, these studies are applied at a
larger scale (continental), yet models simulate process

differently in different hydroclimatic conditions thus, the
need to link the process at catchment scale to model
specifications and applications.

It can be noted that not all models are good at captur-
ing and or representing the important processes relevant
to flood generations (e.g., as transmission losses along the
river channel, re-infiltration, and subsequent evaporation
of surface) both in wetland and ASALs of Kenya as sum-
marized in Table 2. It should be noted that, with the cur-
rent data scarcity, most modeling frameworks
incorporate satellite and reanalyses data. These products
have a coarse resolution and high uncertainty in their
estimations at catchment scale, which in turn impacts
the model performance. Thus, the way forward for objec-
tive choice of modeling tools should ensure that the
models are stable, have reliable error and inconsistency
checks, be able to flag missing data errors (e.g., when
input sources fail), be able to fit into an operational envi-
ronment and should preferably be user friendly. Consid-
ering the data scarcity issues, most models can be
implemented as the redundancy related to missing data
can be incorporated in the preprocessing. Therefore, if a
model can run with missing data, it is a requirement that
the run is clearly flagged as having missing data. Model
stability can be tested by looking at the distributions of
parameters where they became remarkably well-behaved
and near-elliptic when numerical error control is imple-
mented in the model (Kavetski et al., 2006). However,
since the properties of parameter distributions are depen-
dent on (i) the data, (ii) the model, and (iii) the objective
function, testing model stability before application may
not be achieved. A sensitivity and uncertainty analysis of
model parameters is run to establish model errors, which

FIGURE 10 Venn diagram

following the model selection procedure,

starting with all the all models under

consideration in circle A resulting with

the selected models in innermost

circle D.
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should be reliable (Song et al., 2015), but this requires
more computational power, which is missing in Kenya.

The practical proposed and presented model preselec-
tion with a filter sequence for flood applications was used
to filter out models to a subset considered suitable for
Kenyan catchment types. Through the filter sequence
presented, possible adaptation assumptions are consid-
ered in some cases. The filter sequence criteria to assess
model suitability including the representation of impor-
tant processes, availability of the model code, existing
user community, input data requirements, possibility of
calibration, model resolution and data assimilation and
operational implementation into a flood forecasting sys-
tem. Out of the 12 models, only 5: SWAT, SMAR, GR4J,
NAM, HYPE were considered suitable candidates for
catchment scale flood forecasting by local authorities in
Kenya. The above preselection process forms initial steps
and criterion in the choice of a modeling tool to the end-
users of to effectively be used both at catchment scale
modeling and potentially adopted in an operational early
warning system to help mitigate the effects of floods in
data scarce regions such as Kenya.

This work does not look at direct analysis of each of
the proposed model to evaluate its performance based on
some past events. As a starting point, this work provides
background of hydrological models and the Kenyan set
up to inform a criteria of model preselection for flood
applications at national level. The modelers and users of
the models can then use the information and arrive at
models to apply for some select events. A MCA
(Sherlock & Duffy, 2019) forms the basis of these initial
steps. The whole process of an MCA is to assess multiple
alternatives based on a mix of quantitative and mostly
qualitative information from multiple sources. However,
the proposed MCA relies heavily on evaluation data, is
very time consuming for the number of models available
hence for data scarce regions, and/or agencies with lim-
ited resources, (or in general) an additional decision tree
is helpful to trim down the number of options. There is
the need to further evaluate the limited selection with for
example an MCA and the FFC experiment. This is
mainly because within the same catchment, inhomoge-
neities of the physical and hydroclimatic properties is a
complex issue that is essential in deciding which model
to use, thus the importance of the selection criteria.

6 | CONCLUDING REMARKS

There are some challenges that are inherent when apply-
ing the above decision framework not only to data scarce
regions but also to a wider global scale. For example,
with the advancement in research, there is an increasing
number of models and none of them is error free, mainly

due to a compromise reached when considering model
complexity and computational run time, which is a major
challenge (McMillan et al., 2011). Also, it is difficult to
balance complexity of model structure, the parameteriza-
tion and input data requirements, because complex
models do not guarantee reliable results (Paul, Gaur,
et al., 2020; Trambauer et al., 2013). The use of certain
models depends on the computational capabilities (skills)
of the individuals as well as the NMHS in general. As a
result, model selection may be biased based on the easy
of applications depending on the skills of the modeler. In
addition, there is no documented research outlining the
pros and cons of each of models in a single platform in
which a potential model user may easily use to identify
which model is suitable (Mannschatz et al., 2016).

To address the highlighted challenges modeling com-
munities in developing countries, Paul, Zhang, et al.
(2020) and Souffront Alcantara et al. (2019) suggest some
of the way forward. For example, developing countries
should consider working on developing their own
models. The current models tailored to catchment scale
or geographical locations, developed with nicely all year
round flowing rivers in relatively wet catchments and the
inclusion of a variety of hydrologists and model devel-
opers with different needs and perspectives is most wel-
come and needed to produce hydrological models for a
wider range of environments. This may take a long time
due to inadequate technological capacities but will suffice
as a milestone to addressing some of the challenges asso-
ciated with model selection. A well-prepared and com-
prehensive database platform with useful information
pooled together, such as:—different input information,
advantages and disadvantages of different models is
important in providing initial information to judge by eye
on which model would work best. This is also likely to
facilitate easy model selection alongside frequent webi-
nars by model developers to enhance the skill of mod-
elers in developing countries.

This research provides initial steps to inform the
choice of modeling tools in data-scarce region. There is
need for further analysis of the proposed model to
Kenyan catchments, to assess their skills in simulating
the past events. This will provide additional and useful
information in the choice and application of these models
at catchment scale with varied hydroclimatic characteris-
tics. We acknowledge that it has not proven that the cri-
teria “suffice” as the selection procedure leads because it
leads to multiple models and no follow-up strategy is pre-
sented here as these forms the basis of future work. Addi-
tionally, the filter steps are not operationalized to the
level where it can be said to be objective. For example, a
model may be excluded on “many parameters” and that
the preselection criteria presented here follows a flow
chart which may be subjective. First, we make a
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preselection based on expert judgment and link to models
that have been applied to diversified environments that
deem suitable candidates to Kenyan setup.
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