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Introduction

In the era of digitization, condition-based and predictive 
maintenance solutions are pervading smart factories (Bagh-
eri et al., 2015; Osterrieder et al., 2020). Indeed, predictabil-
ity, which in turn includes diagnosability, is core in building 
smart factories where Cyber-Physical System (CPS) is a key 
technological concept (Napoleone et al., 2020) to manage 
contingent situations including managerial errors bringing 
idle and down states due to failures (Mourtzis & Vlachou, 
2018). The capability to act upon such unexpected events 
is fundamental to guarantee operational continuity and pre-
serve product quality, leading towards improved firm com-
petitiveness in a turbulent market (Morgan & O’Donnell, 
2017).

Considering that smart factories are characterized by 
the introduction of new automation and manufacturing 
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Abstract
Smart factories build on cyber-physical systems as one of the most promising technological concepts. Within smart fac-
tories, condition-based and predictive maintenance are key solutions to improve competitiveness by reducing downtimes 
and increasing the overall equipment effectiveness. Besides, the growing interest towards operation flexibility has pushed 
companies to introduce novel solutions on the shop floor, leading to install cobots for advanced human-machine collabora-
tion. Despite their reliability, also cobots are subjected to degradation and functional failures may influence their opera-
tion, leading to anomalous trajectories. In this context, the literature shows gaps in what concerns a systematic adoption 
of condition-based and predictive maintenance to monitor and predict the health state of cobots to finally assure their 
expected performance. This work proposes an approach that leverages on a framework for fault detection and diagnostics 
of cobots inspired by the Prognostics and Health Management process as a guideline. The goal is to habilitate first-level 
maintenance, which aims at informing the operator about anomalous trajectories. The framework is enabled by a modu-
lar structure consisting of hybrid series modelling of unsupervised Artificial Intelligence algorithms, and it is assessed 
by inducing three functional failures in a 7-axis collaborative robot used for pick and place operations. The framework 
demonstrates the capability to accommodate and handle different trajectories while notifying the unhealthy state of cobots. 
Thanks to its structure, the framework is open to testing and comparing more algorithms in future research to identify the 
best-in-class in each of the proposed steps given the operational context on the shop floor.
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technologies on the shop floor, the heterogeneity of 
machines and systems that compose the production system 
is nowadays growing and it requires the capability to pro-
vide customized approaches to better deal with their specific 
requirements. Especially for condition-based maintenance 
(CBM) and predictive maintenance solutions, several chal-
lenges are to be faced, including both cultural and technical 
aspects (Bokrantz et al., 2020; Ingemarsdotter et al., 2021).

Specifically, robotic applications are increasing (Forcina 
et al., 2021) as they provide support to the operators, reduc-
ing the cognitive and physical efforts in a collaborative 
human-robot framework (Matheson et al., 2019). Therefore, 
the interaction with humans led to the concept of a “col-
laborative robot”, in short, a “cobot”, which combines the 
repetitive performance of robots with people’s skills and 
abilities. The spread of collaborative robots is due to the 
increased variety required in production systems for assem-
bly and disassembly operations (Hashemi-Petroodi et al., 
2020). Cobots are extremely flexible and could be trained 
on the field by humans (El Zaatari et al., 2019). Also, the 
need for almost no pre-training makes them adaptable to 
any situation they may face (Djuric et al., 2016).

The adaptability in the operations should have a mir-
ror in maintenance: to enable the complete description of 
machines and systems in the CPS’s virtual world to support 
diagnosability and predictability, cobot-related models and 
algorithms should be included. With specific reference to 
CBM and predictive maintenance within CPS, optimizing 
the operations of the production system requires the knowl-
edge of possible deviations from nominal requirements as 
well as the faults and related diagnoses incurring in different 
machines and systems, including cobots. Indeed, the devel-
opment of CBM and predictive maintenance solutions for 
cobots is needed both for optimal decision-making in the 
production system, and the safe operations through the pre-
vention of hazardous situations in which humans may be 
due to faults the cobot is experiencing.

The present work aims at contributing to cobot main-
tenance by supporting fault detection and diagnostics 
(FDD) at its initial stage when the deviation from nominal 
requirements is detected. In fact, considering a maintenance 
practice generally valid for industrial systems, cobot main-
tenance is assumed to act at two levels depending on the 
available data and the complexity of the solution (Márquez, 
2007; Lee et al., 2011; Khan et al., 2020). In the first level, a 
deviation of the operation is identified to notify maintenance 
technicians to reactively act on the system; at this level, a 
first understanding can lead to describing the deviation from 
the baseline (healthy) behaviour by identifying the related 
functional failure. The second level includes information 
such as which fault is occurring, to isolate the faulty items 
determining the observed behaviour and, more accurately, 

the failure mode under evolution within those items. Finally, 
it provides a physical sense of the failure modes manifested 
in specific components (e.g. abrasive wear in the outer ring 
of a roller bearing). A diagnostic approach is then required 
to make the maintenance intervention.

Given these premises, this research aims to develop a 
data-driven solution for FDD of articulated collaborative 
robots that identifies deviation during cobot operation, pro-
viding a first understanding of the deviation, described in 
terms of the functional failure that is evolving; this is to be 
implemented, at the first level, autonomously by the opera-
tor who is advised to call technicians for further condition 
investigation. The diagnostics of faults, performed at the 
second level, will start after this call. The diagnosis at the 
second level is outside the scope of the present research.

The assumptions, defined based on a usual maintenance 
practice for industrial systems, were required because the 
review of the state of the art performed in this research 
work, enabled to provide only limited insights on cobot 
maintenance. The assumptions enable to align with a norm 
in industrial practice; within it, the innovation provided by 
this research affects the first level of intervention.

In particular, real-time data from the cobot are collected 
and elaborated via a hybrid modelling of Artificial Intelli-
gence (AI) algorithms, as each algorithm accomplishes a 
specific task along the Prognostics and Health Management 
(PHM) process taken as a reference to develop the solution. 
Advancing from the current state of the art, a hybrid model-
ling approach is adopted, instead of a monolithic solution, 
to create a modular solution. The proposed solution is tested 
and validated using a 7-axis collaborative robot perform-
ing multiple trajectories in a laboratory environment. Thus, 
the framework, based on hybridised AI algorithms, demon-
strates the capability to accommodate and handle different 
trajectories, also those trained by the operators on the shop 
floor; this finally allows for identifying those trajectories 
deviating from the nominal operation.

Overall, the perspective considered in the paper is one of 
applied research. Therefore, an application is focused, con-
sidering its manageability by an industrial engineer. Empha-
sis is then given to the structure of the proposed framework 
as well as the information enabling the operator to judge the 
need for maintenance intervention. The selected algorithms 
are used to show the effectiveness of the framework and its 
feasibility, whereas this research work does not claim these 
algorithms to be best-in-class for the application; instead, 
the framework is open to test and compare more algorithms 
to identify the best performers in each of the proposed steps.

The research paper is structured as follows: Sect. "Litera-
ture review on CBM and predictive maintenance solutions 
for cobots" reviews the extant scientific literature on CBM 
and predictive maintenance solutions for cobots to define 
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the state of the art; Sect.  "Framework and hybrid series 
modelling of AI algorithms for FDD of cobots" proposes the 
framework for the hybrid series modelling, and the related 
design choices; Sects.  "Application of the framework" and 
"Artificial Intelligence algorithms tuning" show the experi-
mental deployment and the assessment of the framework 
in the case of a 7-axis collaborative robot; eventually, Sect. 
"Results and discussion" elaborates over the obtained 
results, while conclusions and future research are drawn in 
Sect. “Conclusion”.

Literature review on CBM and predictive 
maintenance solutions for cobots

The relevance of cobots in the current factories has gained 
momentum thanks to Industry 4.0 and smart factory con-
cepts (Sherwani et al., 2020), while emphasis was given in 
the past on “hard automation”, which compels the realisa-
tion of pre-defined tasks in an optimised way. Since collab-
orative robots are being more and more present at the shop 
floor level for various tasks jointly with humans, they need 
to be connected to the factory-level CPS, exchanging data 
and information, in order to make them part of the decision-
making process for maintenance and production. Therefore, 
the health state of such equipment must be evaluated as well 
as for other equipment, like CNC machine tools, in order 
to provide the managers with all the information to judge 
prompt decisions of reconfiguration of the production (Tao 
et al., 2018). Hence, the goal of this literature review con-
cerns the definition of the state of the art about maintenance 
solutions for collaborative robots, with particular attention 
towards CBM and predictive maintenance as cutting-edge 
technologies in various industrial fields.

Systematic literature review setup and application

The literature review aims at defining the state of the art of 
CBM and predictive maintenance solutions for cobots, by 
exploring which are the developed algorithms and models 
for FDD. Even though human-cobot collaboration is promi-
nent in the current literature (Faccio et al., 2022), the scope 
of the review is centred only on the cobot as a technical sys-
tem, in order to establish the background to develop effec-
tive solutions without presuming human intervention as a 
prerequisite.

To span the scientific knowledge about maintenance solu-
tions for collaborative robots, a systematic literature review 
(SLR) has been established. The adopted methodology of 
the SLR is the one of (Brereton et al., 2007; Kitchenham 
et al., 2009), whose core characteristic is reproducibility. 
The steps are research protocol definition, search process, 

including screening, and document analysis, with descrip-
tive statistics and content analysis. The research protocol, 
including keywords, databases, and eligibility criteria have 
been set as in Table 1.

The results of the search process consist in a set of 70 
documents from Scopus, 53 from Web of Science, and 4 in 
IEEE Xplore, for a total of 127 articles out of which 36 are 
duplicated and additional 8 documents do not have authors 
information as they are proceedings or collections. There-
fore, 83 documents are considered eligible for the screen-
ing process. This set has been screened so as to include 
only documents compliant with the current research work 
in terms of scope, i.e., the development of maintenance 
solutions for collaborative robots. After title screening, 34 
documents are kept, reduced to a set of 10 after the abstract 
screening. Finally, only 4 are eligible after full-text reading.

Content analysis and results

The 34 documents after title screening are published from 
2017 onwards, anyhow highlighting that the research is 
relatively novel. However, after abstract screening and 
full-text reading, most of the selected works resulted not 
actually eligible, lacking a specific focus on CBM or pre-
dictive maintenance solutions for cobots. As a matter of 
fact, human-cobot collaboration is mainly tackled, as sup-
ported also by the results of the recent work by Aliev & 
Antonelli (2021). Indeed, these research works focused on 
the human-cobot interaction for various sectors (such as the 
meat production (Romanov et al., 2022) and civil engineer-
ing (Nagatani et al., 2021)) and operations (e.g., for pro-
ductivity improvement (Mitrea & Tamas, 2018) and internal 
logistics (Donadio et al., 2018)). Most of the works focused 
on safety issues related to the use of collaborative robots in 
the same work environments as humans, by favouring the 
interaction (Bagheri et al., 2022), defining algorithms for 
trajectories and collisions prediction (Zhang et al., 2022). 
Some of them specifically target the use of collaborative 
robots in order to support maintenance intervention in harsh 
and hazardous environments, for example, to support ship 
maintenance, repair and conversion (Zacharaki et al., 2022), 
crack predictive maintenance in buildings (Kahouadji et al., 
2021), and screwing operations (Koch et al., 2017).

Table 1  Research protocol for the systematic literature review
Research protocol

Keywords (cobot* OR “collaborative 
robot*”) AND maintenance

Database Scopus, Web of Science, 
IEEE Xplore

Eligibility criteria Only English-written 
document
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required to develop solutions to be later transferred to real 
contexts. Also, some insights for the data analysis emerge 
from the selected papers. Firstly, it is worth remarking that, 
in each joint of a cobot, some variables may be correlated, 
especially the temperature and the load (Aliev & Antonelli, 
2021). Afterwards, Wescoat et al., (2021) point out how the 
starting position of the cobot may influence the model per-
formance. Overall, all the presented solutions adopt a one-
shot approach, that is, trying to predict the health state of the 
collaborative robots through one algorithm only, fitted to the 
specific case under study.

A recent study by A recent study by Faccio et al. (2022) 
also confirms the shortage of CBM / predictive mainte-
nance solutions framed within the context of human-cobot 
collaboration. In their study, the authors claim that con-
sistency (designated as cobot capability to work reliably) 
has been not directly linked with any human factors as, 
instead, it is happening with the ergonomics or usability. It 
finally confirms the need to study cobot maintenance, now 
under-investigated, to guarantee reliable behaviour in cobot 
operations.

Concluding remarks from the literature review

From the eligible documents, it is possible to conclude that 
CBM and predictive maintenance solutions are still in the 
infant phase for collaborative robots. Moreover, CBM solu-
tions face a challenging task, due to the intrinsic characteris-
tics of the flexibility of cobots and the subsequent possibility 
to train them for new trajectories on field (Park et al., 2021). 
Overall, the approaches to cobot CBM and predictive main-
tenance are varied and there is no unique framework to fol-
low to deploy FDD-purposed solutions.

As such, this research work aims at contributing to this 
field by proposing a framework, and related AI algorithms 
properly hybridized, for FDD, limited to health monitoring 
of the cobot in the light of possible deviations in the per-
formed trajectories. It represents a first move towards the 
development of CBM and predictive maintenance of col-
laborative robots: given the increasing centrality in smart 
factories, cobots must be monitored and proactively main-
tained to preserve human safety and optimise production 
throughput. As the first move, the solution development 
addressed by this research is not considering human-cobot 
collaboration. This is noted as an extant gap to be addressed 
in future works aimed at integrating the human-in-the-loop 
of the CBM and predictive maintenance.

Among the findings, it is worth mentioning the work by 
(Xiao et al., 2021), whose goal is the reliability analysis 
and maintenance optimisation for systems of cobots. Even 
though it does not tackle directly FDD for the cobots, it 
proposes, by means of reliability engineering, the improve-
ment of maintenance management for assembly lines where 
cobots are organised in cells. Aligned with this work, cobot 
fleet management also requires a huge effort from the archi-
tectural point of view to collect operational as well as pro-
duction data, as remarked in (Ismail et al., 2020). Overall, 
out of the 34, 4 documents specifically face the issues of 
developing maintenance solutions to identify, diagnose and 
predict failures of collaborative robots. These are listed in 
Table 2.

As relevant remarks from the eligible documents, it is 
suggested by Wescoat et al., (2022) that the main limitation 
of AI-based approaches for FDD of cobots is the limited 
availability of failure data. Hence, laboratory applications 
with simulated failures (overloads and excessive friction) are 

Table 2  Summary of eligible research papers
Reference Objective and description
(Wescoat et 
al., 2022)

The objective of the work is to compare three differ-
ent machine learning algorithms to characterise the 
overall health state of a 6-axis collaborative robots. 
The authors compared Random Forest Regression, 
Support Vector Regression and a Deep Neural Net-
work Regression, where the anomalous condition 
was the overload of the end-effector. Each algorithm 
has different performance with respect to the train-
ing, validation and test accuracy and a mixture of 
algorithms is suggested. The cobot under study was 
a Universal Robots UR10 and the work is an exten-
sion of the one below reported, namely (Wescoat et 
al., 2021).

(Aliev & 
Antonelli, 
2021)

This research stems from the safety legislations 
needs for cobots to use real time and online data to 
predict failures and safe stops. The proposed solu-
tion relies on a regression model MLP and a classi-
fication model; the former is in charge of predicting 
quantitative variables, while the latter for safe stops. 
The cobot under study was a Universal Robots UR3.

(Wescoat et 
al., 2021)

The objective is to describe the health state of a 
collaborative robot by means of a Random Forest 
Regression with varying predictors. Failure data 
are simulated by adding weights (from 0.2 Kg to 
1.0 Kg) to the end-effector. The five-fold cross-
validation shows that the joint dynamics and current 
features result in good model performance. The 
cobot was a Universal Robots UR10.

(Park et al., 
2021)

The authors faced the problem of applying FDD 
to non-fixed programmable motions. This was 
done through the development of a programmable 
motion-fault detection based on the analysis of 
motion residuals with respect to a representative 
data pattern determined by a target movement. In 
that way, also diagnostics is favoured, even though 
it is a future work. The collaborative robot used for 
experimentation was a 6-axis Niryo One cobot.
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3.	 also related to point 1, in industrial practice it may be 
that operators train cobots to perform trajectories not 
predefined, which are performed occasionally; there-
fore, there will be trajectories that are unknown;

4.	 the available data are only those coming from the con-
trol unit of the cobot, hence no additional sensors need 
to be installed.

The hypotheses lead to the definition of subsequent 
requirements:

1.	 availability of a known set of trajectories resulting from 
the cobot pre-training;

2.	 need to deal with a degree of dissimilarity (variability) 
between the known trajectories;

3.	 possibility to add new/unknown trajectories;
4.	 data streams from the control unit, including only sen-

sors present for the cobot control.

The resulting three-step framework is drawn in Fig.  1, 
where the PHM process is also reported to highlight the 
adherence of the proposal with respect to ISO 13374-1. The 
grey-shaded hatching in the upper part identifies the novel 
and innovative part of the proposal.

The three envisioned steps are described in the reminder:

1.	 Trajectory clustering aims at grouping trajectories 
which are similar to each other.

2.	 Health state identification is performed only for known 
trajectories as it is possible to identify them as refer-
ence behaviour for the health state; in this step, anom-
aly detection methods are adopted so to identify if an 
abnormality arose or not (with respect to the known tra-
jectories). In this step, the operator could be informed 
about the deviation from nominal requirements.

3.	 Functional failure clustering, whose goal is to group 
trajectories experiencing the same functional failure; 
this is applied only to those trajectories for which an 
anomaly arose, thus those that are unhealthy.

The envisioned solution is not a one-shot and monolithic 
as resulting from the state of the art. Indeed, it has been 
thought of as an evolving application that can be configured 
and learns time by time through proper algorithms. More-
over, if new known trajectories should be added, the frame-
work is able to accommodate this new information and scale 
up to recognise them. These are potentialities of the solution 
that are kept in mind while developing the models/algo-
rithms for each of the steps of the framework and impact on 
the selection of specific AI algorithms, as described in the 
next subsection.

Framework and hybrid series modelling of AI 
algorithms for FDD of cobots

Given that there is no consolidated background on how 
to develop CBM and predictive maintenance solutions for 
cobots, the PHM process has been taken as a reference.

The PHM process is relevant for maintenance decision-
making as it provides a general architecture over which 
multiple technology-independent solutions could be 
realised (Guillén et al., 2016). As described in ISO 13374-1, 
the steps, therein pointed out as “functional blocks”, are: 
data acquisition, data manipulation, state detection, health 
assessment, prognostic assessment, and advisory genera-
tion. The PHM process allows it to go from raw data, usu-
ally automatically collected, to the notification of alerts and 
alarms to the decision-maker to set up suitable reactive and 
corrective actions, if required.

Considering the PHM process, this section is structured 
as follows in order to present the overall CBM solution for 
FDD of cobots: subsection "Proposed framework for FDD 
of collaborative robots" clears out the requirements for a 
CBM solution where cobots are the targeted machines and 
connects these requirements with the PHM process so to 
define the proposed framework; in subsection "Definition 
of the hybrid series modelling of AI algorithms supporting 
the framework", for each identified step of the framework, 
envisioned AI algorithms fitting the purpose are described.

Overall, the proposed framework aims to be as general 
as possible, making it customizable to different industrial 
applications of cobots and providing future users with the 
possibility to adapt the models/algorithms based on the spe-
cific problem setting. This aspect is a founding principle that 
represents the novelty with respect to the as-is state of the 
art.

Proposed framework for FDD of collaborative robots

The development of the framework for FDD of collabora-
tive robots originates from some working hypotheses. The 
hypotheses are hereby listed:

1.	 the cobots are pre-trained with a set of trajectories that 
are known while developing the framework and related 
models/algorithms;

2.	 once defined, the nominal trajectory could be performed 
multiple times, but every time, there will be a degree 
of dissimilarity as the internal control does not find the 
same (sub)optimal solution in the hyperspace of pos-
sible trajectories from a point A to a point B; therefore, 
each cycle (a performed trajectory) could be different 
from another one;
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The three-step framework is intentionally based on an unsu-
pervised learning approach, to make it independent from the 
need to capture labels on the basis of field evidence and/or 
expert knowledge. In particular, it is worth pointing out that 
expert knowledge is not considered in the current function-
ing of the framework unless for its validation.

For the first and third steps, density-based clustering 
algorithms are envisioned as suitable ones. Indeed, density-
based clustering models are defined as unsupervised learn-
ing methods which identify a cluster among the data points 
relying on the idea that a cluster is an area of high-density 
points separated from the other clusters by low-density 
points areas. The data points in the separating regions of 
high-density points are typically considered noise/outliers, 
and therefore they are not clustered. Instead, in the second 
step, given the need of comparing time series data, corre-
sponding to the trajectory, the envisioned solution is the 
application of neural networks (NNs) and, specifically, of 
the autoencoder. The autoencoder is a reconstruction-based 
algorithm, namely a specific type of NNs, where the input is 
the same as the output. The input dimensions are reduced by 
means of successive compression steps (encoding phase), 
and then the output is reconstructed starting from the com-
pressed input (decoding phase). For more details on autoen-
coder, please refer to Arul (2021).

The definition of such families of models defines the 
framework proposed in Fig.  1 and the related details are 
reported in Fig.  2. In this figure, each step is specified in 
terms of inputs, outputs and envisioned model.

The proposed three-step framework must be tested so to 
assess first if the decomposition in three steps is suitable and 
secondly if the foreseen AI algorithms are effective in iden-
tifying trajectories, health states, and failures. Therefore, the 
framework is applied to a collaborative robot working in a 
laboratory environment.

Definition of the hybrid series modelling of AI 
algorithms supporting the framework

The decision to opt for a hybrid series modelling aims to 
favour the modularity of the solution. Therefore, each step 
has its own AI algorithm, whose output becomes the input 
for the next one. Also, to keep the framework as general as 
possible, the decision is to identify unsupervised AI algo-
rithms that are not bounded by the presence of labelled data.

	● For the trajectory clustering step, a clustering algorithm 
is exploited, which is an unsupervised machine learn-
ing technique allowing the discovery of grouping within 
data. In this way, it is possible to group together those 
trajectories that are similar and compare them with the 
nominal known trajectories.

	● The health state identification step consists then in mon-
itoring the asset condition to understand whether the tra-
jectories can be associated with a healthy or unhealthy 
state. Just data belonging to known trajectories reaches 
this step because the healthy behaviour of data can be 
defined only if the trajectory performed by the cobot 
is known. In particular, anomaly detection is applied, 
which detects if something new, an anomaly, has hap-
pened, assuming that the healthy state of the asset under 
analysis has shifted from healthy to unhealthy (Pimentel 
et al., 2014).

	● The functional failure clustering step is carried out by 
means of a clustering algorithm applied to the unhealthy 
trajectories only. Indeed, each unhealthy trajectory 
could stem from a specific functional failure and the 
clustering algorithm is in charge of grouping those tra-
jectories whose underlining functional failure could be 
potentially the same.

Fig. 1  Proposed framework for FDD for cobots and its adherence to the PHM process
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Experimental setup

Each joint of the cobot is equipped with a positional abso-
lute encoder (14-bit resolution), a torque sensor (13-bit res-
olution) and a brushless DC motor, together with a 1 kHz 
communication bus.

For the data gathering, the robot device is equipped with 
Franka Emika’s control hardware and software and any 
device with an internet connection can access the cobot 
network and cooperate with it via a direct user interface 
(Fig. 3). The interface allows defining of the trajectories and 
sets the velocity and force parameters.

Real time communication with the cobot relies on a 
software implementation platform called Robot Operating 
System (ROS). frankaROS comprehends ROS packages 
specifically developed for connecting cobots with the entire 
ROS ecosystem. It integrates libfranka into ROS Control 
and includes URDF (Unified Robot Description Format) 
models and detailed 3D meshes of both robots and end-
effectors, which allows visualization (e.g. RViz) and kine-
matic simulations. Finally, ROS oversees accessing the 

Application of the framework

A 7-axis Panda cobot manufactured by Franka Emika was 
taken into consideration to apply and assess the three-step 
framework for FDD so as to identify abnormal trajectories 
and cluster them according to different functional failures. 
Indeed, from an applied perspective, the framework aids 
the line operator to be aware of deviations given the high 
variety the cobot could perform so as to anticipate effects 
on the product quality, continuity and safety of operations. 
In this section, the experimental setup and the experimen-
tal campaign are described in subsections  “Experimental 
setup” and  “Experimental campaign”, respectively. Then, 
the obtained datasets are used to feed the framework. This 
is described in Sect. "Artificial Intelligence algorithms tun-
ing" given that, for each algorithm, an analysis of required 
features and hyperparameters definition is performed.

Fig. 3  Web application to define cobot trajectories

 

Fig. 2  Details of the proposed framework for FDD for cobots
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increases through time inducing the highest level of 
vibration as time passes, is not considered.

In the concluding remarks of this work, the working assump-
tions will be discussed in their limits to inform future works.

Design of the experiments

Given these terms and assumptions, the experimental cam-
paign could be properly designed. The main choice to be 
made is regarding the types of functional failure that lead to 
a change in the trajectory and how to induce them. From the 
literature analysis performed, an overload is widely used to 
realise experiments that cause deviations in the cobot trajec-
tory. Additionally, to the overload, also excessive friction is 
introduced, which could affect the performed trajectory as it 
simulates a degradation of mechanical components, e.g., a 
bearing. Lastly, given the variability of the situation on the 
shop floor, the experiment does consider unpredictable fac-
tors that lead to stochastic changes in the trajectory.

Given these premises, the following experimental design 
choices are considered:

	● 3 functional failures, related to the above considerations 
of deviation from nominal trajectories, namely:

	– Overload. A mass of 500 g was positioned on the end 
effector throughout a dumbbell fixed to the extremes 
of the cobot gripping hand by means of a couple of 
cable ties (Fig. 5.a).

	– Excessive friction. Two rubber bands were posi-
tioned in correspondence with the 2nd joint of the 
cobot (Fig. 5.b). To connect each of them to the cobot 

cobot sensors and actuators, processing their raw informa-
tion and commanding the robot to execute tasks.

To run the experiment and collect data, the control unit, 
embedded in the server rack, is connected to the cobot via 
ethernet cable, while a PC (Personal Computer) is connected 
to the cobot network wireless. On the PC, the Ubuntu Linux 
operating system is running, with an i7, 2.9 GHz processor 
with 8GB RAM. Figure 4 shows the desktop through which 
the cobot is controlled and monitored in real-time via ROS 
interface.

Once the cobot and related data collection scripts were 
defined, the experimental campaign could be performed, as 
described in subsection “Experimental campaign”.

Experimental campaign

Before running the experiments, it is important to clearly set 
the working assumptions:

	● One pose for each trajectory is assumed to be known. 
As pointed out by the work of Wescoat et al., (2021), 
the precise identification of the starting point guarantees 
higher performance of models. As such, considering the 
industrial practice, it is possible to assume that there is 
a unique rest pose for all the possible trajectories that 
allows for an easy characterisation of the data series, 
i.e., the identification of all cycles.

	● There is not a slow degradation process, but a step 
change in the behaviour. The FDD capabilities of the 
solution are tested by inducing sudden functional fail-
ures. Therefore, possible slow degradation due to, for 
example, outer race damage in a rolling bearing that 

Fig. 4  Computer desktop: the 
upper-left corner shows the 
textual interface to plan cobot 
motion, the lower-left corner 
shows the cobot movement in 
real time via RViz, right-hand 
side shows the shell to collect 
data, namely position and torque
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Hence, the first dataset refers to the healthy state and it 
is divided into training and testing sets, for which 1.000 
and 200 replicas (i.e. consecutive cycles replicated for each 
work sequence) are performed, respectively. The fourth tra-
jectory is assumed to be unknown, so there is no training, 
but only testing.

Then, the second dataset is realised for the unhealthy 
state, considering the induced functional failures. Specifi-
cally, for each of them, 50 replicas are performed, assuming 
that these conditions will be experienced sporadically by the 
cobot with respect to the healthy state. Each of the unhealthy 
states (50 replicas) is joined with the related dataset for the 
healthy state testing set. In that way, for each functional fail-
ure, the dataset will contain 200 cycles of the healthy state 
and 50 cycles of the unhealthy state. Finally, since the fourth 
trajectory is still the one unknown, no unhealthy data are 
generated.

The number of cycles has been chosen to ensure a trust-
worthy implementation of the proposed framework and a 
reliable estimation of the performances of the developed 
models/algorithms.

For each trajectory, three variables are collected, namely 
the angular position θ in radians, the angular speed ω in 
radians per second and the torque C in Newton. Indeed, 
the angular speed is not directly measured, but it is auto-
matically calculated by means of the embedded control as 
expressed by Eq. 1.

	
ω =

∆θ

∆t
= 2πf � (1)

where:

	● ω is the angular speed.
	● θ is the angular position.
	● t is the time.
	● f is the frequency.

As a matter of example, Fig.  6 reports the gathered data 
for the overload functional failure, Fig.  7 for the exces-
sive friction functional failure and, finally, Fig.  8 for the 

body, two screws were screwed off then, the band 
was rolled onto the screws, and they were screwed 
back in the original position. This functional failure 
could represent a degradation of mechanical compo-
nents (e.g., bearings) or an overheating of the joints 
(Olsson et al., 1998; Bittencourt & Gunnarsson, 
2012).

	– Unpredictable factors. A random coefficient varying 
in the continuous range [− 0.02, + 0.02] was added 
for each joint to the target positions during the cobot 
motion to make the executed trajectory vary. This 
failure could represent problems with the robot 
controller or the positional encoders, defects in the 
robot-base securing system, or abnormal vibrations 
propagating from any faulty component along the 
robot’s structure and frame.

	● 4 different trajectories are reproduced to represent typi-
cal pick-and-place cobot operations. Also, 1 out of 4 tra-
jectories is assumed to be unknown.

Correspondingly, the creation of the dataset passes through 
the identification of 13 work sequences, which are collec-
tions of consecutive cycles that all belong to the same tra-
jectory and the same health state. The 13 work sequences 
are reported in Table  3. Each cell in Table  3 represents a 
work sequence (0 means no work sequence realised for that 
combination of trajectory and healthy/unhealthy state), and 
it is shown the number of consecutive cycles replicated for 
that sequence.

Table 3  Design of the experiments for the FDD framework
Health state Trajectory

1 2 3 4
Healthy state Training set 1.000 1.000 1.000 0 (unknown)

Testing set 200 200 200 200
Unhealthy state Overload 50 50 50 0

Friction 0 0 50 0
Ext. factors 50 0 50 0

Fig. 5  Pictures of functional fail-
ures: overload on the end effector 
(a) and excessive friction of the 
second joint (b)
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trajectory 3 is considered as a reference as it is the only one 
entailing all possible functional failures.

Once set up the experiment and all the datasets were 
available, the framework could be implemented, tested and 
assessed, as presented in Sect. "Artificial Intelligence algo-
rithms tuning".

unpredictable factors functional failure through a random 
coefficient, all for trajectory 3, which has all the possible 
combinations of healthy and unhealthy states. In all figures 
(from Figs.  6, 7 and 8), the 7 subplots, one per collected 
variable, represent each joint of the 7-axis cobot, for a total 
of 21 plots. The blue data points represent the healthy state, 
while the red points the unhealthy state. Indeed, hereinafter 

Fig. 7  Excessive friction-related dataset

 

Fig. 6  Overload-related dataset
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To Identify the Clustering Structure). This is an extension of 
DBSCAN that tries to overcome its main weakness, that is 
the difficulty of detecting clusters in datasets with varying 
density (Kanagala & Jaya Rama Krishnaiah, 2016). Also, 
OPTICS does require only the minimum points for each 
cluster to be defined, rather than the minimum points and 
minimum distance between points as for DBSCAN. Inter-
ested readers could refer to (Han et al., 2022) for insights 
into how these algorithms work and their differences.

The other challenge to be faced refers to the number 
and type of features to be extracted and how to manage the 
high computational power required if numerous trajectories 
are considered. For what concerns the features, only time-
domain features are considered in order to identify the tra-
jectories, namely: sum of the values (it is the sum of all the 
samples of the time series), median, mean, length (which is 
equal for each cycle as explained before), standard devia-
tion, variance, Root Mean Square (RMS, which is the arith-
metic mean of the squares of all the samples of the time 
series), maximum and minimum values. Regarding instead 
the possible high computational power required if the num-
ber of cycles is high, the adopted method is:

1.	 to launch OPTICS on the training dataset or, in general, 
on the dataset whose cycles are healthy;

2.	 to save an appropriate number of core points for each 
cluster resulting from the application of OPTICS;

3.	 to launch OPTICS on the testing dataset plus the core 
points.

Artificial Intelligence algorithms tuning

A preparatory step is necessary before the application of the 
AI algorithms, to characterise each cycle by means of the 
rest pose knowledge in terms of angular position, speed, and 
torque. Also, concerning the three AI algorithms defined in 
the framework, the dataset should be made homogeneous, 
especially for the autoencoders, whose columns in the input 
dataset must have the same length. Hence, the reference 
length of the cycle is set to be the longest one, thus, in the 
case of this experiment equal to 204 timestamps; then, the 
last observation carried forward procedure is adopted. By 
selecting the longest cycle, there is no risk to truncate previ-
ous observations before the completion of the entire set of 
trajectories. Also, given that cycles are separated by identi-
fying the rest pose, carrying it forward (as the rest pose is 
always the last observation for each cycle) does not affect 
the capability to recognise the cycles themselves.

Once the dataset is prepared, the AI algorithms are tuned 
so to test the framework, as described in the remainder, 
starting with the trajectory clustering, then moving to the 
health state identification and, finally, ending with the func-
tional failure clustering.

Trajectory clustering AI algorithm

The trajectory clustering step oversees grouping the trajec-
tories the cobot performs. The selected AI algorithm is a 
density-based clustering, namely OPTICS (Ordering Points 

Fig. 8  Unpredictable factors-related dataset
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results from which the core points are extracted is shown in 
Fig. 9.

Once the three known trajectories are characterised, it is 
possible to use the testing dataset joined with the induced 
overload functional failure dataset to test if OPTICS can 
correctly find the three original trajectories. The result 
reported in Fig. 10 shows that, for the case of the overload, 
the three known trajectories are correctly identified, plus 
one that is unknown.

Once the trajectories are correctly grouped, the dataset 
passes to the following health state identification step; to 
this end, it is worth mentioning that only the data related to 
the clustered known trajectories are passed.

Health state identification AI algorithm

According to the framework in Fig.  2, unknown trajecto-
ries will not pass to this second step, as they are grouped 
together by the clustering algorithm. Then, the health state 
identification step aims at identifying if there is any anoma-
lous trajectory the cobot is performing.

An anomalous trajectory is a trajectory whose behaviour 
is significantly different from the reference one. Given that 
an autoencoder is selected as the model in charge of this 
step, firstly, in the training phase, it is required to define 
the bottleneck identity function. Then, in the testing phase, 
the cycles are passed to the encoder that, by applying the 
specified bottleneck identity function, tries to reconstruct 
the input. Given that in the testing also unhealthy cycles are 
passed, then the reconstruction error is higher. Therefore, by 

The core points are points laying in the high-density area of 
each cluster so that they can characterise the cluster itself, 
without the need to rerun OPTICS over the entire training 
dataset every time. In this way, the computational power is 
saved and limited to the clustering of only the testing data-
set. The only parameter to be set is the number of core points 
to be saved. In this case, after some trials, 10 core points are 
considered and, as shown after, this allows to reach high-
quality results.

The application of OPTICS shows that the algorithm can 
identify the known trajectories.

OPTICS algorithm applied to trajectory clustering

To test OPTICS, the gathered data are used. To see if there 
is any difference, in terms of performance, between testing 
different induced functional failures, OPTICS is applied 
one functional failure at a time. For the sake of brevity, 
in Table 4, the dataset used to test the OPTICS in case of 
overload is reported as it is the one induced for all three 
trajectories.

Firstly, the training dataset is used to define the 10 core 
reference points to be used to cluster the 3 trajectories. The 

Table 4  Dataset for testing the OPTICS algorithm for trajectory clus-
tering
Health state Trajectory

1 2 3 4
Healthy state Training set 1.000 1.000 1.000 0 (unknown)

Testing set 210 210 210 200
Unhealthy state Overload 50 50 50 0

Fig. 9  OPTICS output: the three trajectories are correctly identified
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	● Kernel size equal to 11 × 11.
	● Dropout rate is equal to 0.1.
	● Batch size is equal to 128 samples.
	● Initial learning rate equal to 0.001 (Adam optimiser will 

automatically adjust it through the training process of 
the autoencoder).

Overall, the adopted algorithm is a convolutional recon-
struction encoder with four layers, one encoding layer, one 
bottleneck layer and two decoding layers, plus the input 
and output layers. The dropout layers are added before the 
encoding layer and after the last decoding layer of the net-
work. It is worth underlining that this type of autoencoder 
results from the specific dataset used in this research work.

Autoencoder applied to health state identification

Table 5 presents the dataset pertaining to the known trajec-
tories, i.e., the first, second, and third ones.

Given that each autoencoder can model the behaviour of 
one variable at a time, 21 autoencoders for each trajectory 

comparing the reconstruction error with a predefined limit 
(defined as a threshold), it is possible to label the cycle as 
healthy (below threshold) or unhealthy (above threshold).

The autoencoder options and hyperparameters are set 
up following a waterfall approach to the training dataset. 
Namely, the waterfall approach consists of the fine-tuning 
of one hyperparameter at a time. Firstly, one hyperparam-
eter is optimised, keeping all the others fixed according to 
literature-based values. Then, once the optimal value for 
the first hyperparameter is found, a second one is selected 
and analysed, with all the others coming from literature, 
and so on, until the identification of optimal values for all 
hyperparameters.

First and foremost, the activation function has to be 
selected; amongst the possible options, the ReLU (Rectified 
Linear Unit) is the most commonly used and proven to out-
perform most of the alternatives, hence it is considered also 
in this work (Ding et al., 2018). Then, the loss function and 
optimiser have to be defined. Indeed, no common practice 
is established (Qian et al., 2022), and it is decided to adopt 
the MSE (Mean Square Error) as the loss function and the 
Adam optimiser.

The final tuning of the autoencoder hyperparameters is 
done by minimising the reconstruction error and leads to the 
following results:

	● Zero padding method.
	● Stride length equal to 2.
	● Filters size ranges from 16 to 32 depending on the type 

of layer.

Table 5  Dataset for testing the autoencoder for health state identifica-
tion.
Health state Trajectory

1 2 3
Healthy state Training set 1.000 1.000 1.000

Testing set 200 200 200
Unhealthy state Overload 50 50 50

Friction 0 0 50
Ext. factors 50 0 50

Fig. 10  OPTICS output for the overload case: the three trajectories are correctly grouped, plus one unknown trajectory (red one)
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obtained from the health state identification step. The 
adopted clustering algorithm is again OPTICS due to its 
various advantages over DBSCAN as already pointed out in 
subsection "Trajectory clustering AI algorithm".

Despite the algorithm being the same, the set of features 
in this third step of the framework is much larger. Specifi-
cally, 776 features were extracted, belonging to both time 
and frequency domains, such as mean, standard deviation, 
absolute energy, kurtosis, skewness, first location of maxi-
mum, distribution quantiles, autocorrelation at various lags, 
peaks, Fast Fourier Transform (FFT) coefficients, Fourier 
entropy and many others. This aims at providing a large set 
of information to empower the diagnostics capability of the 
operator.

OPTICS applied to the functional failure clustering

The input dataset is represented by the predicted anomalous 
cycles identified by the autoencoder in the second step of the 
framework; this is reported in the upper part of Table 7. The 
lower part of the same table shows the results of OPTICS. 
Indeed, it is worth noticing that OPTICS also identifies 
noisy data points; hence, in addition to the induced func-
tional failure, also the “noise” class was added.

As a matter of example, Fig.  11 reports the graphical 
outputs for the third trajectory. Apart from some random 
noise identified by blue points, the three induced functional 
failures are correctly grouped: orange points represent the 
overload, green points the excessive friction, while the red 
points highlight the unpredictable factors.

In the next Sect. "Results and discussion", performance 
measures of the framework assessment are shown, along-
side a discussion on the industrial relevance of the obtained 
results.

Results and discussion

Commonly known performance measures are now used to 
better describe the performance of the algorithms, namely: 
sensitivity (recall), specificity, precision, negative predicted 

are required, as 21 features were extracted. Overall, 63 (21 
autoencoders times 3 trajectories) autoencoders run to iden-
tify the health state of the cobot. If the reconstruction error 
of at least one autoencoder exceeds the threshold, then it is 
concluded that the cobot is in unhealthy state. To evaluate 
the threshold, the following method is adopted:

1.	 to evaluate the reconstruction error for each cycle of the 
training dataset;

2.	 to compute the MARE (Mean Absolute Reconstruction 
Error) for each trajectory;

3.	 to define the threshold between healthy and unhealthy 
as the maximum of the MARE values, so that those 
cycle whose reconstruction error is under the threshold 
could be labelled as healthy.

This method is needed as, even though the trajectories 
within the training dataset are performed with the cobot in 
the healthy state, the intrinsic trajectory optimisation of the 
cobot could lead to slightly different values of the variables 
in each cycle. Over 1.000 training trajectories, it is assumed 
that the identified threshold is properly defined.

The goodness of the models is measured in terms of 
false alarms and missed detections, as reported in Table 6, 
both in absolute and relative terms (over 250 cycles per 
experiment).

It is worth seeing that the results are relatively good for all 
three trajectories with no missed detection for the overload 
and the excessive friction failures, while the only missed 
detection is the one due to unpredictable factors. This may 
have been foreseen as the random coefficient applied to the 
trajectory acts in a stochastic way, while the overload and 
excessive friction act almost in the same way.

Functional failure clustering AI algorithm

Once the anomalous conditions were identified, the func-
tional failure could be also grouped. In this phase, the 
input dataset is the one of only predicted anomalous cycles 

Table 6  Dataset for testing the autoencoder applied to health state 
identification
Induced 
functional 
failure

Autoencoder error Trajectory
1 2 3

Overload False alarms 3 (1.2%) 2 
(0.8%)

1 (0.4%)

Missed detections 0 0 0
Excessive 
friction

False alarms 3 (1.2%) 2 
(0.8%)

1 (0.4%)

Missed detections 0 0 0
Unpredict-
able factors

False alarms 3 (1.2%) 2 
(0.8%)

1 (0.4%)

Missed detections 0 0 1 (0.4%)

Table 7  Dataset and results for OPTICS applied to functional failure 
clustering
Induced functional failure Trajectory

1 2 3
Input dataset Overload 53 52 51

Friction 3 2 51
Ext. factors 53 2 50

Output dataset Noise 6 0 17
Overload 45 56 48
Friction 58 0 45
Ext. factors 0 0 42
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trajectories and the induced functional failures is 100%. 
This value is justified by the fact that, in this experimental 
campaign, the four trajectories are really different from each 
other.

Considering the second step, i.e., health state identifica-
tion, the performance is summarized in Table 8, always for 
the overload.

The weighted average performance measures considering 
also the other functional failures are expressed in Table 9.

Finally, for the functional failure clustering step, the per-
formance measures are reported in Table 10, by pointing out 
the number of trajectories correctly grouped together and 
not per functional failure. Those trajectories not correctly 
grouped are labelled as noise by the density-based cluster-
ing algorithm.

The first conclusion is that the OPTICS algorithm never 
classifies any kind of functional failure as another one, even 
though some trajectories were labelled as noise. It is worth 

value, accuracy and F1 score. These measures are derived 
from the confusion matrix (Hossin & Sulaiman, 2015) 
which allows for determining the performance of classifi-
ers, showing the numbers of the true positive (TP), false 
negative (FN), false positive (FP), and true negative (TN). 
Specifically, in this work, it has been chosen to use classifi-
cation performance metrics instead of the clustering ones as 
they could provide more evidence on the correct function-
ing of the framework. Given this choice, the human expert 
is involved in manually labelling the experimented trajec-
tories with or without functional failure, and of which type, 
for the sole purpose of validation of the algorithms.

Noting that, in the proposed framework, the algorithms 
are organised in sequence, it is worth remarking that the 
performance of both the algorithms at the second and third 
steps is influenced by their predecessors since the input data 
of each algorithm is the output of the previous one. Also, all 
performance measures are influenced by the sample size, 
which reduces from the first step onwards: the data belong-
ing to any unknown trajectory are discarded during the tra-
jectory clustering step, and then the amount of data is further 
reduced by excluding healthy cycles after the health state 
identification step. This should be considered when looking 
at the performance of the entire three-step framework.

For what concerns the first step, i.e., trajectory cluster-
ing, the accuracy of the OPTICS performance for all the 

Table 8  Autoencoder performance for the overload functional failure
Predicted class
Unhealthy Healthy

Health state Unhealthy TP FN
150 0

Healthy FP TN
6 594

Table 9  Autoencoder performance measure for health state identification step
Sensitivity (recall) Specificity Precision Negative predicted value Accuracy F1 score
99.67% 99% 94.32% 99.94% 99.10% 0.97

Fig. 11  OPTICS output for functional failure clustering for the third trajectory
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trajectories and/or functional failure. Of course, it is evident 
that the availability of such kind of information is relevant 
since it makes it possible to precisely identify which task the 
cobot is performing or which functional failure is experi-
encing, further triggering a proactive maintenance action to 
guarantee operational continuity. This will be part of future 
work as discussed afterwards in the concluding section.

From an industrial application point of view, it is worth 
pointing out the core part of the proposed FDD framework, 
which is its second step, i.e. the health state identification. 
The capability of the autoencoder to identify deviation of 
the operation, corresponding to a possible shift between the 
healthy to an unhealthy state of the cobot, allows notify-
ing the operator. Then, the maintenance intervention can be 
further triggered, in which detailed diagnostics activities are 
required from technicians, eventually informed by the clus-
tering of functional failures gained in the third step of the 
framework.

Finally, it is worth discussing the expected benefits of the 
proposed solution in industrial practice:

	● The proposed framework is adaptable to situations 
where collaborative robots are newly installed as well 
as for already working cobots as it only relies on a few 
thousand cycles.

	● A second benefit of the framework is that it relies only 
on built-in sensors without the need to add additional 
monitoring systems; this could have a strong positive 
advantage as the ramp-up cost for this solution is rela-
tively low.

	● Thirdly, the framework is automatic and requires almost 
no updates: once the three AI algorithms have been 
trained, the real-time testing allows an understanding if 
the cobot is in a healthy state or not. In this regard, it 
is also relevant to note that the execution is fast, there-
fore it is possible to quickly analyse data and conse-
quently plan maintenance interventions during the cobot 
runtime.

	● Lastly, as an original choice, the proposed framework 
is designed based on modularity. This gives interested 
companies the possibility both (i) to decide to stop at 
the trajectory clustering step, or at the health state iden-
tification step depending on the purpose of the monitor-
ing system, or embrace the entire three steps, and (ii) 
to configure a step with a different AI algorithm in case 
advantages are evident after experiments are run and the 
performance assessment is obtained. The modularity is 
also an enabling characteristic leading to the possibility 
to scale up the results: the AI algorithms could accom-
modate additional data at specific steps without the need 
to rebuild everything from scratch, in regard to new tra-
jectories (passing from unknown to known trajectories, 

saying that, amongst those trajectories labelled as noise, 
there are 3 trajectories that were false alarms as a result of 
applying the autoencoder. Hence, only 14 trajectories could 
be considered as real errors introduced by the clustering 
algorithm. Overall, also for the first and second trajectories, 
the results are satisfactory.

To conclude the performance assessment, it is also worth 
pointing out the computational performance of the frame-
work. Overall, apart from the training of the three AI algo-
rithms, it takes 189 s to run the three steps, considering all 
the above tests, on a PC equipped with an Intel Core i7, 
2.9 GHz and 8 GB RAM.

Discussion

In light of the results shown above, it can be stated that 
the goal of this research is reached, that is, the develop-
ment of a framework for the FDD of cobots. Indeed, the 
performance assessment of the proposed framework and 
the related algorithms shows an effective capability to clus-
ter the trajectories, identify the relative healthiness, and, in 
case of anomalous cycles, the functional failure the cobot is 
experiencing.

Specifically, the framework was tested against three main 
functional failures, namely, an overload at the end effector, 
excessive friction in one joint and random variations due 
to unpredictable factors. This last one introduced some 
errors (see false alarms and missed detection in Table  6 
and missed grouped trajectories in Table 10) given that the 
changes to trajectories are aleatory, whilst for the first two 
functional failures, the effect on trajectories is almost repeti-
tive between cycles.

The capability to first recognise known from unknown 
trajectories, then to distinguish a healthy from an unhealthy 
cycle and finally discern between functional failures is 
enabled by three AI algorithms: two versions of the den-
sity-based OPTICS clustering applied first to trajectory 
clustering and then to functional failure clustering (first 
and third steps of the proposed framework), and an auto-
encoder applied to make the health state identification. All 
of them represent unsupervised machine learning as one of 
the goals the framework pursues is independency from an 
extant knowledge of cobot behaviour. As such, the frame-
work works even when no labels are present in terms of 

Table 10  OPTICS performance for the third trajectory per functional 
failure clustering
Induced functional failure Correctly grouped 

trajectories
Missed 
grouped 
trajectories

Overload 48 3
Excessive friction 45 6
Unpredictable factors 42 8
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requires further development. Secondly, another develop-
ment should be to enable the human-in-the-loop for data 
analysis for collaborative robots, as domain knowledge by 
experts is not actually used in the functioning of the frame-
work. Indeed, such expert knowledge and other field shreds 
of evidence could be used to label data beforehand, namely, 
trajectories and functional failures. In this way, AI algo-
rithms would return more interpretable results that may trig-
ger maintenance intervention, augmented by information 
about the occurring failures.

Other limitations this work suffers from, concern the 
experimental part, and are related to the abundance of tested 
trajectories and simulated functional failures. Namely, the 
number of trajectories may be higher, leading to a risk of 
less accuracy in the trajectory clustering step; given the con-
secutiveness of the steps of the framework, this may have 
an important impact on the final result. Also, the number of 
tested functional failures is relatively small; especially, the 
excessive friction could be experienced by other joints, even 
simultaneously.

Overall, the main future research has to tackle the main 
limitations the current proposal has, hence related to habili-
tate second-level diagnostic activity to identify the specific 
failures and the introduction of human support along the 
data analysis process for labelling activities to introduce 
expert knowledge. These will enable better-informed deci-
sion-making processes targeting erroneous trajectories as 
well as failures currently occurring. Envisioned additional 
future works related to the adopted algorithms: more effort 
should be put so to testing and comparing sets of algorithms 
to identify best-in-class able to deal with the gradual degra-
dation of components for early identification.

Additional future works should extend the current pro-
posal by (i) developing solutions to automatically identify 
a common pose between the trajectories to automate the 
characterization of cycles; (ii) analysing how many and 
which features are needed in order to characterise each tra-
jectory, so as to optimize the feature engineering phase; (iii) 
inducing gradually evolving failures so to experience slow 
degradation processes and not only sudden failures as step 
changes; (iv) going forward in PHM process, looking for 
prognostic capabilities.

From an industrial application viewpoint, the scale-up of 
the solution may bring limits in the computational power. 
Hence, it is worth pointing out that the identified AI algo-
rithms as well as their organisation in hybrid series mod-
elling should be better tested and eventually improved 
according to the available computational resources and 
related computing architecture.

In the long run, it is advisable that the possibility to moni-
tor, diagnose and predict the health state of collaborative 
robots, together with all other machine types on the shop 

in the first step of the framework) or new functional fail-
ures (in the third step of the framework).

Overall, the proposed framework, with the related AI algo-
rithms, can be seen as the first solution aiming at provid-
ing CBM to collaborative robots. The modular design of the 
framework, in its three steps, may envision further improve-
ments in the specific industrial application, and thus a poten-
tial for customization to given problem settings.

Conclusion

The current research proposes a framework for FDD of 
collaborative robots through hybrid series modelling of AI 
algorithms that aim at notifying anomalous cobot trajecto-
ries to the operator. The framework is tested on a 7-axis col-
laborative robot and three functional failures are induced, by 
means of an overload to the end effector, excessive friction 
in one joint and random variations due to unpredictable fac-
tors. The need for such a proposal stems from the identified 
gaps in the scientific literature and the growing adoption 
of cobots in the industry to improve operational flexibility. 
Currently, there are neither guidelines nor predefined solu-
tions for cobot FDD in the published research works, while 
production systems are speedily evolving towards smart 
factories inclusive of new robotic applications as cobots; 
this requires a high-level integration and monitoring of all 
machine types at the shop floor for robust decision-making.

The proposed framework for cobot FDD consists of three 
consecutive steps: trajectory clustering, health state identi-
fication, and functional failure clustering. The decision to 
opt for a three-step approach with respect to one-shot and 
monolithic solutions is twofold: firstly, from each of the 
three mentioned steps it is possible to extract meaningful 
information and the data flowing throughout the framework 
is more controllable and manageable; then, since there are 
no guidelines to develop CBM solutions for cobots, the 
only reference is the PHM, whose process is organised in 
consecutive, yet separated steps. In addition, the solution is 
subsequently customizable according to company purposes, 
as not all the steps are required to be implemented, but only 
up to those deemed useful; moreover, a step could be con-
figured with a different AI algorithm.

The framework is meant as a first move and is charac-
terized by two major limits. Firstly, the framework habili-
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floor, could empower the CPS on which smart factories are 
built. In this way, integrated decision-making based on thor-
ough management of assets is fostered. Especially, predict-
ability characteristics should be pushed forward. In this way, 
smart factories could be fully integrated, all their machines, 
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