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1. Introduction

Open-porous lattice structures (OPLSs) are cellular solids fabricated
by stacking periodically unit cells with specific geometrical features
in the 3D space. OPLSs have more controllable architecture regard-
ing cell size and wall thickness with respect to traditional porous
cellular solids known as “foams”[1] that are obtained by less control-
lable manufacturing processes. The advancement in additive
manufacturing (AM) technologies has facilitated the realization

of these intricate geometries. In fact, over
90% of metallic OPLSs are manufactured
using a powder bed fusion (PBF) process.[2]

These structures have been utilized in light-
weight and energy absorption applications in
aerospace[3,4] and automotive[5,6] industries,
as well as for body protection.[7] OPLSs are
also used in biomedical applications as bone
implants matching the mechanical proper-
ties of the host tissue, and allowing cell
migration and proliferation thanks to the
interconnected porous structure, offering
at the same time an increased exposed sur-
face for better osseointegration.[8,9]

No matter what is the practical aim of
these materials, the load-bearing ability of
OPLSs plays a crucial role before every appli-
cation can be developed. Indeed, the
mechanical properties, and thus the func-
tionality of the OPLSs can be modified by
adjusting structural parameters such as unit
cell size, strut cross-sectional dimensions,
and porosity.[10–12] OPLS can be in the form
of cellular structures with periodic unit cells
of identical porosity, known as uniform lat-

tice structures (ULSs). In the opposite category, there exist func-
tionally graded lattice structures (FGLSs) with a spatial variation
in the internal architecture of the unit cell or material composition.
FGLSs have the potential to provide an optimum internal architec-
ture improving the overall mechanical properties. Cobalt–
chromium FGLSs processed by laser PBF were manufactured
using different strut size pillar octahedron unit cells with the gra-
dient being along the radial and longitudinal direction.[13] Elastic
modulus, yield strength, and compressive strength of FGLSs were
almost the same as that of the ULSs at equal relative density.
However, larger yield and ultimate compressive strength were
achieved in structures with radial density gradients compared to
axial density gradients. The proposed FGLSs proved to be a proba-
ble solution to the common problem of stress shielding due to
Young’s modulus mismatch between the solid metallic implant
and the natural bone. Maskery et al.[14] manufactured FGLSs made
of Al–Si10–Mg using PBF technology. They reported that FG struc-
ture avoided the common shear collapse in ULSs and the related
large stress drop in the stress–strain curve. Instead, the compres-
sive response of FGLSs exhibited a step-like behavior, which pro-
vided a more predictable deformation behavior including energy
absorption. It is also been reported that FGLSs are advantageous
in biomedical applications.[15,16] FGLSs are designed using diverse
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Open porous lattice structures have found a wide range of applications as
lightweight load-bearing and energy absorbent structures in various fields. A
common requirement for any application is the preliminary assessment of the
mechanical response of the proposed architecture. Herein, uniform and con-
tinuous functionally graded lattice structures (FGLSs) made of titanium alloy,
Ti–6Al–4V, are designed using cubic and pillar octahedron unit cells at overall
porosities of 60%, 75%, and 85%. The lattice morphology is modulated using
axial, dense-in, and dense-out gradient strategies. The mechanical performance
of the structures is studied using numerical simulations implementing damage
initiation and evolution under quasi-static compression. The proposed models
could properly simulate the mechanical properties and failure behavior of the
lattice structures. The designed FGLSs displays a crushing behavior starting from
the lower relative density layers toward the higher relative density ones. Cubic
and pillar octahedron-based structures exhibit stretch- and bending-dominated
deformation behaviors, respectively. The power-law analysis verified by the
Gibson–Ashby model is used to assess the mechanical response of the FGLSs.
The effect of the gradient strategies on the mechanical properties as well as their
adaptability for orthopedic implants is discussed in detail.
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approaches[16–18]: 1) variation in strut diameter while keeping a
constant unit cell size. Using this approach, the pore size and
porosity can be incrementally graded layer-wise; 2) variation of unit
cell size, which allows both strut and pore size modification. This
approach is not always practical, because of the free nodes at the
boundary between unit cells of different volumes, which induce the
risk to decrease themechanical performance of the FGLS; 3) assem-
bling dissimilar unit cells. An extensive variety of possibilities are
made available for FGLSs using the latter strategy providing the
means to tune separately the geometric parameters, such as poros-
ity, pore size, and strut diameter; 4) considering a mixture of at
least two materials in the gradual transition.

Finite element (FE) modeling has extensively been applied in
the analysis of cellular solids in general, and more specifically of
OPLSs in the primary steps of the design process.[19] Different FE
modeling approaches are found in the literature. One category
divides the models into infinite media models and finite-size
models.[20] The infinite media models consider only a single unit
cell and make use of periodic boundary conditions with the
advantage of a low computational cost. However, they lack the
ability to study features such as deformation localization and
structural irregularities.[21] The finite size approach refers to
stacking the unit cell in the 3D space and thus not applying
periodic boundary conditions and thus is computationally more
expensive. In this case, it is necessary to carefully choose the total
number of unit cells to be considered to minimize the cell size
effect. Regarding the type of FE model, solid or beam elements
have been used in the literature. The former is computationally
expensive but more suitable for plastic deformation and more
able to consider local effects. The size effect is caused by the
effect of boundary conditions and refers to the dependence of
mechanical properties of lattice structures on the ratio of the
specimen size to the cell size.[22,23] In a numerical study by
Smith et al.,[24] it was demonstrated that the fundamental
mechanical properties of the lattice structures can be predicted
by a limited number of unit cells. Other studies such as Yang
et al.[25] and Kadkhodapour et al.[26] have proven that lattice struc-
tures of 5� 5� 5 unit cells can be safely used.

The high potential of gradient OPLSs to tune the mechanical
properties has attracted considerable attention. However, the
development of new structures is restricted by the limitations
arising from the high expenses of fabrication as well as the costs
and time required for their mechanical assessment. By the
implementation of numerical modeling, these issues would be
overcome more straightforwardly. In this study, a series of gra-
dient OPLS is designed using cubic and pillar octahedron unit
cells with three different gradient strategies of axial, dense-in,
and dense-out. A numerical approach is utilized in the design
procedure and FE analysis is implemented to investigate the
quasi-static compressive mechanical behavior of the designed lat-
tice structures to provide guidance for structural optimization at
reduced costs. Hereafter, a finite-size solid FE model is devel-
oped to predict the mechanical properties and deformation
mechanisms of the proposed FGLSs. The main compressive
mechanical properties, including Young’s modulus, peak stress,
plateau stress, and energy absorption are compared. The collapse
behavior as well as the power-law analysis of the structures are
discussed.

2. Experimental Section

2.1. Structural Arrangements

Two types of unit cells having a cell size L of 2mm were consid-
ered as the building unit of the FGLSs as shown in Figure 1.
The first one is a cubic unit cell (C) architecture consisting of
struts directed at 0 and 90 with respect to the compression direc-
tion (vertically) and having a quarter-circle cross-section
(Figure 1a). The second is the pillar octahedron (Po) architecture.
It consists of struts having both a quarter-circle cross-section
directed at 0 in relation to the compression direction and a cir-
cular cross-section inclined at �45 with respect to the loading
direction (Figure 1b).

The CAD model of the structures was built using Autodesk
Inventor Professional 2019. The structures were 5� 5� 5 unit
cells with overall porosities of 60%, 75%, and 85%. The porosity,
P, was calculated according to the following relation

Pð%Þ ¼ 100
V void

V tot
¼ 100

V tot � V solid

V tot
¼ 100 1� V solid

V tot

� �
(1)

where Vtot is the volume of the box enclosing the unit cell (L3),
Vvoid is the void volume within the enclosing box, and Vsolid is the
volume of the struts, obtained from the CAD models.

Three different gradient strategies were utilized, namely axial
gradient (Ax), dense-in gradient (Din), and dense-out gradient
(Dout) (Figure 2). In all cases, the gradients consisted of a con-
tinuous linear change in strut diameter (Dstrct) along the vertical
axis of the structures, while keeping a constant unit cell geometry
and unit cell size. The gradients were controlled by the values of
two design-driving strut diameters specified at two different
points in the structure. Ax is a variation of strut diameter from
a maximum diameter, Dmax, at the bottom of the structure to
a minimum diameter, Dmin, at the top of the structure
(Figure 2a,d). Din is a strut variation fromDmin at both the bottom
and top of the structure to Dmax in the middle layer (third layer
bottom-up) of the structure (Figure 2b,e); Dmax was kept constant
to avoid a sharp corner right at the middle of the transient layer
and the possible stress concentrations. Dout is the opposite of Din;
the strut changes from Dmax at both the bottom and top of the
structure to Dmin, which was kept constant in the middle layer
of the structure as well (Figure 2c,f ). In the case of cubic-based
FGLSs,Dmin andDmax were given to the vertical struts in the struc-
ture, while the horizontal ones have a diameter equal to that of the
vertical struts at their corresponding vertical position. In contrast,
Dmin and Dmax were specified on both vertical and �45 inclined
struts on the pillar octahedron-based FGLSs. Uniform lattice struc-
tures (Uni) having the same overall porosities, 60%, 75%, and
85%, and building unit cell architectures and sizes were created
as well. In that case, only one diameter, Dmin¼Dmax, was used as
the design-driving parameter to create the structure. The used
labeling system is shown in Table 1. Diameters considered for
each structure designed are provided in the supplementary,
Table S1 and S2, Supporting Information, for both cubic- and
pillar octahedron-based OPLSs, respectively.

The architectures of both unit cells allowed having fully inter-
connected highly porous lattice structures, which is an impor-
tant requisite for cell migration and proliferation, as well as
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nutrient-waste flow transportation for biomedical applica-
tions.[9] Pore size was defined as the largest inscribed circle cor-
responding to the 2D projection of the biggest sphere that can
move in-between adjacent unit cells in a lattice structure.[19,27–30]

In the case of cubic-based lattice structures, given the
architecture of the unit cell, only one pore type was defined
(Figure 2g). In contrast, two different pore types were defined
for the pillar octahedron-based lattice structures; intra-cell pore
type, which is given by the unit cell morphology itself, and
inter-cell pore type, which is the one generated when unit cells
are stuck together (Figure 2h). Considering both uniform and
graded structures, the pore size ranged from 860 to 1522 μm
for cubic-based lattice structures, while pillar octahedron intra-cell
and inter-cell pore size ranged from 335 to 765 μm and 729 to
1134 μm, respectively.

2.2. Numerical Modeling

A FE model was developed to estimate the mechanical
properties and deformation mechanisms of OPLSs subjected
to uniaxial quasi-static compression. The commercial software
package ABAQUS/explicit 2017 was used to create the 3D
explicit model. Lattice structures made of 5� 5� 5 unit cells
repeated along the 3 global coordinates and having a unit cell
size (L) equal to 2mm, were considered. Details of the numerical
model are shown in Figure 1c. Two analytical rigid shells were
created to replicate the upper and lower compression plates of
the testing machine. All degrees of freedom were blocked for

the bottom plate, while the upper one was only allowed to
have a displacement in the vertical direction to compress the
structure by 50% of its initial height (Figure 2c). The reference
point located on the upper plate was used to extract the displace-
ment and reaction force from the structure, which is then
converted into the corresponding engineering stress–strain
curve. Ten-node modified quadratic tetrahedral elements,
C3D10M, were used to mesh the OPLSs. To optimize the accu-
racy of the results as well as the computational cost, a mesh con-
vergence study was carried out leading to an element size of
0.14mm. The total number of elements for each unit cell type
is provided in the supplementary data in Table S1 and S2,
Supporting Information. A contact algorithm was implemented
to consider all the possible interactions including with-self ones
in the simulation. Contact properties were enforced with the pen-
alty method taken as tangential behavior with a coefficient of fric-
tion of 0.2.[31]

Material properties were defined in such a way to implement
the failure initiation and model the progressive damage and fail-
ure of the OPLSs. The elastic modulus was set to 110 GPa and
Poisson ratio to 0.3. Plasticity data were obtained from[32,33] cor-
responding to annealed LPBF Ti6Al4V built in the vertical
direction.

Damage was modeled using the Johnson–Cook damage
initiation criterion, which is a strain-based fracture model
proposed.[34] It states that the equivalent plastic strain at the onset
of damage, ε0pl, is usually dependent on the stress triaxiality, the
strain rate, and the temperature

Figure 1. CAD model of: a) cubic and b) pillar octahedron unit cells. c) FEA model assembly and boundary conditions (L¼ 2mm).
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ε0
pl ¼ ½D1 þ D2 expðD3σ�Þ�½1þ D4 lnðε: �Þ�½1þ D5T�� (2)

where σ* is the stress triaxiality, T* is the homologous tempera-
ture, ε

: � is the dimensionless strain rate, andD1 toD5 are material
constants. The five material constants used for Ti6Al4V are listed
in Table 2.[26] Constants D4 and D5 were set to zero since the
compression tests were carried out under quasi-static conditions
at room temperature.

The damage evolution law describes the behavior of the mate-
rial after damage initiation. That is, the progressive degradation
of the material’s stiffness once the damage initiation criterion is
fulfilled. Damage evolution was specified in terms of the fracture
energy per unit area, Gf, to be dissipated during the damage pro-
cess. The value ofGf was calculated using the fracture mechanics
expression (Equation (3)), which is a function of the fracture
toughness KIc, Young’s modulus E, and Poisson’s ratio υ, as fol-
lows.[35,36]

ðGf ÞI ¼
1� υ2

E

� �
ðK Ic

2Þ (3)

The numerical value of K Ic
[32] and the calculated value of Gf

are given in Table 3.
One crucial factor in the FE simulation is the computational

cost. Time scaling and mass scaling are two approaches normally
used to reduce computational time. The former means to speed
up the analysis as opposed to the event’s natural time scale and
can be used only in the cases where rate-dependent material
properties are not used. The latter means to artificially increase
the density of the material, which in consequence decreases the
wave speed propagation through an element, and finally
increases the stable time increment of the analysis, making
the simulation run faster. In this study, time scaling, rather than
mass scaling, was applied, considering a compressive velocity of
6m s�1. This velocity was selected based on some preliminary
trials. Two criteria were considered: 1) the kinetic energy was
monitored so as to make sure it did not exceed 10% of the

Figure 2. CAD models and section view of FGLSs of 75% porosity based
on both: a–c) cubic and d–f ) pillar octahedron unit cell, and having axial
(a,d), dense-in (b,e), and dense-out (c,f ) structural gradients; definition of:
g) cubic unit cell pore size, and h) pillar octahedron intra-cell and inter-cell
pore size.

Table 1. Labeling of the various structural arrangements.

Porosity (%) Uniform Axial Dense-in Dense-out

Cubic unit cell

60 C-Uni60 C-Ax60 C-Din60 C-Dout60

75 C-Uni75 C-Ax75 C-Din60 C-Dout75

85 C-Uni85 C-Ax85 C-Din60 C-Dout85

Pillar octahedron unit cell

60 Po-Uni60 Po-Ax60 Po-Din60 Po-Dout60

75 Po -Uni75 Po-Ax75 Po-Din60 Po-Dout75

85 Po -Uni85 Po-Ax85 Po-Din60 Po-Dout85

Table 2. Johnson–Cook damage criterion material constants for
Ti6Al4V.[26]

D1 D2 D3 D4 D5

�0.68 0.73 �0.25 0 0

Table 3. Annealed LPBF Ti6Al4V material properties.[26,32,33]

Elastic modulus
(GPa)

Yield strength
(MPa)

Density
[g cm�3]

Poisson’s
ratio

Fracture toughness
[MPa

ffiffiffiffiffi
m

p �
Gf

[mJ]

110 957 4.42 0.3 49� 2 21.517
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internal energy throughout the process[37,38] and 2) the compres-
sive force-displacement had to be independent of the applied
velocity.[38]

2.3. Mechanical Properties

Mechanical properties were estimated from the results of the
numerical simulations and following the standards ISO
13 314:2011.[39] The yield stress was computed as the intersection
between the compressive stress–strain curve and the 0.2% offset
line parallel to the elastic region. The peak stress was estimated
as the compressive stress corresponding to the first local maxi-
mum in the stress–strain curve. In the case of the plateau stress,
the standard[39] suggests two ways to calculate it, depending on
the plateau end strain. First, as the arithmetical mean of stresses
within the strain interval 20–30%, and second, as the arithmetical
mean of stresses within the strain interval 20–40%. Since the
OPLSs were not compressed all the way to be able to identify
the densification stage in the stress–strain curve for all the cases,
the plateau end strain could not be properly identified. Therefore,
the plateau stress was calculated in both manners. Note that the
value calculated considering the strain interval 20–30% is here
denoted plateau03, while the one calculated considering the
strain interval 20–40% is denoted as plateau04. The energy
absorption per unit volume, W, was calculated according to
the ISO 13 314:2011[39] as

W ¼ 1
100

Z
e0

0
σ de (4)

where e0 is the upper limit of the compressive strain in percent-
age, which is the compressive strain 50%. The elastic modulus
was obtained as the slope of the straight line given by linear fit-
ting of data points within the linear deformation region at the
beginning of the compressive stress-strain curve. To enhance
the accuracy of these calculations, in addition to the simulations
at 6 m s�1 displacement rate, another set of simulations was per-
formed for each structure at 1 m s�1 only considering the corre-
sponding elastic regime. Furthermore, the data point acquisition
rate was increased.

3. Results and Discussion

Validity of the developed numerical model was verified by com-
paring the results obtained from analysis on lattice structures
having a cubic unit cell morphology, and the experimental data
available in the literature[26] by applying the same unit cell
geometry and testing conditions in the numerical model. The
numerical and experimental compressive stress–strain curves
at an identical relative density showed a very good match
(Figure S1, Supporting Information). Such comparison led to
the conclusion that the numerical model including the damage
initiation and damage evolution is able to properly predict the
mechanical characteristics of the OPLSs.

Stress–strain curves of cubic and pillar octahedron-based lat-
tice structures are presented in Figure 3. Every curve displays the
typical trend of cellular materials, given by a linear elastic region,
followed by an energy absorption plateau regime, and ending

with a densification stage, although the latter is not evident
because the structure was not compressed up to such values
of strain. Uniform lattice structures, regardless of the constituent
unit cell and porosity, show a post-yield strain-softening behavior
(Figure 3a,e). It means that prior to the densification regime, the
values of stress do not reach back to the peak stress initially reg-
istered. In contrast, FGLSs display different behavior, i.e., post-
yield strain hardening (Figure 3b–d,f–h). Even though an evident
post-yield stress drop happens in every case, stress values higher
than the peak stress are reached as the compression proceeds in
the plateau regime. The only exception happens for C-Dout85
FGLS; in this case, although stress values do not reach higher
than the initial peak stress, equivalent values are obtained
(Figure 3d). Cubic-based OPLSs have large stress fluctuations
in the plateau regime, while pillar octahedron-based lattice struc-
tures show low-amplitude stress variations, representing a more
uniform plateau region. This can be explained by the architecture
of the constituent unit cells and so the nature of deformation. In
contrast, strut orientation in a cubic-based lattice structure is
both parallel and perpendicular to the loading direction, which
implies that the cubic topology generates stretch-dominated
structures.[26]In contrast, pillar octahedron-based lattice struc-
tures have struts both parallel and inclined at �45 with respect
to the loading direction. According to different studies in the lit-
erature, pillar octahedron topology shows a stretch-dominated
behavior due to the struts aligned with the loading direc-
tion[40–42]; nevertheless, in this study, such unit cell topology
was seen to have a behavior in between the stretch and
bending-dominated, although tending towards the bending-
dominated one.

3.1. Collapse Behavior

Stress–strain curves are correlated to the damage evolution in the
lattice structures, i.e., the deformation behavior. The layers are
numbered from 5 to 1, top-down, for easier identification in this
discussion. The deformation behaviors were displayed in figures
only for representative cases (Figure 4). The results indicate that
the collapse of cubic FGLSs is always initiated from the layers
with the lowest relative density towards the layer with the highest
density. That is the reason why the corresponding stress–strain
curves show higher peak stresses as the strain increases.
Additionally, the number of collapsed layers varied depending
on the porosity of the structures. The higher the relative density,
the lower the pore size; hence, lattice structures with higher over-
all relative density may have more layers fully densified since
lower compressive displacement is needed to compress individ-
ual layers. Regarding C-Ax structures, the collapse went from the
top layer toward the one at the bottom (Figure 4a). C-Ax60 was
fully compressed down to the second layer, while C-Ax75 and
C-Ax85 were compressed down to the third layer.
Deformation in C-Din structures always started from the first
layer, followed by the fifth , and then both the fourth and the
second layer or either one depending on the structure
(Figure 4b). However, C-Din75 had both the first and fifth layers
compressed simultaneously. C-Dout60 was compressed in the
order third layer, then fourth and second layer simultaneously,
followed by the first layer (Figure 4c). C-Dout75 and C-Dout85
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structures followed the same order, excluding the compression
of the first layer, and the overall behavior of these structures was
different compared to that of C-Dout60. On one hand, a shear
band seemed to form in C-Dout60 when the fourth and second
layers were compressed simultaneously, and the struts were

always vertically aligned. On the other hand, due to a lower rela-
tive density, the third layer in C-Dout75 and C-Dout85 was not
capable of holding the struts aligned vertically and it seemed to
buckle as it was compressed, leading to the vertical misalignment
of fifth and fourth layers with respect to the first and second

Figure 3. Stress–strain curves of: a) uniform, b) axially graded, c) dense-in graded, and d) dense-out graded cubic-based OPLSs; and e) uniform, f ) axially
graded, g) dense-in graded, and h) dense-out graded pillar octahedron-based OPLSs.
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layers. Contrary to the case of cubic FGLSs, uniform structures
did not exhibit any specific pattern regarding the deformation
behavior. The C-Uni60 structure was compressed in the order
first, second, third, and the fourth layer (Figure 4d). C-Uni85

followed the same pattern with the difference that the fourth
layer did not reach full compression. C-Uni75 had a different
deformation behavior; it started with the simultaneous compres-
sion of the fourth and third layers, followed by the second layer.

Figure 4. Deformation behavior and damage evolution during compression of: a) C-Ax75, b) C-Din60, c) C-Dout60, d) C-Uni60, e) Po-Uni85, f ) Po-Ax75,
g) Po-Din75, and h) Po-Dout60. The values below each deformation stage indicate the total strain.
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Overall, layer-by-layer collapse was observed in both C-Uni and
C-FG structures. It means that as the compression went on, the
deformation was mostly concentrated in a single layer, and only
when the corresponding layer was fully compressed another
layer started to collapse. Additionally, it was observed that full
densification of either a single layer or in two, was reflected
by a prominent peak in the stress–strain curves.

Po-Uni structures, in contrast, did not deform in a layer-
by-layer manner. The structural collapse happened due to shear
bands at�45 with respect to the loading direction (Figure 4e). As
the porosity increased, the shear bands were less visible. Po-FG
structures (Figure 4f–h), like C-FG structures, collapsed starting
from the layers with the highest porosity towards the layers with
the lowest porosity. Nevertheless, the progress of deformation
was not layer-by-layer due to the constituent unit cell topology.
Instead, the deformation was localized in one half of a layer
and once the half was flattened, deformation concentrated in
the one half of another layer. Consequently, the structural col-
lapse is less abrupt, and the peak stress magnitude is lower.
Except for the Po-Ax structures, it becomes more complex to
identify in the stress–strain curve, which peaks correspond
to a compressed half layer. Furthermore, the structures show
a more compliant behavior. Po-Ax structures were always com-
pressed from the fifth layer down to one half of the second layer,
regardless of the overall porosity (Figure 4f ). Po-Din structures
were compressed from both top and bottom layers (fifth and sixth
layers) toward the middle one (third layer) in an alternating man-
ner (Figure 4g). Po-Dout structures were compressed from the
middle layer (third layer) toward both top and bottom layers
(fifth and sixth layers) (Figure 4h).

3.2. Mechanical Properties

Mechanical properties of the cubic and pillar octahedron lattice
structures are reported in Tables 4 and 5 and are represented
graphically in Figures 5 and 6, respectively. The results indicate
a clear dependency of the mechanical properties of structures on
porosity. All mechanical properties, regardless of the constituent
unit cell, decrease as the overall porosity of the lattice structure
increases. It means that OPLSs with lower overall porosities are
stiffer, resist higher loads, and absorb more energy per unit
volume.

Additionally, the mechanical properties show dependency on
the constituent unit cell topology. For a specific gradient and
overall porosity, the elastic modulus, yield stress, and peak stress
are higher for cubic structures than those corresponding to Po
structures. The only exception to this occurs with the structures
C-Din60 and C-Din75, which have peak stresses lower by 0.1%
and 4.2% than those of Po-Din60 and Po-Din75 structures,
respectively. On the contrary, both values of plateau stress are
higher for Po structures compared to cubic structures. Since
the plateau regime is contributing the most to the energy absorp-
tion capabilities of an OPLS, the energy absorption per unit vol-
ume is higher in the case of Po structures. This corroborates the
type of structures generated, i.e., bending-dominated and stretch-
dominated. On one hand, cubic-based lattice structures present
higher elastic modulus as well as initial collapse strength at a
specific overall porosity, which is distinctive in stretch-dominated

structures and makes them ideal for lightweight loadbearing
applications.[43] Po structures, on the other hand, seem to be
more compliant and show a plateau regime with a lower ampli-
tude of stress fluctuations as well as higher energy absorption per
unit volume at a specific overall porosity. All these considered,
the latter tend to the behavior of bending-dominated structures,
which are desirable for energy-absorbing applications.[43]

The change from Uni into FG structures also affects the
mechanical properties. Overall, the elastic modulus remains
equivalent regardless of the porosity and constituent unit cell.
There is a clear increase in energy absorption per unit volume
at 60% porosity. However, at both 75% and 85%, the values
remain comparable. Maskery et al.[14] assessed the mechanical
response of graded and uniform AlSi10Mg lattice structures fab-
ricated by PBF. They used a density-based gradient strategy by a
linear change of strut size, with the higher relative density at the

Table 4. Mechanical properties of cubic-based lattice structures.

Label Elastic
modulus
[GPa]

Yield
stress
[MPa]

Peak
Stress
[MPa]

Plateau
03 [MPa]

Plateau
04 [MPa]

Energy
absorption
[mJ mm�3]

C-Uni60 23.0 189.5 210.9 82.6 91.0 44.0

C-Uni75 12.5 105.8 113.1 38.4 39.6 21.6

C-Uni85 7.02 58.4 59.5 14.4 19.9 11.1

C-Ax60 22.7 135.4 138.8 102.5 111.7 53.5

C-Ax75 12.1 68.6 67.3 25.2 39.0 21.4

C-Ax85 6.8 43.3 44.1 5.4 16.4 9.8

C-Din60 22.1 133.1 139.2 115.5 105.7 50.5

C-Din75 11.4 62.8 64.4 47.8 48.6 21.7

C-Din85 6.8 43.9 43.9 10.4 17.7 10.4

C-Dout60 22.7 145.2 162.2 80.7 115.7 55.3

C-Dout75 11.9 70.6 86.8 37.2 39.6 20.3

C-Dout85 6.7 43.6 48.0 22.5 23.9 11.4

Table 5. Mechanical properties of pillar octahedron-based lattice
structures.

Label Elastic
modulus
[GPa]

Yield
stress
[MPa]

Peak
Stress
[MPa]

Plateau
03 [MPa]

Plateau
04 [MPa]

Energy
absorption
[mJ mm�3]

Po-Uni60 16.8 130.9 181.4 108.1 91.9 57.8

Po-Uni75 7.6 58.5 78.3 59.2 62.6 31.9

Po-Uni85 3.62 27.2 31.9 24.3 25.4 12.8

Po-Ax60 16.0 109.9 142.2 152.2 168.1 70.9

Po-Ax75 7.0 44.5 53.8 63.3 71.1 32.3

Po-Ax85 3.4 21.6 26.0 24.0 27.7 13.1

Po-Din60 15.7 110.3 139.4 161.2 173.7 76.9

Po-Din75 7.1 48.7 67.2 62.6 73.9 33.5

Po-Din85 3.4 21.6 33.5 24.5 28.9 13.2

Po-Dout60 15.1 100.8 128.3 119.3 127.7 59.0

Po-Dout75 6.5 40.5 64.0 56.4 62.0 27.1

Po-Dout85 3.2 20.3 25.9 22.7 27.1 11.9
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base. Similar to our findings, their results showed approximately
the same level of energy absorption capacity for the uniform and
graded structures. The peak stress decreases at all porosities and

the trends vary depending on the constituent unit cell. In the case
of cubic OPLSs, the gradient giving the highest peak stress is
always the Dout, while the values for both Ax and Din are always

Figure 5. Bar graphs representing the mechanical properties numerically obtained for cubic-based lattice structures (the pairs of horizontal lines in (a–c)
indicate the range of the corresponding mechanical property for trabecular and cortical human bone.

Figure 6. Bar graphs representing the mechanical properties numerically obtained for pillar octahedron-based lattice structures (the pairs of horizontal
lines in (a–c) indicate the range of the relevant mechanical property for trabecular and cortical human bone.
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equivalent. On the contrary, Po structures do not show a regular
trend. At 60%, the highest peak stress corresponds to the Po-Ax
structure, while at both 75% and 85%, it corresponds to the Po-
Din. The yield stress decreases at all porosities and the trends
vary depending on the constituent unit cell. At both 60% and
85%, the lowest and highest yield stresses are given by C-Din
and C-Dout, respectively. At 85%, all gradients give equivalent
values of yield stress. Po structures have comparable values of
yield stress for the Ax and Din gradients at both 60% and
85%, while Dout gradient provides the lowest value. At 75%
porosity, the lowest and highest yield corresponds to Dout
and Din gradients, respectively. The values of plateau stress of
Po structures tend to be higher for all the gradients, with a bigger
increase at 60% porosity. In the case of cubic structures only at
60%, the values of plateau tend to be higher. At 75% and 85%,
there is always a bigger value for Din and Dout gradients,
respectively.

The mechanical and biological functioning of bone scaffolds is
highly dependent on the internal architecture of the unit cell.
Previous studies have shown that ULSs can be manufactured
with mechanical properties very similar to the ones of the bone
with also proper biological characteristics for cell migration and
proliferation.[13,15,44–46] However, the direction in novel advances
in tissue engineering is toward designing FGLSs that can better
mimic the complex architecture of bone tissue.[8,18] For this rea-
son, the results of the proposed structures are discussed for bio-
medical applications. The values of elastic modulus, yield stress,
and peak stress were compared to those of human trabecular and
cortical-bone-derived from,[47–53] as shown in Figures 5 and 6.
The most important mechanical property to be considered is
the elastic modulus since it dictates whether stress shielding hap-
pens or not especially when an orthopedic implant is used.[13,16]

The elastic modulus of all cubic structures at both 60% and 75%
were within the range of the values for human cortical bone. Po
structures at 60% porosity were within the range of elastic mod-
ulus of cortical bone, while at 85% the values were within the
range of trabecular bone. Peak stresses of both cubic and Po
structures at 60% porosity were within the range of values of
compressive strength of cortical bone. At 85% porosity, the val-
ues of peak stress were within the range of trabecular bone only
for Po structures. Regarding the yield stress, only the C-Uni60
structure was within the range of cortical bone. Only at 85%
porosity, the Po structures were within the range of trabecular
bone.

3.3. Mechanical Properties-Relative Density Relation Analysis

It is known that there exists a dependency of mechanical prop-
erties with the relative density of lattice structures, ρ/ρs. Positive
power-law relationships as in the Gibson–Ashby model can be
used to represent such dependency.[54] The general description
of this relation is in the form

P
Ps

¼ C
ρ

ρs

� �
α

(5)

where P is a property of the structure, Ps is the corresponding
property of the base material the structures are made of, C is a
proportionality constant and α is a fixed exponent. Equation (5)

was used to relate the numerical relative elastic modulus, E/Es,
and relative yield strength σy/σys to the relative density. Relative
mechanical properties are obtained by normalizing the ones of
the lattice structures, indicated by a macron symbol (horizontal
line on top), with respect to the mechanical properties of the bulk
material, indicated by the subscript “s”. Mechanical properties of
the bulk material were indicated in Table 3. Proportionality coef-
ficients, exponential coefficients, and coefficients of determina-
tion corresponding to the power fitting performed for different
unit cell-based lattice structures are reported in Table 6. Overall,
the coefficient of determination R2 was higher than 0.994 and
0.97, for elastic modulus and yield strength, respectively, dem-
onstrating a good fit.

The Gibson–Ashby model also evidences the dependency of
mechanical properties of lattice structures on the type of
response exhibited by the structure (bending- or stretch-
dominated). Accordingly, the relative modulus and strength of
bending-dominated lattice structures are respectively propor-
tional to the square (m¼ 2) and the one and a half (n¼ 1.5)
of the relative density, with a constant of proportionality C1.

[54]

Concerning the stretched-dominated behavior, the relationship
is linear for both mechanical properties (m¼ n¼ 1), with a con-
stant of proportionalityC2.

[43] Relative elastic modulus and strength
of the lattice structures were fitted to the Gibson–Ashbymodel con-
sidering the ideal bending and stretched-dominated behaviors, and
then compared to the fitted power laws previously discussed.

Since the obtained power trends for cubic structures were in
good agreement with the one attributed to the structures with
stretch-dominated behavior (exponential coefficients m and n
close to 1), the mechanical properties of these structures could
be fitted to the ideal stretch-dominated relation. On the contrary,
the obtained power trends for Po structures are closer to the
trend attributed to bending-dominated structures (exponential
coefficients m and n approach to 2 and 1, respectively); therefore,
these lattice structures were fitted to the ideal bending-
dominated relation. The corresponding proportionality
coefficients and the coefficients of determination are reported
in Table 7. Log–log graphs are shown in Figure 7 to better visu-
alize the behavior of the lattice structures. For the sake of brevity,
only the ones corresponding to the relative elastic modulus and
relative yield strength of Ax structures are displayed. The propor-
tionality coefficient C1 corresponding to the relative elastic

Table 6. Coefficients of power fitting analysis for mechanical properties of
the reported lattice structures.

Label E/Es σy/σys

C1 m R2 C2 n R2

C-Uni 0.647 1.24 0.999 0.6 1.21 0.999

C-Ax 0.656 1.269 0.998 0.448 1.27 0.988

C-Din 0.65 1.286 0.995 0.45 1.3 0.971

C-Dout 0.67 1.293 0.997 0.517 1.35 0.988

Po-Uni 0.672 1.622 0.999 0.623 1.658 0.999

Po-Ax 0.664 1.662 0.997 0.594 1.8 0.996

Po-Din 0.628 1.621 0.999 0.546 1.7 0.999

Po-Dout 0.636 1.682 0.997 0.543 1.796 0.995
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modulus was in the range 0.472–0.496 (decreased with respect to
coefficients of power fitting reported in Table 6) and 0.875–0.981
(increased with respect to coefficients of power fitting reported in
Table 6) for cubic and Po structures, respectively. Regarding the
proportionality coefficient C2 corresponding to the relative yield
strength, the range was 0.322–0.473 (decreased with respect to
coefficients of power fitting reported in Table 6) and 0.34–0.53
(decreased with respect to coefficients of power fitting reported
in Table 6) for cubic and Po structures, respectively. Overall, con-
sidering both relative elastic modulus and strength, the power-
law fit is good, although better in the case of Po structures
(R2> 0.972) compared to cubic structures (R2> 0.93).

According to the Gibson–Ashby model, the proportionality
coefficients C1 and C2 for metallic open-celled bending-
dominated lattice structures fall in the range 0.1–0.4 and
0.1–1, respectively.[55] However, the model does not pre-specify
a range in the case of metallic open-celled stretch-dominated lat-
tice structures. Nevertheless, a review study carried out by
Alomar et al.[20] collected the experimental data from the litera-
ture, and based on the lattice structures compressive behavior,
identified a range for the proportionality constants for metallic

open-celled stretch-dominated structures of C1 and C2 to be
in the range 0.02–0.3 and 0.1–0.6, respectively. In addition, they
also identified the bending-dominated structures and determined
a narrower and more precise range for the proportionality con-
stants in comparison to the one proposed in the Gibson–Ashby
model. The value C1 for metallic open-celled bending-dominated
lattice structures was found to be in the range 0.1–0.6, while C2
was in the same range predicted in the Gibson–Ashby model.
From the power-law fitting analysis (see Table 6), the coefficient
of proportionality C2 estimated for both Po and cubic structures is
within the ranges corresponding to bending- and stretch-domi-
nated lattice structures, respectively. The coefficient of proportion-
ality C1 for Po structures is within the range proposed by the
Gibson–Ashbymodel for bending-dominated structures; however,
it is out of the range established by Alomar et al.[20] Likewise, C1
for cubic structures falls out of the range.

Log–log graphs comparing the power laws predicted for the
different lattice structures to the proportionality constants ranges
for both bending- and stretch-dominated metallic lattice struc-
tures are presented in Figure 8. The relative yield strength of
cubic-based lattice structures is well predicted within the
pre-specified boundaries of stretch-dominated structures.
Likewise, the Po structures fall within the range pre-specified
for bending-dominated structures. The relative elastic modulus
of Po structures falls right in between the limits pre-specified by
the Gibson–Ashby model for bending-dominated structures. On
the contrary, it is outside the range established by Alomar et al.[20]

Similarly, the relative elastic modulus of cubic structures is out-
side of the range proposed by Alomar et al.[20] One probable
cause for this could be the fact that the proportionality constant
ranges defined by Alomar et al.[20] were obtained from experi-
mental data rather than numerical simulation results. In this
study, the modeling of lattice structures was performed consid-
ering the ideal CAD models. In reality, additively manufactured
lattice structures have mechanical properties, especially the elas-
tic modulus deteriorated due to different defects resulting from
manufacturing, such as partially melted powder particles on the
surface of as-built components, and residual thermal stresses,
among others.[25,56,57]

Table 7. Coefficients of Gibson–Ashby model obtained by fitting of
reported lattice structures numerical data. Ideal S-d refers to ideal
stretch dominated power fitting (m¼ n¼ 1), while ideal B-d refers to
ideal bending dominated power fitting (m¼ 2 and n¼ 1.5).

Label Predefined power law E/Es σy/σys

C1 m R2 C2 n R2

C-Uni Ideal S-d 0.496 1 0.97 0.473 1 0.975

C-Ax 0.49 1 0.964 0.332 1 0.954

C-Din 0.472 1 0.957 0.322 1 0.931

C-Dout 0.484 1 0.958 0.35 1 0.938

Po-Uni Ideal B-d 0.981 2 0.973 0.53 1.5 0.994

Po-Ax 0.932 2 0.978 0.436 1.5 0.979

Po-Din 0.92 2 0.973 0.444 1.5 0.991

Po-Dout 0.875 2 0.98 0.34 1.5 0.979

Figure 7. Log–log plots of power laws relating the: a) relative elastic modulus and b) relative yield strength of the reported axially graded lattice structures
to the relative density, and a comparison with the Gibson–Ashby model fitting for ideal bending and stretch-dominated lattice structures.
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All things considered, power laws derived for the OPLSs show
consistency with predictions of the Gibson–Ashby model. The
variation of both relative elastic modulus and strength with
the relative density follow closely the trend lines specified by
the model. The power-law analysis is verified by the Gibson–
Ashby model as a proper tool to obtain an initial estimation of
mechanical properties of OPLSs having different constituent
unit cell topologies.

Khadkhodapur et al.[26] related the collapse behavior of the lat-
tice structures to their dominant deformation mechanism. They
found that stretch-dominated lattices show a layer-by-layer failure
while bending-dominated lattices show failures in shear bands.
In line with this, C-Uni and C-FG structures with a layer-by-layer
failure and Po-Uni structures with diagonal shear bands failure
(Section 3.1) were properly fitted to the stretch- and bending-
dominated models, respectively. The lack of a shear band forma-
tion in FGLSs is previously reported due to gradient volume frac-
tion throughout different layers.[14,58] The Po-FG structures, in
contrast, followed a half-layer alternating failure mechanism
(Section 3.1), supposedly stemming from their graded nature,
and depicted a good fit to the bending-dominated model, which
was not reported previously in the literature.

4. Conclusions

In this work, Ti6Al4V LBPF-manufactured OPLS were numeri-
cally studied. Uniform, axially graded, dense-in graded, and
dense-out graded OPLSs were suggested based on cubic and pil-
lar octahedron unit cells at overall porosities of 60%, 75%, and
85%. A detailed numerical model was developed to predict the
compressive mechanical behavior of the lattice structures. The
influence of the design parameters was investigated on the
mechanical performance and assessed for potential biomedical
applications. The following conclusions are drawn:

The stress–strain curves of all the structures showed an elastic
region, followed by a plateau regime. Contrary to the uniform
structures, the functionally graded (FG) ones had a structural col-
lapse always starting from the lower toward the higher relative
density layers, regardless of the unit cell type.

The structural collapse showed dependency on the constituent
unit cell. Both uniform and graded cubic-based lattice structures
deformed always in a layer-wise manner. The uniform pillar octa-
hedron-based lattice structures developed �45� shear bands
under compression, while the corresponding FG structures fol-
lowed a half-layer alternating collapse.

Given a specific gradient and overall porosity, cubic-based
structures displayed higher elastic modulus, peak stress, and
yield stress, which makes them a better fit for lightweight
load-bearing applications; pillar octahedron structures displayed
higher plateau stress and energy absorption per unit volume,
thus a better fit for energy absorbing applications.

The elastic modulus remained equivalent in all lattice struc-
tures having the same overall porosity and constituent unit cell.
Both peak stress and yield stress decreased for FG structures
with respect to uniform ones at all porosities. Plateau stress
in pillar octahedron structures tended to be higher than that
of uniform structures, at most of the porosities.

Upon comparison between the elastic modulus of the differ-
ent considered structures and that of human cortical and trabec-
ular bone, the most promising structures were identified for a
potential biomedical application: Stress shielding in the cortical
bone would be reduced or avoided for cubic lattice structures at
60% and 75% porosities, and pillar octahedron lattice structures
at 60% porosity, regardless of the gradient. In the case of trabec-
ular bone, among the studied designs, only the pillar octahedron
lattice structures at 85% would be a good fit, independently from
the gradient. Among the highlighted lattice structures, the choice
would depend on the specific implantation site to define the
range of the required mechanical properties and how they should
vary throughout the structure.

The power-law analysis yielded a very good fit for both relative
elastic modulus and relative yield strength. The fittings con-
firmed that cubic structures are stretch-dominated while pillar
octahedron lattice structures showed a very good fit to
bending-dominated structures.

The challenges associated with the fabrication of these struc-
tures could be related to the definition of the geometry, as some
restrictions could be imposed by the minimum resolution. For
PBF technique, which is the one commonly used for fabrication
of lattice structures, it is generally <100 μm. Another constraint
may be imposed by the overhangs and the inclination of the fea-
tures with respect to the build direction. There are specific

Figure 8. Log–log plots of power laws relating: a) the relative elastic mod-
ulus and b) the relative yield strength to the relative density of the reported
lattice structures, and a comparison with the range for bending-dominated
structures stated by the Gibson–Ashby model[55] and Alomar et al.,[20] and
that for stretch-dominated structures stated by Alomar et al.[20] Note that
the legend “Bending dominated range” corresponds to the one stated by
Alomar et al.[20]
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inclination angles set to guarantee the surface quality and integ-
rity of the PBF build. Such aspects should be considered in the
design for additive manufacturing (DfAM) phase to reduce
issues during additive manufacturing of gradient OPLSs.
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