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Abstract. In this paper, we consider a thermoelastic model where heat conduction is
described by the history dependent version of the Moore-Gibson-Thompson equation,
arising via the introduction of a relaxation parameter in the Green-Naghdi type III
theory. The well-posedness of the resulting integro-differential system is discussed. In
the one-dimensional case, the exponential decay of the energy is proved.

1. Introduction

The Moore-Gibson-Thompson (MGT) equation

(1.1) uttt + αutt + βAut + γAu = 0,

where A is a strictly positive operator on some Hilbert space H and α, β, γ > 0 are given
parameters, has deserved much attention in recent years, with several papers appeared in
the literature on the argument (see [3, 11, 12, 13, 23, 25, 31, 39, 40], among others). The
model has been originally introduced in connection with fluids mechanics [50]. In this
work, instead, we propose a different interpretation within the theory of thermoelasticity,
where the heat transfer is ruled by an integro-differential equation. We will see how the
history dependent version of the MGT equation is obtained in a natural way from the
Green-Naghdi heat conduction model, through the introduction of a relaxation parameter.

Notation. Along this work, we will denote a vector indifferently by v or by its generic
ith-component vi. Given any function f = f(x, t), we will write f,i to mean its derivative
with respect to the space variable xi, and ft to mean the derivative in time. Whenever
confusion may occur, we will write ∂tf instead. We will also employ the Einstein notation,
where vi,i = div v.

1.1. Classical heat conduction. The classical theory of heat conduction, for a heat
conductor occupying a volume Ω, is based on the Fourier law

qi = kθ,i,

where qi is the flux vector and θ is the relative temperature, both depending on x ∈ Ω
and on time t, while k > 0 is the thermal conductivity of the material1. Substituting qi
into the energy equation

(1.2) qi,i = cθt,

Key words and phrases. Moore-Gibson-Thompson equation, relaxation parameter, memory kernel,
thermoelasticity, solution semigroup, exponential stability.

1Several authors include a sign ”−” at the right hand side of the relation, however here we adopt the
approach of [21] (see page 41).
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where c > 0 is the thermal capacity, we obtain the classical heat equation

cθt − k∆θ = 0,

predicting the instantaneous propagation of thermal waves. A fact which is known to
be incompatible with the causality principle. This is the reason why many scientists
have suggested alternative approaches in the description of heat conduction. A well-
established theory is the one introduced by Maxwell and Cattaneo [1], where the Fourier
law is replaced by the constitutive equation, containing a relaxation parameter τ > 0,

(1.3) τ∂tqi + qi = kθ,i.

The combination of (1.2) and (1.3) leads to the damped hyperbolic equation

τcθtt + cθt − k∆θ = 0,

in which thermal waves propagate indeed with finite speed. This setting has been extended
to cover thermoelasticity in the Lord-Shulman theory [29]. The system of equations
obtained in this way has been widely investigated (see e.g. [2, 19, 20, 22, 46, 47]).

1.2. Green-Naghdi heat conduction. Three theories for heat conduction have been
proposed by Green and Naghdi at the end of the last century [16, 17, 18], nowadays known
as type I, II and III, respectively. Type I heat conduction is nothing but the Fourier law.
Type II concerns with another hyperbolic equation where there is no dissipation. In this
case, the heat flux vector is a linear expression of the thermal displacement α, satisfying
the relation

αt(x, t) = θ(x, t),

of the form

qi = k∗α,i,

where k∗ > 0 is the conductivity rate parameter. The constitutive equation for the heat
flux vector of type III theory reads

(1.4) qi = k∗α,i + kθ,i.

In particular, when k∗ = 0 or k = 0 we boil down to type I or type II, respectively.
Type III theory attracted a lot of interest, witnessed by a flurry of publications appeared
on the argument (e.g. [5, 15, 24, 26, 27, 30, 32, 33, 34, 35, 36, 42, 43, 45, 49]). In the
nontrivial case when both k and k∗ are positive, and we substitute qi into (1.2), we obtain
a generalization of the Fourier classical heat equation, namely,

cαtt − k∆αt − k∗∆α = 0.

Unfortunately, the equation above (sometimes called strongly damped wave equation)
suffers from the same drawback of the Fourier one, as instantaneous propagation of ther-
mal waves is still present (see [48, p.39]; see also [15]). To be more precise, in this model
one observes an instantaneous regularization of the temperature θ = αt. A natural way
to overcome this problem is to modify the constitutive equation (1.4) by introducing a
(small) relaxation parameter.
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1.3. MGT heat conduction. Following the approach of Maxwell and Cattaneo, we
correct the constitutive law (1.4) in the following manner:

(1.5) τ∂tqi + qi = k∗α,i + kθ,i,

where the relaxation parameter τ > 0 is thought to be small compared to the other
constants. Collecting (1.2) and (1.5), we find

cθtt = div qt = τ−1(−div q+ k∗∆α+ k∆θ) = τ−1(−cθt + k∗∆α + k∆θ).

As a result, the corresponding heat equation becomes the MGT equation

(1.6) τcαttt + cαtt − k∆αt − k∗∆α = 0.

It is well-known that the asymptotic behavior of the abstract MGT equation (1.1) strongly
depends on the stability number

χ = β − γ

α
.

In particular, the associated semigroup on the natural weak energy space is exponentially
stable if and only if we are in the subcritical regime, corresponding to χ > 0 (see e.g.
[12, 23, 31, 39, 40]). Since, in absence of external heat sources, it is natural to assume that
a reasonable heat model is exponentially stable, the new heat equation (1.6), understood
to comply with the Dirichlet boundary conditions, is physically meaningful if and only if
its stability number is strictly positive. In other words, it must be

χ =
1

c
(τ−1k − k∗) > 0,

which is clearly implied by a choice of a sufficiently small relaxation parameter τ > 0.

The goal of the present paper is to develop a thermoelastic theory based on heat
conduction of MGT type. This strategy has been first devised in [44]. However, we
will consider here, rather than the pure MGT, an integro-differential equation of which
the MGT heat law (1.6) is just a particular instance, corresponding to the choice of a
(negative) exponential convolution kernel. Accordingly, following the lines of [12], we will
view (1.6) as an integro-differential equation, sharing the same mathematical structure of
the one of linear viscoelasticity (see e.g. [4, 6, 7, 8, 9, 10, 14, 37, 48]).

1.4. Plan of the paper. In the next Section 2, we introduce a nonhomogeneous version
of the MGT equation, and we translate it into an integro-differential one. After that,
in Section 3, we define the corresponding thermoelastic system. The well-posedness of
the problem in space-dimension 3, and under quite general assumptions on the memory
kernel, is studied in Section 4. In the final Section 5, we discuss the exponential decay of
the solutions in the one-dimensional case.

2. The MGT Heat Equation with History

We consider a nonhomogeneous heat conductor occupying a bounded domain Ω ⊂ R3.
According to linear type III theory with relaxation parameter, the general constitutive
equation for centrosymmetric materials is given by

(2.1) τ∂tqi + qi = kijθ,j + k∗
ijα,j,
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where, as before,

αt = θ.

Here, τ = τ(x) is the relaxation function, supposed to be strictly positive and bounded,
kij = kij(x) is the thermal conductivity tensor, and k∗

ij = k∗
ij(x) is the conductivity rate

tensor. Both kij and k∗
ij are assumed to be symmetric. Note that (2.1) can be rewritten

as

∂t
[
qie

τ−1t
]
= τ−1

[
kijθ,j + k∗

ijα,j

]
eτ

−1t.

We also make the reasonable assumptions that

(2.2) lim sup
s→−∞

qi(x, s)e
τ−1(x)s = 0 and lim sup

s→−∞
α,i(x, s)e

τ−1(x)s = 0.

Then, an integration on (−∞, t) yields, omitting the dependence on x,

qi(t) = τ−1

∫ t

−∞
e−τ−1(t−s)

[
kijθ,j(s) + k∗

ijα,j(s)
]
ds.

In light of the second limit in (2.2), we observe that∫ t

−∞
e−τ−1(t−s)θ,j(s)ds = α,j(t)− τ−1

∫ t

−∞
e−τ−1(t−s)α,j(s)ds.

Therefore, we end up with

qi = τ−1kijα,j(t)− τ−1

∫ t

−∞
e−τ−1(t−s)

[
τ−1kij − k∗

ij

]
α,j(s)ds.

Defining the kernel

(2.3) gij(x, s) = k∗
ij(x) + e−τ−1(x)s[τ−1(x)kij(x)− k∗

ij(x)],

we are led to the constitutive equation (2.1) in the integro-differential form (again, omit-
ting the dependence on x)

(2.4) qi(t) = gij(0)α,j(t) +

∫ ∞

0

g′ij(s)α,j(t− s)ds.

As a final step, in order to write the corresponding heat equation, we need the nonho-
mogeneous version of the energy equality. Assuming that the thermal capacity of the
material depends on the point, we have

(2.5) qi,i = cθt,

where c = c(x) is strictly positive and bounded. Coupling now (2.4) and (2.5), we arrive
at the following heat conduction equation:

(2.6) c∂ttα−
(
gij(0)α,j(t) +

∫ ∞

0

g′ij(s)α,j(t− s)ds
)
,i
= 0,

having the form of an equation of viscoelasticity in the variable α, with a memory kernel
gij that is allowed to depend on the spatial variable.
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Remark 2.1. When τ is independent of x, equation (2.6) can be rewritten in a generalized
MGT form. Indeed, adding (2.6) and its time-derivative times τ , and keeping in mind
the explicit form of gij given by (2.3), we obtain (see [44])

τc∂tttα + c∂ttα+ A∂tα + A∗α = 0,

where A and A∗ are the second order differential operators defined by

Av = (kijv,j),i, and A∗v = (k∗
ijv,j),i,

which are strictly positive whenever the same is true for the (symmetric) tensors kij and
k∗
ij.

3. Thermoelasticity of MGT Type

Along the same lines of [44], we now propose a thermoelasticity model, where heat con-
duction is ruled by the MGT law (2.4). Actually, in more generality, we consider a kernel
gij of which (2.4) is only a particular case, and whose properties will be specified shortly.
We start from the constitutive equations

tij = Cijkluk,l − βijθ,

e = cθ + βijui,j.

Here, ui = ui(x, t) is the displacement vector, tij = tij(x, t) is the stress tensor, e = e(x, t)
is the entropy, Cijkl = Cijkl(x) is the elasticity tensor, satisfying the symmetry condition

Cijkl = Cklij,

and βij = βij(x) is the coupling tensor. The evolution of the displacement and the entropy
is described by the equations

ρ∂ttui = tij,j,

T0∂te = qi,i,

where T0 is the reference temperature, assumed to be constant (T0 = 1 in the sequel), and
ρ = ρ(x) is the mass density. Substituting the constitutive equations into the evolution,
we find the system

(3.1)


ρ∂ttui(t) =

(
Cijkluk,l(t)− βij∂tα(t)

)
,j
,

c∂ttα(t) = −βij∂tui,j(t) +
(
gij(0)α,j(t) +

∫ ∞

0

g′ij(s)α,j(t− s)ds
)
,i
.

In this section, we study (3.1) in a three-dimensional domain Ω, whose boundary ∂Ω is
smooth enough to apply the divergence theorem. The system is supplemented with the
Dirichlet boundary conditions

(3.2) ui(x, t)|x∈∂Ω = 0 and α(x, t)|x∈∂Ω = 0.



6

3.1. General assumptions. We assume that the constitutive tensors are bounded above,
and that there exist strictly positive constants c0, ρ0, C0 such that

(3.3) c(x) ≥ c0, ρ(x) ≥ ρ0,

and

(3.4)

∫
Ω

Cijklξi,jξk,ldx ≥ C0

∫
Ω

ξi,jξi,jdx,

for every vector ξi vanishing on ∂Ω. The memory kernel

gij = gij(s)

is supposed to be independent of the variable x. This assumption, albeit not essential,
simplifies the exposition. The precise hypotheses on gij read as follows (cf. [28]):

(i) The tensor gij is symmetric, i.e. gij = gji.

(ii) The tensor gij is twice differentiable with respect to s, and g′ij is summable on R+.

(iii) There exists a positive constant k0 such that

gij(∞)ξiξj ≥ k0ξiξi,

where gij(∞) = lims→∞ gij(s).

(iv) There exists a positive, decreasing, scalar function µ ∈ L1(R+) ∩ C([0,∞)) and a
constant k1 ≥ 1 such that

µ(s)ξiξi ≤ −g′ij(s)ξiξj ≤ k1µ(s)ξiξi, ∀s > 0.

(v) The tensor g′′ij is nonnegative definite, i.e.

g′′ij(s)ξiξj ≥ 0, ∀s > 0.

In (iii)-(v) above, ξi is any vector of R3.

Remark 3.1. Condition (iii) is natural to guarantee the stability of the solutions. For
the MGT kernel gij previously defined, that is

(3.5) gij(s) = k∗
ij + e−τ−1s(τ−1kij − k∗

ij),

this is the same as taking k∗
ij positive definite. The fact that the derivative of gij is

negative definite, as in (iv), corresponds to assume that τ−1kij − k∗
ij is positive definite,

which, as we saw, arises in a natural way in connection with the (dissipative) MGT-
equation. In particular it implies that kij is also positive definite, a consequence of the
second principle of Thermodynamics (see [16]). Condition (3.4) falls in the realm of the
elastic stability theory. The meaning of the conditions on the heat capacity and the mass
density is obvious.
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3.2. Functional setting. We denote by (H, ⟨·, ·⟩, ∥ · ∥) the usual Hilbert space L2(Ω),
and by (V, ⟨·, ·⟩1, ∥ · ∥1) the standard Sobolev space H1

0 (Ω) of H
1-functions vanishing on

∂Ω. We denote by

H = [L2(Ω)]3, V = [H1
0 (Ω)]

3

the corresponding vectorial versions, keeping the same scalar notation for their norms. In
order to translate system (3.1) into an ODE in the so-called past history framework of
Dafermos [9, 10], we introduce the Hilbert space

M = L2
µ(R+;V )

of square summable function with respect to the measure µ(s)ds, endowed with the prod-
uct and norm

⟨η, η∗⟩M =

∫ ∞

0

µ(s)⟨η(s), η∗(s)⟩1ds and ∥η∥2M =

∫ ∞

0

µ(s)∥η(s)∥21ds.

Note that, in light of assumption (iv),

|η|2M = −
∫ ∞

0

∫
Ω

g′ij(s)η,i(x, s)η,j(x, s)dxds

is an equivalent norm on M, with corresponding scalar product

(η, η∗)M = −
∫ ∞

0

∫
Ω

g′ij(s)η,i(x, s)η
∗
,j(x, s)dxds.

Finally, we define the product Hilbert space

H = V ×H × V ×H ×M,

endowed with the norm

|U |2H =

∫
Ω

Cijklui,juk,ldx+ ∥ρ1/2v∥2 +
∫
Ω

gij(∞)α,iα,jdx+ ∥c1/2θ∥2 + |η|2M,

where U = (ui, vi, α, θ, η). Thanks to (3.3), (3.4) and (iii), this is equivalent to the
standard product norm

∥U∥2H = ∥u∥21 + ∥v∥2 + ∥α∥21 + ∥θ∥2 + ∥η∥2M.

We will also consider the infinitesimal generator of the right-translation semigroup on M,
i.e. the linear operator T given by

Tη = −η′ with domain D(T ) =
{
η ∈ M : η′ ∈ M, η(0) = 0

}
,

the prime standing for the distributional derivative with respect to the variable s > 0. In
light of the assumptions on the kernel one has the dissipative estimate (see e.g. [37])

(3.6) (Tη, η)M = −1

2

∫ ∞

0

∫
Ω

g′′ij(s)η,i(x, s)η,j(x, s)dxds ≤ 0, ∀η ∈ D(T ).
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3.3. The system in the past history framework. In the same spirit of [9, 10], we
consider the auxiliary variable η = ηt(s), containing all the information on the past history
of α, and formally defined as (omitting the dependence on x)

ηt(s) = α(t)− α(t− s).

Then, (3.1) becomes the evolution system

(3.7)


ρ∂ttui = (Cijkluk,l − βij∂tα),j,

c∂ttα = −βij∂tui,j +
(
gij(∞)α,j(t)−

∫ ∞

0

g′ij(s)η
t
,j(s)ds

)
,i
,

∂tη = Tη + ∂tα.

Introducing the state vector

U (t) = (ui(t), ∂tui(t), α(t), ∂tα(t), η
t),

we view (3.7) as the ODE in H

(3.8)
d

dt
U(t) = AU(t),

where A is the linear operator given by

(3.9) A


ui

vi
α
θ
η

 =


vi

ρ−1(Cijkluk,l − βijθ),j
θ

c−1
[
− βijvi,j +

(
gij(∞)α,j(t)−

∫∞
0

g′ij(s)η,j(s)ds
)
,i

]
Tη + θ

 ,

with (dense) domain

D(A) =

U ∈ H

∣∣∣∣∣∣∣∣∣∣
vi ∈ V
θ ∈ V
η ∈ D(T )
ρ−1(Cijkluk,l − βijθ),j ∈ H
c−1

[
− βijvi,j +

(
gij(∞)α,j(t)−

∫∞
0

g′ij(s)η,j(s)ds
)
,i

]
∈ H

 .

4. The Solution Semigroup

The main result of this section concerns with the generation of the solution semigroup.

Theorem 4.1. The operator A is the infinitesimal generator of a strongly continuous
linear semigroup S(t) on the phase space H. Besides, S(t) is a contraction with respect
to the | · |H-norm of H.

Accordingly, for every initial datum U 0 ∈ H, equation (3.8) admits a unique mild
solution (in the sense of [38]) U(t) given by

U(t) = S(t)U 0, ∀t ≥ 0,

and

|S(t)U 0|H ≤ |U 0|H.
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The proof of Theorem 4.1 is carried out via the Lumer-Phillips theorem [38], which
amounts to prove the next two lemmas.

Lemma 4.2. The operator A is dissipative, that is,

Re(AU ,U)H ≤ 0, ∀U ∈ D(A).

Proof. By direct computations,

Re(AU ,U )H = (Tη, η)M.

The claim then follows from (3.6).

Lemma 4.3. There exists ω > 0 such that

Range(A− ωI) = H.

Proof. Given any F = (f 1,f 2, f3, f4, f5) ∈ H, we look for a solution

(u,v, α, θ, η) ∈ D(A)
to the system 

(1− ω)v = f 1,

(Cijkluk,l − βijθ),j − ωu = ρf 2,

(1− ω)θ = f3,

−βijvi,j +
(
gij(∞)α,j −

∫ ∞

0

g′ij(s)η,jds
)
,i
− ωα = cf4,

−η′ − ωη + θ = f5.

The solutions v and θ are obviously found whenever ω ̸= 1. By assumptions (3.3)-(3.4),
the equation

(Cijkluk,l),j − ωui = ρf2i + (1− ω)−1(βijf3),j

is elliptic for ω small enough (independent of F ). Since the right-hand side belongs to
H , we obtain a unique solution u ∈ V . Let us come to the last equation

η′ + ωη = h, with h = −f5 + (1− ω)−1f3 ∈ M.

A straightforward integration, along with the condition η(0) = 0, entail

η(s) =

∫ s

0

e−ω(s−y)h(y)dy.

In order to show that η ∈ M, we compute as follows, exploiting the fact that µ is
decreasing:√

µ(s)∥η(s)∥1 ≤
√
µ(s)

∫ s

0

e−ω(s−y)∥h(y)∥1dy ≤
∫ ∞

0

e−ω(s−y)
√

µ(y)∥h(y)∥1dy.

Hence
∥η∥2M ≤ ∥E ∗ ϕ∥L2(R+),

having set

E(s) = e−ωs and ϕ(s) =
√
µ(s)∥h(s)∥1.
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the star standing for convolution on R+. But

∥E ∗ ϕ∥L2(R+ ≤ ∥E∥L1(R+)∥ϕ∥L2(R+) =
1

ω
∥h∥M,

proving that η ∈ M. By comparison, η′ ∈ M if and only if η ∈ M, hence η ∈ D(T ).
Finally, after substitution we have

(gij(∞)α,j),i − ωα =
(∫ ∞

0

g′ij(s)η,jds
)
,i
+ cf4 + βijf1i,j.

In light of (ii), this is an elliptic equation provided that ω is small enough. We thus obtain
a unique solution α ∈ V , and the proof is complete.

5. Exponential Stability: the One-Dimensional Case

5.1. Statement of the result. For the one-dimensional case, where we take Ω = (0, ℓ),
and assuming that the constitutive tensors do not depend on the point x ∈ (0, ℓ), we find
the system

ρutt − κuxx + βαtx = 0,

cαtt − g(∞)αxx(t) +

∫ ∞

0

g′(s)
[
αxx(t)− αxx(t− s)

]
ds+ βutx = 0,

where

g(s) = k∗ + (τ−1k − k∗)e−τ−1s.

The parameters appearing in the equations are related to the properties of the material,
and have to satisfy some thermomechanical restrictions. In particular, it is assumed that
all the constant above are strictly positive, except β that is only required to be nonzero,
and

τ−1k > k∗.

These assumptions are in agreement with the thermomechanical axioms and the empirical
experiments. The assumptions concerning the mass density and the thermal capacity are
obvious. The condition on κ can be understood by invoking the elastic stability. The
conditions on k, k∗ and τ are the natural ones to have dissipation. Finally, β ̸= 0 is
needed in order to guarantee the coupling between the mechanical and the thermal parts.

In this case, we adopt different boundary conditions, namely, the Neumann boundary
conditions for u

ux(0, t) = ux(ℓ, t) = 0,

and the Dirichlet ones for α

α(0, t) = α(ℓ, t) = 0.

Setting for simplicity all the constants but κ equal to 1, and calling

µ(s) = −g′(s),

we introduce as before the auxiliary variable η = ηt(s), formally defined as

ηt(s) = α(t)− α(t− s),
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and we rewrite the system above in the form

(5.1)


utt − κuxx + αtx = 0,

αtt − αxx −
∫ ∞

0

µ(s)ηxx(s)ds+ utx = 0,

ηt = Tη + αt.

In what follows, ⟨·, ·⟩ and ∥ · ∥ are the standard inner product and norm on the Hilbert
space H = L2(0, ℓ). We define the Hilbert subspace

H∗ =
{
v ∈ H :

∫ ℓ

0

v(x)dx = 0
}

of zero-mean functions, along with the Sobolev spaces

V = H1
0 (0, ℓ) and V∗ = H1(0, ℓ) ∩H∗,

both endowed with the gradient norm, due to the Poincaré inequality. Then, introducing
the phase space

H = V∗ ×H∗ × V ×H ×M,

where

M = L2
µ(R+;V ),

by the same arguments of the previous sections, system (5.1) generates a (linear) contrac-
tion semigroup S(t) on H.

Remark 5.1. The choice of the spaces of zero-mean functions for the variable u and its
derivative is consistent. Indeed, calling

m(t) =

∫ ℓ

0

u(x, t)dx,

and integrating the first equation of system (5.1) on (0, ℓ), we obtain the differential
equation mtt(t) = 0. Hence, if m(0) = mt(0) = 0 it follows that m(t) is zero for all times.

In fact, as we saw, the generation of the semigroup holds true also if we consider a
kernel µ of a more general form.

Assumptions on the memory kernel. In greater generality, we will assume in the
sequel that µ : [0,∞) → R+ is an absolutely continuous summable function satisfying the
inequality

(5.2) µ′(s) + δµ(s) ≤ 0,

for some δ > 0 and almost every s > 0. In particular, µ′ is negative. For further use, we
denote

κ =

∫ ∞

0

µ(s)ds ∈ (0,∞).

Then the following theorem holds.
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Theorem 5.2. Let µ satisfy (5.2). Then, the semigroup S(t) is exponentially stable.
Namely,

∥S(t)∥ ≤ Me−ωt,

for some M ≥ 1 and ω > 0, the norm above being the operator one on the Hilbert space
H.

Although it is possible to prove the result via linear semigroup techniques (via the Prüss
theorem [41]), we will choose here to provide a more direct proof via energy estimates.
This approach has the advantage that can be successfully exported to study nonlinear
versions of the problem. However, before going to the proof, some comments are in order.

• The choice of the spaces of zero-mean functions is essential, with the above bound-
ary conditions. Indeed, if we relax this assumption, every triple (u(t), α(t), ηt) of
the form (k, 0, 0), for a fixed constant k, solves system (5.1). In this case, we
clearly do not have any decay.

• In the assumptions above, we did not take κ = 1 to stress that the exponential
decay occurs independently of the respective wave speeds of the two equations.
In fact, when κ = 1 the dissipation is stronger (see the forthcoming Remark 5.5),
and the proof of the exponential decay becomes simpler.

• Actually, Theorem 5.2 holds true also for different boundary conditions, such as the
Dirichlet-Dirichlet considered in the previous part of this work. In that case, the
semigroup S(t) acts (and is exponentially stable) on the space V ×H×V ×H×M.
This can be shown by semigroup techniques, whereas an energy-estimate based
proof seems to be more difficult to obtain.

5.2. Proof of Theorem 5.2. Along the proof, C > 0 will stand for a generic constant.
We will use several times the estimate, obtained via the Hölder inequality,

(5.3)

∫ ∞

0

µ(s)∥ηx(s)∥ds =

∫ ∞

0

√
µ(s)

√
µ(s)∥ηx(s)∥ds ≤

√
κ ∥η∥2M.

Also, we will often apply without mention the Young inequality.
By density, it is clearly enough to obtain the desired decay for initial data in the domain

of the infinitesimal generator A of S(t). For any given such initial datum, let us define
(twice) the energy of the system as

E(t) = κ∥ux(t)∥2 + ∥ut(t)∥2 + ∥αx(t)∥2 + ∥αt(t)∥2 + ∥ηt∥2M.

As before, the basic multiplication in (5.1) yields

(5.4)
d

dt
E =

∫ ∞

0

µ′(s)∥ηx(s)∥2ds ≤ 0.

We now need to reconstruct the energy with the “good” sign. This will be done through
the introduction of suitable energy functionals.

Lemma 5.3. The functional

Φ(t) = 2⟨ut(t), u(t)⟩+ 2⟨αt(t), α(t)⟩+ 2⟨ux(t), α(t)⟩
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fulfills the estimate

d

dt
Φ + κ∥ux∥2 + ∥αx∥2 + ∥ηt∥2M ≤ CΦ∥ut∥2 + CΦ∥αt∥2 − CΦ

∫ ∞

0

µ′(s)∥ηx(s)∥2ds,

for some CΦ > 0.

Proof. The time-derivative of Φ fulfills the equality

d

dt
Φ + 2κ∥ux∥2 + 2∥αx∥2 + ∥ηt∥2M

= 2∥ut∥2 + 2∥αt∥2 + 4⟨αt, ux⟩+ ∥ηt∥2M − 2

∫ ∞

0

µ(s)⟨ηx(s), αx⟩ds.

Clearly,

4⟨αt, ux⟩ ≤ κ∥ux∥2 + C∥αt∥2,
and, using (5.3),

∥ηt∥2M − 2

∫ ∞

0

µ(s)⟨ηx(s), αx⟩ds ≤ ∥ηt∥2M + ∥αx∥
∫ ∞

0

µ(s)∥ηx(s)∥ds

≤ ∥αx∥2 + C∥η∥2M.

Since by (5.2)

∥η∥2M ≤ −1

δ

∫ ∞

0

µ′(s)∥ηx(s)∥2ds,

we are done.

In order to introduce the next functional, we define

û(x, t) =

∫ x

0

u(y, t)dy, x ∈ (0, ℓ).

Note that û ∈ V and

∥ût∥ ≤
√
ℓ ∥ut∥.

Lemma 5.4. The functional

Ψ(t) = −2⟨αt(t), ût(t)⟩ − 2⟨αx(t), u(t)⟩
fulfills the estimate

d

dt
Ψ+ ∥ut∥2 ≤ ε1∥ux∥2 +

CΨ

ε1
∥αt∥2 − CΨ

∫ ∞

0

µ′(s)∥ηx(s)∥2ds,

for every ε1 > 0 small and some CΨ > 0.

Proof. The derivative of the first term in the right-hand side reads

−2
d

dt
⟨αt, ût⟩ = −2⟨αtt, ût⟩ − 2⟨αt, ûtt⟩.

Integrating on (0, x) the first equation of (5.1), and using the boundary conditions, we
find the relation

ûtt = κux − αt.
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Hence,

−2
d

dt
⟨αt, ût⟩ = 2⟨αx, ut⟩+ 2

∫ ∞

0

µ(s)⟨ηx(s), ut⟩ds− 2∥ut∥2 − 2κ⟨αt, ux⟩+ 2∥αt∥2.

Concerning the second term, we readily obtain

−2
d

dt
⟨αx, u⟩ = 2⟨αt, ux⟩ − 2⟨αx, ut⟩.

Adding the two identities gives

d

dt
Ψ+ 2∥ut∥2 = 2∥αt∥2 + 2(1− κ)⟨αt, ux⟩+ 2

∫ ∞

0

µ(s)⟨ηx(s), ut⟩ds.

Estimating

2(1− κ)⟨αt, ux⟩ ≤ ε1∥ux∥2 +
C

ε1
∥αt∥2,

and the latter integral via (5.3) as

2

∫ ∞

0

µ(s)⟨ηx(s), ut⟩ds ≤ ∥ut∥2 + C∥η∥2M,

the claim follows by (5.2).

Remark 5.5. It is clear from the proof above that, in the particular case when κ = 1,
one obtains the better estimate

d

dt
Ψ+ ∥ut∥2 ≤ 2∥αt∥2 − CΨ

∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

This would simplify the final argument, providing also a faster decay rate.

Lemma 5.6. The functional

Θ(t) = −2

κ

∫ ∞

0

µ(s)⟨ηt(s), αt(t)⟩ds.

fulfills the estimate

d

dt
Θ+ ∥αt∥2 ≤ ε2∥αx∥2 + ε2∥ut∥2 −

CΘ

ε2

∫ ∞

0

µ′(s)∥ηx(s)∥2ds,

for every ε2 > 0 small and some CΘ > 0.

Proof. By direct calculations we have

d

dt
Θ = −2

κ

∫ ∞

0

µ(s)⟨ηt(s), αt⟩ds−
2

κ

∫ ∞

0

µ(s)⟨η(s), αtt⟩ds.

Concerning the first term in the right-hand side,

−2

κ

∫ ∞

0

µ(s)⟨ηt(s), αt⟩ds = −2

κ

∫ ∞

0

µ(s)⟨Tη(s), αt⟩ds− 2∥αt∥2.
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Integrating by parts with respect to s, in light of the decay of µ and of the equality
η(0) = 0, and using the Poincaré inequality, we get

−2

κ

∫ ∞

0

µ(s)⟨Tη(s), αt⟩ds = −2

κ

∫ ∞

0

µ′(s)⟨η(s), αt⟩ds

≤ 2

κ
∥αt∥

∫ ∞

0

√
−µ′(s)

√
−µ′(s)∥η(s)∥ds

≤
2
√

µ(0)

κ
∥αt∥

(
−
∫ ∞

0

µ′(s)∥η(s)∥2ds
)1/2

≤ ∥αt∥2 − C

∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

Here, we treated the integral as in (5.3). In summary,

−2

κ

∫ ∞

0

µ(s)⟨ηt(s), αt⟩ds = −∥αt∥2 − C

∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

Coming to the second term, we write

− 2

κ

∫ ∞

0

µ(s)⟨η(s), αtt⟩ds

=
2

κ

∫ ∞

0

µ(s)⟨ηx(s), αx⟩ds+
2

κ

∥∥∥ ∫ ∞

0

µ(s)ηx(s)ds
∥∥∥2

− 2

κ

∫ ∞

0

µ(s)⟨ηx(s), ut⟩ds.

By means of (5.3), for every ε2 > 0 small we easily find

−2

κ

∫ ∞

0

µ(s)⟨η(s), αtt⟩ds ≤ ε2∥αx∥2 + ε2∥ut∥2 +
C

ε2
∥η∥2M.

Recalling (5.2), the conclusion follows.

At this point, for a, b > 0 to be fixed (as well as ε1, ε2), we define

Λ(t) = Φ(t) + aΨ(t) + bΘ(t).

Collecting the estimates of the three previous lemmas, we get

d

dt
Λ + (κ − aε1)∥ux∥2 + (1− bε2)∥αx∥2 + (a− CΦ − bε2)∥ut∥2

+
(
b− CΦ − aCΨ

ε1

)
∥αt∥2 + ∥ηt∥2M

≤ −CΛ

∫ ∞

0

µ′(s)∥ηx(s)∥2ds,

where

CΛ = CΦ + aCΨ +
bCΘ

ε2
.

Now it is necessary a subtle balance of the constants. We first fix

a = 1 + CΦ.



16

Then we choose ε1 small enough that

κ − aε1 ≥
κ
2
.

Once a and ε1 are chosen, we take b large enough that

b− CΦ − aCΨ

ε1
≥ 1

2
.

We are left to fix ε2. We choose it small enough in such a way that

1− bε2 ≥
1

2
.

Accordingly,

a− CΦ − bε2 = 1− bε2 ≥
1

2
.

With this selection of the constants (which fixes also CΛ), we arrive at the inequality

(5.5)
d

dt
Λ +

1

2
E ≤ −CΛ

∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

Finally, for ε > 0, we introduce the last energy functional

W(t) = E(t) + 2εΛ(t).

Up to choosing ε sufficiently small (in particular, ε ≤ 1/2CΛ), it is clear that

1

2
E(t) ≤ W(t) ≤ 2E(t),

and, adding (5.4)-(5.5),
d

dt
W + εE ≤ 0.

An application of the standard Gronwall lemma completes the argument. The proof of
Theorem 5.2 is finished.

Remark 5.7. As a final comment, we dwell on the hypotheses on µ adopted in this
section, as well as in the previous one. In particular, we assumed that µ(0) < ∞. This
assumption is actually not needed in Section 4, where the kernel µ can be (weakly) singular
at zero. For instance, we can handle a kernel of the form

µ(s) =
e−s

√
s
.

The restriction µ(0) < ∞ is instead used in connection with the estimate of the functional
Θ in Lemma 5.6. In fact, also in this case, the problem could be circumvented via a suitable
cut-off technique, which however would render the computations much more involved (see
e.g. [37]).
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