
ORIGINAL RESEARCH
published: 09 June 2022

doi: 10.3389/fdata.2022.910030

Frontiers in Big Data | www.frontiersin.org 1 June 2022 | Volume 5 | Article 910030

Edited by:

Jianpeng Xu,

Walmart Labs, United States

Reviewed by:

Zhiwei Liu,

Salesforce, United States

Pasquale Lops,

University of Bari Aldo Moro, Italy

*Correspondence:

Maurizio Ferrari Dacrema

maurizio.ferrari@polimi.it

Specialty section:

This article was submitted to

Recommender Systems,

a section of the journal

Frontiers in Big Data

Received: 31 March 2022

Accepted: 26 April 2022

Published: 09 June 2022

Citation:

Ferrari Dacrema M, Felicioni N and

Cremonesi P (2022) Offline Evaluation

of Recommender Systems in a User

Interface With Multiple Carousels.

Front. Big Data 5:910030.

doi: 10.3389/fdata.2022.910030

Offline Evaluation of Recommender
Systems in a User Interface With
Multiple Carousels
Maurizio Ferrari Dacrema 1*, Nicolò Felicioni 1 and Paolo Cremonesi 1,2

1Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy, 2ContentWise, Milano, Italy

Many video-on-demand and music streaming services provide the user with a page

consisting of several recommendation lists, i.e., widgets or swipeable carousels, each

built with specific criteria (e.g., most recent, TV series, etc.). Finding efficient strategies

to select which carousels to display is an active research topic of great industrial interest.

In this setting, the overall quality of the recommendations of a new algorithm cannot be

assessed by measuring solely its individual recommendation quality. Rather, it should

be evaluated in a context where other recommendation lists are already available, to

account for how they complement each other. The traditional offline evaluation protocol

however does not take this into account. To address this limitation, we propose an

offline evaluation protocol for a carousel setting in which the recommendation quality

of a model is measured by how much it improves upon that of an already available set of

carousels. We also propose to extend ranking metrics to the two-dimensional carousel

setting in order to account for a known position bias, i.e., users will not explore the

lists sequentially, but rather concentrate on the top-left corner of the screen. Finally, we

describe and evaluate two strategies for the ranking of carousels in a scenario where

the technique used to generate the two-dimensional layout is agnostic on the algorithms

used to generate each carousel. We report experiments on publicly available datasets

in the movie domain to show how the relative effectiveness of several recommendation

models compares. Our results indicate that under a carousel setting the ranking of the

algorithms changes sometimes significantly. Furthermore, when selecting the optimal

carousel layout accounting for the two dimensional layout of the user interface leads to

very different selections.

Keywords: recommender systems, user interface, evaluation, layout optimization, industrial scenario, carousel

interface

1. INTRODUCTION

The general goal of a recommendation system is to help the users navigate a large number of options
at their disposal by suggesting a limited number of relevant results. Traditionally, the focus of newly
developed recommendation systems is to generate the best possible ranked list of results, refer to
(Herlocker et al., 2004; Cremonesi et al., 2010; Sanderson and Croft, 2012). A common assumption
in almost all research works is that the recommendations will be provided to the user as a single list
which will be explored in its order from the first element to the last.

However, many industrial applications provide users with a two-dimensional layout of
recommendations. Examples are video on demand (e.g., Netflix, Amazon Prime Video) and music
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streaming services (e.g., Spotify). In these scenarios the user is
provided with an interface composed of multiple rows, each row
containing thematically consistent recommendations, e.g., most
recent, most popular, editorially curated (see Figure 1), see (Wu
et al., 2016; Gruson et al., 2019; Bendada et al., 2020; Elahi and
Chandrashekar, 2020; Pérez Maurera et al., 2020). These rows
are referred to as widgets, shelves, or carousels. In a carousel
interface scenario, the user satisfaction depends both on the
entire set of carousels shown to the user, rather than on a single
list, and their relative positions. Although finding appropriate
combinations of algorithms and ranking them to provide the
user with a personalized page is an active research topic of
significant industrial interest (Wu et al., 2016; Ding et al., 2019;
Bendada et al., 2020), the amount of work done on the design and
evaluation of recommender systems based on multiple carousels
is limited to few articles based on proprietary datasets.

The two-dimensional layout is becoming more and
more common due to content aggregators, i.e., services or
platforms that aggregate within a single UI the content (and
recommendations) provided by different services, e.g., Android
TV, Sky Q, Prime Video. Although two dimensional layouts
are not new, their semantics have changed over time. The first
two-dimensional interfaces used a grid layout which differs from
the currently used carousel layout because the rows did not have
clearly identifiable differences in their semantics. The first to
introduce the carousel interface was Netflix, mainly because the
carousel interface allows to label the recommendation lists in a
way that is much more explainable, e.g., a user that has seen the
movie Dune may be provided with a carousel labeled “Movies
similar to Dune”. The carousel layout has several characteristics
that distinguish it from the traditional single-list scenario and
other grid layouts. Three important factors that should be
taken into account are: (i) different carousels are generated
by different and independent machine learning pipelines; (ii)
some carousels are editorially curated and cannot be modified,
business constraints may play a role in what contents should
be promoted; (iii) content aggregators show carousels that
are generated by different content providers and the content
aggregator can personalize the layout but has no control on the
recommendation lists content.

Among the challenges researchers face is the absence of a
standardized evaluation procedure that accounts for these factors
and for how the users navigate a two dimensional interface.
One of the strategies that are adopted to evaluate offline in a
carousel setting is to create a single recommendation list that
concatenates all carousels provided to the user (Gruson et al.,
2019). This strategy is, however, not realistic as it assumes
that all recommendation lists will be centrally collected and
processed (e.g., removing duplicates) and that the user explores
the two-dimensional user interface sequentially, both of which
are not realistic assumptions. In reality, due to strict real-time
requirements or business constraints, the recommendation lists
cannot be collected andmodified in a centralized post-processing
step. Furthermore, users tend to start from the top-left corner
of the screen and then proceed to explore the items both to the
right and to the bottom (Kammerer andGerjets, 2010; Zhao et al.,
2016). This behavior has been long known and is referred to

as the “golden triangle” or “F-pattern.” An example taken from
an information retrieval application (Chierichetti et al., 2011) is
shown in Figure 2.

In this article, we address the problem of evaluating
recommender systems in which the user interface is composed
of multiple and independent carousels. This problem is referred
to as the page personalization problem. This study extends prior
studies by Felicioni et al. (2021b) and Felicioni et al. (2021a) and
has the following contributions:

• The characteristics of a carousel interface are defined in detail
as well as the relevant tasks;

• An evaluation procedure is proposed that accounts for the
characteristics of the carousel interface and adapts commonly
used accuracy, ranking, and beyond-accuracy metrics;

• An extension of the widely used NDCG ranking metric is
proposed to account for how users navigate a two dimensional
user interface;

• Two simple greedy strategies are proposed as baselines for the
task of carousel ranking; the strategies are agnostic on how
each carousel has been created;

• The experimental analysis shows the impact of accounting for
the carousel interface and two dimensional layout, yielding
to sometimes very different results compared to traditional
single-list evaluation approaches.

2. RELATED STUDY

Most of the studies targeting a carousel user interface come
from industrial research with evaluation performed through A/B
testing. This demonstrates the importance, at the industrial level,
of identifying an adequate combination of carousels to show
to the user. However, it may also indicate that the scarcity
of appropriate datasets and the lack of a standardized offline
evaluation protocol is hampering researchers who do not have
easy access to online evaluation infrastructure, preventing them
to work on the topic.

Wu et al. (2016) analyze the problem of optimizing the
position of the carousels on the interface of Netflix, a popular
online video streaming service. The authors propose a model
based on the notion that the benefit of recommending a certain
item depends on how novel it is relative to the previous
recommendations, a concept referred to as submodularity. Their
algorithm is able to leverage scrolls and navigation feedback
to dynamically optimize the user interface. The evaluation is
done both online and offline. For the offline evaluation standard
metrics are reported (MRR and Precision) considering a carousel
as a single item that is relevant if it contains at least a relevant
recommendation, therefore, not accounting for the ranking
within the carousel. Gruson et al. (2019) optimize the homepage
of Spotify, an onlinemusic streaming service, which recommends
playlists in thematic rows referred to as shelves. The article
evaluates a series of policies to rank the most relevant playlists
for a user. The policies are ranked according to first an online
evaluation and then an offline evaluation. The two rankings
are then compared and de-biasing techniques are discussed to
improve the correspondence of offline evaluations with online
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FIGURE 1 | The Netflix homepage, an example of the carousel user interface in the multimedia streaming domain.

ones. In the offline evaluation, the carousels are sequentially
concatenated as a single long recommendation list. Bendada et al.
(2020) propose a contextual multi-armed bandit online approach
to optimize the two-dimensional layout of the homepage of the
online music streaming service Deezer. Each user is shown a set
of carousels which the user can swipe to reveal further items.
The system does not log the swipe actions. To estimate swipe
actions the authors rely on the cascade model (Craswell et al.,
2008) assuming the user has seen all items before the one they
interacted with and therefore has swiped and ignored them.
The policies are evaluated both online and offline with expected
cumulative regrets. Ding et al. (2019) target the problem of whole
page optimization for the homepage of Amazon Video, a video
streaming service. They assume that a set of widgets is already
available and that the objective is to select which widgets to
show and in which order while also accounting for the business
constraints of the homepage. The task of carousel selection was
also tackled by Ferrari Dacrema et al. (2021) who proposed a
quadratic optimization problem to decide which carousels should
be selected among a pool of available ones. The optimization
problem was proposed in a formulation that allowed it to be
solvable using quantum computing technologies. Felicioni et al.
(2021a) proposed an extension to NDCG that accounts for the

two-dimensional structure of the user interface with a different
ranking discount term.

To the best of our knowledge, Elahi and Chandrashekar
(2020) is the only work that tries to account for the two-
dimensional structure of the page during the algorithm training
phase. However, this scenario is unrealistic in almost all industrial
settings, as different carousels are generated independently, and
the service that manages the layout of the page has no control
over the content of each carousel.

It can be seen from these studies that the carousel scenario
is not yet approached in a homogeneous way and that different
articles account for different factors and evaluate them in
different ways. Still, some aspects of the carousel scenario emerge
such as the need to account for how carousels complement
each other (i.e., avoid duplicate recommendations), the desire to
minimize the user actions required, the tasks of carousel selection
and ranking, and the lack of a common evaluation procedure.

3. CHARACTERISTICS OF A CAROUSEL
INTERFACE

The carousel interface layout and the way it is usually generated
by video-on-demand and music streaming platforms have
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FIGURE 2 | Heatmap from real usage data of how users navigate a simple

search result page, the attention is focused on a top-left golden triangle and

progressively decreases moving to the right and the bottom (Chierichetti et al.,

2011).

important characteristics that distinguish it from a single-list
setup, refer to Felicioni et al. (2021a). While a carousel layout
may seem similar to a traditional merge-list ensemble, where
multiple recommendation lists are combined into one, this is not
the case. In a real scenario, multiple constraints play a role and
must be taken into account: (i) the two dimensional structure of
the layout, (ii) how the recommendation lists are created, and (iii)
how the users interact with such interfaces.

• Layout structure: The two dimensional user interface of
almost all devices (TV sets, personal computers, tablets) is
organized with multiple horizontal carousels, where each
carousel is generated according to a certain (often explainable)
criteria e.g., most recent, most popular, because you watched,
editorially curated (refer to Figure 1). Some carousels or
recommendations may be hidden due to limited page size
and be accessible only via user actions (i.e., vertical and
horizontal swipe).

• Recommendation lists: The lists shown to the users within
each carousel are generated with different algorithms or by
different providers and independently from each other (i.e.,
each algorithm or provider is not aware of the existence
of the other lists or their content). Consider, e.g., content
aggregators, which combine carousels from different providers,
e.g., Sky, Youtube, Netflix, Prime Video, etc. No single post-
processing step is applied, e.g., to remove items duplicated
across different carousels. This is due to various reasons:
(i) it is difficult to perform further processing under the
strict real-time requirements of a recommendation system;

(ii) the business constraints a content aggregator is subject
to may prevent changes to the recommendation lists that are
generated by the providers; (iii) some carousels are manually
curated and contain a fixed recommendation list. Due to this,
while each individual recommendation list does not contain
duplicates, the same item may be recommended in multiple
carousels. The Netflix homepage shown in Figure 1 contains
the TV series Space Force both in the TV Comedies and
New Releases carousels, which is an example of a case where
duplicates are not removed.

• User behavior: The users will focus on the top-left triangle
of the screen rather than exploring the carousels sequentially.
This is usually called the golden triangle, refer to Figure 2.
Furthermore, they will explore the recommendations in
different ways according to which actions they need to perform
in order to reveal them. Usually, users tend to navigate more
easily with simple swipes rather than repeated mouse clicks,
hence their behavior, as it is known, will change according
to the device (e.g., personal computer, smartphone, tablet,
Smart TV).

3.1. Tasks
Within the context of a carousel layout, two orders of tasks
are relevant, one is the traditional development of effective
recommendation algorithms that can be used to populate
a single carousel, while the second is to create the two-
dimensional interface layout by deciding which carousels should
be displayed and where. While developing new and more
effective recommendation algorithms has been a core research
topic for two decades, much less attention has been paid to
the second problem. Therefore, this article focuses in particular
on how to create the carousel layout in a scenario where the
technique used to generate the layout is agnostic to how the
recommendation lists are created. Three sub-tasks of particular
importance can be defined:

• Carousel selection: given a set of recommendation lists, the
task is to decide which subset of them to choose. As an example
consider a scenario where we want to provide the user with
a carousel related to sports, and the goal is to decide which
sports to include based on the user’s preferences. Similarly,
there may be recommendation lists for new releases of specific
genres, e.g., comedies, fantasy, science fiction, drama, etc, and
again the goal is to decide which ones to show. A crucial
challenge of this task is that it requires taking into account
how the recommendation lists complement each other Wu
et al. (2016). Clearly, the aim is to ensure the user is provided
with the best possible set of recommendations, but it is not
beneficial to provide the user with the same recommendations
in multiple carousels. Due to this, it is not sufficient to
simply select the recommendation lists that have the best
accuracy when measured independently because they may be
redundant. Furthermore, different users or different groups of
users may have different optimal layouts. Certain constraints
may apply to the types of carousels, e.g., one may wish that
there should always be a popularity-based non personalized
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algorithm, an editorially curated one, a genre-specific one, and
a further personalized model.

• Carousel ranking: Given an already defined set of carousels,
the task is to decide in which order to display them. A carousel
ranking task is equivalent to starting from a default ranking,
e.g., editorially curated and developing a re-ranking strategy.
The goal is to choose the ordering that allows the user to
rapidly see the most relevant recommendations. In a similar
way as recommendations are ranked within an individual
list, in a two dimensional layout carousels should be ranked
according to both (i) the user navigation pattern as it emerges
from the golden triangle and (ii) the user actions required
to access certain positions. The challenge of this task is to
account for how the user navigates a two dimensional user
interface as well as what portion of the recommendation lists
are immediately visible to the user and which require user
actions. Due to this, ordering the carousels according to their
decreasing recommendation quality will lead to suboptimal
layouts. Furthermore, business constraints may apply to the
relative ordering of some of the carousels.

• Carousel insertion: Given an already available carousel
interface, the task is to decide where a new carousel should
be added without altering the relative position of the available
ones. As opposed to carousel selection and ranking, the
insertion of a carousel is an incremental task and does not
require to search for an optimal layout anew. As an example,
consider a content aggregator that displays recommendations
provided by several video on demand services the user has
subscribed to. If the user subscribes to a new service, we want
to include that new carousel in the already existing layout, in
a position that maximizes the user satisfaction within possible
business constraints.

All the described tasks assume that the recommendation lists
that can be used as carousels are already available and the goal
is to decide what is the optimal layout. This requires developing
an evaluation procedure that is tailored to the specific nature of
the carousel setting as well as extending traditional evaluation
metrics, refer to Section 4.

As a last note, while this article considers the creation of the
carousel layout given that (i) all carousels are already available
and (ii) the layout manager is not aware of the algorithms used
to fill the carousels, it is indeed possible to combine the carousel
ranking tasks at the page level with the item ranking task within
each carousel.

4. EVALUATION PROCEDURE FOR A
CAROUSEL INTERFACE

This section describes an evaluation procedure tailored for a
carousel user interface, which accounts for its characteristics
and the constraints that are normally present in a real
industrial setting. While the traditional evaluation assesses the
recommendation quality of a single recommendation model,
in a carousel scenario the goal of the evaluation is to assess
the recommendation quality of a certain layout composed of
recommendation lists (either fixed or generated by a specific

TABLE 1 | Summary of the notation used for the carousel interface.

Symbol Description

H Horizontal dimension of the interface, i.e., number of columns.

Corresponds to the length of each recommendation list.

V Vertical dimension of the interface, i.e., number of rows.

Corresponds to the number of carousels.

M Total number of recommendation lists that can be used for the

carousel layout, M ≥ V.

l Total number of recommendations provided to the user. When

evaluating a single list l = H. When evaluating a carousel layout

l = HV.

Vh Number of columns of the interface that are immediately visible to

the user, Vh ≤ H

Vv Number of rows of the interface that are immediately visible to the

user, Vv ≤ V

δh Number of columns that are revealed after a user action, δh ≤ Vh

δv Number of rows that are revealed after a user action, δv ≤ Vv

recommendation model). Once it is possible to evaluate the
overall recommendation quality of a single layout it is possible
to compare different layouts in order to select the best one. For
example, one may wish to select the optimal carousel ranking
or to choose which recommendation model should generate a
specific carousel. A summary of the notation used is reported in
Table 1.

• Scenario: The carousel evaluation setting is closely tied to
a specific user interface commonly adopted for video on
demand and music streaming services. As such, while it could
be applied for any domain, we recommend its use be limited
to those that employ such carousel interface. Researchers
have ample freedom to decide how to generate the carousels
(editorially curated lists, recommendation models, etc.).

• Optimization: If some of the carousels are generated
with recommendation models, the first step is to ensure
that all models are adequately optimized. In a traditional
offline evaluation, each model is optimized independently
by selecting the hyperparameters that optimize its
recommendation quality on a validation set (Ferrari Dacrema
et al., 2019). The same holds for a carousel scenario. In a
carousel setting the recommendation lists provided to the user
may come from different sources, e.g., a third party providing
the recommendation engine for some carousels, while
the platform provides others, Pérez Maurera et al. (2020),
the carousels shown to the user may change dynamically
between sessions and different users may see a different
carousel selection. This means that during the optimization
of the models the layout of the user interface is, in general,
not known and cannot be used during the optimization
phase. For this reason, we recommend all models should be
optimized independently and, if assumptions are made on the
composition of the carousels, those should be stated clearly.
For example, it may be assumed that a popularity-based
carousel is present and therefore train the recommendation
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models specifically to improve the recommendation quality
on less popular items.

• Recommendation: The recommendations that will be shown
to the users are the sequence of all the recommendation
lists in the layout. Which lists to include and in which
order is part of the experimental setting and will be chosen
according to the scenario of interest. All lists have the same
length, H, corresponding to the horizontal dimension of the
interface (i.e., number of columns). Given V the number
of recommendation lists that are displayed (i.e., the number
of rows) the user will receive l = HV recommendations.
Usually, the recommendations come from different providers,
and there will be no centralized postprocessing done on the set
of all recommendation lists. While a carousel will only contain
a certain item at most once, there could be items appearing in
more than one carousel.

• Evaluation: In a carousel setting the recommendations
provided to the user will be displayed with a two-dimensional
pattern. A frequent simplification is to concatenate all V
recommendation lists in a single one of length l = HV and
remove duplicate recommendations. While this allows using
traditional metrics (e.g., NDCG, MAP), it makes assumptions
that are not consistent with a carousel layout: (i) the user
explores the lists sequentially; (ii) the recommendation lists
are centrally collected and postprocessed. In reality, the user
will not explore a list sequentially, but rather start from the
top left corner and will move in both directions exploring
multiple carousels (refer to Figure 3). There may also be
items that appear on more than one carousel. When this
happens, we must ensure that a correct recommendation is
only counted once andwith the correct ranking, despite having
appeared multiple times in different positions. The correct
recommendation should be counted where the user would see
it first, according to the user’s navigation pattern. A detailed
description of how the evaluation metrics should be computed
is provided in Section 4.1.

4.1. Evaluation Metrics
Evaluation in a carousel setting presents broad similarities
with a traditional top-n recommendation scenario. An
important difference is the presence of duplicates in the
recommendation list and the two-dimensional way users
explore the interface, which impacts how ranking metrics may
consider the item position. This section describes how accuracy,
ranking, and beyond-accuracy metrics should be adapted to a
carousel evaluation.

4.1.1. Accuracy Metrics

Accuracy metrics that are based only on the total number of
correct recommendations, e.g., Precision, Recall, Hit Rate, etc.
can be computed in the same way as in single-list evaluation,
provided that each correct recommendation is only counted once
even if it appears in multiple carousels.

4.1.2. Ranking Metrics

Adapting ranking metrics to a carousel evaluation requires
accounting for the two-dimensional user exploration of the

FIGURE 3 | Heatmap of the number of interactions per position on the screen,

taken from the dataset presented in Pérez Maurera et al. (2020).

interface at two stages: (i) how the ranking discount is computed;
(ii) how correct recommendations appearing in more than one
carousel are considered. For traditional top-n ranking with
a single recommendation list (or a merge-list embedding),
duplicates are removed from the list; therefore, we assume
that each recommendation list does not contain duplicates.
However, in a carousel evaluation duplicates might occur
between carousels. Such duplicates must not be removed in order
to maintain the original positions of the recommendations and
mimic the real behavior of carousel-based user interfaces. In a
carousel evaluation scenario, an item in the recommendation
list is relevant, i.e., a correct recommendation, if it meets
two conditions:

• The item appears in that user’s ground truth;
• The item has been recommended only once, or if it has

duplicates, it is the one corresponding to the best ranking, i.e.,
the position where the user is likely to see it first. The question,
therefore, becomes defining a new ranking discount that
accounts for the user behavior in a carousel interface. Section
5 discusses different discount functions that are applied to
NDCG but can be applied seamlessly to other metrics such
as MRR.

4.1.3. Beyond-Accuracy Metrics

Another important dimension to be taken into account when
evaluating recommendation models is their diversity. There
are three ways to measure the diversity of recommendations:
(i) individual or within-list, that measure how diverse are the
recommendations received by a single user, e.g., based on the
item features or the item popularity in the training data; (ii)
list-based, that consider the diversity of the recommendations
received by couples of users; (iii) aggregate or distributional,
that measure how unbalanced is the overall distribution of
recommended items at a system level.

Frontiers in Big Data | www.frontiersin.org 6 June 2022 | Volume 5 | Article 910030

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Ferrari Dacrema et al. Offline Evaluation With Multiple Carousels

In a carousel evaluation setting, most beyond-accuracy
metrics can be used seamlessly and computed on the
recommendations of all carousels concatenated in a single
list and counting the occurrences of duplicate items as well.
This is because repetitions of the same items indicate the
recommendations have lower diversity. It is possible to calculate
correctly several commonly used within-list beyond-accuracy
metrics. Examples are Average Popularity, which is based on
the average popularity of the recommended items, and Novelty
or mean self-information, which is a function of the item
popularity in the training data (Zhou et al., 2010). The same
applies to distributional diversity such as Item Coverage, which
measures the quota of items that have been recommended at
least once, as well as to other metrics that that are computed on
the global number of times each item has been recommended
(the more unbalanced the distribution the less diverse the
recommendations are) Shannon diversity, Gini diversity, and
Herfindahl Index (Adomavicius and Kwon, 2012; Ferrari
Dacrema, 2021).

As opposed to the previous two categories, list-based diversity
metrics such as Mean inter-list diversity (MIL) (Zhou et al.,
2010) and the equivalent Hamming diversity behave differently.
MIL measures the average quota of the recommendation lists
any couple of users have in common. Computing MIL with
this approach is however very computationally expensive as it
is equivalent to computing a user-based KNN similarity model.
The original formulation of MIL is developed for the traditional
single-list recommendation setting, in which all users receive the
same number of recommendations and the recommendations
do not contain duplicates. In this scenario, a recent proof by
Ferrari Dacrema (2021) shows that MIL is equivalent to the
Herfindahl Index and, therefore, is a distributional diversity
metric, this means it can be computed in negligible time based
on the global number of times each item has been recommended.
In a carousel setting, due to the presence of duplicates, the
quota of recommendations two users have in common becomes
asymmetric. As an example, consider two users A and B
that received 10 recommendations. If they have one item in
common this means that 10% of the recommendations are equal.
If the common item appears twice in the recommendations
received by user A, the similarity becomes asymmetric with A
having 20% of the recommendation list in common with B,
while B having 10% of the list in common with A. Removing
the duplicates would produce erroneous results since MIL is
defined as an arithmetic mean and requires recommendation
lists of the same length. Due to this, the equivalence shown
in Ferrari Dacrema (2021) does not hold in a carousel setting
and it is an open research question whether the effect of the

compositions of the specific user recommendation lists would
cause MIL to still behave as a distributional diversity metric
or not.

In a carousel scenario, it would also be possible to

define additional beyond-accuracy metrics that measure the
diversity between carousels, e.g., measure the overlap between
recommendations contained in different carousels shown to a
single user. Defining newmetrics for this scenario is, however, an
open research question that goes beyond the scope of this article.

5. EXTENDING ONE-DIMENSIONAL NDCG

TheDiscounted Cumulated Gain (DCG), as well as itsNormalized
version (NDCG) (Järvelin and Kekäläinen, 2000, 2002), are
among the most used metrics for the evaluation of ranked lists.
These metrics come from the information retrieval domain and
are widely used to evaluate recommendation systems. The DCG
metric relies on two assumptions:

1. highly relevant results are more valuable for a user;
2. within a list of results, it is preferable to have relevant results

in the first positions.

Let l be the recommendation list length, i.e., cutoff, u a user
within the set of existing users U, and j the position in the
recommendation list (note that j does not refer to a specific item
but rather to a position in the list). The DCG for user u is defined
as the following discounted sum of gains:

DCGu =

l
∑

j=1

gujdj (1)

The gain function guj is responsible for rewarding highly relevant
items in position j for user u, while the discount function dj
introduces a penalization that should increase as position jmoves
toward the end of the list.

Given ruj as the relevance (e.g., rating) of the item in position j
of the recommendation list for user u, themost used formulations
for gain and discount are guj = 2ruj −1 and dj =

1
log2(j+1)

. Hence,

DCG is computed as Burges et al. (2005):

DCGu =

l
∑

j=1

2ruj − 1

log2(j+ 1)
(2)

The DCG for each user is normalized by computing the ideal
DCG for that same user, denoted as IDCGu. While the DCG
considers all items in the recommendation list, the IDCG is
computed assigning to each item its true relevance (i.e., the
one in the test data) and, therefore, obtaining the best possible
ranking given that user’s ground truth within the available
recommendation list of length l. The NDCG for user u is
computed as:

NDCGu =
DCGu

IDCGu
(3)

Finally, the global NDCG is computed as the average of the
NDCG of each user:

NDCG =
1

|U|

∑

u∈U

NDCGu (4)

Notice that this formulation is only one of many possible
formulations for the DCG. Several other ways of rewarding and
discounting results have been proposed in previous research
(Kanoulas and Aslam, 2009; Zhou et al., 2014). In the following,
we will start from this widely used formulation and extend it.
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Other types of gain and discount functions can be extended in
an analogous way. We leave the analysis of different gains and
discounts as future study.

Extending the DCG definition to a carousel setting requires
taking into account both the way a user explores a two
dimensional interface, following the golden triangle and that only
a portion of the recommendations will be immediately visible to
the user and further portions will become visible following user
actions, e.g., click, swipe. Furthermore, the shape and size of the
user interface as well as the user behavior will change according
to the device.

In a two-dimensional scenario, the standard DCG definition
can be naively adapted in the following way. Let H be the
horizontal dimension of the interface (i.e., the length of each
carousel) and V the vertical dimension of the interface (i.e., the
number of carousels). The carousels can be concatenated in a
single list of length l = V · H items on which the standard
DCG formulation can be applied. This strategy assumes that the
users will explore all carousels sequentially, from the first to the
last, which, as previously discussed, is not consistent with the
user behavior and does not account for the interface navigation
constraints. Therefore, we suggest researchers do not apply this
strategy as it does not represent a realistic scenario.

Thus, inspired by Järvelin and Kekäläinen (2000), we make
the following assumptions that the two-dimensional DCG should
meet:

1. highly relevant results are more valuable for a user;
2. a relevant result is valuable to the user only when it is first seen;
3. within a grid of results, it is preferable to have relevant results

close to the top-left corner;
4. it is preferable that relevant items are immediately visible to

the user or can be made visible with the least effort, e.g., the
least number of user actions, given that actions of different
types may require different efforts.

In order to account for this set of assumptions, we propose to
extend the DCG metric as a two-dimensional DCG, 2DCG, in
the following way:

2DCGu =

V
∑

j=1

H
∑

k=1

gujkdjk (5)

Where j ∈ [1,V] and k ∈ [1,H] represent the position within the
two-dimensional carousel interface. As in the one-dimensional
version, the gain function is responsible for rewarding highly
relevant results, according to assumptions (1) and (2). The
discount function, instead, should account for the penalty related
to the position and number of user actions, according to
assumptions (3) and (4).

Inspired by the one-dimensional version, we define gujk =

2rujk−1 where rujk is the relevance of item in carousel j, position k,
for user u. The discount term will depend on the position in the
layout, allowing ample freedom on how to define it in different
use cases.

The normalized version of this metric, N2DCGu requires
defining the I2DCGu, which is the 2DCGu of the ideal ranking.

In a single list setting the ideal ranking is the list which
contains the relevant items in decreasing relevance from the
beginning of the list. In the generalized two-dimensional layout,
it contains the user’s most relevant items, ranked according
to decreasing relevance in positions with decreasing position
discount. Note that, as done for IDCG, if a user has several
relevant items that exceed the recommendation list length l, only
the l most relevant ones will be used to compute the I2DCGu.
The ideal ranking meets the following constraints: gujk ≥ guxy
if djk < dzx for any pair of items in positions (j, k) and
(x, y).

Finally, N2DCG is computed as the average of all N2DCGu as
in the traditional NDCG.

5.1. Relevance
As stated in assumption (2), a relevant item is valuable for
the user only when it is first encountered. This means that
if a relevant item appears multiple times, each in a different
carousel, it should be considered relevant only in its best
position. We define such position as the one with the lowest
discount. Function rujk should be modified accordingly. Due to
this, if an item is correctly recommended twice the position
that will be considered relevant may change depending on
the discount function applied. An example of this is shown
in Figure 4.

5.2. Single List Discount
It is possible to represent with N2DCG the scenario where all
carousels are concatenated into a single list by calculating the
position of the cell in coordinates j, k if all carousels lists would
be concatenated:

dsjk =
1

log2((j− 1)H + k+ 1)
(6)

As previously mentioned, this formulation is not grounded in
a realistic scenario because it does not reflect the user behavior
(refer to Figure 4A), therefore, we argue that it should not
be applied.

5.3. Golden Triangle Discount
In order to account for the golden triangle behavior,
as per assumption (3), the position discount should
decrease as the distance of the cell from the top-right
corner increases:

dtjk =
1

log2(αj+ βk)
(7)

The coefficients α and β are two weights that can be used
to account for different types of user behaviors. For instance,
let us assume a scenario where users are more inclined to
explore the vertical dimension. In this case, α should be
set to a low value in order to penalize less the vertical
dimension. In order to make the discount start from 1, α

and β should be ≥ 1 since the base of the logarithm used
is 2. Notice that this is true only because we are extending
a logarithmic discount function. For other discount functions
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FIGURE 4 | A visual comparison of the two-dimensional discount function under different assumptions: (A) Represents carousels concatenated in a single list.

(B) Represents two-dimensional discount which accounts for the golden triangle and number of user actions. (C,D) Show the impact of the discount function on the

relevance of a correct recommendation. Consider a small user interface with 3 carousels, each with 6 elements. Correct recommendations are represented with “Xn"

with n the item identifier, while incorrect ones by “-". Item B is recommended correctly both by the first and second recommendation list. Only one of the two will be

considered relevant, depending on the discount, the other is shown as crossed out. The single list discount shown in (A) will lead to consider relevant the

recommendation of item B in the first carousel, while the two-dimensional discount shown in (B) will lead to consider relevant the recommendation in the second

carousel.

(Kanoulas and Aslam, 2009; Zhou et al., 2014), the constraints
can change.

5.4. User Actions Discount
In order to account for assumption (4), the position discount
should decrease the more actions are required by the user to
make that position visible. In a carousel interface, there is an
initial rectangular portion of the recommendations that are
immediately shown to the user. We refer to the number of
items visible as Vh (number of visible horizontal items) and the
number of carousels visible as Vv (number of visible vertical
items), refer to Figure 5. In order to reveal more items in either
the horizontal or vertical directions, the user needs to perform
a certain action, i.e., scroll the mouse wheel, swipe on mobile
devices). We call these actions as swipe actions. Each of these
actions will reveal a certain number of new items available in
the recommendation lists. The number of items revealed with
a swipe action is defined as δh ∈ {1, 2, . . . ,Vh} (for horizontal
swipe actions) and δv ∈ {1, 2, . . . ,Vv} (for vertical swipe
actions).

For example, on Netflix, every horizontal swipe on a
carousel replaces all the items displayed in the carousel,
therefore, δh = Vh.

The number of horizontal and vertical actions needed to
visualize an item in position (j, k) (the k-th item in carousel j)
is computed as

n
h−swipes
j =

{

⌈

j−Vh
δh

⌉

if j > Vh

0 otherwise
(8)

n
v−swipes
k

=

{

⌈

k−Vv
δv

⌉

if k > Vv

0 otherwise
(9)

The final discount accounts for both the triangle discount, as
defined in (7), and the number of horizontal and vertical user
actions required to discover the item

dajk =
1

log2(αj+ βk+ γ n
h−swipes
j + λn

v−swipes
k

)
(10)

Notice that this formulation accounts for both vertical and
horizontal swipes. The coefficients α, β , γ , λ are four positive
weights that can be used to account for different types of
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FIGURE 5 | An example interface with 4 carousels of 6 elements each, where

3 carousels, with 3 items each, are visible. A horizontal swipe reveals 3 items,

while a vertical swipe reveals one additional carousel.

user behaviors. The first two weights (α and β) control the
general penalization of the vertical and horizontal dimensions,
respectively and in order for the total discount to start from 1
α,β ≥ 1. Penalizingmore or less the user actions needed to reveal
a certain item is possible by controlling γ , λ ≥ 0. For example,
it could be that items presented together in the same carousel
have a similar probability of interaction (refer to the first 10
elements of the first carousel in Figure 3). Hence, the horizontal
dimension should be penalized less. Another possibility is that,
on a desktop device, the horizontal swipe done with amouse click
will have a higher weight than the same swipe done with a touch
on a mobile device.

For illustrative purposes, let us consider a possible scenario
for a mobile device, where the screen contains 4 carousels and 3
recommendations each. We set the horizontal and vertical steps
to 1, α,β , γ , λ are set to 1 as well. The resulting discount is shown
in Figure 4B.

Figure 6 compares the single list DCG and 2DCG in two
different scenarios. The user interface has V = 3 carousels
each of length H = 6, with V = Vv = 3, Vh = 3,
δh = 3 and the penalty for the horizontal user action is γ =

10. The first scenario compares the values when three correct
recommendations exist, see Figure 6A, to which a fourth correct
recommendation is added in position (3, 1), refer to Figure 6B.
The value of DCG increases by 0.263 (from 1.057 to 1.320),
while 2DCG increases by 0.497 (from 1.364 to 1.861) indicating
how 2DCG is much more affected by the additional correct
recommendation thanDCG. This is because DCG applies amuch
higher discount due to the position compared to 2DCG. The
effect will become more marked for longer carousel interfaces,
making it much more difficult for DCG to discriminate reliably
between layouts that differ in their last recommendation lists.
For a correct recommendation in position (10, 1), DCG applies
a discount 40% higher than that of 2DCG, while only 20%

higher if a correct recommendation is in position (30, 1). This
means that although the most marked differences are in the
first carousels, despite the logarithmic nature of the discount,
2DCG is still able to better account for the user behavior even
in long carousel interfaces. Consider that at the time of writing,
the Netflix homepage shows more than 30 carousels. The second
scenario considers the impact of the user action penalty on
determining the optimal layout when three recommendation
lists are available. The recommendation lists have zero, one, and
two correct recommendations, respectively. In the list with two
correct recommendations, the second one is outside the visible
area and requires a user action to be seen. The layout depicted in
Figure 6C puts first the list with two correct recommendations,
then the list with one, and finally the list with zero. This
corresponds to a DCG of 1.256 and 2DCG of 1.246. A different
layout, obtained by swapping the first two lists as depicted in
Figure 6D, has instead a DCG of 1.221 and a 2DCG of 1.312.
According to the single list DCG, it is preferable to put the
recommendation list with two correct recommendations at the
top, while the 2DCG will account for the fact that the second
correct recommendation will be outside the user visible area and
will have a much lower contribution. Due to this, DCG and
2DCG will lead to the selection of different layouts. This effect
will be more or less marked according to the impact of the user
action penalty, which will depend on the scenario of interest.

6. EXPERIMENTAL PROTOCOL

This section describes the experimental protocol that is used for
the analysis reported in Section 7.

6.1. Recommendation Lists
In a realistic carousel scenario, several recommendation lists
(or carousels) are available generated with different algorithms
or editorial rules. In order to mimic this setting, we include
in the evaluation 16 algorithms developed in the last three
decades of research that are simple, well-known, and competitive
(Ferrari Dacrema et al., 2021). The algorithms can be grouped
into 6 categories:

• Non-personalized: TopPopular, which recommends the most
popular items, and GlobalEffects which recommends the
highest rated items.

• Item-based heuristic: ItemKNN and UserKNN (Sarwar et al.,
2001) compute the item-item or user-user similarity based
on past user interactions. Both models use cosine similarity
with shrinkage to reduce the similarity of items or users with
low support.

• Item-based machine learning: SLIM (Ning and Karypis,
2011), SLIM BPR, and EASER (Steck, 2019) all compute an
item-item similarity by optimizing different criteria. EASER in
particular is a recently proposed shallow autoencoder with a
closed form solution.

• Graph-based: P3α (Cooper et al., 2014) and RP3β (Paudel
et al., 2017) are both simple methods that represent the user
interactions as a bipartite user-item graph and model the
recommendations by simulating a random walk.
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FIGURE 6 | A small user interface with 3 carousels, each with 6 elements on which the behavior of DCG and 2DCG is compared. Correct recommendations are

represented with “X” while incorrect ones by “-”. ”. The vertical line between columns 3 and 4 represents the limit of the area initially visible to the user, i.e., Vh = 3.

(A,B) Represent the same layout in which (B) contains an additional correct recommendation in position (3, 1). (C,D) Represent two different layouts created based on

the same three recommendation lists, with DCG preferring layout (C) and 2DCG preferring layout (D) due to the effect of the user action penalty on the correct

recommendation in column 4.

• Matrix factorization: PureSVD (Cremonesi et al., 2010),
FunkSVD (Ferrari Dacrema et al., 2021), Non-negative matrix
factorization (Cichocki and Phan, 2009), MF BPR (Rendle
et al., 2009), and IALS (Hu et al., 2008) are all widely
known models that represent the user interactions as the
product of lower dimensionality matrices learn by optimizing
different losses.

• Content-based and hybrid: ItemKNN CBF builds an item-
item similarity using the item features, while ItemKNN CF-
CBF uses both item ratings and item features concatenated in
a single vector (Mobasher et al., 2003). Both use cosine with
shrinkage as the collaborative ItemKNN.

6.2. Hyperparameter Optimization
While this article does not aim to show that any particular
model or carousel ranking strategy is superior to others, we
nonetheless ensure that all algorithms are fairly and consistently
optimized. To do so, we followed the best practices highlighted
by Ferrari Dacrema et al. (2021), and we relied on the framework
published. The data is split into 80% training, 10% validation, and
10% test with a user-wise random holdout (Antenucci et al., 2018;
Ferrari Dacrema et al., 2021)1 optimizing the recommendation
quality on the validation split, measured with NDCG at cutoff
10. Note that in this case, each model is optimized in a
traditional scenario where only a single recommendation list is
provided, therefore, there is no need (and indeed at this stage

1The framework implementation relies on the Scikit-optimize package https://

scikit-optimize.github.io/.

is not possible) to account for the whole user interface. We
explored 50 cases for each algorithm, the first 16 used as random
initialization. We constrain the optimization to a maximum
of 14 days for each recommender model and a maximum of
64GB of RAM. Once the optimization terminates, the final
model is fitted on the union of the training and validation
data using the best hyperparameters found and is evaluated
on the test data. The hyperparameter ranges and distribution
used during the optimization are the same used and described
in Ferrari Dacrema et al. (2021). The optimal hyperparameters
for all recommendation models are reported as part of the
Tables A1–A3 in Appendix.

6.3. Datasets
We report the results for some widely known and used datasets,
all of which are publicly available. We only selected datasets
collected from domains that typically adopt a carousel-based user
interface, i.e., video-on-demand and music streaming:

• MovieLens 20M2 (Harper and Konstan, 2016), a popular
dataset of movie recommendations. The dataset contains user
provided tags for items as well as the year of release and the
genre. User ratings are available in a range of 1-5. The dataset
has 20.0 M interactions, 27 k items, 138 k users, and a density
of 5.3 · 10−3.

• Netflix Prize3 (Bennett and Lanning, 2007), is the well known
movie dataset from the Netflix Prize. User ratings are available

2https://grouplens.org/datasets/movielens/20m/
3https://www.kaggle.com/netflix-inc/netflix-prize-data
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in a range of 1-5. The dataset has 100.4 M interactions, 17 k
items, 479 k users, and a density of 1.2 · 10−2.

• ContentWise Impressions (Pérez Maurera et al., 2020) is a
dataset collected from a video-on-demand media provider
that contains both user interactions and impressions. The
interactions are implicit. The dataset has 4.5 M interactions,
145 k items, 41 k users, and a density of 7.4 · 10−4.

6.4. Carousel Layouts Heuristics
While the purpose of this article is not to propose a specific
algorithm to find an optimal carousel ranking, we believe
it is useful to describe two simple heuristic strategies that
can be used as baselines to compare with more sophisticated
strategies. As previously observed, there are only few studies that
deal with the problem of recommendation list selection for a
carousel interface. Usually, those studies make assumptions on
the recommendation models, leverage specific types of data such
as session and context or require an online setting. In other cases,
the selection of carousels is part of the recommendation model
itself, which means it is not applicable in the scenario where
the recommendation models are black boxes. Note that one may
choose a single global layout, but also select different layouts for
different users or groups of users.

Let’s first consider the solution space for the task of carousel
selection and ranking:

• Exhaustive selection with default ranking: Given a set of
available recommendation lists, this baseline evaluates all
possible subsets of the desired length, i.e., the number of
carousels, with a default ordering that may be selected
heuristically. For example, we may wish to select one among
many possible carousels related to sports, then another related
to a genre, and finally another personalized list. An exhaustive
search is very computationally expensive as it corresponds to
selecting the combinations without repetitions of V carousels
within a pool of M lists, resulting in a total number of cases

M!
V!(M−V)!

. This makes an exhaustive search impossible for all

but the smallest cases, where the number of available lists is
very limited, hence it is of little practical use.

• Exhaustive selection and ranking: Given a set of available
recommendation lists, the goal is not only to decide which to
select, as in the Exhaustive selection with default ranking case,
but also to decide how to rank them as carousels. This search
corresponds to exploring all possible permutations of the
selected V carousels, which requires evaluating V! layouts for
each selection, making it again too computationally expensive
for practical use.

Two simple greedy strategies that can be used for the selection
and ranking of carousels are the following:

• Individual greedy: The recommendation lists are selected
according to their recommendation quality measured
individually on the validation data, and ranked with
decreasing values. Therefore, the list with the best
recommendation quality will become the first carousel,
the second-best will become the second carousel, and so
on until the desired number of carousels is reached. In our

experiments, we have used NDCG with a cutoff of 10 to
rank carousels with the Individual Greedy strategy. This
approach cannot account for duplicate recommendations
and may select a set of lists with similar recommendations.
For example, the second-best list may be very similar to the
first one, so most of its correct recommendations will already
be present in the first carousel. This strategy requires only
the recommendation quality on the validation data which
is either already available after the recommendation models
that generated the lists have been optimized or can be easily
computed once a new editorially curated list is added to the
available ones. Hence, the Individual Greedy selection baseline
has a low computational cost.

• Incremental greedy: This baseline does not select the
recommendation lists based on a fixed accuracy value but
rather iteratively evaluates all of them, accounting for those
that have already been selected. If a recommendation list
has high accuracy but provides recommendations similar to
those already selected, it will exhibit lower recommendation
quality. This carousel selection baseline is better suited to
account for the characteristics of a carousel interface, but
it is much more computationally expensive requiring to
run

∑V
i=1M − i+ 1 evaluations.

7. RESULTS

In this section, we apply the proposed carousel evaluation
on numerous widely used algorithms and compare the results
obtained with the traditional evaluation which considers each
model independently, we also compare the results obtained
by optimizing a carousel layout with the traditional single-list
NDCG and with the proposed N2DCG. We discuss the results
of this comparison and highlight some common trends.

The total number of available recommendation models, i.e.,
M, differs according to the dataset:Movielens 20Mhas 16 because
it includes 14 collaborative and 2 content based ones, Netflix
Prize has 14 which corresponds to all the collaborative models,
ContentWise Impressions has 12 because SLIM BPR and EASER

required more than the available 64GB of RAM and could not
be optimized. N2DCG uses the following parameters: Vv =

min(V , 3), Vh = 3, δv = 1, δh = 3, α = β = γ = λ = 1,
refer to Figure 4.

7.1. Recommendation Quality Under a
Carousel Evaluation
The first analysis shows how the relative recommendation quality
of a model changes by using a carousel evaluation. In this
experiment, the goal is to choose which model to add as the last

carousel in an interface that contains an increasing number of

carousels: TopPopular, ItemKNNCF, and, for theMovielens 20M

dataset, ItemKNN CBF.
Themodels are first evaluated individually with the traditional

evaluation protocol and then with the proposed carousel
evaluation protocol. All recommendation lists have a length, i.e.,
H, of 10. Note that in the individual evaluation, there will be
a single recommendation list, while in the carousel evaluation,
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there will be more than one, therefore, the absolute values of the
NDCG are not comparable, for this reason, the analysis will focus
on the ranking of the models. The results are reported both as
tables and as figures that highlight the changes in the relative
ranking of the modes: Figure 7A and Table 2 (Movielens 20M),
Figure 7B and Table 4 (Netflix Prize), Figure 7C and Table 3

(ContentWise Impressions).
By looking at Figure 7A (Movielens 20M) and Table 2, we can

make several considerations. Under the traditional evaluation in
which an algorithm is evaluated independently (i.e., individual),
we can see that almost all personalized algorithms have a

recommendation quality between two and three times better than
TopPopular. The only model that is worse than TopPopular
is GlobalEffects and the best performing algorithms are SLIM,
UserKNN, and EASER. If we look at the carousel evaluation,
we can see that no algorithm has a lower recommendation
quality than TopPopular, which is expected since TopPopular is
the predefined first carousel while each algorithm is the second
one and therefore the final recommendation quality can only
be greater or equal. As a general trend, we can see that the
relative effectiveness of the models differs, resulting in changes
to the ranking of the algorithms in the two evaluation modes.

FIGURE 7 | Visualization of how the ranking of several recommendation models changes when they are evaluated independently or as the last recommendation list in

a carousel interface of increasing complexity. (A) Movielens 20M, (B) Netflix Prize, and (C) ContentWise Impressions. Highest ranked models are the best performing

according to NDCG at 10.
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TABLE 2 | Comparison of the NDCG at 10 and overall model ranking for

Movielens 20M.

Individual

Carousel layout

TopPop TopPop TopPop

ItemKNN CF ItemKNN CF

ItemKNN CBF

NDCG Rank NDCG 1Rank NDCG 1Rank NDCG 1Rank

TopPopular 0.1058 15 0.0953 - 0.1607 - 0.1713 -

ItemKNN CF 0.2216 11 0.1653 0 0.1607 - 0.1713 -

ItemKNN CBF 0.1202 14 0.1271 0 0.1734 3 0.1713 -

GlobalEffects 0.0478 16 0.1041 0 0.1659 0 0.1747 0

UserKNN CF 0.3088 2 0.1917 0 0.1958 1 0.1978 1

P3α 0.1968 12 0.1393 0 0.1695 0 0.1778 1

RP3β 0.2422 8 0.1667 0 0.1743 -1 0.1812 -1

IALS 0.2702 5 0.1868 2 0.1932 2 0.1961 2

MF BPR 0.1645 13 0.1352 0 0.1689 0 0.1776 1

MF FunkSVD 0.2519 7 0.1790 2 0.1922 3 0.1952 3

PureSVD 0.2657 6 0.1765 0 0.1832 0 0.1872 0

NMF 0.2288 9 0.1662 0 0.1819 1 0.1871 2

EASER 0.2740 4 0.1756 -3 0.1823 -3 0.1861 -4

SLIM ElasticNet 0.3109 1 0.1920 0 0.1951 -1 0.1964 -1

SLIM BPR 0.2792 3 0.1811 -1 0.1882 -2 0.1918 -2

ItemKNN CFCBF 0.2264 10 0.1662 0 0.1667 -3 0.1759 -2

Each model is evaluated both individually (single-carousel) and as the last

recommendation list in a multi-carousel interface of increasing complexity. The

NDCG is computed with the single-list discount (concatenating all carousel lists). Higher

ranks indicate better recommendation quality. The rank of models that are already used

as carousels is removed. 1Rank is the difference between the rank when evaluated

individually and the rank when evaluated in the corresponding carousel layout, e.g., a

negative 1Rank indicates the model is in a worse ranking position.

Some models such as GlobalEffects and PureSVD are always
ranked in the same position. Others, in this case, all other matrix
factorization algorithms, gain 2 or 3 positions. On the other hand,
item-based machine learning models tend to consistently lose
some positions, with EASER being the worst affected and losing
4 positions. As a result, while in the individual evaluation the
best algorithms are SLIM ElasticNet, UserKNN CF, SLIM BPR,
and EASER, in the carousel evaluation the best algorithms are
UserKNN CF, SLIM ElasticNet, IALS, and FunkSVD. Since the
recommendation lists generated by all algorithms are identical
for both evaluation procedures, the difference in the ranking
lies in how those recommendations intersect. Algorithms that
will tend to recommend popular items will be penalized in
this carousel evaluation because popular items will already
be present in the TopPopular carousel, whereas algorithms
providing accurate recommendations but involving less popular
items will be advantaged. Similarly, since the second carousel
layout adds an ItemKNN CF, the algorithms providing similar
recommendations to it will also be penalized.

Figure 7B (Netflix Prize) and Table 4 show a similar,
albeit more marked, behavior. The model’s ranking is mostly
unchanged when the recommendation model is evaluated in a
carousel layout having only TopPopular as the first carousels, the

TABLE 3 | Comparison of the NDCG at 10 value and overall model ranking for

ContentWise Impressions.

Individual

Carousel layout

TopPop TopPop

ItemKNN CF

NDCG Rank NDCG 1 Rank NDCG 1 Rank

TopPopular 0.0708 11 0.0617 - 0.2448 -

ItemKNN CF 0.5328 2 0.2557 0 0.2448 -

GlobalEffects 0.0000 12 0.0617 0 0.2448 0

UserKNN CF 0.3667 6 0.1915 0 0.2688 0

P3α 0.4183 4 0.2095 0 0.2686 -4

RP3β 0.5016 3 0.2479 0 0.2745 0

IALS 0.3369 8 0.1754 0 0.2696 3

MF BPR 0.1584 10 0.1118 0 0.2554 0

MF FunkSVD 0.2324 9 0.1395 0 0.2624 0

PureSVD 0.3699 5 0.1935 0 0.2712 1

NMF 0.3428 7 0.1798 0 0.2686 0

SLIM ElasticNet 0.5548 1 0.2651 0 0.2769 0

Each model is evaluated both individually (single-carousel) and as the last

recommendation list in a multi-carousel interface of increasing complexity. The

NDCG is computed with the single-list discount (concatenating all carousel lists). Higher

ranks indicate better recommendation quality. The rank of models that are already used

as carousels is removed. 1Rank is the difference between the rank when evaluated

individually and the rank when evaluated in the corresponding carousel layout, e.g., a

negative 1Rank indicates the model is in a worse ranking position.

only changes are RP3β and FunkSVD swapping relative positions.
The inclusion of the ItemKNN CF instead causes some sharp
changes in ranking, in particular, EASER falls by 6 positions while
FunkSVD gains 7. Finally, Figure 7C (ContentWise Impressions)
and Table 3 show a case where the ranking is less affected. Using
a TopPopular as the first carousel does not change the relative
ranking of the models. Including an ItemKNN CF as the second
carousel affects mostly two models, P3α which loses 4 positions,
and IALS which gains 3.

Overall, no clear pattern emerges, with the different
recommendation models being affected in different ways
according to the carousel structure and the dataset. An
observation that can be made is, e.g., the consistent drop
in positions of the item-based machine learning models in
Movielens 20M indicating that the correct recommendations
they provide are similar to those of the already available
carousels, in particular, the ItemKNN ones. This behavior
depends on the dataset, with the models most negatively
affected by the presence of an ItemKNN carousel being
P3α on ContentWise Impressions and EASER on the Netflix
Prize dataset.

These results indicate the importance of accounting for how
a set of recommendation lists complement each other and that
this effect can change substantially the relative ranking of some
algorithms compared to when they are evaluated individually,
therefore, leading to different conclusions on which is the best
recommendation list to include.
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TABLE 4 | Comparison of the NDCG at 10 value and overall model ranking for

NetflixPrize.

Individual

Carousel layout

TopPop TopPop

ItemKNN CF

NDCG Rank NDCG 1 Rank NDCG 1 Rank

TopPopular 0.0799 13 0.0678 - 0.1261 -

ItemKNN CF 0.2060 10 0.1335 0 0.1261 -

GlobalEffects 0.0159 14 0.0733 0 0.1282 0

UserKNN CF 0.2581 3 0.1516 0 0.1573 0

P3α 0.1810 11 0.1194 0 0.1478 1

RP3β 0.2209 7 0.1345 -2 0.1422 -4

IALS 0.2380 5 0.1497 0 0.1566 1

MF BPR 0.1656 12 0.1172 0 0.1426 1

MF FunkSVD 0.2077 9 0.1446 2 0.1639 7

PureSVD 0.2508 4 0.1515 0 0.1552 -2

NMF 0.2192 8 0.1434 0 0.1546 1

EASER 0.2619 2 0.1520 0 0.1534 -6

SLIM ElasticNet 0.2913 1 0.1662 0 0.1669 0

SLIM BPR 0.2353 6 0.1467 0 0.1561 1

Each model is evaluated both individually (single-carousel) and as the last

recommendation list in a multi-carousel interface of increasing complexity. The

NDCG is computed with the single-list discount (concatenating all carousel lists). Higher

ranks indicate better recommendation quality. The rank of models that are already used

as carousels is removed. 1Rank is the difference between the rank when evaluated

individually and the rank when evaluated in the corresponding carousel layout, e.g., a

negative 1Rank indicates the model is in a worse ranking position.

7.2. Selecting a Carousel Layout
Table 5 compares the recommendation quality of the carousel
layout selected with different approaches on interfaces with
an increasing number of carousels, from 2 to 8. The
recommendation quality is measured with, and optimized
for, NDCG at 10. The same experiment was also conducted
optimizing N2DCG and produced consistent results. Although
the maximum number of carousels reported here is 8, note that
some content providers use much longer user interfaces, with
Netflix showing more than 30 carousels.

As a general observation, we can see how the solution space
grows markedly and becomes unpractical to explore exhaustively
even for rather small interfaces. For example, on Movielens
20M an interface of 4 carousels corresponds to 1.8 · 103

possible selections and 4.3 · 104 possible rankings. We limit
the analysis to the exhaustive searches that could complete in
a week of computation. Note that depending on the dataset
this corresponds to very different numbers of layouts, from
a minimum of 3.6 · 102 for Netflix Prize to a maximum of
9.4 · 104 for ContentWise Impressions. In this experiment, the
default ranking adopted by the Exhaustive Selection method is to
order the models according to their decreasing recommendation
quality when evaluated individually.

Overall, the results indicate that the Exhaustive Selection
achieves almost identical overall recommendation quality when
compared to the Exhaustive Permutation in the limited number

of cases where it is possible to use it. Indeed a difference
may emerge for a higher number of carousels but the growth
of the search space makes such an analysis impractical. A
more interesting analysis can be done with the proposed two
greedy strategies. The Incremental Greedy method provides
better results than the Individual Greedy, indicating again the
importance of accounting for how the recommendation list
complement each other. This difference is more marked on
denser datasets, i.e., Netflix Prize, and for longer carousel layouts.
The only dataset in which it is possible to apply the Exhaustive
Selection up to 8 carousels is ContentWise Impressions, where we
can see how the Incremental Greedy selects a layout of even better
overall recommendation quality than the Exhaustive Selection.
This should not be surprising since the exhaustive search
strategies find the global optima, which makes them more prone
to overfitting and hence exhibiting reduced generalizability.
These results indicate that, although very simple, the Incremental
Greedy strategy we described is indeed effective to account for
how the different recommendation lists complement each other.

7.3. Comparing NDCG and N2DCG
The different results obtained by optimizing NDCG or N2DCG
are not directly comparable in their absolute value, therefore,
are best visualized by comparing the corresponding optimal
carousel layouts.

Table 6 compares the optimal layouts for 5 carousels obtained
by all exhaustive searches and greedy strategies optimizing both
NDCG and N2DCG. This is the longest interface for which it is
possible to report results for all four strategies. By first comparing
the exhaustive search strategies, we can see that in both cases,
Exhaustive Search with Ranking selects the same models, but
there is always a couple that is swapped compared to the default
Ranking strategy, indicating that a better ranking was found
compared to the default one (i.e., decreasing order of individual
accuracy). When optimizing the traditional single list NDCG
both greedy strategies choose the same first two carousels the
exhaustive strategies selected, but then the last three become
different in both the ranking of the models and which ones are
selected, i.e., Incremental Greedy selects P3α while Individual
Greedy does not and instead selects PureSVD, while RP3β and
UserKNN CF are present in both but for different positions.

When optimizing the N2DCG the optimal layout is quite
different, SLIM ElasticNet, which was consistently in the
first position when optimizing NDCG, is not even selected,
while PureSVD is selected and put toward the end of the
layout. The Incremental Greedy strategy selects the same first
two carousels that were selected when optimizing NDCG,
but the remaining three include different models with a
different rankings. This highlights the intrinsic limitations of
the simple Incremental Greedy strategy which, due to its
definition, will not be able to account for the two dimensional
structure of the interface when the very first carousel is
selected and will, therefore, more likely find a suboptimal
layout.

Similar observations can be made for the other two
datasets and a longer user interface. Table 7 shows the
optimal layouts of 8 carousels selected for the Netflix
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TABLE 5 | Comparison of the NDCG at 10 of the layout selected according to the two proposed greedy strategies and compared to the exhaustive search of all possible

model selections and rankings.

Number of carousels

2 3 4 5 6 7 8

Movielens 20M (M = 16)

Solution space size
Number of rankings 2.4 · 102 3.3 · 103 4.3 · 104 5.2 · 105 5.7 · 106 5.7 · 107 5.1 · 108

Number of selections 1.2 · 102 5.6 · 102 1.8 · 103 4.3 · 103 8.0 · 103 1.1 · 104 1.2 · 104

Selection method

Exhaustive selection and ranking 0.3168 0.3220 - - - - -

Exhaustive selection default ranking 0.3168 0.3220 0.3266 0.3296 - - -

Incremental greedy 0.3168 0.3220 0.3266 0.3297 0.3320 0.3345 0.3363

Individual greedy 0.3168 0.3180 0.3190 0.3241 0.3250 0.3295 0.3309

Netflix Prize (M = 14)

Solution space size
Number of rankings 1.8 · 102 2.1 · 103 2.4 · 104 2.4 · 105 2.1 · 106 1.7 · 107 1.2 · 108

Number of selections 9.1 · 101 3.6 · 102 1.0 · 103 2.0 · 103 3.0 · 103 3.4 · 103 3.0 · 103

Selection method

Exhaustive selection and ranking 0.2781 - - - - - -

Exhaustive selection default ranking 0.2781 0.2809 - - - - -

Incremental greedy 0.2781 0.2812 0.2830 0.2865 0.2891 0.2912 0.2931

Individual greedy 0.2692 0.2701 0.2689 0.2714 0.2740 0.2761 0.2777

ContentWise impressions (M = 12)

Solution space size
Number of rankings 1.3 · 102 1.3 · 103 1.1 · 104 9.5 · 104 6.6 · 105 3.9 · 106 2.0 · 107

Number of selections 6.6 · 101 2.2 · 102 4.9 · 102 7.9 · 102 9.2 · 102 7.9 · 102 4.9 · 102

Selection method

Exhaustive selection and ranking 0.5162 0.5099 0.5133 0.5153 - - -

Exhaustive selection default ranking 0.5162 0.5099 0.5132 0.5152 0.5178 0.5199 0.5213

Incremental greedy 0.5162 0.5099 0.5133 0.5153 0.5179 0.5201 0.5215

Individual greedy 0.5162 0.5098 0.5123 0.5149 0.5172 0.5183 0.5190

The page layout contains from 2 to 8 carousels. Results for exhaustive searches requiring more than a week of computation are missing.

TABLE 6 | Layouts of 5 carousels selected for the ContentWise Impressions dataset selected according to different strategies and optimizing both the single list NDCG

and the proposed two-dimensional N2DCG.

Optimized

metric

Exhaustive selection

and ranking

Exhaustive selection

default ranking

Incremental

greedy

Individual

greedy

NDCG

SLIM ElasticNet SLIM ElasticNet SLIM ElasticNet SLIM ElasticNet

ItemKNN CF ItemKNN CF ItemKNN CF ItemKNN CF

UserKNN CF RP3β RP3β UserKNN CF

RP3β UserKNN CF P3α RP3β

FunkSVD FunkSVD UserKNN CF FunkSVD

N2DCG

ItemKNN CF ItemKNN CF SLIMElasticNet -

P3α RP3β ItemKNN CF -

RP3β P3α UserKNN CF -

PureSVD PureSVD RP3β -

FunkSVD FunkSVD FunkSVD -

The Individual Greedy layout for N2DCG is missing since that method is based on the traditional single list evaluation.

Prize and Movielens 20M. On Movielens 20M, again the
Incremental and Individual Greedy strategies are similar
only in the first carousels but then result in quite different
rankings and selected models, and the same holds for
the ranking obtained by optimizing N2DCG. The Netflix
dataset is instead an example of the case where the

Incremental Greedy is ineffective and selects the same
layout by optimizing NDCG or N2DCG, indicating this
is a scenario where developing a better strategy will be
particularly important.

Overall this indicates that optimizing N2DCG, especially for
longer page layouts, is a more difficult and nuanced problem,
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TABLE 7 | Layouts of 8 carousels selected for the Movielens 20M and Netflix Prize datasets selected according to different strategies and optimizing both the single list

NDCG and the proposed two-dimensional N2DCG.

Movielens 20M Netflix prize

NDCG N2DCG NDCG N2DCG

Incremental greedy Individual greedy Incremental greedy Incremental greedy Individual greedy Incremental greedy

UserKNN CF UserKNN CF UserKNN CF SLIM ElasticNet SLIM ElasticNet SLIM ElasticNet

SLIM ElasticNet SLIM ElasticNet SLIM ElasticNet FunkSVD EASER FunkSVD

FunkSVD SLIM BPR FunkSVD UserKNN CF UserKNN CF UserKNN CF

IALS EASER IALS MF BPR PureSVD MF BPR

MF BPR IALS MF BPR IALS SLIM BPR IALS

NMF PureSVD ItemKNN CBF P3α IALS P3α

ItemKNN CBF FunkSVD NMF NMF RP3β NMF

ItemKNN CF RP3β ItemKNN CF ItemKNN CF ItemKNN CF ItemKNN CF

The Individual Greedy layout for N2DCG is missing since that method is based on the traditional single list evaluation.

which opens new directions for future research, e.g., representing
it as a quadratic optimization problem as done by Ferrari
Dacrema et al. (2021).

8. CONCLUSION

This article proposes a new offline evaluation protocol for a
carousel user interface, where the recommendation quality of a
model is not measured independently but rather is put into the
context of other recommendation lists being already available
to the users. The experimental analysis shows that the relative
ranking of the personalized algorithms changes when accounting
for the presence of other carousels in the interface. This
confirms previous observations that the correlations between
recommendation lists have an important role to play and
should be taken into account during offline evaluation as
well. Results also show the impact of accounting for how the
users navigate a user interface, with the traditional NDCG and
the proposed N2DCG resulting in different optimal layouts
when applying both exhaustive and greedy strategies. In future
study, online studies should be conducted to measure how
closely the offline carousel evaluation is able to represent
user behavior. For example, one could estimate appropriate
factors to be used by the discount term of the N2DCG
according to the layout structure and the user action type
or explore different relevance functions that attribute partial
relevance to duplicate items as well. Another direction is the

development of recommendation models specifically tailored for
the carousel scenario, e.g., that target specific items that are
not accurately recommended by other algorithms (unpopular
items), as well as new efficient strategies to build an optimal
carousel layout possibly personalized to communities of users
or even single users. Ultimately, the carousel evaluation
protocol opens new research directions by allowing researchers
to conduct offline evaluations in these industrially relevant
scenarios and open a wide number of research possibilities in
studying how to combine the strength of various models and
techniques to provide the user with ever more accurate and
interesting recommendations.
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APPENDIX

Optimal Hyperparameters
This section reports the optimal hyperparameters found for
all recommendation models and datasets. The hyperparameter
ranges and distribution used during the optimization are the
same used and described in Ferrari Dacrema et al. (2021).
Table A1 refers to the collaborative KNN models, Table A2 to
the content based and hybrid KNN models, and Table A3 to the
machine learning and graph based models.

TABLE A1 | Hyperparameter values for collaborative KNN recommender algorithms on all datasets.

Algorithm Hyperparameter ContentWise Impressions Netflix Prize Movielens 20M

UserKNN CF

topK 297 1000 835

shrink 102 0 0

similarity cosine cosine cosine

normalize True True True

feature weighting TF-IDF none none

ItemKNN CF

topK 5 72 214

shrink 0 0 982

similarity cosine cosine cosine

normalize True True True

feature weighting none TF-IDF none

TABLE A2 | Hyperparameter values for content based and hybrid KNN

recommender algorithms.

Algorithm Hyperparameter Movielens 20M

ItemKNN CBF

topK 1000

shrink 1000

similarity cosine

normalize True

feature weighting TF-IDF

ItemKNN CF CBF

topK 253

shrink 203

similarity cosine

normalize True

feature weighting BM25

ICM weight 0.1520

Only Movielens 20M contains item features, the other datasets are, therefore, omitted.
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TABLE A3 | Hyperparameter values for machine learning and graph based recommender algorithms on all datasets.

Algorithm Hyperparameter ContentWise Impressions Netflix Prize Movielens 20M

P3α

topK 146 5 1000

alpha 1.2748 0.9150 1.0915

normalize similarity True False True

RP3β

topK 5 173 245

alpha 0.0000 0.7040 0.5775

beta 0.3487 0.6578 0.5625

normalize similarity True True True

SLIM ElasticNet

topK 1000 503 588

l1 ratio 1.14E-02 1.33E-02 2.17E-01

alpha 0.0010 0.0010 0.0023

MF BPR

sgd mode adagrad adagrad adagrad

epochs 1415 1500 1065

num factors 200 200 158

batch size 2 1 256

positive reg 2.32E-04 1.00E-05 1.00E-05

negative reg 1.50E-04 1.00E-05 7.03E-05

learning rate 5.86E-02 2.96E-02 2.16E-02

MF FunkSVD

sgd mode adam adam adagrad

epochs 500 280 160

use bias False False False

batch size 32 1024 2

num factors 184 186 127

item reg 3.92E-04 5.98E-04 1.47E-05

user reg 2.84E-03 9.44E-04 3.18E-03

learning rate 1.62E-04 1.10E-03 7.11E-02

negative quota 0.0133 0.1198 0.0266

PureSVD num factors 350 47 29

NMF

num factors 324 79 79

solver mult. update mult. update mult. update

init type nndsvda random random

beta loss frobenius frobenius kullback-leibler

IALS

num factors 200 63 60

epochs 5 65 60

confidence scaling linear linear linear

alpha 0.7942 0.2199 0.7748

epsilon 0.1012 0.0010 0.1358

reg 1.00E-02 1.00E-02 1.00E-02

EASER l2 norm - 2.12E+06 7.52E+05

SLIM BPR

topK - 36 685

epochs - 595 970

symmetric - True True

sgd mode - sgd sgd

lambda i - 2.07E-03 1.00E-05

lambda j - 9.20E-03 1.00E-05

learning rate - 9.22E-04 1.56E-03

Results for EASER and SLIM BPR are missing from the ContentWise Impressions dataset because the algorithms required more than the available 64GB of RAM.
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