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1. Introduction 

The Global Financial Crisis of 2007-2009 has shown how deep recessions affect the ability of 

firms to persistently invest in innovation, with important consequences for long-term competitiveness 

and economic growth (OECD, 2012). Despite the heterogeneous response across countries and 

sectors, many firms have curtailed their R&D expenses, calling for a deeper understanding of the 

effects of economic shocks on the innovative strategies of firms (Filippetti and Archibugi, 2011). The 

scholarly debate has identified a procyclical relationship between business cycles and innovation and 

the centrality of financial constraints in the R&D investment decisions of firms (Aghion and Saint-

Paul,1998; Campello et al., 2010; Aghion et al., 2012).  

In this study we extend this line of research by exploring the relationship between the nature of 

the inventive process and the business cycle. Compared to previous works, which look at the rate of 

innovation during economic crises, this study elaborates on the direction of innovation undertaken 

along the business cycle by measuring the degree of novelty embodied in inventions. We argue that 

the business cycle not only affects the propensity of firms to invest in R&D and, in turn, the rate of 

inventions produced, but also the type of inventions being generated. Inventions departing from 

conventional technological paradigms, pointing to more explorative routes, have in fact a 

fundamental impact on the economy and society as a whole (Dosi, 1982). Along these lines, we argue 

that understanding the patterns of technological novelty embedded in inventions, and not only its rate, 

may have important implications for firms’ market value and for their ability to sustain a competitive 

advantage along the cycle. 

To capture the degree of technological novelty of patents, we introduce a new measure based on 

relatedness of knowledge components, i.e. patent classes, recombined in inventions that measure the 

extent to which inventions are the result of unconventional combinations (Teece et al., 1994; Della 

Malva and Riccaboni, 2015). We define as unconventional those patents in which unusual 

combinations of classes appear. To study how the degree of conventionality of patents changes along 

the business cycle, we analyze the patents granted by the United States Patent and Trademark Office 

(USPTO) between 1980 and 2000. We merge patent data (Li et al., 2014) with financial information 

of firms listed in Compustat, and industry specific business cycle data from the NBER-CES 

Manufacturing Industry database.  

The relationship between the business cycle and the unconventionality of patents is investigated 

both at the level of single patents and at the firm level. The first approach enables us to examine the 

extent to which the type of inventions produced by firms changes along the business cycle. Unlike 
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previous studies, which used measures of innovation input and output aggregated at the level of 

countries or sectors, our approach relates individual patent inventions, and their characteristics, to the 

phases of the business cycle, allowing for a finer analysis of the relationship. The second approach 

takes on the perspective of the firm to assess the economic and technological implications of the 

changes in patent unconventionality along the business cycle.  

We find that upturns are not only associated with an increase in R&D expenditures and patent 

production, but also with an increase in the degree of unconventionality of the inventions generated, 

i.e. inventions being the result of recombination of more distant technological components. This is 

indicative of the re-composition of the patent portfolio of firms along the business cycle, with more 

novelty being produced during upturns. Our results also show that financially resilient firms and 

multi-segment firms produce on average more patents and more unconventional ones. We further 

investigate the contribution of unconventional patents to the technological impact and market value 

of firms and find that patent unconventionality is associated with higher technological impact and 

firm market value. However, although technological unconventionality is procyclical, unconventional 

inventions have a higher potential for technological and firm market value when produced during the 

contractive phases of the business cycle. Finally, we compare our measure of patent 

unconventionality with the measure of patent novelty, as defined in Verhoeven et al. (2016).  

The remainder of the paper is organized as follows. The next section presents a review of the 

literature on the relationship between innovation and business cycle. Section 3 provides an overview 

of the data and our methodological approach, whereas results are presented and discussed in section 

4. Section 5 concludes with a summary of the main findings and a discussion of the implications of 

our work. 

2. Innovation and the Business Cycle 

This study contributes to the extensive scholarly debate on the cyclicality of innovation, which has 

mainly dealt with the impact of recessions on R&D expenditures (Barlevy, 2004, 2007; Ouyang, 

2011; Aghion et al., 2012; Amore, 2015; Paunov, 2012; Filippetti and Archibugi, 2011). Two 

competing arguments regarding the relationship between business cycle and innovation have emerged 

in the literature. 

A first view states a counter-cyclical relationship between business cycle and innovation, i.e. 

innovation increases during downturns. The underlying argument is that firms face lower opportunity 

costs for investing in innovation during recessions (Saint-Paul, 1997; Aghion and Saint-Paul, 1998). 

As returns from existing product lines and activities decline, firms are more prone to search for new 
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market niches less affected by the downturn, reducing the risks through diversification. Accordingly, 

firms have higher incentives to allocate internal resources to the development of new products 

(Berchicci et al., 2013). Geroski and Walters (1995) suggest that firms have higher incentives to 

innovate when the loss associated with a decline in current activities is larger than the relative returns 

to be gained from implementing new processes. The introduction of new products during downturns 

enables firms to establish a leading position in the eyes of consumers when the demand recovers 

(Steenkamp and Fang, 2011). Moreover, firms have higher incentives to introduce cost-saving 

process innovations to curtail the costs of production and therefore match the lower demand. As for 

new products, the advantages stemming from more efficient production processes can provide firms 

with an advantage when the economy recovers (Saint-Paul, 1997).  

A second perspective theorizes a procyclical relationship due to higher availability of resources to 

allocate to innovation activities when production grows. Following this argument, profit-maximizing 

firms time their innovation activities to periods of high-demand in order to capture higher profits 

(Schleifer, 1986). As the demand for goods and services grows during upswings, firms usually 

experience an increase in profits. Higher profitability translates in a higher availability of resources, 

especially liquidity, which enable firms to expand their investment in innovation (Barlevy, 2007; 

Fabrizio and Tsolmon, 2014). Moreover, the availability of external resources to finance innovation, 

such as bank loans, increases as financial institutions may be more keen to finance risky projects 

(Aghion et al., 2012).  

The empirical evidence has mostly documented a procyclical relationship between industry-

specific fluctuations and input/output measures of innovation (Barlevy 2007; Geroski and Walters, 

1995; Ouyang, 2011; Fabrizio and Tsolmon, 2014). Using data for manufacturing sectors over four 

decades, Ouyang (2011) finds that the cyclical pattern of R&D investments is due to the existence of 

financial constraints that limit the ability of firms to sustain R&D during downturns. However, the 

author finds that sectors react negatively to positive shocks in the economy, advancing that the 

opportunity cost argument, despite not being predominant, is also in place. Using a sample of French 

firms, Aghion et al. (2012) complement these findings by showing that the effect of financial 

constraints is not uniform across firms and sectors. The relationship between R&D and business cycle 

is procyclical for firms with higher dependence on external capital and fewer collaterals and in more 

exposed sectors. Moreover, the authors find that the ratio of R&D to total investments is counter-

cyclical, supporting the view that firms limit the negative effects of cash-flow fluctuation on R&D 

by relying on internal reserves of cash (Himmelberg and Petersen, 1994). Using patents as measure 

of output, Geroski and Walters (1995) find that in the UK, for a time window of 40 years, patent 
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output clusters around periods of boom. This result suggests that economic fluctuations drive 

inventive activities, in line with the view that firms time their innovative activities with periods of 

high customer demand. Fabrizio and Tsolmon (2014) use firm data from 1975 to 2002 showing that 

the relationship between business cycles and patenting differs across sectors. The authors contend 

that the relationship is positively moderated by the likelihood of imitation and the rate of product 

obsolescence of sectors. Berchicci et al. (2013) investigate the relationship between industry 

fluctuation and types of innovation, namely product and process innovation. They argue that the 

opportunity cost and the financial constraint arguments co-exist when product and process 

innovations are considered separately. The authors show that, for a panel of Italian firms, product 

innovation is most likely to occur during downturns, therefore supporting the counter-cyclical 

argument. During industry downturn, firms engage in product innovation while holding back on 

process innovation since it may be not profitable to improve the efficiency of producing existing lines 

of products whose value is declining (Berchicci et al., 2013). Process innovation is thus more likely 

to coincide with upturns, as the financial constraint argument indicates (Devinney, 1990).  

Against this background, in this paper we investigate the relationship between innovation activities 

and the business cycle by focusing on the nature of patent inventions whereas the literature has 

considered R&D investments or patent count.1 Schumpeter (1911; 1939; 1942) has advanced that not 

only technological change is responsible for variations in the business cycle, but that innovative 

activities are influenced by the stages of the business cycle. Leveraging on the availability of credit 

from the banking sector, the author theorized that during upturns incumbent firms invest in innovation 

along consolidated trajectories and developed routines (Schumpeter 1942). Conversely, during 

downturns, when established sectors and technologies are shaken out, firms seek for new 

technological opportunities by investing in new domains (Schumpeter, 1911). The author also 

advocated the view of major economic crises as “the gale of creative destruction” referring to the 

opportunities for addressing inefficiencies and for a general re-organization of R&D activities. 

Therefore, Schumpeter suggests that unconventional innovations, those departing from established 

patterns and routines, carrying forward the highest impact, are produced during recessions. 

A more recent stream of literature has instead argued in favor of a procyclical relationship between 

innovation and the business cycle (Berchicci et al., 2013; Cincera et al., 2010; Ouyang, 2011; Fabrizio 

and Tsolmon 2014). Based on this line of argument, during upturns managers may have more 

incentives to embark in novel inventive activities to captures higher rents from growing demand 

                                                 
1 The only exception we are aware of is Manso et al. (2017) who use a battery of patent-based measures to capture the 

different dimensions of firms’ innovation strategies over the business cycle. 
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compared to period of downturns. Conversely, a reduced profitability and the lower availability of 

resources that firms face when economy shrinks affect their investment decisions not only at the 

extensive margin (total patent production) but also at the intensive margin (the riskiness of the 

inventive projects being pursued, expressed by the degree of unconventionality in the patent portfolio) 

as predicted by the behavioral theory of the firm and the literature on the role of slack resources (Cyert 

and March, 1963; Troilo et al., 2014). An increase in uncertainty following challenging economic 

conditions shortens the time horizon of investment decisions (Kahneman and Lovallo, 1993), 

especially with regards to innovation, as firms prefer to invest in projects whose returns are more 

predictable (Garicano and Steinwender, 2016; Peia, 2016). Summarizing, fewer prospects for payoffs 

during downturns refrain firms from high-risk unconventional R&D activities. Conversely, the large 

amount of liquidity and a lower perceived risk, motivates firms in the pursuit of more radical 

approaches to innovation during upturns (Bovha Padilla et al., 2009). Therefore, the pro-cyclical 

perspective described in the empirical literature relying on patent count and R&D is also likely to 

affect the relationship between the degree of patent unconventionality and the business cycle. 

Reconciling the two views, the pro-cyclical argument with the Schumpeterian perspective, we argue 

that the technological and economic impact of unconventional inventions is higher during recessions, 

although being mostly produced during upturns. This is our main research hypothesis that will be 

investigated in the following sections.  

3. Data and methodology 

Our research strategy is to track the degree of unconventionality embedded in inventions along the 

different stages of the business cycle of the industry in which firms operate.2 We use data on utility 

patents granted by the USPTO between 1980 and 2000 (Li et al., 2014).3 The database includes 

procedural information about patents (i.e. publication and application number, grant and application 

date, claims), together with inventor and assignee data, as well as complete references to the 

technological classes according to the US Patent Classification (USPC) system. The USPC system is 

articulated in more than 400 classes, representing broad technological fields, and about 100,000 

subclasses, that point to specific technological divisions within each class. Patent subclasses identify, 

in our framework, the knowledge components available for the search and recombination process 

                                                 
2 This section presents the data and the construction of the variables. The description of the variables and data sources are 

reported in Table B1 for patent level variables and B2 for firm level variables, respectively. 
3 The 2007-2009 financial crisis motivated this study, however due to data constraints, our analysis only includes the 

period 1980-2000. The measure of unconventionality that we use in this study to assess the recombination process only 

includes inventions up to 2000, before the introduction of new technological classes in the USPC to avoid biases in the 

construction of the measure. We consider only granted patents between 1980 and 2000 to guarantee consistency in the 

unconventionality measure used in this study. Details on the derivation of the measure are provided in the Appendix A. 
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(Fleming, 2001). We complement the dataset with the relational table of patents and firms from Orbis 

Bureau Van Dijk that provides information on about 70,000 listed companies. First, we matched 

patents with firms’ financial accounts database and we used companies’ main sector of operation to 

retrieve sector-level information.4 We thus combine firm-level data with the NBER-CES 

Manufacturing Industry Database, which contains annual industry-level data (i.e. number of workers, 

total payroll, value added) for the U.S. manufacturing sector from 1958 to 2009 (Becker et al., 2013).5 

Our final dataset comprises 166,168 patent observations belonging to 1,076 US firms having at least 

one listed activity and operating in the manufacturing sector between 1980 and 2000.  

3.1. Unconventionality and the business cycle  

Inventions are the result of a process of search and recombination of knowledge into new domains 

of applications or reconfiguration of existing knowledge into novel combinations (Fleming, 2001). 

The search for novel combinatorial possibilities usually occurs in the proximity of firms’ competences 

through local search, characterized by lower levels of risks and uncertainty as it builds on past failures, 

extant competences and previous successful solutions (Cyert and March, 1963; Simon, 1978). 

However, connections of related or complementary pieces of knowledge are likely to hinder the 

possibility of producing impactful inventions (Perkins, 1995). Unlike local search, distant search 

explores new and unfamiliar technological domains, with greater possibilities of extending the range 

of combinatorial alternatives (Katila and Ahuja, 2002). The ultimate result of this process is that 

inventions are more likely to include new or original relationships characterized by higher level of 

unconventionality (Levinthal and March, 1993; Simonton, 1999; Schilling, 2005; Katila and Chen, 

2008). Compared to local, distant search is a costly activity, characterized by higher levels of 

uncertainty and failures, as it requires more efforts in the selection and integration of relevant 

knowledge (Fleming, 2001). Although inventions resulting from local search have a positive impact 

on productivity growth (Baumol, 2002), novel innovations, resulting from distant search, prevent 

from core rigidities traps with positive impact on performances and long term competitiveness 

(March, 1991; Leonard-Barton, 1992).  

Therefore our main dependent variable is the degree of unconventionality of a patent 

(unconventionality), namely the extent to which an invention is the result of a search and recombinant 

                                                 
4 The exclusion from Compustat of non-listed firms may generate possible sample selection bias of small firms, most of 

which are not included. However, the potential bias is mitigated by the fact that US firms have a high recourse to stock 

markets and R&D is concentrated in publicly listed firms. Compustat provides reliable coverage on long historical data 

and extensive financial and operating accounts. 
5 Around 70%-80% of total R&D investments are made by firms in the manufacturing sector (Barlevy, 2007). 
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process that departs from established and conventional practices.6 Leveraging on the concept of 

relatedness, previously used to assess the diversification of business activities (Teece et al., 1994) and 

technological portfolios of firms (Breschi et al., 2003; Nesta and Saviotti 2005), we define as 

unconventional those combinations of knowledge components (i.e. patent subclasses) that are distant 

in the knowledge space. We conceptualize distance as the strength of the relationship among the 

components underlying inventions as measured by the frequency of the joint occurrence of each pair 

of patent classes within the focal patent in the USPTO collection of patents granted in the previous 

five years: 

 𝐽𝑖𝑗 = ∑ 𝐶𝑖𝑘
𝑘

𝐶𝑗𝑘 (1) 

where Jij provides the number of patents having simultaneously membership in class i and class j. 

Raw counts of the number of inventions having membership in each couple of patent classes, 

however, cannot be taken directly as a measure of relatedness. Conventional combinations of patent 

classes are those which are overexpressed as compared to an appropriate random benchmark. 

Following Teece et al. (1994), we modeled the random co-occurrence of each possible combination 

of patent classes by means of the hypergeometric distribution.7 The difference between Jij and the 

expected value of the random variable provides the basis for the measure of conventionality of a given 

combination of patent classes: 
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ijij
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where the difference between the observed and the expected occurrence of the couple of classes (Jij-

μij) is divided by the standard deviation. Large values of the difference in eq. (2) are associated with 

combinations of patent classes which are systematically recombined and over-represented in the 

USPTO patent collection, thus identifying local search strategies. Conversely, small or even negative 

values of conventionality indicate that unexpectedly few inventions have successfully combined 

                                                 
6 Similar concepts have been used in the literature as for example: novelty (Fleming 2001; Verhoeven et al., 2016) and 

originality (Trajtenberg et al., 1997). For the construction of the unconventionality measure, we rely on previous work by 

Della Malva and Riccaboni. (2015). This measure does not identify uniquely the very first combination of patent classes 

but it takes into account the actual state of relationship between the elements recombined in the invention along the entire 

technological space, considering also the relative distance among the fields that are recombined within the invention.  
7 Note that we identify the joint occurrence of the components at year t and observe the recombination of the components 

with other technological classes in the knowledge space in the previous 5 years. See Appendix A for details on the 

derivation of the measure. As an example, the patent "US6180351", assigned to Agilent Technologies Inc., has a high 

degree of unconventionality in the knowledge recombination process. In 1999 (application year) this patent recombined 

two components, i.e. database maintenance principles [class 707/200] and nucleic acid base hybridization processes [class 

435/6 for molecular biology and microbiology], that at the time were predominantly used in different patents and rarely 

combined in a single invention. 
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patent classes i and j, suggesting that the combination thereof departs from a systematic 

recombination process as it connects unrelated pieces of knowledge through distant search.  

From eq. (2), we derive the degree of conventionality of a patent as the median value of 

conventionality of all pairs of its patent classes. In our analysis the negative of patent conventionality 

is used as a measure of patent unconventionality.    

Table 1 reports the descriptive statistics of the unconventionality measure. Unconventionality 

increases over time suggesting that recent patents are characterized by combinations of technological 

classes that are, on average, more atypical or unconventional8. This trend may depend on the grow of 

interdisciplinary research and the increasing availability of general purpose technologies that allow 

firms to carry on distant search in a more efficient way. However, the increase in dispersion over time 

suggests that the tendency to recombine knowledge in an unconventional way builds on top of more 

traditional patent production to exploit already established combinations. Large firms produce more 

unconventional inventions since, compared to small firms, they better diversify risks and exploit 

greater economies of scale and scope.9 

 

[Table 1 about here] 

 

The distribution of unconventionality across technological categories confirms the common 

wisdom that ICT related inventions and pharmaceutical innovations are more unconventional as 

compared to inventions in more traditional domains, like for example agriculture and transportation. 

The summary statistics of unconventionality at the sectoral level show that semiconductors and 

related device have the highest value of unconventionality.  

In our analysis, our main goal is to investigate the relationship between patent unconventionality 

and the business cycle. Therefore, for all industrial sectors (SIC 3 digit level) we measure the business 

cycle by the value of real output over time as included in the NBER Manufacturing and Productivity 

database (Bartlesman and Gray, 1996). In particular, drawing on prior studies on the relationship 

between patents and business cycles (Barlevy, 2007; Fabrizio and Tsolmon, 2014), we use the 

logarithm of the annual real gross output (ln Output), calculated as the sum of annual value added 

and material costs, divided by the shipment deflator.  

                                                 
8 This trends is confirmed when we recomputed the time evolution of unconventionality for selected technologies.   
9 Note that the sample includes Compustat firms so size has to be understood in the context of firms having their activities 

listed on the financial markets. Firm size is measured by the natural log of the number of patents of the focal firm. The 

average size of firms is 5.7. Small firms are capped at 3 while large firms have a size equal or greater than 7. Similar 

trends are found when using the log of the number of employees as a proxy of firm size. 
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3.2  Control variables at patent and firm level 

In our empirical analysis we include a battery of controls for the characteristics of inventions. We 

consider the extent to which the focal patent builds on prior knowledge, as proxied by the natural 

logarithm (plus one) of the number of backward citations to prior art (citations). Original 

recombination of components, however, might be the result of completely new combinations which 

are not based on pre-existing knowledge (Ahuja and Lampert, 2001). Hence, the model also accounts 

for the possibility that inventions do not cite prior art (no prior citations). The degree of novelty 

characterizing each invention is a positive function of the number of knowledge components which 

are recombined. In our framework, the number of technological components is (the natural log of) 

the number of technological classes on which the patent is based. Drawing on the organizational 

literature, we also include a set of controls for the inventive process at the level of inventive teams. 

Since knowledge is distributed among individuals, teams may facilitate the recombination of 

competences and hence draw solutions from a more diversified pool (Singh and Fleming, 2010). We 

control for the composition of teams by considering the number of inventors in every patent (team). 

Finally, we also control for the experience of inventors by taking into account (the natural logarithm 

of) the total number of patents of the most prolific inventor in the team (experience).  

Innovation is characterized by inherent uncertainty which makes it challenging for firms to finance 

radically new projects through external sources of capital (Amore et al., 2013; Hall and Lerner, 2010; 

Peia, 2016). This problem is exacerbated during downturns, when profitability and availability of 

internal finance decrease and the financial sector is expected to lend a lower share of their total asset 

(Himmelberg and Petersen, 1994). We measure the dependence of firms on external finance by the 

Kaplan and Zingales (KZ) Index10. The KZ Index is a linear combination of cash flow, market value, 

debt, dividends, cash holding and assets. Firms with fewer availability of liquid assets, lower ratio of 

cash flow and dividends to assets, higher ratio of debt to assets and Tobin’s Q are expected to be more 

                                                 

10 The Kaplan and Zingales Index is defined as: 

itit

it

it

it

it

it

it
it QLEV

PPENT

CHE

PPENT

Div

PPENT

CF
KZ 283.0139.3315.1368.39002.1

111

++−−−=
−−−  

where cash flow (CF) is the sum of income before extraordinary items and depreciation and amortization (Compustat IB+ 

DP items), dividends (Div) common and preferred (Compustat DVC+DVP items), CHE refers to cash and short term 

investment. These variables are normalized by lagged Property Plant and Equipment (PPENT). Leverage (LEV), is the 

ratio of long term debt (DLTT item) and debt in current liabilities (DLC item) to stockholders equity (SEQ item). Tobin's 

Q (Q) is the ratio of total asset (AT), Market Value of Equity (CSHO*PRCC_F) minus the book value of equity (CEQ) 

and deferred taxes (TXDB) to total assets. According to Kaplan and Zingales (1997) firms are financially constrained as 

the wedge between internal and external funds increases with increasing cost in rising external sources of capital. 

Appendix C reports robustness checks using the Size and Age index as an alternative measure of financial constraints. 
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financially constrained and hence are likely to have more difficulties in financing their ongoing 

operations when economic conditions tighten. Therefore, high values of the KZ Index (financial 

constraints) indicate firms that rely heavily on external sources of funds and are characterized by high 

debt, low cash-flow and low dividends. Lower values are instead associated with more resilient firms.  

Another firm-level characteristic that we explore is the degree of diversification across sectors, 

(multiple segments). Firms that operate in multiple segments may in fact be in a better position to 

diversify risks during sector-specific contractions. By operating in multiple segments, firms can shift 

resources to other segments that are performing relatively better. Conversely, single-segment firms 

are expected to be more exposed to business fluctuations as they cannot edge risk by moving resources 

across sectors.  

Other firm-level characteristics that may influence the propensity to engage in novel search 

strategies are also included in the model. In particular, large firms have been found to be path 

dependent, usually confined within their established routines and practices showing resistance 

towards new or more radical solutions (Hill and Rothaermel, 2003). Yet, they also build on a larger 

knowledge base from which they can easily diversify their technological portfolio (Leten et al., 2007). 

Hence, we control for the firm inventive size (assignee size) computed as the (log plus one) of the 

total number of patents at the USPTO in the year of the focal invention.11 The concentration of R&D 

activities within firms may affect the knowledge recombination process. Therefore, we control for 

the technological concentration of firms over technological classes by computing the Herfindahl 

index of concentration. This measure takes large values for firms having patent portfolios 

concentrated in a handful of patent classes, whereas it approaches zero for technologically diversified 

firms. We finally introduce a set of time and technology dummies to capture trends in 

unconventionality over time and across technologies. 

4. Results 

We analyze the relationship between innovation and the business cycle at the patent level (section 

4.1) and at the firm level (section 4.2). In the patent level analysis, we explore the relationship 

between unconventionality and business cycle at the intensive margin, i.e. the degree of 

unconventionality of each and every patent, irrespective of the change in size of the patent portfolio 

of the firm. In the firm level analysis we complement the patent level perspective by taking into 

account the extensive margin, i.e. the changes in the size of the patent portfolio. The purpose is 

                                                 
11 In separate regression we use the log (+1) of the number of employees as a proxy of size. Estimations using this 

alternative specification are consistent. 
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twofold. First, we want to provide a better understanding of the extent to which changes in the degree 

of unconventionality of inventions are related to variations in the production of patents along the 

business cycle; second, we want to consider the technological and economic implications of our 

findings for the firm. At the firm level we also consider the technological impact of patents (as 

measured by forward patents citations) and the market value of firms (market to book value and 

Tobin’s Q).  

4.1. Patent level analysis  

In the patent level analysis we estimate the following equation model: 

𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑖 = 𝛽1 ∗ 𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑘,𝑡−1 +  𝛾1 ∗ 𝑋𝑖 + 𝜏𝑡 +  𝜃𝑧  +  𝜀𝑖,𝑡 (3) 

where Ln Output is the one-year lagged natural log of Output in industry k (SIC 3 digit level), X is 

the vector of controls of the focal patent i as described in section 3, 𝜏t and 𝜃z the two sets of time and 

technology dummies. Summary statistics and the correlation table of the variables used in the patent 

level analysis are reported in Table 2.12 

Table 3 shows the results of our main analysis on the effect of business cycles on the degree of 

unconventionality embedded in inventions. In all models the coefficient of the natural logarithm of 

output is positive and statistically significant, indicating that higher levels of output are associated 

with more unconventional inventions. Higher values of the output in fact, are not only associated with 

an increase in R&D expenditures and patent production, as extensively discussed in literature 

(Fabrizio and Tsolomon, 2014; Barlevy 2007), but also with an increase in the degree of 

unconventionality of the inventions being generated, i.e. inventions being the result of recombination 

of more distant technological components. During upturns, managers may be willing to undertake 

risky investments, such as those relative to original innovative projects. Conversely, during 

recessions, firms are reluctant to pursue innovative projects based on the recombination of distant 

technological domains (Cyert and March, 1963; Troilo et al., 2014). They are more likely to focus on 

recombination processes that leverage on established knowledge domains and on the exploitation of 

existing solutions. Model 2 and 3 further investigate the mechanisms behind the reconfiguration of 

patent portfolios along the business cycle. Namely, model 2 includes a control for multi-segment 

firms whereas model 3 contains the coefficient on the dependence of firms on financial resources.13 

                                                 
12 Table B1 and B2 in Appendix B provide a description of all variables used in the patent and firm level analyses. 
13 In models 3 and 4 there is a reduction in the number of observation due to missing information in the computation of 

the KZ financial constraints index. In non-reported analysis we replicated model 1 and 2, excluding the observations with 

missing data of KZ, obtaining very similar results.  
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The results indicate that the relationship between business cycle and innovation is not significantly 

affected by the diversification of the firm across different segments. Also financial constraints at the 

firm level are not significant. 

The effect of the remaining controls is in line with expectations. Inventions based on a larger 

number of components recombine more distant elements in the technological space, providing 

possibilities for more novel solutions. Unconventionality is negatively associated with the number of 

backward citations in patents and larger teams tend to produce more conventional patents, even 

though this effect is no more significant in our full model. This result, surprisingly at first, can be 

explained by the fact that larger teams have the advantage of recombining components from a broad 

set of competences, but they also require a common ground to combine very distant domains. Finally, 

firms whose technological competences are highly concentrated have lower possibilities to recombine 

in a more unconventional way fields that are distant to each other in the knowledge space. 

 

[Table 2 about here] 

 

[Table 3 about here] 

 

4.2. Firm-level analysis  

In the patent level analysis, we have explored the relationship between unconventionality and 

business cycle at the intensive margin, i.e. the degree of unconventionality of the inventions 

irrespective of the size of the patent portfolio. In this section we provide a comprehensive analysis by 

taking into account the extensive margin, that is the change in the number of patents. In particular, 

we estimate the models for the patent count and unconventionality (section 4.2.1) as well as the 

models for technological impact and the firm market value (section 4.2.2).  

In the analysis of patent production we consider both the simple patent count and the one weighed 

by unconventionality. In the first model patent production, measured as the log of the number of 

patents filed in each year (extensive margin), is the dependent variable as expressed in the following 

equation: 

𝑃𝑎𝑡𝑒𝑛𝑡𝑗 = 𝛽2 ∗ 𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑘,𝑡−1 +  𝛾2 ∗ 𝑍𝑗,𝑡−1 +  𝜏𝑡 +  𝜎𝑗  +  𝜀𝑗,𝑡 (4) 
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where, next to the one-year lag of the logarithm of output at the level of the industry k, Z represents 

the set of controls at the level of the firm j, 𝜏 and 𝜎 the two sets of time and firm dummies.  

In a second model, we weigh the number of patents by unconventionality to take into account 

possible changes in the aggregated unconventionality by considering the log of the count of patents 

weighed by their unconventionality, whereby patents with higher levels of unconventionality have a 

higher weight than those that are more conventional as in the following equation: 

𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑗 = 𝛽2 ∗ 𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑘,𝑡−1 +  𝛾2 ∗ 𝑍𝑗,𝑡−1 +  𝜏𝑡 +  𝜎𝑗  +  𝜀𝑗,𝑡 (5) 

As reported in the equations above, we use the logarithm of the annual real gross output (ln Output) 

as independent variable while including an array of controls to account for differences in knowledge 

and profitability of the firm. Namely, we include sales as a control for firm profitability, R&D stock 

to account for the firm innovative efforts as well as total asset used as a proxy of firm size (all 

variables are in log and lagged by one year). We also use time and firm dummies, as well as dummies 

for missing information about firm asset, R&D stock and sales.  

In addition to the estimation models described above, we also consider the technological impact 

of patents and the firms’ market value. To assess the technological impact of possible changes of 

unconventionality along the business cycle we rely on the number of forward citations of the patent 

portfolio of the firms (technological impact, see Hall et al., 2001) by estimating the following 

equation: 

𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑗 =  𝛼3 ∗ 𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑗,𝑡 +  𝛽3 ∗ 𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑘,𝑡−1 +  𝛿3

∗  𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑗,𝑡 ∗  𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡𝑘,𝑡−1  +  𝛾3 ∗ 𝑊𝑗,𝑡−1 + 𝜏𝑡

+  𝜎𝑗  +  𝜀𝑗,𝑡 

(6) 

where we include the logarithm of the output (one-year lag) at the level of the industry k, as already 

described in section 3. As in previous estimation models, we add the set of controls W at the level of 

the firm j, as well as two sets of time (τ) and firm dummies (σ). To control for firm’s characteristics 

we consider also the firm R&D intensity (R&D to assets ratio) providing an idea of firm investments 

in innovation as well as profitability computed as the ratio of sales to assets and the patent intensity 

(patent to R&D ratio). 

Lastly, we analyze the impact of patent unconventionality on firm market to book value, (natural 

logarithm of the ratio of market to book value), considered in the literature a measure of long term 

profitability of firms (e.g. Arora et al., 2015). We estimate the following equation: 
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𝑀𝑎𝑟𝑘𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑗 =  𝛼4 ∗ 𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑗,𝑡 +  𝛽4 ∗ 𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑘,𝑡−1 + 𝛿4

∗ 𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑗,𝑡 ∗  𝐿𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 𝑘,𝑡−1 + 𝛾4 ∗ 𝑌𝑗,𝑡−1 +  𝜏𝑡 + 𝜎𝑗  + 𝜀𝑗,𝑡 
(7) 

where, next to the logarithm of the output (one-year lag) at the level of the industry k, we include the 

set of controls Y at the level of the firm j, and the two sets of time (τ) and firm dummies (σ). In this 

estimation model we control for the stock of existing knowledge in the previous year, patent stock, 

measured as the log of the firm cumulated patent counts lagged by one year, as well as R&D stock to 

consider the firms' innovative efforts. Finally, to account for firm size we included sales and total 

asset (all variables are in log and are lagged by one year). We also built additional dummies to control 

for missing information on R&D and patent data. As an additional proxy of firm value, we replicated 

the same model also on firms’ Tobin’s Q.  

As for the patent level approach (section 4.1), we identify financially constrained firms by means of 

the Kaplan-Zingales Index and we control for the effect of firm diversification by means of a dummy 

which indicates firms operating in multiple segments. Tables 4 shows the summary statistics of the 

firm level variables whereas table 5 reports the correlation table.  

 

[Table 4 about here] 

 

[Table 5 about here] 

 

4.2.1. Patent production and unconventionality along the business cycle  

Table 6 shows the main determinants of firm patent production. We find a procyclical relationship 

between the production of patents and industry real output: a 1% increase in real output at the industry 

level generates an increase of 0.08-0.10% in patent production. This result, combined with the 

findings from the analysis at the level of patents, suggests that during upturns firms not only produce 

more inventions but they also recombine patent classes in a more unconventional manner. In table 7 

we combine these two dimensions (unconventionality at the patent level and the number of patents in 

the portfolio of the firm) by considering the log of the sum of patent unconventionality of the firm. 

From this analysis we conclude that the increase in patent production at the extensive margin in the 

expanding periods of the cycle is paired with an increase at the intensive margin, i.e. on the degree of 

unconventionality of inventions.  
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Models 2 and 4 show that firms in multiple segments produce on average more patents (table 6) 

which are also more unconventional (table 7). We argue that firms that are active in multiple sectors 

have diversified technological competences that enable them to effectively recombine components in 

a more unconventional manner. Models 3 and 4 show that financially constrained firms produce less 

patents and less unconventional ones during upturns. This finding supports the view that, on average, 

firms that have a lower availability of financial or slack resources decrease the number of patent 

produced and are less likely to engage in innovative activities characterized by distant search. The 

availability of slack resources is in fact a critical factor for the pursuit of novel activities that are based 

on the unconventional recombination of distant components. Conversely, firms with higher slack 

resources are more likely to engage in more unconventional inventive processes as they are less 

concerned about immediate returns (Danneels, 2008; Levinthal and March, 1981). Along this line, 

Nohria and Gulati (1996) argue that slack resources allow firms to pursuit innovative projects 

associated with higher levels of uncertainty but also with expected higher pay-offs.14 

As for the controls, they are in line with expectations: size, proxied by firms' assets, profitability, 

expressed in sales, and R&D stock are all positively associated with unconventionality and patent 

production. 

 

 [Table 6 about here] 

 

 [Table 7 about here] 

 

4.2.2. Technological Impact and Market Value 

The analysis so far has highlighted a decrease in the level of patent production and patent 

unconventionality during downturns. In this section we shed light on the technological and economic 

implications of these findings. First, we consider the relationship between business cycle and the 

technological impact of the inventions produced by firms by means of forward citations (Trajtenberg, 

1990). Then, we analyze the impact of unconventionality along the business cycle on the market value 

and the Tobin’s Q of firms. 

                                                 
14 Financially constrained firms not only may be at a disadvantage with regards to the ability to deploy financial resources 

for innovative activities; they might also face difficulties in hiring and retaining inventors. In this regards, Hombert and 

Matray (2016) found that financially constrained firms are more likely to experience a loss of human capital (i.e. 

inventors) when they are hit by credit shocks.  
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Table 8 (model 1) shows that, as expected, upturns are positively associated with forward citations 

due to the procyclical relationship between patent production and unconventionality discussed in the 

previous section. The interaction term between the degree of unconventionality and industry real 

output indicates that although unconventionality is generally associated with an increase in forward 

citations, unconventional inventions generated during the upturns receive proportionally less citations 

by future patents.15 Put differently, unconventional inventions have the highest impact when they are 

produced during downturns. This finding suggests that unconventional innovations during upturns 

are less cited, probably due to the increase in the number of citable patents in the expansive phase of 

the cycle. As the relationship between unconventionality and output is procyclical, during upturns 

there is a higher number of unconventional patents that can be possibly cited. As a consequence, 

unconventional inventions during the upturn phases of the cycle are a less rare event resulting on 

average in a lower impact in terms of citations. In models 3 and 4 the effects are maintained, although 

weaker in magnitude, but we do not find any statistically significant impact of multiple segments and 

financial constraints variables.  

Table 9 focuses on the implications of the inventive outcomes on the market to book value of 

firms. Model 1 shows that unconventional inventions are associated with an increase in the market to 

book value of firms. The model also shows that the market to book value of the firm increases in 

upturns: a 10% increase in the industry real output translates in an increase of 5% of the value of the 

firms. The interaction term between unconventionality and output shows that unconventionality bears 

a different impact depending on the phases of the business cycle in which unconventional patents are 

generated. Unconventional inventions generated in upturns are associated with a decrease in market 

value indicating a discount in the value of the firm relative to the generation of more innovative 

inventions when economy expands. In other words, unconventional inventions carry their highest 

contribution to the market to book value of the firm when they are developed during the recessive 

phases of the industry, in line with the finding relative to the technological impact of inventions. 

Models 2 and 3 confirm the positive association between market value unconventionality and output 

but do not show any significant effect from the financial structure and firms’ diversification. Results 

hold also when we turn to Tobin’s Q as a measure of firm value (table 10). Compared to previous 

estimations, Model 3 shows a negative effects of the financial constraints on the firm’s Tobin’s Q 

which is maintained in the full model.  

                                                 
15 The results relative to the technological impact and the value of the firms are robust and slightly stronger in magnitude 

when using the unconventionality lagged by 1 year.  
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All in all, we find that unconventionality is positively related to technological impact and market 

value, especially when it is generated during downturns. However, our results on the relationship 

between patent unconventionality and firm value must be interpreted with caution since reverse 

causality might be present. Such a relationship should be further investigated in future work to better 

ascertain how patent unconventionality contributes to the value of the firm. 

 [Table 8 about here] 

 

 [Table 9 about here] 

 

[Table 10 about here] 

 

 

4.2.3. Patent novelty and patent unconventionality 

This section replicates our analysis by using a measure of patent novelty (Verhoeven et al., 2016) 

which considers as novel those inventions recombining for the first time a given combination of 

technological classes.16, 17 More precisely, we use the logarithm of the number of new combinations 

embodied in each patent (plus 1) (Ln novelty in recombination, ln_NR) as measure of patent novelty. 

Measures of patent unconventionality and patent novelty are logically different: patents are novel if 

they contain completely new combinations of patent classes whereas unconventional patents 

comprise rare and unusual (but maybe not totally new) combinations of classes. In fact, the two 

measures are not strongly correlated: there is almost no correlation at the patent level while at the 

firm level the correlation is 0.7 (significant at 5% level), mostly driven by the production of patents. 

Table 11 replicates our analysis at the patent level showing that the business cycle has a weaker 

effect on patent novelty. Overall, the results confirm that novelty is procyclical but the coefficients 

are much smaller in magnitude and weakly significant in models 1 and 3. By considering only the 

new combinations, the measure of patent novelty flags as novel only about 2.84% of the patents in 

our sample.18 Conversely, our measure of unconventionality identifies more patent as unconventional 

                                                 
16 Additional robustness tests are reported in Appendix C. 
17 The novelty measure by Verhoeven et al. (2016) adopts a combination of constructs: a) the newness of the combination 

(Novelty in Recombination, NR); b) the citations to previously unconnected scientific fields (Novelty in Knowledge 

Origins, NSO) and c) originality in technological classes (Novelty in Technological Knowledge Origins, NTO). The 

robustness checks presented in this section only show the estimations based on the NR construct which is closer to our 

approach. Non reported estimations on the NTO and NSO constructs in the patent level robustness checks are 

(respectively) not significant and only weakly significant. In the firm level regressions instead, NTO and NSO constructs 

are strongly significant and positively associated with technological impact as well as market value of the firm. 
18 In our sample about 9% of patents are in the decile with the highest degree of unconventionality.  
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thus improving the predictive power of the model. Table 12 shows the results of the firm level. The 

procyclical relationship between novelty and output is in line with the findings in table 7, even though 

effects are weaker in magnitude for novelty. As for the unconventionality measure we find that 

multiple segment company produce more novel patents. Conversely financial constraints are no more 

significant.  

 

[Table 11 about here] 

 

[Table 12 about here] 

 

5. Discussion and concluding remarks  

This study contributes to the debate on the cyclicity of innovation by showing that firms react to 

business cycles by modifying both the amount and the type of innovation being generated. Not only 

business cycles affect the incentives to undertake R&D and produce inventions, but also to steer 

innovation strategies towards more unconventional projects. Therefore, changes in innovation 

strategies during the business cycle affect the innovative portfolio of firms at the extensive margin 

and at the intensive margin.  

We found that the expanding phases of the business cycle are not only associated with investments 

in R&D and patent production, as extensively documented in the literature, but also with inventions 

characterized by higher degree of unconventionality, in line with the procyclical hypothesis. 

Financially constrained firms produce fewer patents showing also a decrease in the degree of 

unconventionality embedded in patents. This suggest that financially resilient firms are in a better 

position since they can leverage on the availability of financial resources that can potentially be 

mobilized among projects, especially in multiple segment companies. Indeed, we also find that multi-

business firms are in an advantageous position with regards to both patent production and production 

of more unconventional patents. Finally, our results suggest that unconventional patents have a 

greater technological and economic impact. However, there is a discount in both dimensions related 

to upturns, suggesting that unconventional inventions are associated with a higher technological 

impact during recessions, and that during the latter unconventional inventions have a greater market 

value. On average the propensity to invest in innovation, in particular more unconventional projects, 

decreases during recessions. 

All in all, our findings imply that firms tend to be more risk averse when the economy contracts, 

showing higher preferences for local search, i.e. knowledge components recombined among familiar 
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and less risky technological domains. Reduced profitability from ongoing projects, lower availability 

of external funding and higher level of uncertainty may affect the decisions with regards to R&D 

investments and innovation search strategies at large.  

This study is not without limitations. As recognized in the literature, patents data have the major 

drawback of capturing only successful inventions. Besides, they do not have a uniform value and not 

all sectors are equally patents intensive (Cohen et al., 2000). Yet, patent data reveal major and 

important innovations patterns. Moreover, the patent classification system is rather stable over time 

and regularly updated, making it a reliable source for the computation of the level of 

unconventionality in the recombination of knowledge. Another limitation is that we analyze only 

firms listed in the US stock market by means of Compustat data, leaving out a large majority of small 

and medium sized companies that are more subjected to the fluctuations of the business cycle. In 

addition, R&D data in standard dataset as Compustat may suffer from misclassification and reporting 

problems, as acknowledged in Koh and Reeb (2015).  

In our analysis we try to identify the heterogeneity of firms reactions to variation in the level of 

output although other sources of heterogeneity can play a role in shaping the relationship between 

innovation and the business cycle. Therefore, the scope of future research is to provide further insights 

on how firm innovation strategies and market value change along the business cycle. It is interesting 

to consider potential premia associated with better performances (i.e. sales) in the aftermath of 

downturns for firms that are able to sustain adequate levels of technological innovation. Research in 

this direction should focus on a better understanding of the extent to which firms reshape their patent 

portfolio since firms with limited availability of resources may reduce their involvement in riskier 

projects thus focusing on inventions with more certain outcome (Almeida et al., 2013). Novelty, and 

the uncertainty underlying it, is usually associated with inventions having both a higher failure rate 

but also a higher impact. Thus, future research should tease out whether firms, especially those with 

limited access to financial resources, are more selective in the pursuit of novel projects. Future 

research should also further investigate the role of market concentration on the degree of 

unconventionality. This aspect is driven by the rationale that during expansion competition may boost 

innovation because firms have incentives to increase their technological lead over rivals (Aghion and 

Saint-Paul, 1998). However, a decrease in competition during the contractive phases may translate in 

a decline of patent race pushing more resilient firms to invest in unconventional innovations. 

The impact of economic recessions on innovation is not homogeneous across industries. In 

complex industries as the information technologies, economic crises may serve as an opportunity to 

reallocate resources to new projects and to build a forthcoming market demand for more radical 
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products. Thus, a line of research should provide insights in the relation between search process and 

business cycle in different industries.  

Although its limitations, this study contributes to a stream of research aiming at advancing the 

understanding of innovation along the business cycle, a topic that has important implications for 

economic growth and firm competitiveness. 
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Appendix A: Analytical derivation of the measure for the degree of Unconventionality 
 

Teece et al. (1994) introduce the relatedness measure to assess the extent of diversification among 

firms’ activities. In the present study this measure is adapted to describe the diversification patterns 

of recombination of knowledge over the knowledge space (Breschi et al., 2003; Nesta and Saviotti, 

2005; Piscitello, 2005). Following Teece et al. (1994), let 1=ikC  if invention k has membership in 

patent class i, and 0 otherwise. The number of inventions with membership in class i is =
k

iki Cn . 

It follows that the joint occurrence of each possible combination of subclasses within the same patent 

over the whole universe of USPTO patents granted in the previous five years is: 

 jk

k

ikijt CCJ =
 

(A1) 

where Jijt provides the number of inventions having simultaneously membership in class i and class 

j. Raw counts of the number of inventions having membership in each couple of patent classes, 

however, cannot be taken directly as a measure of relatedness. Classes must be present at a rate greater 

than what would be expected if combinations were made at random. 

We computed the conditional probability that a patent belongs to class i given that it also belongs 

to class j, P(i|j)=Jij/nj where nj represents the number of patents citing class j only. The main issue is 

that P(i|j) and P(j|i) are not equal as ni is different from nj. The fact that ni≠nj implies that Jij  increases 

with the relatedness of i and j, but also with ni and nj, the number of inventions having membership 

in each class of the couple determining potential overestimations of the actual co-occurrence of the 

couple of classes in the same patent. Thus, we benchmarked the observed number of co-occurrences 

against their expected number, had the combinatorial process followed a random process. We 

adjusted Jij for the number of inventions that would appear in the couple ij under the null hypothesis 

that inventors combine patent classes at random. To operationalize the null hypothesis, the 

distribution of Jij must be derived by assuming that inventions are assigned to classes at random, call 

this random variable xij. Teece et al. (1994) identify the distribution of the random variable, but they 

do not derive it in their paper. For the sake of exposition, we derive the distribution in order to clarify 

the construction of the measure. This brief exposition is based on Bryce and Winter (2009). Draw a 

sample of size ni from the population of K multi-class inventions. Now draw another sample of size 

nj and observe xij, or the number of inventions that were also in the ni sample. The number of ways 
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of selecting x inventions to fill x positions in sample nj is equivalent to the number of ways of selecting 

x from a total of ni inventors, or 








x

ni
.  

The number of ways of selecting inventions not receiving assignment to class i for the remaining 

(nj – x) positions in the nj sample is equivalent to the number of ways of selecting (nj – x) from a 

possible (K – ni) inventions, or 













−

−

xn

nK

j

i
. 

Then the number of possible permutations of the nj sample is the number of ways of combining a set 

of x inventions assigned to class i (ni) multiplied by (nj – x) inventions not assigned to class i19, or: 

 








x

ni















−

−

xn

nK

j

i

 

(A2) 

The number of different samples of size nj that can be drawn from K is 














jn

K
. The number of possible 

permutations of the nj sample divided by the number of ways of choosing a sample of size nj is the 

probability that x inventions from population K are assigned to both class i and class j. Thus, the 

number xij of inventions having membership in both class I and class j is a hypergeometric random 

variable with probability given by: 

  







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
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
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K

xn

nK

x

n

xXP  (A3) 

whit mean20: 

                                                 
19 Since sample nj was fixed as the number of inventions in class j, inventions assigned to class i in this quantity are de 

facto also assigned to class j. 
20 Since sample nj was fixed as the number of inventions in class j, inventions assigned to class i in this quantity are de 

facto also assigned to class j. For intuition of the mean, assume that nj inventions in K have been assigned to class j. Now 

randomly assign inventions in K to class i. The probability that any one invention receives a class i assignment is 
K

ni . 

Since there are nj inventions in K, each with probability 
K

ni  of being assigned to class i, the expected number of inventions 

assigned to both class i and class j is 








K

n
n i

j
. 
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 and variance: 
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The difference between Jij and the expected value of the random variable provides the basis for the 

final measure of conventionality in combinations: 

 
ij

ijij

ij

J






−
=

 

(A6) 

where the difference between the observed and the expected occurrence of the couple of classes (Jij-

μij) is divided by the standard deviation of the observed incidence. From (A.6), we can derive the 

degree of unconventionality of the patent z, as the median of τij of all combinations of technologies 

(i,j) in which the patent has membership.  

For instance, if a patent has four subclasses, then m is equal to six, since this is the number of subclass 

combinations (4(4-1)/2). Hence, m=1, …, 6.  

Higher value of the unconventionality measure indicates that inventions have successfully 

combined subclasses in an unconventional way, suggesting that the combination(s) thereof is not 

systematic and points to search strategies that connect more distant pieces of knowledge. Conversely, 

smaller values flag inventions that are based on systematic, typical or conventional combination(s) 

thus relying on local search strategies.  
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Appendix B: Description of variables and data sources 

 
 [Table B1 about here] 

 

 
[Table B2 about here] 

 

Appendix C: Robustness checks 

In addition to the robustness checks discussed in the main text, we also perform additional tests to 

validate our results to alternative specifications of the model. Robustness checks for the patent level 

analysis are summarized in table C1 whereas those relative to the firm level analysis are reported in 

tables C2-C6.  

We check the robustness of our results using a two year lag on our main independent variable, 

namely output. Row 1 of table C1 shows that output, lagged by two years, remains positively 

associated with unconventionality with effects that are similar in magnitude compared to table 3. Row 

2 reports the results relative of the coefficient of output when standard errors are clustered by sector 

while row 3 shows the estimation coefficient of output when standard errors are clustered by sic and 

year. This approach is useful to account for possible change of the business cycle among sectors and 

years, although in our main models we always included time and firm dummies. Results are also 

robust to this different cluster of standard errors. 

We then control for possible entry/exit bias (row 4) by limiting our analysis to the set of patents 

of firms observed over the entire time window of our analysis (1980-2000). In total only 60 firms are 

observed every year between 1980 to 2000 for a total of 100,413 patents observations. The coefficient 

of output slightly decrease but remains highly significant. 

To check the robustness of the results to an alternative measure of financial constraints, row 5 

reports the coefficient of the financial constraint variable using the Size and Age Index (SA)21. 

Contrary to our expectation, although the procyclical relationship between unconventionality and 

business cycle is confirmed, the SA index suggests that financially constrained firm produce more 

unconventional inventions, an effect that was not significant in our main results reported in table 3 

where we relied on the Kaplan Zingales Index. 

 

                                                 
21 The Size-Age Index is based on Hadlock and Pierce (2010) and it is calculated as (-0.737*Size)+(0.043*Size2)-

(0.040*Age), where Size equals the log of inflation-adjusted book assets, and Age is the number of years the firm is listed 

with a non-missing stock price on Compustat. Size and Age are winsorized at the 95% percentile of the distribution; 

specifically they are capped at 9,9 million of total Assets and 62 years. We use the median value of the index to construct 

the dummy for low and high financially constrains firms. 



30 

 

[Table C1 about here] 

 

 

We performed the same robustness checks also for the firm level analysis focusing on the estimations 

model for patent production, unconventionality (weighted), technological as well as market value and 

Tobin’s Q (tables C2-C6). Overall, the robustness checks at the firm level confirm the results 

described in section 4.2. The procyclical trend is confirmed in all the estimations model of the firm 

level analysis without a substantial variation in the magnitude of the coefficient of output. The 

restriction of the analysis to firms observed in all years, controlling in this way for potential entry/exit 

bias, confirms our results showing for the technological impact and the Tobin’s Q even stronger 

effects. The use of SA as an alternative measure of dependence on financial resources confirms the 

negative effect of financial constraints with coefficients that are slightly higher as compared to our 

main findings. However, we don’t find a significant impact of financial constraints on the 

unconventionality weighted estimation model showed in row 4 of table C3 and on the market value 

of the firm as reported in row 4 of table C5 and C6.  

 

[Table C2-C6 about here] 

 

 



 

Table 1 

 

 

 

 

 

 Descriptive statistics of patent unconventionality 

Distribution of unconventionality over time 

Year Mean S.D. Observations 

1980 -1985 -3.747 0.559 20,003 

1986-1990 -3.677 0.559 24,292 

1991-1995 -3.574 0.577 43,196 

1996-2000 -3.433 0.649 78,677 

Unconventionality by firm size 

Firm Size    

Small -3.612 0.636 14,508 

Medium -3.597 0.614 70,920 

Large -3.484 0.614 80,741 

Unconventionality by technological categories 

    

Most unconventional technological categories 

Information Storage -3.299 0.587 8,020 

Semiconductors -3.411 0.545 17,641 

Drugs -3.484 0.620 14,616 

Electrical devices -3.572 0.592 8,122 

Power systems -3.616 0.589 5,550 

Least unconventional technological categories 

Materials Processing & Handling -3.757 0.587 5,041 

Miscellaneous-Mechanical -3.847 0.622 3,323 

Motors, Engines & Parts -3.893 0.577 3,514 

Agriculture, Husbandry, Food -4.049 0.728 854 

Transportation -4.065 0.609 2,679 

Unconventionality in the most representative sectors 

SIC, 3 digit level    

Semiconductors and related devices 
-3.368 0.594 43,681 

Plastic material, synthetic resins and non-

vulcanizable elastomers 

-3.504 0.553 7,530 

Pharmaceutical preparations -3.519 0.599 14,042 

Radio and television broadcasting and 

communications equipment 

-3.521 0.588 15,400 

Photographic equipment and supplies -3.633 0.609 12,871 

Note that the summary statistics of unconventionality refer to the primary sector of 

operation of the firms included in our sample. 

Table



 
Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary statistics and correlation table of the variables used in the patent level analysis 

Variable Obs Mean Std. Dev. 1 2 3 4 5 6 7 8 9 10 11 

1 Unconventionality(t) 166,168 -3.543 0.619  1.0000           

2 Ln Output(t-1) 166,168 10.422 1.545 0.1827* 1.0000          

3 Citations 166,168 2.418 0.896 0.0410* -0.0197* 1.0000         

4 No prior cits 166,168 0.008 0.093  0.0042  0.0052* -0.2547* 1.0000        

5 Num. tech. components 166,168 1.441 0.561 0.2155*  0.0323*  0.1204*  0.0052* 1.0000       

6 Team 166,168 2.371 1.565 0.0323* -0.0204*  0.1544*  0.0067* 0.0926* 1.0000      

7 Experience 166,168 15.965 29.05 0.0802*  0.2151*  0.1046*  0.0120* 0.1110*  0.1526* 1.0000     

8 Concentration 166,168 0.120 0.114 0.0263* -0.0778*  0.1842*  0.0073* 0.0356*  0.0692*  0.1276* 1.0000    

9 Assignee Size 166,168 5.769 1.749 0.1024*  0.4312* -0.0658* -0.1139* 0.0314*  0.0326*  0.1856* -0.4452* 1.0000   

10 Financial Constraints(t-1)  145,652 0.288 0.453 0.0790*  0.3041* -0.0030 -0.0014 0.0130* -0.0387*  0.1659*  0.0941* 0.0886* 1.0000  

11 Multiple Segments 166,168 0.596 0.490 -0.0782* -0.1277* -0.1269* 0.0046 0.0135* -0.0660* -0.0781* -0.3652* 0.1470* -0.0557* 1.0000 



 

 

Table 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patent level estimations for the degree of patent unconventionality 

 Model 1 Model 2 Model 3 Model 4 

Ln Output(t-1) 0.0855*** 0.0848*** 0.0805*** 0.0794*** 

 (0.0077) (0.0086) (0.0085) (0.0096) 

Citations -0.0103** -0.0103** -0.0102* -0.0102* 

 (0.0049) (0.0049) (0.0053) (0.0053) 

No prior Citations -0.0171 -0.0171 -0.0010 -0.0011 

 (0.0205) (0.0205) (0.0225) (0.0225) 

Num. Tech. Comp 0.2182*** 0.2182*** 0.2211*** 0.2210*** 

 (0.0082) (0.0082) (0.0091) (0.0091) 

Team -0.0031* -0.0031* -0.0028 -0.0028 

 (0.0017) (0.0017) (0.0018) (0.0018) 

Experience 0.0000 0.0000 -0.0000 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0001) 

Concentration -0.1675** -0.1639** -0.1573* -0.1508* 

 (0.0806) (0.0792) (0.0911) (0.0882) 

Assignee Size 0.0007 0.0007 0.0047 0.0046 

 (0.0052) (0.0052) (0.0055) (0.0055) 

Multiple Segment  0.0053  0.0077 

  (0.0132)  (0.0154) 

Financial Constraints(t-1)   0.0228 0.0225 

   (0.0197) (0.0194) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Tech dummies yes yes yes yes 

Constant -4.8803*** -4.8766*** -4.8398*** -4.8347*** 

 (0.0929) (0.0951) (0.1019) (0.1045) 

N 166,168 166,168 145,652 145,652 

R2 0.1728 0.1728 0.1740 0.1740 
Standard errors in parentheses  * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on unconventionality resulting from the median value of the 

degree of unconventionality of all combinations of classes in the focal patent. Models include 20 year, 36 technology and 

firm dummies. Models also include controls (dummies) for missing information about backward citations. Standard errors 

are clustered by firm. Models 3 and 4 have a reduced number of observations due to missing data in the computation of the 

KZ index. 



 

  

Table 4 

Summary statistics of firm level variables 

Variables       Obs Mean Std. Dev. Min Max 

Patent Production(t) 10,653 1.099 1.388   0   7.471 

Conventionality weighted Patent(t) 10,653 0.637 0.989   0   6.339 

Technological Impact(t) 10,653 2.372 2.509   0 10.224 

Market to Book Value(t) 10,653 3.470 1.810 -16.098 13.315 

Tobin’s Q(t) 10,653 0.677 0.838 -1.398   6.317 

Unconventionality(t) 10,653 -2.047 1.818 -6.679   0 

Ln Output(t-1) 10,653 9.373 1.307  5.250 13.61 

Ln Assets(t-1) 10,653 4.418 2.271 -3.817 12.52 

Ln R&D Stock(t-1) 10,653 2.699 2.279 -4.564 11.13 

Ln Patent Stok(t-1) 10,653 1.573 1.865 -3.087 8.688 

Ln Sales(t) 10,653 4.427 2.588 -6.907 12.236 

R&D Intensity(t-1) 10,653 1.415 43.149   0 2701.82 

Profitability(t-1) 10,653 4.477 131.39   0  5957.80 

Patent Intensity(t-1) 10,653 0.710 3.053   0 163.136 

Financial constraints(t-1)  9,471 0.395 0.489   0    1 

Multiple Segments 10,653 0.433 0.495   0    1 

No R&D Stock 10,653 0.111 0.315   0    1 

No Patent Stock 10,653 0.200 0.400   0    1 

No Patents 10,653 0.442 0.495   0    1 

 

 

 

 

 

 



 

 

Table 5 

Correlation table of firm level variables 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 Patent Production(t) 1.0000 

2 Conventionality weighted patent(t) 0.9818* 1.0000 

3 Technological Impact(t) 0.9239* 0.8602* 1.0000 

4 Market to Book value(t) 0.5045* 0.5153* 0.4426* 1.0000 

5 Tobin's Q(t) 0.1494* 0.1466* 0.1743* 0.6724* 1.0000 

6 Unconventionality(t) -0.6739* -0.5405* -0.8047* -0.2685* -0.1015* 1.0000 

7 Ln Output(t-1) 0.1857* 0.2020* 0.1406* 0.3590* 0.3203* -0.0627* 1.0000 

8 Unconventionality*Output(t-1) -0.6957* -0.5717* -0.8094* -0.3291* -0.1679* 0.9774* -0.2266* 1.0000

9 Ln Assets(t-1) 0.5669* 0.5743* 0.4640* 0.4432* -0.1659* -0.3155* 0.2277* -0.3403* 1.0000 

10 Ln R&D Stock(t-1) 0.7077* 0.7044* 0.6290* 0.5818* 0.1513* -0.4386* 0.2801* -0.4766* 0.7095* 1.0000 

11 Ln Patent Stock(t-1) 0.8532* 0.8438* 0.7660* 0.4911* 0.1005* -0.5404* 0.1626* -0.5594* 0.6041* 0.7388* 1.0000 

12 Ln Sales(t) 0.4896* 0.4995* 0.3983* 0.3541* -0.1936* -0.2613* 0.2174* -0.2865* 0.9210* 0.6150* 0.5219* 1.0000 

13 R&D Intensity(t-1) 0.0388* 0.0400* 0.0356* 0.0274* 0.0080 -0.0169 -0.0193* -0.0110 -0.0485* 0.0457* 0.0455* 0.0250* 1.0000 

14 Profitability(t-1) 0.0358* 0.0336* 0.0314* 0.0161 -0.0149 -0.0225* -0.0036 -0.0212* -0.0493* 0.0451* 0.0454* 0.0431* 0.7539* 1.0000 

15 Patent Intensity(t-1) -0.0618* -0.0558* -0.0646* -0.0771* -0.0168 0.0599* -0.0352* 0.0589* -0.1255* -0.2967* -0.0742* -0.0972* -0.0062 -0.0053 1.0000

16 Financial constraints(t-1) -0.1581* -0.1494* -0.1627* -0.1083* -0.0894* 0.1308* 0.0415* 0.1231* -0.1174* -0.1745* -0.1435* -0.0745* 0.0379* 0.0639* 0.0326* 1.0000 

17 Multiple Segments 0.0576* 0.0720* 0.0160 -0.0502* -0.1612* 0.0108 -0.0844* 0.0208* 0.1646* 0.0310* 0.0699* 0.1789* 0.0206* 0.0294* 0.0103 0.0510* 1.0000 

18 No R&D Stock -0.2050* -0.1817* -0.2291* -0.1211* -0.1471* 0.2028* -0.0133 0.2021* 0.0477* -0.4203* -0.2252* 0.0811* -0.0106 -0.0082 0.1364* 0.1010* 0.0883* 1.0000 

19 No Patent Stock -0.3275* -0.2839* -0.3501* -0.1704* -0.0250* 0.3535* -0.0912* 0.3530* -0.2359* -0.3250* -0.4222* -0.1928* -0.0097 -0.0123 0.0355* 0.0632* 0.0363* 0.1625* 1.0000 

20 No Patents -0.6908* -0.5626* -0.8245* -0.2981* -0.1363* 0.9817* -0.0835* 0.9647* -0.3039* -0.4547* -0.5557* -0.2403* -0.0185 -0.0215* 0.0630* 0.1413* 0.0302* 0.2193* 0.3616* 1.0000 



 

 

Table 6 

Estimations for patent production 

 Model 1 Model 2 Model 3 Model 4 

Ln Output(t-1) 0.0981*** 0.1006*** 0.0850*** 0.0869*** 

 (0.0220) (0.0220) (0.0231) (0.0231) 

Ln Assets(t-1) 0.1270*** 0.1259*** 0.1630*** 0.1610*** 

 (0.0145) (0.0144) (0.0162) (0.0162) 

Ln R&D Stock(t-1) 0.2311*** 0.2321*** 0.2376*** 0.2396*** 

 (0.0160) (0.0159) (0.0173) (0.0172) 

Ln Sales(t) 0.0715*** 0.0708*** 0.0477*** 0.0469*** 

 (0.0118) (0.0117) (0.0131) (0.0131) 

Multiple Sectors  0.0715***  0.0690*** 

  (0.0246)  (0.0264) 

Financial Constraints(t-1)   -0.0386** -0.0384** 

   (0.0173) (0.0173) 

Firm dummies Yes yes yes yes 

Year dummies Yes yes yes yes 

Constant -3.3219*** -3.3823*** -3.2932*** -3.3495*** 

 (0.3065) (0.3087) (0.3218) (0.3239) 

N 10,653 10,653 9,471 9,471 

R2 0.8358 0.8360 0.8406 0.8408 

Standard errors in parentheses   * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on patent production. Models include firm and 20 years 

dummies. Models also include controls (dummies) for missing information about R&D stock and assets. All models 

include firm and year fixed effects with robust standard errors. 

 

 

 

 

 

 



 

 

 

Table 7 

Estimations for the unconventionality (weighted by patent) 

 Model 1 Model 2 Model 3 Model 4 

Ln Output(t-1) 0.1189*** 0.1204*** 0.1105*** 0.1117*** 

 (0.0169) (0.0169) (0.0178) (0.0178) 

Ln Assets(t-1) 0.0838*** 0.0831*** 0.1113*** 0.1100*** 

 (0.0090) (0.0090) (0.0101) (0.0101) 

Ln R&D stock(t-1) 0.1720*** 0.1726*** 0.1788*** 0.1801*** 

 (0.0109) (0.0108) (0.0117) (0.0117) 

Ln Sales(t) 0.0454*** 0.0450*** 0.0336*** 0.0331*** 

 (0.0072) (0.0072) (0.0080) (0.0080) 

Multiple Segments  0.0443***  0.0434** 

  (0.0166)  (0.0179) 

Financial Constraints(t-1)   -0.0198* -0.0197* 

   (0.0111) (0.0111) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Constant -2.9969*** -3.0343*** -3.0592*** -3.0947*** 

 (0.2146) (0.2169) (0.2291) (0.2315) 

N 10,653 10,653 9,471 9,471 

R2 0.8613 0.8615 0.8675 0.8676 

Standard errors in parentheses   * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on unconventionality (the measure is weighted by patent). 

Models include firm and 20 years dummies. Models also include controls (dummies) for missing information about R&D 

stock and assets. All models include firm and year fixed effects with robust standard errors. 

 

 

 

 



 

 

 

Table 8 

 Estimations for the technological impact of inventions (forward citations) 

 Model 1 Model 2 Model 3 Model 4 

Unconventionality(t) 0.1996*** 0.1994*** 0.1503** 0.1501** 

 (0.0587) (0.0587) (0.0628) (0.0628) 

Ln Output(t-1) 0.2576*** 0.2586*** 0.2366*** 0.2378*** 

 (0.0289) (0.0290) (0.0314) (0.0315) 

Unconv.*Ln Output(t-1) -0.0152*** -0.0151*** -0.0097* -0.0097* 

 (0.0053) (0.0053) (0.0057) (0.0057) 

R&D Intensity(t-1) -0.0004 -0.0004 0.0510** 0.0511** 

 (0.0004) (0.0004) (0.0211) (0.0211) 

Profitability 0.0006*** 0.0006*** 0.0666** 0.0662** 

 (0.0002) (0.0002) (0.0283) (0.0283) 

Patents intensity 0.0121** 0.0120** 0.0129* 0.0129* 

 (0.0058) (0.0058) (0.0072) (0.0071) 

Ln Assets(t-1) 0.2003*** 0.2000*** 0.2596*** 0.2590*** 

 (0.0159) (0.0159) (0.0214) (0.0215) 

Multiple Segments  0.0195  0.0226 

  (0.0329)  (0.0350) 

Financial Constraints(t-1)   -0.0007 -0.0006 

   (0.0237) (0.0237) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Constant -0.7733** -0.7913** -0.9817** -1.0025** 

 (0.3772) (0.3783) (0.4023) (0.4041) 

N 10,653 10,653 9,471 9,471 

R2 0.9080 0.9080 0.9105 0.9105 

Standard errors in parentheses   * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on the technological impact of inventions measured through the 

forward citations. Models include firm and 20 years dummies. Models also include controls (dummies) for missing 

information on R&D stock, assets and patents. All models include firm and year fixed effects with robust standard errors. 

 



 

 

 

 

Table 9 

Estimations for the market to book value of firms 

 Model 1 Model 2 Model 3 Model 4 

Unconventionality(t) 0.3511*** 0.3517*** 0.3323*** 0.3330*** 

 (0.0563) (0.0564) (0.0579) (0.0580) 

Ln Output(t-1) 0.5035*** 0.5023*** 0.5067*** 0.5055*** 

 (0.0367) (0.0369) (0.0397) (0.0399) 

Unconv.*Ln Output(t-1) -0.0389*** -0.0389*** -0.0372*** -0.0373*** 

 (0.0061) (0.0061) (0.0062) (0.0063) 

Ln Assets(t-1) -0.0838*** -0.0834*** -0.0841*** -0.0830*** 

 (0.0238) (0.0239) (0.0318) (0.0318) 

Ln R&D Stock(t-1) 0.1431*** 0.1426*** 0.1367*** 0.1355*** 

 (0.0236) (0.0236) (0.0280) (0.0281) 

Ln Patent Stock(t-1) 0.1512*** 0.1514*** 0.1508*** 0.1511*** 

 (0.0157) (0.0157) (0.0170) (0.0170) 

Ln Sales(t) 0.1840*** 0.1842*** 0.1993*** 0.1997*** 

 (0.0250) (0.0250) (0.0300) (0.0300) 

Multiple Segments  -0.0303  -0.0367 

  (0.0405)  (0.0422) 

Financial Constraints(t-1)   -0.0196 -0.0197 

   (0.0274) (0.0274) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Constant -1.0962** -1.0675** -1.3690*** -1.3357*** 

 (0.4706) (0.4757) (0.4987) (0.5049) 

N 10,653 10,653 9,471 9,471 

R2 0.8024 0.8024 0.8085 0.8085 

Standard errors in parentheses   * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on the technological impact of inventions measured through the 

forward citations. Models include firm and 20 dummies. Models also include controls (dummies) for missing information 

about R&D stock, patent stock and assets. All models include firm and year fixed effects with robust standard errors. 



 

 

Table 10 

Estimations for firms’ Tobin’s Q 

 Model 1 Model 2 Model 3 Model 4 

Unconventionality(t) 0.1841*** 0.1840*** 0.1852*** 0.1850*** 

 (0.0299) (0.0299) (0.0300) (0.0300) 

Ln Output(t-1) 0.5438*** 0.5440*** 0.5315*** 0.5318*** 

 (0.0232) (0.0232) (0.0246) (0.0247) 

Unconv.*Ln Output(t-1) -0.0208*** -0.0208*** -0.0211*** -0.0211*** 

 (0.0033) (0.0033) (0.0033) (0.0033) 

Ln Assets(t-1) -0.1916*** -0.1916*** -0.2469*** -0.2472*** 

 (0.0143) (0.0143) (0.0174) (0.0174) 

Ln R&D Stock(t-1) 0.0094 0.0095 0.0223 0.0227 

 (0.0133) (0.0133) (0.0153) (0.0154) 

Ln Patent Stock(t-1) 0.0374*** 0.0373*** 0.0366*** 0.0366*** 

 (0.0081) (0.0081) (0.0087) (0.0087) 

Ln Sales(t) 0.0581*** 0.0580*** 0.0800*** 0.0799*** 

 (0.0148) (0.0148) (0.0177) (0.0177) 

Multiple Segments  0.0036  0.0096 

  (0.0205)  (0.0216) 

Financial Constraints(t-1)   -0.0470*** -0.0470*** 

   (0.0149) (0.0149) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Constant -3.6321*** -3.6355*** -3.4675*** -3.4762*** 

 (0.2579) (0.2598) (0.2714) (0.2735) 

N  10,653 10,653 9,471 9,471 

R2 0.7137 0.7137 0.7162 0.7162 

Standard errors in parentheses   * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on the firms' Tobin’s Q. Models include firm and 20 years 

dummies. Models also include controls (dummies) for missing information about R&D stock, patent stock and assets. 

All models include firm and year fixed effects with robust standard errors.  

 

 

 



 

 

Table 11 

Patent level estimations for the degree of patent novelty 

 Model 1 Model 2 Model 3 Model 4 

ln Output(t-1) 0.0028* 0.0024 0.0026* 0.0025 

 (0.0015) (0.0016) (0.0015) (0.0017) 

Citations 0.0056*** 0.0056*** 0.0056*** 0.0056*** 

 (0.0010) (0.0010) (0.0011) (0.0011) 

No prior Citations 0.0062 0.0062 0.0091 0.0091 

 (0.0056) (0.0057) (0.0062) (0.0062) 

Num. Tech. Comp 0.0116*** 0.0116*** 0.0113*** 0.0113*** 

 (0.0019) (0.0019) (0.0021) (0.0021) 

Team 0.0022*** 0.0022*** 0.0025*** 0.0025*** 

 (0.0007) (0.0007) (0.0008) (0.0008) 

Experience -0.0000 -0.0000 -0.0000** -0.0000** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

Concentration -0.0324** -0.0306* -0.0319* -0.0310 

 (0.0162) (0.0163) (0.0187) (0.0188) 

Assignee size -0.0015* -0.0016* -0.0009 -0.0009 

 (0.0009) (0.0009) (0.0010) (0.0010) 

Multiple segment  0.0026  0.0011 

  (0.0026)  (0.0026) 

Financial Constraints(t-1)   -0.0010 -0.0010 

   (0.0016) (0.0017) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Tech dummies yes yes yes yes 

Constant 0.0214 0.0232 0.0248 0.0256 

 (0.0181) (0.0188) (0.0191) (0.0197) 

N 166,168 166,168 145,652 145,652 

R2 0.0270 0.0270 0.0258 0.0258 

Standard errors in parentheses   * p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on the degree of novelty used as an alternative measure of 

unconventionality. Models include 20 years, 36 technology and firm dummies. Models also include controls (dummies) 

for missing information about backward citations. Standard errors are clustered by firm. 

 



 

 

 

Table 12 

Firm level estimations for the degree of patent novelty 

 Model 1 Model 2 Model 3 Model 4 

Ln Output(t-1) 0.0276** 0.0296** 0.0343** 0.0356** 
 (0.0133) (0.0133) (0.0141) (0.0141) 
ln Assets(t-1) 0.0260*** 0.0250*** 0.0427*** 0.0412*** 
 (0.0083) (0.0083) (0.0092) (0.0092) 
ln R&D stock(t-1) 0.0418*** 0.0427*** 0.0385*** 0.0400*** 
 (0.0077) (0.0077) (0.0085) (0.0085) 
ln Sales(t) 0.0154*** 0.0148** 0.0087 0.0081 
 (0.0059) (0.0059) (0.0062) (0.0063) 
Multiple segments  0.0600***  0.0498*** 

  (0.0165)  (0.0173) 

Financial Constraints(t-1)   -0.0033 -0.0032 

   (0.0096) (0.0096) 

Firm dummies yes yes yes yes 

Year dummies yes yes yes yes 

Constant -0.7798*** -0.8304*** -0.8918*** -0.9325*** 
 (0.1561) (0.1561) (0.1686) (0.1692) 
N 10,653 10,653 9,471 9,471 
R2 0.6364 0.6370 0.6411 0.6415 

Standard errors in parentheses* p < 0.1, ** p < 0.05, *** p < 0.01 

The models report the results of the Ordinary Least Square on the novelty measure.  Models include firm and 20 year 

dummies. Models also include controls (dummies) for missing information about R&D stock and assets. All models 

include firm and year fixed effects with robust standard errors. 

 



 

Appendix B 

 

Table B1  

Patent Level Variables 

Label Description Source 

Dependent Variable  

Unconventionality Ln of the yearly frequency of the joint occurrence of each possible combination 

of classes within the same patent compared to the outcome of a purely random 

process (derivation based on Teece et al., 1994).  

USPTO 

Independent Variable 

Ln Output (t-1) Ln of industry real output computed as industry value added plus material cost 

corrected for the industry shipment deflator and then lagged by 1 year 

NBER-CES 

Manufactur

ing Industry 

database 

Controls at the level of the invention 

Citations Ln of the backward citations + 1 of patent i USPTO 

Num. Tech. 

Components  

Ln of the number of technological components (patent classes) recombined in 

patent i  

USPTO 

 

Controls at the team level 

Team  Ln of the number of inventors in patent i USPTO 

Experience  Ln of the number of patents of the most prolific inventor in patent i USPTO 

Controls at the firm level 

Size  Ln of the tot number of patents of firm j  USPTO 

Concentration  Herfindahl Index of the firm j  USPTO 

Firm Financial 

Constraints (KZ Index)  
 

Compustat 

 Dummy equal 1 for financially constrained firms.  

Multi Segment Firms  Dummy equal 1 if focal firm operates in different sectors  Compustat 

Segment 

Data  

 

 

 

 

 

 

 

 

 



 

 

Table B2  

Firm level variables 

Label Description Source 

Dependent Variable 

 Market to Book Value  Ln of the ratio of market to book value of the firm, computed on Compustat 

items as ( (csho*prcc) / bkvlps) 

Compustat  

Tobin’s Q Ln of the Tobin’s Q of the firm, computed on Compustat items as  

(at + (csho*prrcc_f)-ceq)/at) 

Compustat 

Technological Impact  Ln of the number of forward citation +1 of firm j in year t  USPTO 

Patent Production  Ln of the num of patents of firm j in year t  USPTO 

Unconventionality 

(weighted) 

Ln of patent weighted by conventionality   USPTO 

Independent Variable 

Ln  Output (t-1) 

 

Industry real output computed as industry value added plus material cost 

corrected for the industry shipment deflator  

NBER-CES 

Manufactur

ing Industry 

database  

Unconventionality  Ln of the yearly frequency of the joint occurrence of each possible 

combination of classes within the same patent compared to the outcome of a 

purely random process (derivation based on Teece et al., 1994).  

USPTO 

Controls 

Ln R&D Stock (t-1)  Ln of R&D stock of firm j at t-1  Compustat  

Ln Assets (t-1) Ln of asset of firm j at time t-1  Compustat  

Ln Patent Stock (t-1)   Ln of patent stock of firm j at time  t-1  
 

Ln Sales  Ln of sales of firm j at time t-1  Compustat  

Firm Financial 

Constraints(KZ Index)  
 

Compustat  

 Dummy equal 1 for financially constrained firms  

Multi Segment   Dummy equal 1 if focal firm operates in different sectors  Compustat 

Segment 

Data  



 

 

Appendix C 

 

Table C1  

Robustness checks of the patent level analysis: unconventionality 
 Unconventionality (t) Standard errors (SEs) Observations 

1. Ln Output (t-2) 0.0866*** (0.0106) 145,652 

2. SEs clustered by sector 0.0794*** (0.0093) 145,652 

3. SEs clustered by industry x year 0.0794*** (0.0063) 145,652 

4. Controlling for industry exit/entry 0.0754*** (0.0113) 100,413 

5. Coefficient for alternative financial constraints 0.0507** (0.0197) 160,855 

All rows report the value relative to the output coefficient for the full model, except for row 5 which reports eventual changes in 

the coefficient of the financial constraints variable.  

 

Table C2 Robustness checks of the firm level analysis: patent production 

 Dep. Var Standard errors (SEs) Observations 

1. Ln Output (t-2) 0.0767*** (0.0244) 9,240 

2. SEs clustered by firm 0.0869* (0.0510) 9,471 

3. SEs clustered by sector 0.0869*** (0.0329) 9,471 

4. Controlling for industry exit/entry 0.0913*** (0.0296) 4,931 

5. Alternative measure of financial constraints -0.0642** (0.0272) 10,520 

Table C3 Robustness checks of the firm level analysis: unconventionality 
1. Ln Output (t-2) 0.1032*** (0.0184) 9,240 

2. SEs clustered by firm 0.1117** (0.0455) 9,471 

3. SEs clustered by sector 0.1117*** (0.0285) 9,471 

4. Controlling for industry exit/entry 0.1094*** (0.0237) 4,931 

5. Alternative measure of financial constraints -0.0144 (0.0180) 10,520 

Table C4 Robustness checks of the firm level analysis: technological impact 
1. Ln Output (t-2) 0.2418*** (0.0337) 9,240 

2. SEs clustered by firm 0.2378*** (0.0589) 9,471 

3. SEs clustered by sector 0.2378*** (0.0376) 9,471 

4. Controlling for industry exit/entry 0.2296*** (0.0393) 4,931 

5. Alternative measure of financial constraints -0.1156*** (0.0362) 10,520 

Table C5 Robustness checks of the firm level analysis: market to book value 
1. Ln Output (t-2) 0.4985*** (0.0421) 9,240 

2. SEs clustered by firm 0.5055*** (0.0797) 9,471 

3. SEs clustered by sector 0.5055*** (0.1858) 9,471 

4. Controlling for industry exit/entry 0.3262*** (0.0525) 4,931 

5. Alternative measure of financial constraints -0.0408 (0.0399) 10,520 

Table C6 Robustness checks of the firm level analysis: Tobin’s Q 
1. Ln Output (t-2) 0.5461*** (0.0264) 9,240 

2. SEs clustered by firm 0.5318*** (0.0503) 9,471 

3. SEs clustered by sector 0.5318*** (0.1506) 9,471 

4. Controlling for industry exit/entry 0.3743*** (0.0322) 4,931 

5. Alternative measure of financial constraints -0.0283 (0.2678) 10,520 

All rows report the value of the coefficient of output (our main variable of interest) except for row 5 which reports eventual 

changes in the coefficient of financial constraints using the SA index. The number of observations decreases when the model 

is estimated on a subsample, firms observed over the entire period in row 4, and when we use a two year lagged value of 

Output. In row 5 the number of observation increases due to a lower number of missing values in computing the SA index.  

 




