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Abstract— Uncertainty is a practical issue in system design
optimization because some characteristics of components, such
as reliability and cost, cannot be determined precisely in many
situations. Considering the imprecise characteristics of compo-
nents, few works have focused on the multi-objective optimization
for the redundancy allocation due to the challenges of com-
paring multi intervals. To tackle the issue, a novel angle-based
bi-objective redundancy allocation algorithm is proposed in this
study, introducing three original contributions: 1) An angle-
based interval crowding distance (ICA) is especially designed for
effective performance and reduced computational time; 2) Two
techniques are applied to tackle the problem: An elite selec-
tion for mutation is presented for generating better offsprings;
A penalty-guided constraint handling technique is introduced for
converting the problem into an unconstrained one. 3) Since a set
of optimal solutions is obtained by the proposed method and no
preference on uncertainties is provided, this paper proposes a
novel knee interval method to help DMs make a decision. To be
specific, the proposed ICA can describe the distribution of the
whole population intuitively and effectively, considering not only
the angle between two compared individuals but also the angle
range of the interval values. The computational results from two
typical experiments demonstrate that the proposed algorithm is
more efficient than other state-of-the-art algorithms, generating
Pareto sets with less repeating individuals, stronger convergence,
wider distribution, less imprecision, and reduced computational
time.
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Note to Practitioners—This article is motivated by two practical
problems in multi-objective redundancy allocation in presence of
interval uncertainty: First, this paper tries to solve the multi-
objective redundancy allocation problem with the imprecise
characteristics of components, which is rarely considered in the
field of reliability optimization design. Second, the calculation of
the crowding distance needs extra time cost and is less efficient.
To tackle this issue, an interval crowding angle is especially
designed, considering not only the angle between two compared
individuals, but also the angle range of the interval values.
The proposed method can be embedded in most multi-objective
interval evolutionary algorithms to compute the diversity of the
individuals. The goal of this study is to allocate the economy and
high-reliable components for practitioners. The computational
results verify its effectiveness and efficiency. Besides, in many
cases the practitioners know only few or no preferences, this
paper proposes a knee point analysis of interval values that
allows practitioners to select the optimal solution with large
hypervolume and less imprecision among a set of solutions.

Index Terms— Redundancy allocation problem, interval uncer-
tainty, multi-objective optimization, interval crowding angle, knee
interval.

I. INTRODUCTION

THE redundancy allocation problem (RAP) has been
broadly investigated in system engineering. In a RAP,

the number of redundant components and redundancy levels
are allocated in each subsystem, with the goal of maxi-
mizing the system reliability and/or minimizing the system
cost. Both single-objective optimization [1]–[5] and multi-
objective optimization problems [6]–[11] have been considered
in determined environments, assuming that the component
characteristics are certain.

However, the characteristics of components are uncertain
in practice [12]. For practical purposes, there are two types
of uncertainties: aleatory and epistemic [13]. The former
one is caused by the inherent randomness of the component
behavior [14], also named stochastic uncertainty [15], irre-
ducible uncertainty, or inherent uncertainty [16]. The latter
is due to the imprecision of the model representation of the
system behavior, in terms of the structural and parameter
uncertainty [17]. For example, the reliability or cost of a
component is difficult to determine as fixed values in many
situations. As mentioned in [18], “the RAP is always determin-
istic with vague or imprecise statements, which can be boiled
down to problems of observing the parameters themselves,
deficiency in history and statistical data, insufficient theory,
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incomplete knowledge and the subjectivity and preference of
human judgment, etc.”

From the perspective of decision makers (DMs), the
approaches for uncertain optimization problems (UOPs) can
be divided into three categories: priori , interactive and
posteriori [19]. The difference between these approaches
is when DMs provide their preferences: in advance, during
the search, or at the end of the optimization process. There
are various studies considering preference in uncertain multi-
objective optimization problems, such as [20], [21], but it is
difficult for DMs to offer their preferences when they know
little or nothing about uncertainties. Furthermore, it is risky
to make assumptions with insufficient information. Hence,
this paper focuses on the posteriori methods: The opti-
mization process is conducted without DMs’ preferences, and
a set of optimal solutions is provided for DMs to select
the most preferred one according to their preferences [19].
If no preference is presented, this paper analyzes the knee
interval to help DMs to make a decision. The optimization
problem in an uncertain environment by posteriori methods
can be modeled as stochastic programming [22], [23], fuzzy
programming [24], [25], or interval programming [26]–[28].
Compared with the former two approaches, interval pro-
gramming has the benefit of requiring no additional function
information when formulating the problem, like, probability
distributions in stochastic programming and membership func-
tions in fuzzy programming [29]. Besides, the variables in
the former two approaches can be converted to intervals by a
cut set and a confidence level, respectively [30]. Therefore,
interval programming is employed to tackle the RAP with
interval-valued characteristics due to its simplicity and wide
application. For example, a genetic algorithm (GA)-based
penalty function technique was proposed by Gupta et al. to
solve the constrained RAP with interval-valued reliabilities of
components [31]. Feizollahi and Modarres developed a robust
deviation framework (Min-Max regret approach) for the RAP
with imprecise component reliability [26]. Then, Roy et al.
presented an entropy-based region reducing GA for the relia-
bility redundancy allocation problem, denoted as RRAP [27].
In practice, the multi-objective interval optimization is more
meaningful but is also more challenging, since the comparison
of interval values is relatively difficult. Considering this issue,
Sahoo et al. converted the multi-objective RAP into a single
one, with the Big-M penalty strategy, and utilized a GA for
solving it [32]. Besides, a game-based solution selection was
developed by Cao et al. for the multi-objective RAP [33],
where entropy was selected as a metric for modeling the
imprecision of interval-valued parameters.

The above studies have adopted some transformation
method, without considering the interval dominance relation-
ship, which will be further discussed in Section III. Tak-
ing the dominance of interval numbers into account, Zhang
and Chen adapted the multi-objective particle swarm opti-
mization (MOPSO) algorithm [28]. In their method, a new
order relation of interval numbers was designed without extra
knowledge about the underlying distribution or the preferences
of decision makers; an extended crowding distance was also
presented to produce well-distributed Pareto fronts.

Regarding the interval dominance relationship, this paper
tries to further advance the state-of-the-art on the multi-
objective interval RAP. The major contributions of this study
are summarized as follows.

1) To the best of our knowledge, the angle-based tech-
nique is employed for the first time to deal with
the interval optimization problem. An interval crowd-
ing angle is especially designed, considering not only
the angle between two compared individuals, but also
the angle range of the interval values. To be specific,
this method is relatively simple with less parameters and
can be widely employed in many practical applications
for describing the population distribution;

2) Two effective techniques are applied to solve the RAPs
in presence of interval uncertainty: (1) Elite selection for
mutation keeps the top individuals with good rank and
wide distribution in the population; (2) The constrained
problem is transformed into an unconstrained one via
the penalty function;

3) In this paper, the optimization process is conducted
without extra knowledge about the DMs’ preferences.
Furthermore, a novel knee interval calculation method is
presented in this paper, aiming at helping DMs to select
the most promising solution among the Pareto Front,
with larger hypervolume and less imprecision.

The rest of the paper is arranged as follows. The related
work including the review of interval multi-objective optimiza-
tion and angle-based multi-objective optimization is detailed
in Section II. Furthermore, the motivation of this study is also
presented in this section. Subsequently, the formulation of
the multi-objective RAP with interval uncertainty is shown
in Section III. In Section IV, a novel interval angle-based
approach is proposed to solve the problem with interval crowd-
ing angle, elite selection for mutation and constraint handling.
Experimental results and analysis are supplied in Section V.
The paper is ended with conclusions and perspectives in
Section VI.

II. RELATED WORK AND MOTIVATION

The problem considered in this study is an interval multi-
objective optimization problem (IMOP), considering more
than one objective conflicting with each other, and at least one
objective and (or) constraint is interval-valued. Without loss
of generality, a constrained IMOP is formulated as follows.

max f (x, c) = ( f1(x, c), f2(x, c), . . . , fM (x, c))T

s.t . c = (c1, c2, . . . , cK )T ,

ck = [ckL , ckU ], k = 1, 2, . . . , K

g(x) = (g1(x), g2(x), . . . , gng(x))T ≤ 0

h(x) = (h1(x), h2(x), . . . , hnh (x))T = 0 (1)

where x is the decision vector, fm(x, c), m = 1, 2, . . . , M ,
is the mth objective with interval parameters, c is a vector of
interval-valued parameters, of which ck is the kth component
with ckL and ckU denoting the lower and upper bounds of ck ,
respectively. Besides, gi and h j represent the i th inequality
and j th equality constraints where i = 1, 2, . . . , ng , and
j = 1, 2, . . . , nh , respectively.
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A. Review of Interval Multi-Objective Optimization

Generally, the following two methods are taken into consid-
eration for the IMOP. The first method is to convert the interval
values into a deterministic one, as mentioned in [32], [33]. This
method is relatively simple, not considering the relationship of
interval dominance. Keeping this in mind, Cheng et al. firstly
transformed an IMOP into a min-max optimization problem
and, then, proposed a hierarchical algorithm composed of
GA and a nonlinear programming approach to solve it [34].
A popular approach was presented by Jiang et al. to utilize
the middle point and the width of an interval to convert the
problem [35]. This method was later used in [36], [37] and
verified to have good performance. Although the transforma-
tion method is easy to be understood and implemented, the
converted problem is significantly different from the original
one. As analyzed in [29], different transformation methods
will bring out different deterministic problems for the same
interval-value problem. For DMs, solutions obtained by these
transformation methods can be ambiguous: as a consequence,
it is difficult to find the optimal solution from different
solution sets.

The other method is directly based on the interval dom-
inance using evolutionary algorithms, which can avoid los-
ing valuable information and adding redundant information,
thus obtaining more precise solutions [29]. Along this line,
Limbourg and Aponte proposed the concept of IMOPs for
the first time and developed an interval multi-objective opti-
mization algorithm, named imprecision-propagating multi-
objective optimization algorithm (IP-MOEA, for short) [38].
In their study, a new interval dominance relation >I N and
a hypervolume-based crowding distance (CD) were proposed
for tackling the issue. However, the interval numbers were not
compared when one enclosed the other in IP-MOEA.

Researches of interval dominance relation have become a
trend in recent years, such as interval credibility [39], [40],
interval probability dominant strategy [41], α-degree Pareto
dominance [42], possibility degree [43]. In [44], a large
amount of related interval programming methods have been
reviewed, and an ensemble framework was designed for choos-
ing a suitable approach and producing optimal solutions.

Although abundant researches have focused on the interval
dominance relation, few studies have considered the crowding
distance of interval numbers. Regarding the deterministic
MOP, the traditional crowding distance (CD) was proposed in
Nondominated Sorting Genetic Algorithm II (NSGAII) [45],
which accounts to calculating the average distance of two
individuals on either side along each of the objectives. For
example, in Fig. 1(a), the CD of x1 is infinite, shown as d1,
and the CD of x2 is the average distance of x1 and x2 along
f1 and f2, shown as d2. In [46], the hypervolume-based
crowding distance (HVCD) was presented and compared to
the traditional CD, as shown in Fig. 1(b), demonstrating its
capability of generating well-distributed set of solutions. More
details can be found in this work [46]. Considering the IMOP,
Hypervolume was chosen as the crowding distance in [38],
where two distances, i.e., the worst and the best hypervolume,
were used as selection criteria. However, situations in which
the distances are not comparable may occur. In [38], the

Fig. 1. Two cases of crowding distance: (a) The traditional crowding distance;
(b) The Hypervolume-based crowding distance.

following strategy was employed to sort the whole population:
(1) Compare individuals based on the rank assigned by the
interval dominance relation; (2) Compare individuals based on
the crowding distances assigned by hypervolume calculation;
(3) Compare individuals randomly if the solutions cannot be
distinguished by the above methods.

B. Review of Angle-Based Multi-Objective Optimization

The angle-based MOEAs can be classified into three cate-
gories, depending on the embedding position. The first cat-
egory incorporates the angle into environmental selection.
For instance, He et al. employed the Euclidean distance
and angle as the measurement of convergence and diversity,
respectively [47]. In their designed environmental selection,
a pair of solutions with the minimum angle were found
and, then, the representative solution with better convergence
between them was identified. Besides, Yi et al. presented
a vector angle-based MOEA, using the maximum-vector-
angle-first for diversity and the worse-elimination principle
for convergence [48]. The above methods treated the angle
as the diversity measurement and followed the principle that
the greater the angle, the better the population diversity.
Different from that, Zhou et al. used the angle as a con-
trol parameter to keep a balance between convergence and
diversity [49]. The second category embeds the angle into
the dominance relation. For example, Ye et al. proposed a
strengthened dominance relation considering the following two
cases: (1) if the angle between a and b is lower than a pre-
defined threshold and the convergence of a is better than b,
a is dominant to b; (2) if the angle between a and b is
more than a pre-defined threshold and the convergence of a
is much better than b, a is dominant to b [50]. The third
case considers both environmental selection and dominance
relation. For example, Wang and Xu addressed the constrained
problem with angle-based constrained dominance relation and
angle-based diversity estimation [51]. In their method, it is
obvious that the angle-based technique can not only intuitively
reflect solution diversity, but also represent the (constraint)
dominance relationship. The first category focuses more on the
population distribution, the second on the interval dominance,
and the third on a combination of the two, trying to achieve
a balance between the population distribution and the interval
dominance.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 09,2023 at 14:10:51 UTC from IEEE Xplore.  Restrictions apply. 



274 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 20, NO. 1, JANUARY 2023

C. Motivation of This Study

The multi-objective RAPs have been proven to be
NP-hard by Chern [52], which is difficult and time-consuming
to be solved by traditional methods, especially when the
system size is large [53]. Hence, a meta-heuristic algorithm
should be specially tailored for obtaining the optimal solution.
As discussed in Section II. A, there are few works considering
the interval crowding distance. In [38], two HVCDs were
calculated and a random sorting was performed when two
individuals were not comparable. This method is relatively
simple, but it cannot guarantee the effectiveness of the algo-
rithm. Non-dominated sorting [45] of the two distances seems
a good approach; however, it requires extra computational cost.
Also, the transformation method is considered by calculating
the distance of mid-points. However, as mentioned before, dif-
ferent transformation methods will bring out different results.
Hence, an effective method with less extra computation cost
is required for IMOPs, which motivates this paper. Since the
angle-based technique reflects the distribution of solutions
intuitively and there are no works considering the angle-
based technique into IMOPs to our best knowledge, this paper
tries to propose an effective interval crowding angle specially
designed for the bi-objective redundancy allocation problem
under interval uncertainty with no extra computation cost,
which will be presented in Section IV. A. Furthermore,
another motivation of this paper is to execute the optimization
process and help DMs make a decision without considering
preferences. Hence, a novel knee interval is proposed to
select the most promising solution, which will be presented
in Section IV. D.

III. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

For simplicity, a series-parallel system is considered con-
sisting of n subsystems in series and xi components arranged
in parallel for the i th subsystem. Each component varies
in different characteristics, i.e., reliability, cost, and weight,
and adding redundant components can enhance the system
reliability RS but increase the system cost CS at the same time.
Therefore, the bi-objective RAP in an interval environment is
formulated with the goal of minimizing the whole cost of the
system while maintaining its reliability above a predetermined
threshold.

A. Assumptions

Following [28], the assumptions for the interval RAP are as
follows:

1) The characteristics of components, i.e., reliability, cost,
or weight, are imprecise and interval-valued;

2) The failures of components are statistically independent
of each other;

3) The multi-component system will not be damaged when
a single component failure occurs;

4) When failures occur, the components and the whole
system are assumed to be non-reparable;

5) All components and the system are supposed to be
binary-state, i.e., only experiencing the perfectly func-
tioning state and the completely failed state.

B. Formulation of Multi-Objective Interval RAP

Assuming that the type of components in a subsystem is
identical, the interval-valued reliability of the i th subsystem
of xi components in parallel is defined as [Ri L(x), Ri R(x)] =
[1 − (1 − ri L)xi , 1 − (1 − ri R)xi ], and the interval-reliability RS

of the system made of n such subsystems in series is [28],
[31], [32], [54]–[56]:

RS(x) = [RSL(x), RS R(x)] =
n∏

i=1

[Ri L (x), Ri R(x)] (2)

To maximize the interval system reliability RS and minimize
the interval system cost CS simultaneously, under the con-
straints g, the mathematical formulation is written as follows:

max RS

minCS

s.t . gk(x) ≤ 0, k = 1, 2, . . . , ng

xi ∈ Z+, i = 1, 2, . . . , n (3)

where ng represents the number of constrained functions.

IV. PROPOSED APPROACH

This paper proposes a novel method based on IP-MOEA and
the interval crowding angle, here named as IP-ICA-MOEA.
The pseudo-code of the proposed algorithm is given in Algo-
rithm 1. It shares a common framework that is employed
in many evolutionary algorithms, whether single objective or
multiple objectives, deterministic values or interval values.
The originalities introduced in this paper are indicated in
italics in Algorithm 1. At first, a population P with size N ,
is initialized randomly in the decision space �. In what
follows, the offspring population is generated by traditional
genetic operators, i.e., crossover and mutation. In this paper,
an elite selection for mutation is proposed to generate the
offsprings with improved convergence and wider distribution.
Since the size of population is fixed, N solutions are selected
from S according to the rank obtained by IP-based non-
dominated sorting [38] and crowding distance calculated by
interval angle, where S is the union set of P and Q. The
interval crowding angle is designed in this study specifically
for the interval MOEA. The whole procedure repeats until
the termination criterion is met, for example, the number of
generations G reaches the maximum value Gmax .

A. Interval Crowding Angle

As mentioned in Section II, the motivation of this study is
to develop a novel crowding distance to reduce the calculation
time and at the same time improve the calculation accuracy.
For this purpose, an interval crowding angle is proposed in
this paper for the interval MOEA, denoted as ICA, which
can better estimate the diversity degree of the obtained solu-
tions in the objective space. Before getting into ICA, the
traditional calculation of the crowding angle for non-interval
(i.e., deterministic) values is presented as follows. At first,
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Fig. 2. Three cases of crowding angle: (a) The traditional crowding angle; (b) The interval crowding angle; (c) The interval crowding angle with new
reference coordinate xr .

Algorithm 1 IP-ICA-MOEA
1: Initialization population P;
2: G = 1;
3: while G ≤ Gmax do
4: Generate the offspring Q according to crossover, and

eli te mutation;
5: S = P ∪ Q;
6: Sort S according to IP-based non-dominated sorting and

interval crowding angle;
7: Select the new P from S, i.e., P = S[1, . . . , N];
8: G + +;
9: end while

10: return P .

the normalization procedure is performed on the deterministic
fitness values f (xi) of the i th solution xi ,

f �(xi) = f (xi) − min( f (xi))

max( f (xi)) − min( f (xi))
(4)

As shown in many works [48], [51], the traditional crowding
angle is defined as the angle between two adjacent vectors,
denoted as α(xi , x j), using the following equation:

α(xi , x j ) = arccos| f �(xi) · f �(x j)

� f �(xi)�2 × � f �(x j)�2
| (5)

where f �(xi)· f �(x j) returns the inner product between the two
normalized vectors, and � f �(xi)�2 is the norm of the vector
of xi , calculated as:

� f �(xi)�2 =
√√√√ M∑

m=1

f �
m(xi)2 (6)

Fig. 2(a) depicts the crowding angle between x2 and x3.
However, this is not applicable for the interval MOEA because
it considers only the angle between the midpoints, ignoring
the interval distance. Therefore, to tackle this issue, this
paper defines the crowding angle for interval MOEA with the
following procedure. As before, the calculations are carried

out in the normalized objective space and the normalization
equation is given as:

f �(xi , c) = f (xi , c) − min( f (xi , c))

max( f (xi , c)) − min( f (xi , c))
(7)

Since a bi-objective interval optimization problem is consid-
ered, we set the point x L

i = [min( f �
1(xi , c)), max( f �

2(xi , c)] as
the left point of xi , and x R

i = [max( f �
1(xi , c)), min( f �

2(xi , c)]
as its right point. Thus, the interval angle of f �(xi , c) is given
as α(x L

i , x R
i ), which can be computed via (5). Taking x2 in

Fig. 2(b) as an example, x L
2 is its left point, x R

2 is its right
point, and α(x L

2 , x R
2 ) is its interval angle. It is obvious from

the figure that the interval angle depicts the interval range of
the individual. On this basis, the interval crowding angle can
be defined as follows.

αI (xi , x j) = α(x M
i , x M

j )

α(x L
i , x R

i ) + α(x L
j , x R

j )
(8)

where x M
i denotes the mid-point of x, given by:

x M
i = [min( f �

1(xi , c)) + max( f �
1(xi , c))

2
,

min( f �
2(xi , c)) + max( f �

2(xi , c))

2
] (9)

Using αI , not only the angle between the mid-points is con-
sidered, but also the interval angle ranges of both individuals
are taken into account. However, carrying out some pre-
experiments, the results are not satisfactory. As shown in
Fig. 2(c), it seems that x1 and x6 should have the same range
of interval angle. If taking (0,0) as the reference coordinate,
αI (x L

1 , x R
1 ) is significantly less than αI (x L

6 , x R
6 ) using (8),

which is not consistent with the actual situation. To solve
this issue, this paper selects a new reference coordinate,
denoted as xr . Thus, the interval angle of xi is computed as
α(x L

i − xr , x R
i − xr ), the angle between xi and x j is given

as α(x M
i − xr , x M

j − xr ), and the final calculation of ICA is
further modified as (10), with respect to the reference point
xr . Comparing (8) and (10), the former is a specific form
of the latter when xr = [0, 0]. Hence, the selection of xr is
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rather important for the performance of ICA, which is further
discussed in the experiment section.

αI (xi , x j) = α(x M
i − xr , x M

j − xr )

α(x L
i − xr , x R

i − xr ) + α(x L
j − xr , x R

j − xr )

(10)

As mentioned in Section II, the angle-based technique reflects
distribution of solutions. To be specific, the major benefits of
the proposed ICA are described as follows:

1) The proposed ICA is especially designed for the interval
MOEAs, considering not only the angle between two
compared individuals but also the angle range of the
interval values;

2) Since it is difficult to sort the population based on two
distances obtained by the existing methods [46], non-
dominated sorting is performed to sort the population,
with extra computational cost. Only one crowding dis-
tance is achieved by this approach, greatly reducing
the computation time. This advantage is verified by the
analysis of the T metric in the experiment section;

3) The proposed ICA is very competitive compared with
other existing methods to estimate the distribution of
solutions, which is also demonstrated in the experiment
section.

B. Elite Selection for Mutation

Considering the mutation operator, the whole population
is selected in the original IP-MOEA. However, it is not
necessary to keep the individuals with bad convergence and
distribution in the population. Hence, this paper chooses the
elite solutions (the top e × N individuals) for mutation,
given by the population sorted according to the rank obtained
by IP-based non-dominated sorting and interval crowding
angle, where e represents the rate of elite selection. The most
significant benefit of this is that the potential solution with
good convergence and wide distribution has more chance to
retain the population and generate improved offsprings. The
value of e is further discussed in the experimental section for
showing its effectiveness.

C. Constraint Handling

For guiding the search toward feasible regions and taking
the constraints into consideration, it is common to use a
penalty function, referring to [2], [57], [58]. On the basis
of (1), the problem is converted to an unconstrained problem
with the penalty-guided constraint handling technique:

max f (x, c) + νg g(x) + νhh(x) (11)

where νg and νh are penalty coefficients.

D. Knee Interval Analysis

Applying the proposed algorithm, a set of Pareto solutions
is obtained for DMs to choose. However, if no preference
is provided, knee point analysis is presented to help DMs to
select the most promising solution among the Pareto optimal
front for precise solutions. The knee point refers to the point

Fig. 3. The knee interval analysis of the multi-objective interval optimization
problem.

with the maximum marginal rates of return, meaning that
there is a small improvement in one objective, accompanied
by severe degradation of at least one other objective [59].
As proved by [60], the knee point has the best hypervolume
metric among all Pareto solutions. Different from the current
researches concentrating on the precise problems, this paper
tries to find the knee point among interval solutions, named
knee interval. First, knee points are calculated for lower points
and upper points, respectively. Since there are many definitions
of this point, this paper refers to the definition of [59]–[61].
The mathematical formula of straight line l is as follows:

ax + by + c = 0 (12)

The point k with the coordinate (xk, yk), so the distance of the
point k to the line l is as follows:

d(k, l) = |axk + byk + c|√
a2 + b2

(13)

Then, imprecision is used as a second comparison criterion
when the distances stay incomparable. For the interval opti-
mization problem, the solution with the least imprecision is the
most promising one. Take Fig. 3 as an example, x3 has the
largest distance to l1 and x2 has the largest distance to l2. As a
consequence, x3 is selected as the optimal solution for DMs
with less imprecision. In the proposed method, the solution
with larger hypervolume value and less imprecision is the knee
interval, more details about hypervolume and imprecision can
refer to Section V. B.

E. Computational Complexity Analysis

The complexity of the proposed algorithm IP-ICA-MOEA
is compared with that of the original algorithm IP-MOEA
for each generation. Since both of them adopt the same
non-dominance-sorting method, the computation complexity
is O(M N2) in the worst cases [62], where M is the number
of objectives, and N is the population size. Although IP-ICA-
MOEA and IP-MOEA utilize different estimation methods
of interval crowding distance (angle-based and hypervolume-
based, respectively), the main part is sorting in the ascending
order according to the objective values and the complexity
is O(M NlogN). The significant difference between them is
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TABLE I

DATA FOR EXAMPLE 1

TABLE II

DATA FOR AVAILABLE COMPONENT TYPES FOR EXAMPLE 2

the selection guided by the crowding distance. Because there
are two distances obtained by IP-MOEA, random sorting can-
not guarantee the effectiveness. The non-dominance-sorting
method is used to compare the distances and the complexity
is O(N2). Instead, only one distance is obtained by ICA in
IP-ICA-MOEA. Hence, the complexity reduces to O(NlogN)
in the worst cases.

V. EXPERIMENTAL RESULTS

This section is devoted to the experimental study for analyz-
ing the performance of the proposed IP-ICA-MOEA including
four groups of analysis. The first group aims to tune the
parameters, analyzing the influence of different parameter
values. The aim of the second group is to investigate the
effects of the originalities proposed in this paper. In the
third group, a comprehensive comparison between IP-ICA-
MOEA and other four state-of-the-art methods is conducted.
The analysis of knee interval is presented in the last group.
All algorithms are run on: Intel (R) Core(TM) i5-6500 CPU,
3.20 GHz, 8 GB RAM, Windows 7, and MATLAB R2014a.

A. Reliability Optimization Problems

Two classical test problems taken from [28] are chosen for
our empirical studies with interval-valued data of components
(Table I and II).

Example 1: The first example considers a typical series-
parallel system taken from [31], consisting of five subsystems
in series. For each subsystem, the type of the components
in parallel is identical. The structure diagram of the referred
system is provided as Fig. 4(a).

max RS = [RSL , RS R] =
5∏

i=1

[1 − [1 − ri R, 1 − ri L ]xi ]

Fig. 4. The structure diagram of the referred systems. (a) Example 1;
(b) Example 2.

minCS = [CSL , CS R] =
5∑

i=1

[ci L , ci R][xi + ex p(
xi

4
)]

s.t . g1(x) =
5∑

i=1

pi x
2
i − b1 ≤ 0

g2(x) =
5∑

i=1

wi [xi + ex p(
xi

4
)] − b2 ≤ 0 (14)

where xi is the decision variable representing the number of
components in subsystem i , [RSL, RS R] and [CSL , CS R] are
the interval form of the system reliability and cost respec-
tively, [ri L , ri R] and [ci L , ci R] are the interval reliability and
cost of component i respectively. The data for Example 1,
including the values of ri , ci , pi , wi , b1 and b2, is listed
in Table I. Besides, g1 is the limitation on the sum of the
subsystems’ products by weight and square of the volume
and g2 denotes the constraint for the weight of the system.
By applying the penalty-guided constraint handling technique,
the mathematical model is converted into the unconstrained
one, by maximizing Rs −max(0, g1)−max(0, g2) and −Cs −
max(0, g1) − max(0, g2).

Example 2: A system with three subsystems in series and
an option of different component types in each subsystem is
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considered in the second example, as shown in Fig. 4(b).

max RS = [RSL , RS R] =
3∏

i=1

[1 −
mi∏
j=1

[1 − ri j R, 1 − ri j L ]xi ]

minCS = [CSL , CS R] =
3∑

i=1

mi∏
j=1

[Ci j L, Ci j R]xi j

s.t . 1 ≤
mi∏
j=1

xi j ≤ nmax,i (15)

where xi j is the decision variable denoting the number of
j th-type component used in subsystem i , [ri j L, ri j R] and
[ci j L, ci j R] are the interval reliability and cost of j th com-
ponent in i th subsystem respectively, mi is the number of
available component types in the i th subsystem, and nmax,i

denotes the maximum number of components selected in
subsystem i , set to 8 as suggested in [28]. More details of
the available component types are presented in Table II.

B. Performance Indicators

The following four indicators are employed for comparisons
from different views.

1) The number of feasible solutions in the Pareto set (N F
metric, for short). This indicator is suggested in this
paper to compare the number of non-repeating solutions
in the Pareto set. As known, there may be duplicate
solutions in the Pareto set. Hence, the larger the value
of the N F metric, the better the algorithm;

2) Midpoint hypervolume (m H metric, for short). Hyper-
volume is a comprehensive metric considering both
convergence and spread for MOEA [63]. For the interval
MOEA, midpoint hypervolume was introduced to reflect
the approximation performance of the nondominated set
in [38]. A greater value of m H indicates both a better
convergence and a good distribution of the solutions.
The hypervolume needs a reference point for closing
the volume, e.g. multiplying the worst objective values
by 20% [64]. In our case, this reference point is set to
[-0.2, -0.2];

3) Imprecision (I metric, for short). In order to evaluate
the average uncertainty, the I metric is calculated by
the product of the interval widths for all nondominated
solutions, as shown in [38];

4) CPU time (T metric, for short). The smaller the T value,
the higher the computational efficiency of the algorithm.

C. Parameter Calibration

Before getting started to parameter calibration, the size
of population n pop and the number of maximum allowable
iterations per run Gmax are declared as suggested in [28]:
n pop = 30 and Gmax = 50 for Example 1, and n pop = 50
and Gmax = 100 for Example 2. Following that, two genetic
operators (crossover and mutation) are employed to generate
offsprings for the considered problem. Since the number of
the components is the decision variable, the genetic operators
should be discretized as follows:

[y1,1, y1,2, . . . , y1,v ] = β · [x1,1, x1,2, . . . , x1,v ]
+ (1 − β) · [x2,1, x2,2, . . . , x2,v ]

[y2,1, y2,2, . . . , y2,v ] = (1 − β) · [x1,1, x1,2, . . . , x1,v ]
+ β · [x2,1, x2,2, . . . , x2,v ] (16)

where [x1,1, x1,2, . . . , x1,v ] and [x2,1, x2,2, . . . , x2,v ] are
two parents, v is the dimension of the solutions, and
[y1,1, y1,2, . . . , y1,v ] and [y2,1, y2,2, . . . , y2,v ] are two
offsprings generated by the crossover operator. Besides,
β is a binary vector which is generated randomly. Because
the occurrence probability of crossover is typically much
larger than that of mutation [65], the probability of crossover
is set to 0.9 and the probability of mutation is set to 0.1.
Considering the discrete mutation, the value of the mutation
index is first set as �0.02 × v	, and the mutation step
is 
0.7 × randn�, where randn conforms to a normal
distribution with mean 0 and variance 1, �·	 and 
·� represent
the ceil and floor functions, respectively.

For demonstrating the influence of parameters, parameter
tuning is performed in this section with 30 independent runs.
As stated in Section IV, the proposed IP-ICA-MOEA contains
the interval crowding angle and elite selection for mutation
compared to the original IP-MOEA. Therefore, the following
key control factors are considered, i.e., angle reference coor-
dinate xr and elite rate for mutation e. The values of each
parameter are set according to some preliminary experiments.
For xr , all objective values are normalized to [0, 1]. Hence
the lowest objective coordinated is [0, 0]. Similar to the
approach of deciding the reference point of m H , the rest
available reference coordinate is set to [-0.5, -0.5] and [-1, -1].
Meanwhile, the elite rate for mutation e is tested on five
levels {0.2, 0.4, 0.6, 0.8, 1.0}, where 1.0 means selecting the
whole population for mutation whereas 0.2 denotes that only
the top part of individuals are selected for mutation. The
boxplots of the four metrics (N F , m H , I , and T ) obtained
with different parameter values are shown as in Fig. 5 and 6,
where the central mark of the box indicates the median, and the
bottom and top edges indicate the 25th and 75th percentiles,
respectively.

1) Parameter calibration of xr: Fig. 5 depicts the boxplots of
the four metrics obtained with different xr values in the two
examples. Considering the N F metric, the number of non-
repeating individuals is very close. For m H , it is obvious
that [−0.5,−0.5] yields a larger median and bottom edge
than the other methods, and the top edges of the three
values are the same, which indicates the performance of
[−0.5,−0.5] in terms of convergence and diversity. Fig. 5(c)
shows the median value obtained by [−0.5,−0.5] is the
lowest on Example 1 among all values, and lower than
[−0,−0] on Example 2. Similarly, [−0.5,−0.5] yields the
lower median value than [−0,−0] on Example 1 and the
lowest median value on Example 2 among all values, as shown
in Fig. 5(d). These results show that [−0.5,−0.5] is better
than [−0,−0] and competitive to [−1,−1] in terms of I
and T , respectively. To sum up, the reference point [0, 0]
obtains the worst results, whereas [−0.5, −0.5] achieves better
results (m H , I on Example 1 and N F , m H , T on Example 2)
in 5 out of 8 cases. These results are consistent with the
analysis from Fig. 2. Regarding to the computation of αI , (8)
is a special case of (10) when xr = [−0,−0]. However,
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Fig. 5. Boxplots of parameter xr over 30 times: (a) Boxplots of N F on Example 1 and Example 2; (b) Boxplots of m H on Example 1 and Example 2;
(c) Boxplots of I on Example 1 and Example 2; (d) Boxplots of T on Example 1 and Example 2. (1: xr = [0, 0], 2: xr = [−0.5, −0.5], 3: xr = [−1.0, −1.0].)

Fig. 6. Boxplots of parameter e over 30 times: (a) Boxplots of N F on Example 1 and Example 2; (b) Boxplots of m H on Example 1 and Example 2;
(c) Boxplots of I on Example 1 and Example 2; (d) Boxplots of T on Example 1 and Example 2. (1: e = 0.2, 2: e = 0.4, 3: e = 0.6, 4: e = 0.8, 5: e = 1.0.)

Fig. 7. Boxplots of effectiveness analysis of CD over 30 times: (a) Boxplots of N F on Example 1 and Example 2; (b) Boxplots of m H on Example 1 and
Example 2; (c) Boxplots of I on Example 1 and Example 2; (d) Boxplots of T on Example 1 and Example 2. (Combination 1: CD with MID, Combination 2: CD
with NDS, Combination 3: CD with RS, Combination 4: HVCD with MID, Combination 5: HVCD with NDS, Combination 6:HVCD with RS, Combination 7:
CA with MID, Combination 8: CA with NDS, Combination 9: CA with RS, and Combination 10: ICA).

if [−0,−0] is chosen as the reference point, the interval
angle range is not correct. Hence, the reference point is set to
[−0.5,−0.5].

2) Parameter calibration of e: Fig. 6 depicts the boxplots
of the four metrics obtained by different values of e in the
two examples. From Fig. 6 (b, the median value of the m H
achieved by 0.2 is the largest and the median value of I
obtained by 0.2 is the lowest on both examples, which demon-
strates the effectiveness of e = 0.2 in terms of convergence,
diversity, and imprecision. Regarding the rest of the metrics,
the results obtained by 0.2 have a competitive performance as
well. As a consequence, 6 out of 8 median values (except N F
on Example 1 and T on Example 2) are the best among all
considered values. Therefore, the factor e is set to 0.2 due to
its effectiveness.

D. Effectiveness Analysis

The proposed IP-ICA-MOEA contains two main operators:
(1) interval crowding angle; (2) elite mutation. To verify
the performance of the proposed ICA, it is compared with

the original crowding distance (CD), the Hypervolume-based
crowding distance (HVCD), and the crowding angle (CA),
as detailed in Section II. For IMOPs, there may be a case
in which it is impossible to compare two distances. Hence,
the following strategies, i.e, converting the two distances into
one distance by calculating the distance between mid-points
(MID), non-dominated sorting (NDS), and randomly sorting
(RS), are combined in the algorithm to demonstrate the effects
on the final results. To be specific, the first strategy differs
from the latter two in that the former calculates only one
distance, whereas the latter two calculate two distances and
differentiate between individuals by means of sorting. To make
a fair comparison, each combination is performed 30 times
independently. All parameters for each improvement are set
to the same expression as Section V. C. The results depicted
as boxplots obtained by different CDs are given in Fig. 7, and
the effectiveness analysis of CD is as follows:

1) From the perspective of N F metric, Combinations 1-3
yield the worst median results on both cases, which indi-
cates that no matter the way of employing MID, NDS,
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Fig. 8. Boxplots of comparison with other approaches over 30 times: (a) Boxplots of N F on Example 1 and Example 2; (b) Boxplots of m H on Example 1 and
Example 2; (c) Boxplots of I on Example 1 and Example 2; (d) Boxplots of T on Example 1 and Example 2. (Algorithm 1: IP-ICA-MOEA, Algorithm 2:
IP-MOEA, Algorithm 3: IC-MOEA, Algorithm 4: MI-NOEA, Algorithm 5: Mid-NSGAII).

Fig. 9. The distribution of solutions obtained by all compared algorithms on Example 1: (a) IP-ICA-MOEA; (b) IP-MOEA; (c) IC-MOEA; (d) MI-MOEA;
(e) Mid-NSGAII.

Fig. 10. The distribution of solutions obtained by all compared algorithms on Example 2: (a) IP-ICA-MOEA; (b) IP-MOEA; (c) IC-MOEA; (d) MI-MOEA;
(e) Mid-NSGAII.

Fig. 11. The distribution of solutions recorded by IP-MOPSO on Example 1.

and RS, the traditional CD generates more repeating
individuals than other CDs. On Example 1, the median
of N F obtained by Combination 10 is higher than that
from other combinations, and on Example 2, it is equal
to that obtained by Combinations 4-9. Hence, it can
be concluded that solutions obtained by ICA are rarely
duplicated;

2) m H and I are important metrics to evaluate conver-
gence, diversity, and imprecision. As shown from
Fig. 7 (b), ICA yields the best median results on
all cases, except Combination 1 on Example 1 and
Combinations 3 and 9 on Example 2. Combina-
tion 3 is CD with RS, Combination 9 is CA with
RS, both of them sort the non-comparable individuals
randomly. It is also obvious that ICA has a good
performance on Example 2 (7 out of 9 results) from
Fig. 7(c). Above all, ICA is competitive among all
combinations;

3) In terms of computational efficiency, the intervals
obtained by ICA are below the others, which verifies
that ICA is significantly better than other combinations
on both examples. Among all combinations, Combi-
nations 2, 5, and 8 need more computational time to
perform non-dominated sorting. The mean values of
T obtained by the different combinations are listed in
Table III, where the improvement is calculated by Ti −T10

Ti
,

i ∈ [1, 9]. As been from the table, ICA reduces the
average computing time by at least 21.27% and 1.89%
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TABLE III

MEAN VALUES OF T OBTAINED BY DIFFERENT COMBINATIONS

on the two examples, compared to the other methods,
respectively.

Hence, the proposed ICA is capable of obtaining a Pareto
optimal set with good performance, generating less non-
repeating individuals, faster convergence, better diversity, less
imprecision, and reduced running time. Furthermore, the effec-
tiveness analysis of elite mutation can be seen from Fig. 6,
where the factor e represents the elite rate for mutation. The
case (e = 1.0) indicates that elite mutation is not performed
and the case (e = 0.2) obtains the best results as found from
the analysis of parameter calibration. Thus, the improvement
of elite mutation is also effective for the proposed algorithm.

E. Comparison With Other Approaches

For the purpose of performance comparison, the proposed
algorithm has been compared with several state-of-the-art
variants of IP-MOEA as well. These well-known algorithms
are as follows: the basic IP-MOEA [38], credibility-based
IC-MOEA [40], MI-MOEA [43] with possibility degree, Mid-
NSGAII with midpoints by transforming the interval number
to a deterministic one [35]. The compared algorithms are
strictly re-implemented with the same programming in the
same environment and parameters. For a fair comparison, each
algorithm is run 30 times for each instance. The comparisons
of these well-known approaches are given in Fig. 8.

It is obvious from Fig. 8(a) that the medium values of
the N F metric obtained by the proposed IP-ICA-MOEA are
good on both Examples. Especially for Example 2, there
are no repeating individuals in the Pareto Front achieved by
IP-ICA-MOEA, which verifies the effectiveness of finding
non-repeating individuals. Considering m H metric, IP-ICA-
MOEA yields the best median results on both Examples.
Besides, the notches of IP-ICA-MOEA are not overlapped
with all considered algorithms on Example 2, which ver-
ifies that IP-ICA-MOEA is significantly better than other
approaches on Example 2 in terms of convergence and distrib-
ution. It is obvious from Fig. 8(c) that IP-ICA-MOEA obtains
the best median results on Example 1, which illustrates its
competitiveness on generating solutions with less imprecision.

Fig. 12. The knee interval analysis of the referred systems. (a) Example 1;
(b) Example 2.

From the perspective of running time T , Mid-NSGAII replaces
the interval numbers by the mid-points without the dominant
calculation of interval values: hence, it takes the least time
among all algorithms. Compared with other MOEAs consid-
ering the interval dominance relation, the proposed IP-ICA-
MOEA spends the least computational time. To sum up, the
experiment results demonstrate that the proposed algorithm is
powerful and more efficient than other state-of-the-arts on this
sort of problems.

Furthermore, to visually understand the distribution of the
obtained solutions, this paper plots the comparisons of results
obtained by all algorithms in Fig. 9 and Fig. 10. Besides,
the recorded results obtained by IP-MOPSO are also shown
in Fig. 11 for Example 1. Since 30 independent runs are
performed, we choose the population where m H is closest to
its mean for a fair comparison. As clearly seen from Fig. 9 and
Fig. 11, the lower reliabilties of IP-MOEA and IC-MOEA are
larger than 0.3, and the upper costs are more than 180, indicat-
ing the tendency to find the solutions with high reliability and
cost. Among all algorithms, N F obtained by IP-MOPSO is
the lowest, which shows the effectiveness of the framework of
GA. The significant superiority of IP-ICA-MOEA can be seen
from Fig. 10: only the interval reliability of IP-ICA-MOEA is
lower than 0.4, and its solution is more widely and uniformly
distributed than that obtained by other algorithms when the
reliability is close to 1, except Mid-NSGAII. However, the
number of non-repeating Pareto solutions obtained by Mid-
NSGAII is the least. Hence, we can conclude that the proposed
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algorithm produces well-distributed Pareto fronts due to the
superiority of the angled-based mechanism.

F. Knee Interval Analysis

Without the extra knowledge of preferences on uncertain-
ties, a novel knee interval analysis is proposed in this paper
to help DMs to select the best solution among a set of
Pareto Front, as given in Fig 12. As from Fig 12(a), the
solution [2, 2, 2, 2, 2] with interval reliability [0.7336, 0.7819]
and cost [83.9206, 135.0027] is the knee interval, which
has the largest H V among all solutions for Example 1.
As from Fig 12(b), there are two knee intervals: the solu-
tion [0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 1, 3] with interval relia-
bility [0.9599, 0.9687] and cost [14, 34],and the solution
[0, 0, 0, 2, 2, 0, 1, 2, 0, 0, 0, 0, 1, 3] with interval reliability
[0.9684, 0.9759] and cost [15, 37]. The Im of the first solution
is 0.1413 and that of the second one is 0.1520. Hence, the
first solution is the knee interval for Example 2, which has
the larger H V and less Im.

VI. CONCLUSION

An interval bi-objective redundancy allocation problem
is formulated, aiming at minimizing the system cost and
maximizing the system reliability, under several pre-defined
constraints. To our best knowledge, it is the first time that
an angle-based technique is proposed for tackling the issue of
estimating the interval crowding distance. As verified in exper-
iments, the proposed approach describes the distribution of
population effectively. Besides, guided by this mechanism, the
complexity of selection is reduced to O(NlogN) from O(N2)
in the worst cases. As a consequence, ICA can decrease the
average running time by at least 21.27% and 1.89% on both
cases compared to the other methods, respectively. Then, this
paper employs the elite selection for mutation and penalty
guided constraint handling for obtaining an improved popula-
tion and dealing with the constraints, respectively. Experiment
results demonstrate that the proposed IP-ICA-MOEA achieves
significantly better performance compared with other state-of-
the-art algorithms. Furthermore, this paper selects the optimal
solution among a set of Pareto solutions to help DMs make a
decision, using the proposed knee interval calculation.

Future work, with both practical and theoretical perspec-
tives, can be summarized as the following four directions:

1) This study focuses on minimizing system cost and max-
imizing system reliability, and the number of objective
functions is set to 2. The feasibility and effectiveness
of ICA is not verified when the number of objective
functions increases (M ≥ 3). Hence, we will extend
this direction in the future for the calculation of angles
between two individuals in high dimensional cases;

2) The experimental examples are all in the series-parallel
configurations. Since the approach is applicable for any
type of systems, extensive experiments from different
types of systems will be carried out via the proposed
algorithm. Along this direction, practical systems will be
considered, such as multi-state, multi-level, redundancy
strategy, and etc;

3) As known from the concept of interval optimization,
the constraints are imprecise in some situations. The
interval constraints should be considered in future work.
It is worth noting that [51] has proposed the angle-
based algorithm with infeasibility information, maybe
it is feasible to design an interval angle for constrainted
problems;

4) We believe IC-ICA-MOEA can be applied (embedded)
into all MOEAs to estimate the interval crowding dis-
tance. Furthermore, we notice that lots of benchmarks
have been presented in [38]: more experiments should
be performed to verify performance.
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