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On crack tip localisation in quasi-statically loaded, adhesively bonded double 
cantilever beam specimens by acoustic emission 

R. A. A. Lima, M. Drobiazko, A. Bernasconi, M. Carboni1  

Dept. Mechanical Engineering, Politecnico di Milano, Milan, Italy 

 

The feasibility of acoustic emission structural health monitoring to detect, localise and 

monitor crack propagation during quasi-static mode I loading of adhesively bonded joints 

was studied. Unsupervised artificial intelligence pattern recognition methods (Self-

Organised maps and K-means) were used to classify acoustic emission raw data as either 

background noise or relevant information. After that, three different time-of-arrival picking 

algorithms were considered and implemented to determine the acoustic emission source’s 

location, and their accuracy was discussed. Localised acoustic emission events were 

divided into well-defined groups with different energy levels and compared to Digital 

Image Correlation and visual evaluation results. It was possible to conclude that the highest 

energetic group allows the assessment of the onset of plasticisation ahead of the crack-tip 

within the studied adhesive, bringing novel standpoints to the use of acoustic emission as 

a structural health monitoring method for adhesively bonded joints. 

Keywords: adhesively bonded joints, crack-tip location, acoustic emission, digital image 

correlation.  

  

                                                           

1 Corresponding author: Tel.: +39-02-23998253, Fax: +39-02-23998202, e-mail: michele.carboni@polimi.it 
(M. Carboni). 



1 

 

1. INTRODUCTION 

The use of adhesive joints in the aerospace, automotive, and naval industries has increased 

in recent years due to their main advantages: low weight, uniform stress distribution, multi-

materials joining, and higher design flexibility compared with traditional mechanical 

joining solutions [1], [2]. Nevertheless, adhesively bonded joints are vulnerable to 

environmental and ageing actions, being difficult to ensure their safety and reliability 

during their in-service life [3]. 

To guarantee the use of adhesive joints in primary structures and avoid premature failures, 

Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) methods have 

been developed and are commonly applied [4], [5]. The main advantage of SHM methods, 

compared to NDT techniques, is the possibility of real-time or on-demand monitoring of 

in-service structures and of identifying, locating, and quantifying the damaged zones in 

larger assembled structures [6], [7]. In addition, an operational history of the monitored 

systems is created, allowing a maintenance plan based on the structures’ actual state instead 

of predefined service interruptions, and, consequently, a reduction of their maintenance 

costs can be observed [8], [9]. 

Today, the main physical phenomena characterising the available SHM methods and 

approaches are [10], [11]:  

• elastic waves: this method actively produces ultrasonic elastic waves, often 

ultrasonic guided waves, whose unexpected propagating behaviour through a 

component might indicate whether a reflecting surface or an internal damage are 

present. Elastic waves’ speed variations can suggest if a debonded area is present 

in adhesively bonded joints, for example [12]–[14]; 

• modal data: this is an SHM method based on the identification of changes in the 

modal frequencies or other non-linear phenomena, such as self-modulation or 

hysteresis and, also, reduction of structural stiffness, when a component presents 

damage [15], [16];  
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• static parameters: this method is based on assessing changes in the strain or 

displacement fields during damage development in the monitored components, 

using punctual (e.g. strain gauges and optical fibres with Fibre-Bragg Gratings) or 

distributed (e.g. conventional optical fibres using Optical Backscatter 

Reflectometry method) sensors [17]–[21]. This method can identify the crack-tip 

position within brittle adhesives and the onset of plasticisation in some toughened 

adhesives [22]; 

• electro-mechanical impedance: this method is based on the changes in the 

component’s total electro-mechanical impedance due to defects and damage. 

Carbon nanotubes, for example, are being massively implemented as damage 

sensors of adhesively bonded joints and composite materials since their electrical 

resistance variates under mechanical stresses and during damage development [6], 

[23]; 

• acoustic emission (AE): this passive method assesses ultrasonic elastic waves 

produced when the structure’s strain energy is spontaneously released due to 

irreversible straining or damage [24][25]. This energy-releasing phenomenon is 

similar to a small-scale earthquake within the material, where elastic waves are 

produced suddenly after deformation or damage initiation and propagation. Once 

these waves are assessed by using specific sensors (i.e. piezoelectric and wide-band 

transducers), it is possible to identify the wave’s features (energy, counts, duration, 

amplitude, frequency and others) and to correlate them with the damage 

mechanisms happening in the monitored material [5], [25], [34], [26]–[33].  

AE appears to be a promising method for SHM of adhesively bonded joints. Its main 

advantages include identifying and localising different damage mechanisms in the 

substrates (e.g., in the case of composite materials, pull-out, matrix-cracking, delamination 

and ply-fragmentation) [13]–[21] and within the adhesive layer by triangulation of the AE 

source’s position, with great accuracy, from damage initiation to final failure, as described 

in the literature review by M. Saeedifar and D. Zarouchas [35]. In addition, the adopted 

sensors are often not embedded into the structure and are less bulky, so being easily 

replaced in case of operational issues. 
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Since the AE method is very sensitive and, consequently, allows assessing a massive 

amount of data, an efficient post-processing method based on big-data analytics is often 

necessary to divide and separate the AE signals related to background noise from those 

related to damage mechanisms. Generally, time-domain, frequency-domain and time-

frequency processing tools are widely used in the literature to analyse AE signal’s features 

[24], [26], [28], [36]–[38]. However, recently, supervised and unsupervised Artificial 

Neural Networks (ANN) as Self-Organising Maps (SOM), Principal Component Analysis 

(PCA) and K-means are becoming popular approaches to classify AE signals and to 

identify damage mechanisms, for example in composite materials [25], [33], [39]–[43], 

due to their automatisation and the possibility to analyse simultaneously different features 

of a big data, increasing the repeatability of the results. 

Few studies [44]–[52] are dedicated to using AE to monitor crack propagation in 

adhesively bonded joints and to correlate the waveform’s features with the damage 

mechanisms within the bondline (cohesive or adhesive failures). For example, S. Teixeira 

de Freitas et al. [16] distinguished cohesive from adhesive failures in adhesively bonded 

joints under quasi-static mode I loading conditions by different energy levels of the AE 

hits. Furthermore, the most energetic AE energy groups were correlated to cohesive failures 

since its fracture process is mainly controlled by plastic deformations ahead of the crack-

tip.  

In addition, the comparison between AE responses of different adhesive’s types (ductile 

and brittle) has not been studied extensively enough. J. Manterola et al. [50] presented one 

of the few works investigating this influence. They observed that, for the performed quasi-

static mode I tests, AE signals corresponded to the sample’s maximum normal stress, this 

region for the ductile adhesive did not represent the crack tip since its fracture process zone 

presented a significant size. On the other hand, the position coincided with the crack-tip 

position determined by visual inspection for the brittle adhesive.  

Nevertheless, to the best of the author’s knowledge, it is still difficult to establish whether 

the AE events produced within joints bonded with ductile adhesives are only related to the 

samples’ region of maximum normal stress or whether they may also represent the onset 
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of plasticisation or indicate different damage modes (e.g., void coalescence and cavitation). 

Therefore, machine learning algorithms can be a valuable tool to discriminate better the 

AE hits using multivariate (high-dimensional) analysis of different AE features since they 

are interdependent and can be associated with various damage mechanisms [53]. 

So, the present research work aims to localise the crack-tip, by AE monitoring, within 

Double Cantilever Beam (DCB) joints bonded with a ductile adhesive. Specifically, a 

quasi-static mode I loading condition, realised by the DCB configuration, was selected 

since it is a well-known scenario, and high-strength steel was chosen as substrates’ material 

to avoid competition between adhesive/adherent failure mechanisms that could complicate 

the interpretation of the results. 

A particular focus is also given to the methodological approach to classifying AE raw data 

using a self-organising map and K-means algorithm as a non-supervised ANN and dividing 

them between AE waves related to background noise and damage propagation. Three time-

of-arrival (ToA) picker algorithms (Akaike Information criteria, Threshold Adopted to 

Maximum Amplitude Signal, and Baer and Kradolfer [54], [55]) were analysed and their 

effectiveness to localise sources of acoustic emissions were compared. In addition, visual 

evaluation and Digital Image Correlation (DIC) measurements were also performed to 

support the discussion of the AE results since, combining both methods, it is possible to 

estimate the length of the adhesive’s Fracture Process Zone (FPZ) [22], [56].  

 

2. EXPERIMENTAL 

2.1. Sample’s fabrication 

DCB specimens (290 mm long, 25 mm wide, and 12.5 mm thick) were fabricated using 

high-strength steel DIN 40CrMoMn7, whose mechanical properties can be found in [57]. 

Before bonding, adherents were sandblasted and then cleaned using acetone. The structural 

3M Scotch-WeldTM 9323 B/A adhesive was manually mixed and applied on the substrates. 

An adhesive thickness of 0.3 mm was ensured by adding 2% by weight of glass 
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microspheres with 300 µm of diameter. Finally, a razor blade was used to ensure a sharp 

notch at the beginning of the bondline. 

Specimens were cured in an oven in three steps: a linear temperature ramp from room 

temperature to 65°C for 1.5 hours, two hours of stable hold at 65°C, and a descending 

temperature ramp until the room temperature for 2 hours. Table 1 present the specimens’ 

description and the main adhesive’s properties. Since for the first set of samples, with 82 

mm of the length of starting notch, a smaller region of the bondline was included in the 

DIC region of interest, this study also considered another set of specimens with a shorter 

initial crack length equalling 65 mm. In both cases, an initial cohesive failure was 

introduced. 

 

Table 1: Specimen’s description and adhesives’ main properties. 

Young’s modulus [MPa] 2569 ± 158 

Ultimate stress [MPa] 38.7 ± 0.2 

Length of starting notch (𝒂𝒂𝟎𝟎) [mm] 82 65 

Specimen’s name  S_82_1 

S_82_2 

S_65_1 

S_65_2 

Number of samples 2 2 

 

For the Digital Image Correlation analysis, a fine speckle pattern was painted on the lateral 

surface of the specimens. First, the lateral surface of the sample was covered with a thin 

layer of white water-based painting, then an arbitrary aerosol of black paint was applied. 
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2.2. DCB tests 

An MTS electro-mechanical testing machine with a load cell of a maximum capacity of 

100 kN was used to perform quasi-static DCB tests. The load cell accuracy is 0.5% since 

it is calibrated according to ISO 7500-1 [58] (rated class 0.5). Furthermore, a test speed 

rate of 0.5 mm/min was applied, as recommended by the ISO 25217 [59] standard. In 

addition, load and the machine’s crosshead displacement (δ) were also recorded during the 

whole test, and their curves are drawn in Figure 1. 

 

Figure 1: Representative experimental load versus crosshead displacement curves and 
detail of the fractured surfaces. 

 

As shown in Figure 1, the test is characterised by an increase in the loading until it achieves 

the maximum value, followed by a crack propagation phase where the load decreases until 

final failure. Specimens S-65-1 and S-65-2 present a more rigid behaviour since their initial 

crack length is smaller than S-82-1 and S-82-2. Further discussion about the DCB 

experimental results is addressed in section 4. 

 



7 

 

2.2.1. Visual crack length estimation and DIC measurement set-up 

The visual crack length estimation was performed using the same acquisition system of the 

DIC (GOM – 3D Aramis adjustable system), using a 2 Hz acquisition frequency. The DIC 

measurement system includes two adjustable cameras with 12 Megapixels of resolution, 

dual-LED lights (10°), Titanar B 75 mm lens type with an aperture of 22 mm, and stereo-

angle equals to 25°. The chosen hardware system presents a field of view equal to 110 mm 

and an image scale of 39 pixels/mm. 

Before the tests, the DIC system was calibrated using a CP 40/MV panel set at one specific 

stand-off distance of 697 mm (recommended for the selected measuring volume – 100 x 

80 x 80 mm3) to adjust the temperature and image distortions. After that, a calibration 

deviation of around 0.04 pixels was found.  

The DIC acquisition system could synchronise each frame with the corresponding load and 

displacement values recovered from the testing machine. The post-processing software 

used was the GOM correlate (version 2018), a subset size of 33 pixel and step sizes of 11 

pixels were defined. 

 

2.2.2. Acoustic emission acquisition set-up 

During quasi-static DCB tests, the complete AE measurement chain was composed of two 

Vallen VS150-M piezoelectric resonant transducers (resonant working frequency in the 

range 100-450 kHz), each equipped with a 34 dB Vallen AEP5 preamplifier and connected 

to an eight-channel Vallen ASMY-6 acquisition unit through low-noise cables. Moreover, 

the rules for acquiring AE events and managing the obtained data were defined using 

Vallen AE-Suite Software R2017.0504.1. 

The OKS-1110 silicone grease was used to couple the sensors on the samples and ensure 

continuity during AE signals transmission between the specimen surface and sensors. In 
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addition, magnetic holders were also applied to maintain the sensors in a fixed position 

during the whole test (Figure 2a).  

Table 2 shows the main AE acquisition parameters used during DCB tests, calibrated based 

on the pencil-lead break (PLB) test (ASTM E976 [60]). This test [61], also called Hsu-

Nielsen test, produced artificial AE sources by breaking a pencil lead (hardness of 2H and 

diameter of 0.3 mm) at an angle of 30° on the sample’s surface. As a result, it was possible 

to analyse the signal attenuation related to the distance of the sensors and determine their 

optimal position, as shown in Figure 2b. Finally, it is worth adding the parametric features 

of the AE transient hits (i.e., amplitude, counts, duration, energy, and rise-time) and their 

full waveforms were recorded during the tests adopting the sampling rates reported in Table 

2. 

 

Table 2: Acoustic emission acquisition parameters. 

Sampling rate for the acquisition of 

AE features  
10 MHz 

Sampling rate for the acquisition of 

AE transient waveforms 
5 MHz 

Amplitude threshold (with respect to 

a reference voltage amplitude of 1 

µV) 

34 dB 

Rearm time 2.5 ms 

Cut-off-frequency (minimum 

frequency of acquisition) 
25 kHz 

Pre-trigger 750 samples 

Post-trigger 750 samples 

Duration discrimination time (time 

window to register each AE signal) 
400 µs 
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Fundamental antisymmetric wave 

(A0) velocity 
3181 m/s 

Digital pass-band filter 25kHz-250kHz 

 

It is worth mentioning that a correct amplitude threshold value is a crucial parameter for 

AE acquisition since it represents the minimum value considered to have the AE events 

recorded. Therefore, a first acquisition was made, without performing the mechanical test 

so to identify the amplitude values of AE events just related to the environmental noise, in 

order to well-define this parameter. As a result, the threshold value of 34 dB was set. 

 

 

(a) 

 

(b) 

Figure 2: (a) Acoustic emission sensors positioned during the DCB tests and (b) scheme 
showing the main distances used to position the sensors. 
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The velocity value, adopted for the research and reported in Table 2, was determined 

considering the sound velocities of symmetric (S0 and S1) and antisymmetric (A0 and A1) 

wave modes, propagating in 12.5 mm thick plates made of the adopted steel grade, and 

their dispersion curves (Figure 3) experimentally derived by a dedicated PLB test. The 

Vallen acquisition system (AMSY-6) and the Vallen Control Panel software (v. 

R2017.0504.1) were used on purpose.  

 

Figure 3: Dispersion curves of high-strength steel DIN 40CrMoMn7 plates - thickness of 
12.5 mm. 

 

The PLB test was performed once the distance between the sensors was defined (as shown 

in Figure 2b). Since the highest peak frequency of AE events acquired during the PLB test 

was found to be equal to 83 kHz and just the fundamental symmetric (S0) and 

antisymmetric (A0) wave modes seem to be present in this region of the dispersion 

diagram, the velocity of both fundamental wave modes was used to localise the PLB 

sources and perform a comparison of the localization performance. 
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To the aim, the Vallen system was applied again through its localisation tool. Such a tool 

simply acquires the times-of-arrival to each sensor of the same AE source and, then, 

triangulates and determines its position considering the distance between the sensors and 

the velocity group of the considered wave. The velocity providing the lowest localization 

error resulted to be the fundamental antisymmetric (A0) one. 

It is also worth anticipating here a feature of the AE events acquired during DCB tests: the 

peak frequency of the events characterized by the highest amplitudes seems to lie between 

90 and 150 kHz (Figure 4) and the A0 group velocity seems to be significantly less 

dispersive in this frequency range (Figure 3) with respect to the symmetric (S0) mode.  

Based on the reported observations, the velocity of the antisymmetric wave mode (A0), 

equal to 3181 m/s (Table 2), was adopted in the following of the research. 

 

Figure 4: Peak frequency of the localised events in the function of their magnitude – 

sample S-81-1. 

 

3. POST-PROCESSING OF ACOUSTIC EMISSION RAW DATA 
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After each DCB test, AE raw data were analysed and post-processed. For the sake of clarity 

and simplicity, this Section is built considering the exemplificative case of specimen S-82-

1. The other specimens were treated in the same way and showed analogous results. 

Figure 5 shows an example of the AE signal’s amplitude responses during the mode I 

fracture propagation test assessed by sensors (channels) 1 and 2; specifically, about 26000 

waveforms were recorded from the test on specimen S-82-1. 

 

 

Figure 5: Amplitude values of acoustic emission raw data during DCB test of sample S-
82-1. 

 

The AE acquisition system is sensitive to background noise, so the massive number of 

recorded waveforms probably does not represent just AE events associated to adhesive’s 

fracture mechanisms [35], [39], [62]. Therefore, looking at Figure 5, it is not possible to 

draw any further conclusion about the AE waveforms and the crack propagation within the 

bondline. So, to have an accurate AE analysis, it was crucial to implement a well-defined 

post-processing procedure, which will be described in the following sections. 
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3.1. Classification and clustering of acoustic emission events 

An unsupervised artificial neural network was chosen for the post-processing procedure 

since previous information about the AE events outputs was unknown before the tests. 

Therefore, it was necessary to identify the main significative waveform parameters and 

their better correlation from the input data.  

The main features of AE waveforms are peak frequency, amplitude, energy, counts 

(number of times the AE waveform crosses the threshold level), duration, and rise-time 

[10], [26], [35], [63]. A parallel coordinates plot was built to identify the best correlation 

between the waveform features for pattern recognition and high-dimensional data 

classification, Figure 6. To improve data visualisation, comparison between different 

features and comprehension, each of the axes of such a plot runs from 0 to 1. Each 

piecewise line running from one axis to the adjacent ones represents the set of relevant 

features for a given AE event. In order to be correctly plotted, the features must be first 

normalized to match the 0-to-1 range of the axes and, to improve the effectiveness of the 

plot, subdivided into four groups equally ranged on a 0.25 span based on a reference feature 

(the duration, in the present case). In this way, the intersection of the piecewise lines with 

the vertical axes shows the distribution of the relevant features and their possible 

relationships and correlations. 

The duration and energy features present a fair correlation because, generally, the 0.25 span 

lines do not cross each other running form the duration axis to the energy one, but, on the 

other hand, the two features show a different distribution along the respective axes. Then, 

both features were chosen as input values to be applied on the Self-Organising Map (SOM) 

algorithm. This algorithm generates a 2D topological map that classifies the input data 

regarding their similarities by using a neighbourhood function (Euclidean distance), as 

detailed in [4], [39], [25].  

The last plot of Figure 6 shows the SOM outputs of the analysed data, considering the 

duration and energy as input values. These hexagonal lattice maps represent similar input 

values in proximity and dissimilar ones far away, classifying the AE data based on the 
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input’s relative distances. However, it is not possible to divide the data into classes/clusters 

at this step. For that, an additional K-means iterative algorithm was implemented, as well. 

The optimal number of clusters instead was determined by evaluating the performance of 

different indexing criteria (Davies-Bouldin, Silhouette, and Calinski-Harabasz), as 

described in [39], [42]. 



15 

 

 

Figure 6: Pattern recognition and classification procedure adopted in the AE analysis – 
sample S-82-1. 
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The performance evaluation of the indexing criteria determined an optimal number of 

clusters equal to three. After that, the K-means algorithm was applied, and three different 

clusters were created, considering the lowest root-mean-square error between the distance 

of the centroid and the input values of each dataset group. Figure 7 shows the energy [eu – 

“energy unit” equals 10-18 J] versus duration graph of the sample S-82-1 clustered results 

and some examples of the waveforms from each group. 

 

Figure 7: Clustering results based on the energy and duration features with representative 
waveforms of each cluster – sample S-82-1. 

 

Cluster one of sample S-82-1 contains about 2.5% (646 hits), cluster two includes 16.2% 

(4228 hits), and cluster three 81.3% (21289 hits) of the total waveforms. To draw further 

conclusions about the physical meaning of each cluster, their waveform’s morphology was 

analysed. As can be seen in Figure 7, cluster one, represented by a red waveform, is a burst 

(the type of hit that often is associated with damage development in a material), cluster two 

typical waveform (green colour) also presents a morphology similar to a burst, but with 

high levels of noise. Finally, the blue waveform shows the morphology of a continuous 

wave, generally related to background noise. It is also worth noticing that the amplitude 

maximum level decreases of one order of magnitude switching from cluster one to cluster 
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two and of another order of magnitude switching from cluster two to cluster three. This is 

typically observed switching from emissions due to damage to those related to background 

noise. 

Nevertheless, just looking at the hits’ morphology, it is not sufficient to choose the clusters 

to be analysed. So, the cumulative energy was used as an additional feature to identify the 

clusters related to the damaging mechanisms inside the adhesive joints. This feature sums 

the energy introduced in the system by each hit during the whole acquisition time, and its 

trend is shown in Figure 8. 

 

 

Figure 8: Acoustic emission clustering results – cumulative energy of each 

cluster of data – sample S-82-1. 

 

As shown in Figure 8, the three different clusters present different levels of cumulative 

energy with a significant difference in their orders of magnitude. Knowing that damage 

propagation often produces hits with high energy levels and background noises typically 

have AE waves with lower and constant energy levels, the two clusters with relevant 

cumulative energy levels (1 and 2) were chosen for further analysis. 
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It is worth mentioning that the specimens did not present large dimensions so, the sensors 

can also record reflections of major AE hits. Considering that after each reflection, the 

energetic level of an AE signal gets lower, the amount of reflected AE hits inside the 

highest energetic clusters should be lower. 

The AE events of sample S-82-1 before (26163 hits) and after (4874 hits) the clustering 

procedure represent a reduction of around 80% on the total amount of hits. However, as 

shown in Figure 6, the highest amplitude values were maintained, indicating that the most 

relevant hits were still included in the analysed groups.  

It was also observed that the first jump in the amplitude values (red dots) happened around 

1 mm of the test crosshead displacement, indicating crack initiation. Then, at the maximum 

load, a significant jump on the cumulative energy of cluster one is observed, marking the 

beginning of crack propagation. 

3.2. Localisation of acoustic emission events 

Once the clusters associated with damage mechanisms were defined, it was possible to 

estimate AE source’s localisation. A 1D algorithm based on the distance between the 

sensors, wave velocity, and AE hits’ time-of-arrival was used.  

The distance between the sensors was the same for all the specimens and equal to 180 mm.  

Before the time-of-arrival picker calculation, the AE signals were arranged in events. Each 

event should contain at least two different sensor hits that were used for the source’s 

localisation. To establish that two AE signals belong to the same event, their onset times 

difference must not exceed 0.5 µs. This value was obtained by dividing the distance 

between the sensors by the wave velocity. 

Finally, three different types of ToA picker algorithms were considered and applied to 

estimate each hits’ time-of-arrival: the Akaike Information Criteria (AIC) picker, 

Threshold Adopted to Maximum Amplitude Signal (TAMAS), and Baer and Kradolfer 

pickers [54], [55].  
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The automatic time-of-arrival calculation by the AIC picker is based on the difference in 

onset times between the two signals belonging to the same AE event. First, the AE 

waveforms were transformed using the Hilbert transformation, considering a wave’s time 

window two times equals the pre-trigger duration. After that, the AIC function is calculated 

[55], [64], [65]. Finally, the minimum of the AIC function determines the onset time of the 

analysed hit, as detailed in Figure 9.  

The TAMAS is a simple picker based on determining the source’s time-of-arrival by 

identifying the instant when the signal crosses a fixed threshold. The threshold is calculated 

as a percentage of the maximum amplitude of each signal. This percentage represents the 

signal-to-noise ratio, and for the studied samples, the best value found is equal to 1%, 

determined by a manual trial and error calculation. 

The Baer and Kradolfer picker is an automatic phase picker based on modifying Allen’s 

envelope function by squaring it and adding its variance to determine a specific AE wave’s 

characteristic function [54]. This Characteristic Function (CF) is used to identify and 

quantify changes in the wave’s morphology, sensitive to amplitude, frequency, and phase 

changes. Once the CF is determined, it is integrated into a dynamic threshold to identify 

when the CF exceeds the set threshold [66], [67]. Also, for this picker algorithm, a wave’s 

time window two times equal to the pre-trigger duration was used. 

Once the different algorithms defined the time-of-arrival, it was possible to calculate the 

AE source’s localisation using Equation 1: 

𝑙𝑙1 =
1
2

(𝑙𝑙𝑡𝑡 −  ∆𝑡𝑡 ∗ 𝑉𝑉) Equation (1) 

where 𝑙𝑙1 represents the AE source’s distance from the first sensor, 𝑙𝑙𝑡𝑡 the total distance 

between the sensors, ∆𝑡𝑡 the difference between the hits identified in each event and 𝑉𝑉 the 

wave velocity. After calculating the AE source’s distance from sensor one, the crack length 

was determined by summing the measured length between the centre position of sensor 

one and the sample’s loading point (50 mm). 
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Figure 9: Localisation procedure, from the clustered data, for the determination of AE 
source’s position (exemplificative case of AIC time-picker algorithm). 
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A Hsu-Nielsen test was systematically applied to select the most accurate time-picking 

algorithm for the final AE source’s localisation. For that, the pencil lead was broken in 

some known positions. Finally, the time-picker and 1D localisation algorithms were used 

to determine the AE source’s position. The localisation results and the Root Mean Squared 

Error (RMSE) are shown in Figure 10 and Table 3. 

 

 

Figure 10: Comparison between time-of-arrival pickers. 

 

Table 3: Comparison of localisation results using different pickers – sample S-82-1. 

Time-picking algorithms AIC  TAMAS Baer and Kradolfer 

RMSE 0.91 9.01 1.02 
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The localisation results using the AIC and Baer and Kradolfer pickers presented the lower 

RMSE indicating a higher accuracy of the predicted results by the squared regression when 

compared with the actual AE responses produced by the artificial sources, which means 

that the AE localised hits are more concentrated in the neighbourhood of the best fit. 

Therefore, the AIC picker was chosen to be applied for further analysis since it is also a 

user-independent method and requires less computational time to estimate the AE source’s 

location when compared with the Baer and Kradolfer algorithm. 

 

4. RESULTS AND DISCUSSION 

In this Section, crack length estimation by visual evaluation and DIC is described. Then, 

AE localisation results are discussed and compared to visual and DIC ones.  

4.1. Crack length estimation by visual evaluation and DIC 

Crack length estimation by visual evaluation and DIC methods was done using the GOM 

correlate software. For both methods, around forty frames were analysed, from the 

maximum load until the maximum opening that can be assessed within the measurement 

volume of the DIC system.  

The visual evaluation was based on the visual identification of the crack-tip, based on the 

determination of two main points for each frame: the razor blade’s tip and the crack-tip’s 

position of each analysed frame. Once these two points were identified, the total crack 

length was estimated by adding the crack-tip point position with the razor blade position 

using the software’s distance measurement tool [22]. It is worth mentioning that a ruler 

was also attached to the specimen for measurement cross-checking. 

Using virtual extensometers, DIC was applied to measure the sample’s opening 

displacement in each analysed frame [68], [69]. From each analysed opening displacement 

curve, it was possible to identify two different zones, a constant and a variable one, as 
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shown in Figure 11. The point representing the transition between both displacement zones 

is called the “DIC opening point”.  

To understand the physical meaning of the DIC opening point in the fracture mechanisms 

of the DCB specimen, the corresponding strain (in the y-direction) of the bondline was 

calculated by dividing the sample’s relative vertical displacement by the adhesive’s 

thickness. Only the bondline strain was considered since young’s modulus of the substrates 

is considerably higher than the adhesive’s one, as described in [22]. Thus, a strain of around 

1.4% was calculated in the position of the DIC opening point. 

Comparing this value with the adhesives’ bulk tensile test, it was noticed that at about 1% 

of strain, the adhesive 9323 changes its mechanical behaviour, and its plasticisation starts, 

as shown in Figure 10. This suggests that the DIC opening point for this adhesive represents 

the onset of plasticisation in the adhesive [22]. 
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Figure 11: Scheme of DIC opening point determination and association of the adhesively 
bondline strain calculated in the position of the DIC opening point with the beginning of 

plasticisation in the adhesive, obtained by a bulk tensile test. 
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Figure 12 shows the comparison between the DIC opening points and the visual evaluations 

vs. the applied load. The right vertical axis, x [mm], corresponds to the horizontal position 

along the specimen, starting from the loading point. 

 

Figure 12: Visual evaluation and DIC opening point positions along the sample’s length 
during the DCB test – sample S-82-1. 

 

As shown in Figure 11, the DIC opening points and visual evaluation values did not have 

the same position. Knowing that the visual evaluation points identified the position of the 

already fractured adhesive and the DIC opening point represents the position of the onset 

of plasticisation of the adhesive, the distance between them can be associated with the 

length of the Fracture Process Zone (FPZ) [20][68]. A maximum FPZ length of around 12 

mm was evaluated. 

 

 



27 

 

4.2. Acoustic emission localisation results and comparison with other techniques 

Figure 13 showcases, on the horizontal axis, the values of the load recorded during the test 

and, on the vertical axis, the position along the x axis of the AE localisation results and the 

position of the opening point detected by DIC. All the performed tests are reported. 
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(a) 

 

(b) 

 

(c) 



29 

 

 

(d) 

Figure 13: Acoustic emission localisation results compared with the visual evaluation and 

DIC measurements (a) S-82-1, (b) S-82-2, (c) S-65-1 and (d) S-65-2. 

 

The DIC opening point and visual evaluation curves are shorter than the AE localised data 

due to limitations in the region of interest of the DIC acquisition system, which permits a 

maximum measurement length of 110 mm. AE results resulted to be scattered, but still 

followed the crack propagation trend observed by the DIC and visual evaluation methods.  

As shown in Figure 13, an additional analysis was done by subdividing the AE localised 

hits with respect to their energy values, to obtain further information about the damage 

mechanisms within the adhesively bonded joints.  

All specimens present a well-defined high energetic group represented by the red dots 

(energy higher than 4000 [eu]), with the AE source’s position quite ahead of the crack-tip 

(determined by a visual evaluation). It is worth mentioning that the value of 4000 [eu] was 

chosen because it is the lowest energy level at which a clear distinction of localised AE 

signals could be observed. Since the studied adhesive is ductile and, consequently, it has 

an non negligible process zone, a fracture mechanism ruled by plastic deformations before 

the crack-tip that increases the amount of absorbed energy during the crack propagation 
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process is expected [70]. Moreover, as already known in the literature, AE hits generated 

by plastic deformation and crack initiation are more energetic than those produced by crack 

propagation [35]. 

The higher energetic group also showed a similar trend as the DIC opening point values, 

indicating that these AE hits can also be associated with the onset of plasticisation within 

the adhesive. Instead, the low energetic groups could be related to friction and crack 

propagation inside the adhesive joint [47]. All specimens presented (Fig. 13) similar results 

independently of the crack initial length.  

More insight on the damage mechanisms that occurred within the bondline could be gained 

by considering cavitation.  

 
 

Figure 14: Detailed fracture surface of the S-82-1 tested specimen. 

 

Figure 14 showcases the fracture surface of S-82-1 specimen. In this and in all the other 

specimens, the adhesive presented dimples on its surfaces, indicating that the specimens 

are likely to have undergone cavitation phenomena due to the triaxial stresses produced 

during mode I fracture tests, as described by K. Kamiyama et al. [71]. This phenomenon 

can occur ahead of the crack-tip, mainly in ductile adhesives, increasing the adhesive’s 

plastic deformation and the joint’s fracture energy, as stated by Lee et al. [72].  

So, the high energy level group identified on the samples maybe can be associated with AE 

hits produced during the generation of voids during the cavitation within the adhesive, and 
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the remaining AE events could instead be related to other failure mechanisms, such as 

coalescence of micro-voids, brittle fracture parts (flatter zones), and adhesive cracking 

[73]. New experiments specifically designed to correlate AE events to cavitation are 

needed to confirm this hypothesis. 

Finally, the AE method using the studied ANN post-processing method showed to be an 

efficient method to localise damage within adhesive joints under pure mode I. From the 

analysis of AE amplitude, it was possible to identify two main steps: damage initiation 

followed by crack propagation. In addition, the AIC function presented effective results for 

the AE source’s time-of-arrival determination, being a recommended method to be applied 

in this type of analysis.  

For the studied adhesive, the results suggest that the AE method could identify the already 

fractured adhesive and the onset of plasticisation of the adhesive (DIC opening point 

position) ahead of the crack-tip, opening new perspectives for its application as a 

monitoring system of adhesively bonded joints. 

The feasibility of the AE monitoring system of adhesive joints under fatigue loading will 

be investigated in future work. In fatigue loading, different failure mechanisms and a 

smaller process zone are expected, so it is necessary to investigate if the acoustic emission 

method still identifies the crack propagation trend of the adhesives and if the subdivision 

of the AE events in different energy levels can provide further information to identify the 

fracture mechanisms of the specimens. 

 

5. CONCLUDING REMARKS 

The feasibility of using the AE method to size the crack length and monitor crack growth 

in adhesively bonded DCB specimens was investigated. The AE responses were clustered 

and analysed based on a non-supervised artificial neural network algorithm. The main 

results were compared with DIC and visual inspection. As a result, the main conclusions 

can be stated: 
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- the DIC opening point represents the onset of plasticisation in the adhesive, as 

discussed in [20]. Therefore, the distance between the DIC opening point and the 

crack tip observed by visual inspection can be interpreted as the length of the 

fracture process zone; 

- AE results could correctly follow the trend of crack propagation during the test. 

However, the AE responses are highly scattered with respect to other methods such 

as DIC and visual inspection; 

- the further classification of the AE hits regarding their energy levels showed that 

the high-energetic level group presents a similar trend with the DIC measurements, 

suggesting that for the considered adhesive, the AE method could identify the onset 

of plasticisation of the adhesive. It is a relevant feature for applying the AE as an 

in-service monitoring method, indicating that the damage in ductile adhesives can 

be identified before failure; 

- AE is a promising method for damage monitoring in adhesively bonded joints since 

it can be applied in in-service conditions and not just in a laboratory, contrarily to 

other effective methods characterised by heavy and bulky equipment.  
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