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Abstract

Active-elastic instabilities are common phenomena in the natural world which have the
aspect of sudden mechanical morphings. Frequently, the driving force of the instability
mechanisms has a chemo-mechanical nature which makes these kind of instabilities very
different from standard elastic instabilities. In this paper, we describe and study the
active-elastic instability occurring in a swollen spherical closed shell, bounding a water
filled cavity, during a de-hydration process. The description is given through the out-
comes of a few numerical experiments based on a stress-diffusion model which allows to
glance at the phenomenon. The study is carried on from a chemo-mechanical perspec-
tive through a few simplifying assumptions which allow to derive a semi-analytical model
which takes into account both the stress state and the water concentration into the walls
of the shell at the onset of the instability. Moreover, also the invariance of the cavity
volume at the onset of instability, which is due to the impossibility to instantaneously
change the cavity volume filled with water, is considered. It is shown as the semi-analytic
model matches very well the outcome of the numerical experiments. It is also shown as
a wider range of mechanical instabilities can be produced when inhomogeneous shells
are considered, even when the inhomogeneities can be described by a small number of
parameters.

Keywords: chemo-mechanical instability; bifurcation and buckling; stress-diffusion
modeling; soft swelling materials.

1. Introduction

Soft capsules confining microscopic cavities are common in Nature. Cavities can be
water-filled, as is the case of the Fern Sporangium [1, 2], or not, as is the case of Spagnum
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Moss [3], just to cite a few. In both the cases, capsules undergo a dehydration process
which determines the conditions to produce spores dispersion. The working principles
of these mechanisms in Nature have been classified and studied in terms of the specific
functional demands that these mechanisms fulfill. On the contrary, analyzing the possi-
bility to reproduce them in soft polymers, which requires an accurate modeling and the
identification of the determinants of the key mechanism, is still lacking.
Inspired by these observations, we investigate dehydration processes in spherical gel
capsules going from a fully wet state with the cavities filled with water towards a dry
state when exposed to air. The analysis started from numerical experiments based on
a multi-physics three-dimensional model of stress-diffusion which showed the onset of
mechanical instabilities during the dehydration process [4, 5, 6, 7, 8].
Mechanical instabilities in polymer gels have been extensively studied in the recent years
with reference to swelling-induced surface instability of confined hydrogel layers on sub-
strates [9, 10, 11, 12] and to transient instabilities occurring during swelling processes
[13, 5, 14, 15, 16, 17]. The phenomenon we aim to describe is different and resembles the
classical mechanical instabilities of pressurized spherical shells which has been largely
investigating since ′50 [18, 19, 20, 21], and has been recently having a new exciting life
[22, 23]. However, our problem presents a few characteristics which make it distinguish-
able from the classical ones.
Firstly, in our problem the external pressure, which is the control parameter in the clas-
sical stability analyses, is low and insignificant. On the contrary, dehydration processes
make spherical shells subject to a negative inner pressure, called suction pressure, which
is an unknown of the stress-diffusion problem, changes in time and can be considered
as a live more than a dead load. Hence, load conditions are quite different from those
considered in the Literature.
Secondly, the driving force of the instability is the drying process which is controlled
by the chemical potential of the environment, that is, the control of the process is not
the mechanical pressure. Similar conditions have been studied in [22], where the effect
of spontaneous curvature, driven by differential growth, on the instability of spheri-
cal shells has been investigated, within the context of non-euclidean theory of shells,
through a rational approach which allows to reduce the spontaneous curvature to an
effective pressure-like dead load. In [22], it has also been shown as a positive curvature
corresponds to a positive external pressure (or, equivalently, to a negative inner pressure)
causing a compression of the shell and possibly also a change in the cavity volume. For
dehydrating spherical shells, as those studied in the present paper, a spontaneous curva-
ture may be identified in terms of the change of dehydration degree across the thickness
of the shell and it will result in a positive curvature for outer layers less hydrated than
inner layers, as the dehydration process starts from the outer layers. Fundamentally
different residual stress states drive pressure and curvature buckling. The same is true
when dehydration processes hold and the cavity is filled with liquid, that is, the cavity
volume is constrained and it is expected that the buckling strategy of the shell is affected
by the impossibility to change the cavity volume. Within the limits of the non euclidean
shell theory, taking into account this further condition may be interesting and represents
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one of the future directions we identified in the Conclusion of the present paper.
The buckling of elastic spherical shells under osmotic pressure with the osmolyte concen-
tration of the exterior solution as a control parameter has been studied in [24]. Therein,
the Authors present a quantitative model aimed to capture the influence of shell elastic-
ity on the onset of instability. Interestingly, they apply their model under cavity volume
control assuming that the capsule volume can be considered as fixed when it is filled
with an incompressible liquid that can leave the cavity on a very slow time scale like
in drying mechanism. That is the characteristic of our problem where the instability
occurs instantaneously with respect to the times of the diffusion which only can induce a
change in the liquid content of the cavity. However, our model goes beyond as we present
an instability study which holds for thin and thick shells, is based on the incremental
analysis of both the mechanical and chemical equations which rule stress-diffusion in
polymer gels, also including the cavity volume constraint.
In particular, after the description of the de-hydration process which affects a closed
spherical shell in terms of a three-dimensional stress-diffusion model, we evidence and
numerically investigate the onset of mechanical instabilities which are driven by the
de-hydration process. As already evidenced, even if instabilities occur when a critical
pressure is attained, that pressure is not a control parameter of the instability pro-
cess which is driven by the de-hydration process which, on its turn, is controlled by
the chemical potential of the external environment, the actual control parameter of the
de-hydration and instability process. It motivates our choice to analyse the instability
problem from a chemo-mechanical perspective through a few simplifying assumptions
which allow to derive a semi-analytical model which takes into account both the stress
state and the water concentration into the walls of the shell at the onset of the instability.
Specifically, the stability analysis which we propose is borrowed from the study of elastic
thick-walled spherical shells loaded by external pressure presented in [19]. However, we
extended that analysis to include the effects of water diffusion across the walls of the
shell and the invariance of the cavity volume at the onset of instability. We show how
the semi-analytic model matches the outcome of the numerical experiments, based on
the implementation of the stress-diffusion model, and allows to have a fast glance at
mechanical instabilities of the shells numerically investigated and discussed in Section
3. We also show as a wider range of mechanical instabilities can be produced when
inhomogeneous shells are considered, even when the inhomogeneities can be described
by a small number of parameters.

2. Chemo-mechanical states of gels

The analysis of de-hydration processes starts from swollen gel bodies, however, it is
convenient to introduce the dry state Bd of such bodies, use it as reference state and
describe the chemo-mechanical state of gel bodies by a displacement field ud from the
dry state and a water concentration cd per unit dry volume. The displacement ud gives
the actual position Xd + ud(Xd, t) of a point Xd ∈ Bd, at time t, whereas the water
concentration cd gives the moles of water per unit dry volume at Xd + ud(Xd, t).
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We assume that the free energy ψ per unit dry-volume depends on the deformation gradi-
ent Fd = I+∇ud from Bd through an elastic component ψe, and on water concentration
cd per unit dry volume through a polymer–water mixing energy ψm: ψ = ψe + ψm, as
prescribed by the Flory–Rehner thermodynamic model [25, 26]. As usual, we assume
that any change in volume of the gel is accompanied by an equivalent uptake or release
of water content, that is,

Jd = det Fd = Ĵd(cd) = 1 + Ωcd , (2.1)

with Ω the molar volume of the water. Equation (2.1) introduces a coupling between the
state variables of the problem and is usually known as volumetric or incompressibility
constraint. The volumetric constraint contributes to the definition of a relaxed free–
energy ψr as:

ψr(Fd, cd, p) =
Gd
2

(Fd · Fd − 3) +
RT
Ω

h(cd)− p(Jd − Ĵd(cd)) , (2.2)

with

h(cd) = Ω cd log
Ω cd

1 + Ω cd
+ χ

Ω cd
1 + Ω cd

, (2.3)

and the pressure p as the reaction to the volumetric constraint, which maintains the
volume change Jd due to the displacement equal to Ĵd(cd) due to solvent absorption or
release. Standard thermodynamical issues allow to derive the constitutive equations for
the dry-reference stress Sd (J/m3) (the stress at the dry configuration Bd) and for the
chemical potential µ (J/mol):

Sd = Ŝd(Fd)− pF?
d = Gd Fd − pF?

d , F?
d = Jd F−Td ,

µ = µ̂(cd) + pΩ = RT
(

log
Jd − 1

Jd
+

1

Jd
+

χ

J2
d

)
+ pΩ , (2.4)

where, with a light abuse of notation, we wrote the relation for the chemical potential µ =
µ̂(cd) as µ̂(Jd), by exploiting the volumetric constraint (2.1). Both stress and chemical
potential consist of a constitutively determined component and a reactive component
which couples the two main dynamical subjects of the theory. The components µ̂(cd)
and pΩ are the mixing and mechanical contribution to the chemical potential; the first
is usually called osmotic pressure.
With these choices, the dissipation principle is reduced to the following inequality:

hd(Fd, cd, p) · ∇µ(cd, p) ≤ 0 , µ(cd, p) = µ̂(cd) + pΩ , (2.5)

being hd (mol/(m2 s)) the reference solvent flux, and is satisfied by assuming that

hd = hd(Fd, cd, p) = −M(Fd, cd)∇(µ̂(cd) + pΩ) , (2.6)

with the diffusion tensor M(Fd, cd)(mol2/(s m J)) as a positive definite tensor. In
particular, we also assume that M is isotropic and linearly dependent on cd, and diffusion
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always remains isotropic during any process [27, 28, 29, 4]. These assumptions determine
the representation of the diffusion tensor in terms of the inverse of the Cauchy–Green
strain tensor Cd = FT

dFd as

M(Fd, cd) =
D

RT cdC
−1
d , (2.7)

with D (m2/s) the diffusivity. Finally, the balance equations of the model are:

0 = div Sd and ċd = −div hd , (2.8)

on Bd×T . They are supplemented by the boundary conditions on ∂tBd×T and ∂uBd×T

Sd m = −p̄F?
dm and ud = ū , (2.9)

respectively, where we only considered boundary pressure p̄ and set ū for the assigned
displacement; and on ∂qBd × T and ∂cBd × T

−hd ·m = qs and µ̂(cs) + pΩ = µe , (2.10)

respectively, with qs the boundary flux and cs the concentration field on ∂cBd which
is assigned implicitly by controlling the external chemical potential µe. The initial
conditions

ud = udo and cd = cdo , (2.11)

on Bd × {0} make the problem doable: udo and cdo are the initial values of the fields
ud and cd, respectively. Everywhere, a dot denotes the time derivative and div the
divergence operator.

2.1. De-hydration of gel capsules

We discuss de-hydration of spherical shells confining spherical cavities. The dry
system Bd is a spherical shell of external radius Rd and thickness Hd = Rd−Rc, with Rc
the radius of the cavity Cd. The shell size increases to accomodate an amount of water
which is determined by the shear modulus Gd and the Flory parameter χ through the
equation

RT
(

log
λ3
o − 1

λ3
o

+
1

λ3
o

+
χ

λ6
o

)
+
G

λo
Ω = µo , (2.12)

corresponding to the equilibrium conditions Sd = 0 and µ = µe with µe = µo.
1 We

denote this steady and stress-free swollen state as Bo: the shell has radius λoRd whereas
the cavity Co, assumed to be completely filled with water, has radius λoRc.
We assume that this state represents the initial state of the system under a de-hydration
process which starts from the fully swollen state Bo and proceeds by de-hydrating the
body from the outside. It corresponds to pull out the swollen spherical shells, with its

1With these, the balance equations (2.8) are trivially satisfied.

5



20 25 30 35 40 45 50 55 60 65

0.9
1

1.1
1.2

✓̄

Water

Air

Water

Air

Water

Air

Water

Water

a) b)

Figure 1: Fig:ref

Water

Air

Water

Air

Water

Air

Water

Water

a) b)

Figure 1: Fig:ref

Water evaporates both
from walls and cavity

Standard buckling De-hydration buckling

pi 6= 0pi = 0

pe = 0pe 6= 0

Vc = V̄cVc free

Figure 4: Fig:ref

Figure 1: A sketch of the de-hydration process. Initial steady stress-free swollen state of the spherical
capsule: water fills the cavity and the external environment (left). After exposition to air, the de-
hydration process starts and water in the walls and in the cavity moves towards the outer environment
(right).

cavity filled with water, from the bath and to expose it to air (see cartoon in figure 1).
Diffusion starts and water is expelled from both the gel and the cavity. Being water
incompressible, the cavity volume must always be equal to the volume of the water it
contains; thus, when water is pumped out of the cavity, the cavity volume reduces and
the cavity wall ∂iBd = ∂Cd may be pulled by an increasing negative pressure.
From the modelling point of view, exposing the capsule to air means changing the chem-
ical potential at the external boundary ∂eBd from µo to µe < µo. If it is the case,
equations (2.8)-(2.11) allow to follow the dynamics of the process. We assume that all
along the process the cavity stays always filled with solvent2 and the chemical potential
on ∂Cd is determined by µi = Ω pi(t) with the pressure term pi, representing the suction
pressure. On the other side, we assume that the outer environment is filled with air, that
is, an ideal gas whose content in water determines the value of the chemical potential
which can be related to the relative humidity of the air, and set µe = µ̂e(t) + pe with
µ̂e(t) the control law of the problem and the base atmospheric pressure pe = 0. So, in
the end, we write down:

µe = µ̂e(t) on ∂eBd and µi = Ω pi(t) on ∂Cd , (2.13)

and

Sd m = −pe F?
d m = 0 on ∂eBd×T and Sd m = −pi F?

d m on ∂Cd×T , (2.14)

where F?
d = JdF

−T
d denotes the adjugate of the deformation gradient.

The suction pressure pi = pi(t), a key ingredient in the onset of instabilities, is modelled

2It corresponds to assume that no delamination of liquid from cavity walls can occur, or equivalently,
that surface energy per unit area of the cavity is much higher than stretching modulus Gλo(Rd −Rc).
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as the reaction to the volumetric coupling which relates the volume vcs = vcs(t) of the
solvent in the cavity to the volume of the cavity vc = vc(t), which can simply be written
down as: at each instant t ∈ T as solvent flows out of the cavity, it must hold

vc(t) = vcs(t) . (2.15)

It is worth noting that the global constraint (2.15) adds a further coupling between
the state variables of the multiphysics problem other than the common local volumetric
constraint (2.1). Constraint (2.15) can be enforced by considering the augmented total
free-energy defined by ∫

Bd
ψr dVd − pi (vc − vcs) , (2.16)

so that the cavity pressure pi can be viewed as the Lagrange multiplier enforcing the
constraint. The cavity volume vc depends on the actual configuration Ct of the cavity at
time t, and can be measured by evaluating the following integral

vc(t) =

∫
Ct
dv = −1

3

∫
∂iB(t)

x · n da = −1

3

∫
∂iB(t)

(Xd + ud) · F?
d m dAd , (2.17)

with n the normal to the actual boundary ∂iB(t) = f(∂Cd).3 The water volume at time t
is the sum of the initial water content vcs(0) of the cavity, plus the water volume Qi(t) that
crossed the cavity boundary during the time interval (0, t), that is, vcs(t) = vcs(0)+Qi(t).
The initial water content equals the initial cavity volume vco = vc(0), that is, from (2.17),
it holds

vcs(0) = vc(0) = −1

3

∫
∂iBd

(Xd + uo) · F?
o m dAd , (2.18)

with F?
o = Jo F−To and Jo the adjugate and the Jacobian determinant of the initial

swollen deformation gradient Fo = λoI. The water volume Qi(t) that crossed the cavity
boundary and was absorbed by the gel can be evaluated by:

Qi(t) =

∫ t

0
Q̇i(τ) dτ = Ω

∫ t

0

(∫
∂iBd

q dAd

)
dτ = −Ω

∫ t

0

(∫
∂iBd

hd ·m dAd

)
dτ .

(2.19)
Equations (2.17)-(2.19) allow to follow the de-hydration process of the spherical capsule.
It is worth noting that the effects of the process on the mechanics of the shell are
very different depending on the shear modulus of the polymer, once fixed the liquid-
polymer affinity. Indeed, high or low shear moduli Gd identify the initial state Bo as a
poorly or highly swollen state and can determine a very different dynamics[7, 30]. For
highly swollen gels, due to the great amount of liquid inside shell walls, the de-hydration
process starts with the liquid firstly released from the shell rather than from the cavity.
As a consequence, suction effect does not become immediately apparent and the inner

3We note that the internal boundary of the gel ∂iBd coincides with the boundary of the cavity ∂Cd,
proviso an opposite orientation of the normal.
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pressure pi takes non-negative values. By contrast, for poorly swollen gels, liquid is
mainly released from the cavity and the inner pressure quickly attains negative values
[30], a condition which is determinant for the onset of mechanical instabilities, as we’ll
discuss in the rest of the paper.

3. A glance at active elastic instabilities

The effects of the de-hydration process on shell shape is numerically studied; the
onset of the so-called active elastic instabilities is investigated and the phenomenology
is contrasted with previous results which some of the Authors got for cubic capsules [7].
In the following numerical experiments, we fixed the set of material parameters listed
in Table 1. With these choices, the dimensionless parameter ε = GΩ/RT , which is the
ratio between the two key material constants of the mechanical and chemical free-energy
is around 0.37. The value of ε & 10−1 and of the affinity parameter χ . 0.8 allows to
infer that the gel is poorly swollen. Indeed, fixed µo = 0 [J/mol], equation (2.12) yields

Shear modulus Gd = 5 · 107 Pa;

Flory parameter χ = 0.2;

Water molar volume Ω = 1.8× 10−5 m3/mol;

Water diffusivity D = 10−9m2/s;

Temperature T = 293K;

Table 1: Values of parameters used in numerical experiments.

the value λo = 1.152 of the swelling ratio which corresponds to a 15% increase of the
capsule thickness and radius which change from the dry values Hd = 1.25 · 10−3 m and
Rd = 1 · 10−2 m to the swollen values Ho = 1.44 · 10−3 m and Ro = 1.152 · 10−2 m. The
corresponding initial values for the displacement and pressure field are uo = (λo − 1)Xd

and po = 4.338 · 107 Pa. From the value µo, the chemical potential is made to change
following a time law µ̂e(t) which brings the value of the external chemical potential from
the initial value µ0 to the final value µf in tµ = 2500 through a smoothed step function;
then, the final value µf is kept fixed.

The pressure-volume curves shown in figure 2 (left) allow to highlight the observed
dynamics in spherical capsules (blue line) and to evidence the onset of a mechanical
instability which is, on the contrary, not observed in cubic capsules of similar size (green
line). At the beginning of the de-hydration process from the swollen shell, liquid is
mainly expelled from the cavity walls and pressure changes at almost unchanged cavity
volume, as the initial deep slope of the blue line in figure 2 (left) shows. As diffusion goes
on, water is released from both the shells and the cavity and the cavity volume reduces;
we follow it until a decrease of about 30% is attained, corresponding to vc/vco = 0.7.
In a first phase (pink background), inner pressure takes positive values which, at the
same dimensionless cavity volume ratio vc/vco, are higher for spherical than for cubic
capsules, and breathing modes can be observed in both the situations [7]. In a second
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Figure 2: Pressure–volume curves for spherical (blue) and cubic (green) gel capsules: pink (grey) back-
ground identifies the first phase of the process when inner pressure takes positive (negative) values (left).
Cubic and spherical capsules are shown at different values of vc/vco = 1, 0.68, 0.65 and allow to appreciate
the change in shape occurred in the capsules.

phase (grey background), inner pressure takes negative values, so realizing the so-called
suction effects on the walls of the capsules. Whereas the walls of cubic capsules bend
under negative pressure, spherical capsules, made stiffer by the geometrical symmetry,
do not bend, as it is shown in figure 2 (right) by the cartoons corresponding to number
2. Moreover, as it is energetically very expensive reducing cavity volume in spherical
capsules, we also observe higher values of the negative pressure at the same value of the
ratio vc/vco.
At a critical value of the inner pressure, a mechanical instability is observed which
allows to release the elastic energy accumulated in the shell during the process. The
onset of the mechanical instability changes the shape of the sphere very sharply and
the pressure-volume curve shows an almost vertical slope at the critical point, as it is
evidenced in figure 2 (left). Indeed, as the cavity is still filled with water, and diffusion
is typically a slow process (here, the characteristic diffusion time τd = H2

o/Dε ' 103 s),
instability occurs at almost constant volume. Figure 2 (right) also shows spherical and
cubic capsules at different values of vc/vco = 1, 0.68, 0.65, corresponding to the points
1, 2, 3 evidenced in the pressure-volume diagram. At the value vc/vco = 0.65 (point 3),
the cubic capsule shows an evident increased bending of its walls whereas the spherical
capsule has attained a sombrero shape. Key determinants of the mechanical instability
are the cavity volume ratio vc/vco and the inner pressure pi. In particular, we observe
that the onset of instability corresponds to a pair vc/vco = 0.68 and pi = −4.2 · 106

Pa. These values will be used as benchmark values in the following section where a
semi-analytical study of the instability is presented.
Finally, the mechanical instability also affects water fluxes, an aspect of the release
dynamics which can be noteworthy in applications requiring a control on fluxes and is
beyond the aim of the paper.
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4. Study of the chemo-mechanical instability

The key aspects of the instability problem which affects spherical shells during de-
hydration processes can be described from a mechanics perspective through a few simpli-
fying assumptions which allow to derive a semi-analytical model. The stability analysis
which we propose in the following is borrowed from the study of elastic thick-walled
spherical shells loaded by external pressure presented in [19], and is extended to con-
sider the diffusion equation (2.8)2 and the invariance of the cavity volume at the onset
of instability.

4.1. Spherical solution

Before instability occurs, the shell is spherical and the chemo-mechanical state vari-
ables are determined as stationary solutions of equations (2.8). Assuming the dry con-
figuration as the reference configuration, we consider purely radial deformations of the
thick shell which are represented as

r = r(R) , θ = Θ , φ = Φ , (4.20)

where (R,Θ,Φ) and (r, θ, φ) are the spherical coordinates of a point in the reference and
current configuration, respectively. We denote all the chemo-mechanical variables cor-
responding to the spherical solution with the subscript ‘0’; so F0 = diag(r′, r/R, r/R) is
the deformation gradient corresponding to the deformation (4.20), with a prime denoting
differentiation with respect to the radial coordinate R. The equilibrium configurations
have to satisfy the volumetric constraint (2.1): det F0 = J0(R), with J0(R) = 1+Ωc0(R),
where c0 denotes the solvent concentration in the spherical solution. When we substitute
(4.20) into the constraint, we get

r2r′ = R2J0. (4.21)

Notice that, unlike the classical analysis [19, 31], where J0 = 1, here J0 is an unknown
function of the radial coordinate. When J0 = 1, equation (4.21) can be easily solved
and yields the classical result r(R) = (3a0 +R3

c)
1/3, where a0 is an integration constant.

By contrast, in our case, equation (4.21) has to be solved together with the chemo-
mechanical balance equations.

Let us introduce Q0(R) := R/r(R) so that the deformation gradient of the spherical
solution can be cast in the form

F0 = diag(Q2
0J0, Q

−1
0 , Q−1

0 ) . (4.22)

Then, according to the neo-Hookean hyperelastic model, the Piola-Kirchooff stress tensor
can be written as

S0 = diag(−p0Q
−2
0 +GdJ0Q

2
0,−p0J0Q0 +GdQ

−1
0 ,−p0J0Q0 +GdQ

−1
0 ) , (4.23)
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where p0(R) is the Lagrangian multiplier related to the constraint J0 = 1 + Ωc0. On the
other hand, the representation formula of the chemical potential is unchanged by the
spherical symmetry and it holds

µ0 = RT
(

log
J0 − 1

J0
+

1

J0
+

χ

J2
0

)
+ p0 Ω . (4.24)

Once observed that Q′0 = Q0(1−J0Q
3
0)R−1, the balance of forces divS0 = 0 (in spherical

coordinates, R∂RS0RR + 2S0RR − S0ΘΘ − S0φφ = 0) reduces to:

p′0R+ 2GdQ0(−1 + J0Q
3
0)2 −GdQ4

0J
′
0R = 0 . (4.25)

As far as the diffusion problem is concerning, we consider the quasi-static version of
(2.8)2, that is, divh0 = 0. Due to the spherical symmetry, the solvent flux h0 is purely
radial, that is, h0(R) = (h0R(R), 0, 0), and that balance equation, after a first integration,
reduces to

R2h0R = C0, (4.26)

where C0 is an integration constant and the constitutive equations (2.6)-(2.7), reduced
by the spherical symmetry, deliver

h0R = − D

Q4
0J

2
0

[−2χ(J0 − 1) + J0

ΩJ3
0

J ′0 +
(J0 − 1)

RT p′0

]
. (4.27)

Finally, by using the boundary conditions (2.13) and (2.14), we obtain the boundary
conditions for the spherical problem:

S0RR(Rd) = 0, µ(Rd) = µe , (4.28a)

µ(Rc) + ΩQ2
0(Rc)S0RR(Rc) = 0 . (4.28b)

Equations (4.28a) express the conditions of vanishing pressure and assigned chemical
potential at the external boundary. Equation (4.28b) is derived from (2.13)2 that relates
the chemical potential µ(Rc) and the pressure pi on the inner boundary, where the
boundary condition (2.14)2 has been used to express pi in terms of the radial stress
component as pi = −Q2

0(Rc)S0RR(Rc).
Finally, it is worth noting that, at any time before instability occurs, the enclosed volume
vc is determined by the liquid filling the cavity and the relationship between the radius
rc of the cavity and the volume vc, is

rc =

(
3vc
4π

)1/3

. (4.29)

Hence, whenever the enclosed volume is assigned, equation (4.29) delivers the boundary
condition

r(Rc) = rc. (4.30)
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Figure 3: Pressure–β curves from numerics (green line) and analytics (black line). Shape of the shell
at the critical point, with arrows denoting liquid flux (center). Water concentration across the shell
thickness at the critical point (right). Light pink and pink portions evidence negative and positive
pressure regimes.

If µe = 0 and the enclosed volume is not constrained, this spherical problem admits
the stress-free swollen solution discussed in §2. In fact, this is the only case in which

µ(R) = 0 implies an uniform deformation λo = Q−1
0 = J

1
3
0 , where λo satisfies equation

(2.12). The enclosed volume is then vco = 4
3πR

3
cJ0.

Whenever the enclosed volume is assigned, the solution of the spherical problem de-
termined by the equations (4.21), (4.25), (4.26)-(4.27), with the boundary conditions
(4.28) and (4.30), provides the relationship between the inner pressure pi and vc, which
we write in the form pi = pi(β), with

β :=
vc
vco

(4.31)

the ratio between the current and the initial volume of the cavity. Interestingly, we find
that pi has the same sign of β−1; hence, as expected, for enclosed volumes smaller than
vco (i.e., β < 1), a negative pressure arises that produces a inner cavity compression.
Therefore, the instability is expected for β < 1.

Figure 3 (left) shows the dimensionless inner pressure pi/Gd as a function of β from
analytics (black line) and from numerics (green line), where the first consists in a quasi
static analysis of the stress diffusion problem whereas the second also describes the
transient behaviour. The two curves show a remarkable agreement where µe has reached
its plateau value µe = −2 · 103 J/mol. By contrast, in the transient region where µe
suddently drops to its plateau value and the pressure rises at nearly constant cavity
volume, as expected, the static solution cannot reproduce the numerical values. The
shape of the shell at the critical point is shown in figure 3 (center). Arrows denote
liquid flux and it can be appreciated how the instability affects liquid flux, an issue
which is beyond the aim of the present paper. Finally, colour code scale represent the
ratio Jd/Jo measured in the numerical experiments. Figure 3 (right) shows the profile
of water concentration across the shell thickness at the critical point and evidences as
the quasi-static solution satisfactorily matches the numerical solution coming out from
a dynamical analysis.
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4.2. The linearized problem

In order to find the critical values of β at which the instability occurs, we consider
the axisymmetric incremental fields u, v, p1, J1 and write

x(R,Θ) = r(R)eR + ε(u(R,Θ)eR + v(R,Θ)eΘ) , (4.32a)

p(R,Θ) = p0(R) + εp1(R,Θ) , (4.32b)

Jd(R,Θ) = J0(R) + εJ1(R,Θ) . (4.32c)

Therefore, the incremental deformation gradient is

F1 =

∂Ru R−1(∂Ru− v) 0
∂Rv R−1(u+ ∂Θv) 0

0 0 R−1(u+ v cot Θ)

 , (4.33)

and the unknown fields u and v have to satisfy the volumetric constraint which at the
first order is J0 tr(F−1

0 F1) = J1, and reads

Q−2
0 ∂Ru+ J0Q0R

−1(2u+ ∂Θv + v cot Θ)− J1 = 0 . (4.34)

This equation have to be coupled with the incremental equilibrium equations

div S1 = 0, div h1 = 0, (4.35)

where S1 and h1 represent the linearized Piola-Kirchhoff stress tensor and solvent flux,
respectively. According to the neo-Hookean model, the nonvanishing components of the
incremental stress tensor S1 = −p1I− p0F

−T
1 +GdF1 are:

S1RR = p0J
−1
0 Q−4

0 (∂Ru−Q2J1)− p1Q
−2
0 +Gd∂Ru , (4.36a)

S1RΘ = p0Q
−1
0 ∂Rv +GdR

−1(∂Ru− v) , (4.36b)

S1ΘR = p0Q
−1
0 R−1(∂Ru− v) +Gd∂Rv , (4.36c)

S1ΘΘ = −Q0(p1J0 + p0J1) +R−1(Gd + J0p0Q
2
0)(u+ ∂Θv) , (4.36d)

S1ΦΦ = −Q0(p1J0 + p0J1) +R−1(Gd + J0p0Q
2
0)(u+ v cot Θ) . (4.36e)

Similarly, we consider the perturbation of the water flux up to the first order, hd(R,Θ) =
h0(R) + εh1(R,Θ) and from equation (2.6), we obtain h1 = −M0∇µ1 −M1∇µ0 where

M0 =
D

RT
J0 − 1

Ω
F−2

0 , (4.37)

M1 =
D

RTΩ
F−1

0

[
J1I− (J0 − 1)(F1F

−1
0 + F−1

0 FT
1 )
]
F−1

0 , (4.38)

µ1 = − RT
(J0 − 1)J3

0

[2χ(J0 − 1)− J0]J1 + Ωp1 , (4.39)
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while µ0(R) is given by eqn. (4.24). Consequently, the nonvanishing components of h1

are

h1R = − D

RTΩJ3
0Q

6
0

[
µ′0Q

2
0J0J1 + (J0 − 1)(−2µ′0∂Ru+ J0Q

2
0∂Rµ1)

]
, (4.40a)

h1Θ =
D(J0 − 1)

RTΩJ2
0Q

3
0R

[
−J2

0Q
5
0∂Θµ1 + µ′0(J0Q

3
0(∂Θu− v) +R∂Rv)

]
, (4.40b)

and the incremental diffusion equation reduces to:

1

R2
∂R(R2h1R) +

1

R sin Θ
∂Θ(h1Θ sin Θ) = 0 . (4.41)

The nonvanishing components of the incremental equilibrium equations (4.35) and the
constraint equation (4.34) provide a system of 4 coupled partial differential equations
for u, v, p1 and J1 as a function of R and Θ, where the coefficients depend on the
finite-strain solution obtained at zeroth order.

To solve this problem, we expand the unknown fields in Legendre polynomials

u(R,Θ) =

∞∑
l=1

Ul(R)Pl(cos Θ) , v(R,Θ) =

∞∑
l=1

Vl(R)∂Θ[Pl(cos Θ)] , (4.42a)

p1(R,Θ) =

∞∑
l=1

Pl(R)Pl(cos Θ) , J1(R,Θ) =

∞∑
l=1

Jl(R)Pl(cos Θ) . (4.42b)

We do not consider the mode l = 0 in the expansions since it corresponds to a symmetric
increase in shell radius and its existence does not correspond to a true axisymmetric
bifurcation. By separation of variables, we obtain a systems of ordinary differential
equations for Ul, Vl, Pl and Jl. This approach generalizes the classical ones for the
stability of shells under pressure [19] and of growing shells [31].
We now use equation (4.34) to obtain

Jl = R−1J0Q0[2Ul − l(l + 1)Vl] +Q−2
0 U ′l , (4.43)

and, therefore, eliminate Jl in the differential equations. Furthermore, to deal with (4.41)
it is convenient, from a computational standpoint, to consider the following expansion
for h1R

h1R(R,Θ) =
∞∑
l=1

Hl(R)Pl(cos Θ) , (4.44)

and solve the system of coupled equations in terms of {Ul,U ′l ,Vl,V ′l ,Pl,Hl}. More pre-
cisely, we introduce the vector of unknowns ql = {Ul,U ′l ,Vl,V ′l ,Pl,Hl}, so that our
system of first order linear differential equations is cast into the form

q′l = Al(R,Q0(R), J0(R), p0(R))ql, (4.45)
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where Al is the 6× 6 coefficient matrix. The explicit form of nonvanishing entries of Al

are reported in Appendix 5.
The linearized boundary conditions can be immediately derived by expanding (2.13),

(2.14) to order O(ε), and using (4.36), (4.39), (4.42), (4.43) and (4.44). By defining the
functions

g(R) := ΩPl −
RT (2χ(J0 − 1)− J0)

J3
0 (J0 − 1)

[
Q0J0R

−1(2Ul − l(l + 1)Vl) +Q−2
0 U ′l

]
, (4.46a)

fR(R) := Pl +GdJ0Q
5
0R
−1[2Ul − l(l + 1)Vl]−GdQ2

0U ′l , (4.46b)

fΘ(R) := −Gd(l + 1)R−1[J0Q
3
0(Ul − Vl) +RV ′l ], (4.46c)

the boundary conditions can be written in the form

g(Rd) = 0, fR(Rd) = 0, fΘ(Rd) = 0, (4.47a)

g(Rc)− ΩfR(Rc) = 0, fΘ(Rc) = 0. (4.47b)

Equations (4.47a) represent the vanishing of first-order chemical potential and the first-
order stress components at the external boundary. Similarly, (4.47b)2 states the vanish-
ing of the stress tangential component on the inner boundary. By contrast, a more careful
analysis is required for (4.47b)1 which is derived from (2.13)2. Actually, it comprises
two separate boundary conditions, as we now discuss.

Let us compute the cavity volume perturbation due to the displacement field (4.42).
By using the equation (2.17) to compute the cavity volume via Nanson’s formula and
using (4.32a), up to O(ε), we get

vc =
4

3
πr3

c + ε
2

3
πR2

c

∫ π

0
[(3u+ ∂Θv) sin Θ + v cos Θ]dΘ . (4.48)

The substitution of (4.42) into (4.48), shows that to first order the perturbation of
vc vanishes, for any incremental displacement field. As a consequence the hydrostatic
pressure of the enclosed liquid also remain unchanged up the first order and, hence,
(4.47b)1 is replaced by the two conditions

g(Rc) = 0, fR(Rc) = 0. (4.49)

In so doing, the system of six first-order linear equations (4.45) is complemented with
the six boundary conditions (4.47a), (4.47b)2 and (4.49).
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4.3. Critical volumes and bifurcation modes

We recall that the ratio between the actual and the swollen volume enclosed by the
spherical shell, that is, the cavity volume, is measured by the parameter β, defined in
(4.31). For β < 1, that is, for shrinking cavities, we expect to observe a bifurcation
from the spherical solution to a new shape, since the spherical configuration becomes
unstable.

Our problem is to find the values of β for which there exist nontrivial solutions of
our system of ordinary differential equations. As described in §4.2, the coefficients of
these incremental equations are determined by the solution of the zeroth-order problem.
It is important to observe that the critical parameter β appears explicitly only in the
boundary conditions of the zeroth-order problem, see (4.29), (4.30) and (4.31). This
couples the O(1) and the O(ε) problems so that, in order to find the critical value
βc, we need to solve the zeroth-order equations (4.21),(4.25),(4.26) in the unknowns
(r, p0, J0) and the first-order equations (4.45) in the unknowns (Ul,U ′l ,Vl,V ′l ,Pl,Hl),
simultaneously.
To this end, let yl = {r, p0, J0,Ul,U ′l ,Vl,V ′l ,Pl,Hl} be a new unknown variable, where
l stands for the order of the Legendre polynomial. The system of ODEs which put
together both the zeroth and the first order equations can be written as a system of first
order equations of the form

y′l = f(yl, R), (4.50)

where R is the independent variable. The first three equations correspond to the spher-
ical problem, they are nonlinear and affect the problem at order O(ε). By contrast,
the remaining six equations describe the linearized problem at order O(ε) and do not
influence the zeroth-order problem. Furthermore, there are two additional unknown con-
stants, namely the integration constant C0 (see Eqn. (4.26)) and the critical parameter
βc.

Therefore, we need a total of eleven boundary conditions. Ten of these are given
by Eqs.(4.28), (4.30), (4.47a), (4.47b)2 and (4.49). The eleventh boundary condition is
Ul(Rc) = Ū , with Ū 6= 0, and imposes a non-trivial solution of the problem. Since we
deal with an eigenvalue problem, the particular choice of Ū does not affect the result of
the problem [32].
Numerical integration is performed using the Matlab function bvp4c which solves a
boundary value problem by collocation method. Critical thresholds and corresponding
shape profiles are sketched in Figure 5 and 4, respectively. The material parameter
values are taken from Table 1 and the size of the shell is chosen as in the numerical
experiments presented in Section 3: Rd = 10−2m and Rc/Rd = 0.875. Figure 4 shows
the critical ratio βc versus the external chemical potential µe which is the control pa-
rameter of all the process. We observe that, for a given µe, the bifurcation modes are
not ordered and, for each mode βc is an increasing function of µe. It means that whereas
instability occurs for values of µe closer to µo, then the cavity volume vc will be closer to
the initial value vco. Hence, what is expected as standard along a smooth de-hydration
process, also holds in presence of instability. In particular, the fourth mode is the first
to be excited; however, in agreement with the classic results [31] which say that thinner
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Figure 4: Critical ratio βc versus µe. Different colours indicate different modes: the order of the mode
is written along the lines whereas a few insets show the shapes corresponding to the first 3 modes. The
vertical dashed lines mark the initial (right) and final (left) values of the external potential: µo = 0 J/mol
and µf = −2000 J/mol which are the same used in the numerical experiments (see Fig.2).

shells develop bifurcations at higher modes, also in our case the order of modes changes
according to the thickness of the capsule. It is worth noting that the intersection of the
dashed line at µ = µf and the blue line corresponding to mode l = 6 yields a critical
value βc = 0.67 which is in excellent agreement with the value 0.68 found in the dy-
namical simulation shown in figure 2 based on the numerical implementation of the full
three–dimensional stress-diffusion model. Moreover, as it is shown in figure 5, also the
profile mode obtained by using the linear analysis coincide with the one got from full
numerical analysis, up to the sign. Indeed, it is important to remark that the linear
analysis cannot give information about neither the magnitude nor the sign of the ampli-
tude. So, in figure 5 amplitudes have been chosen in order to illustrate the structure of
the solution and are not related to the mechanical problem at hand. The shapes shown
in solid blue line are obtained with Ū < 0, while dashed red lines correspond to Ū > 0.
The magnitude of the solution (but not its sign) is determined by the O(ε2) perturbation
equations, while the analysis of the sign requires even higher orders (see, for instance,
[33]). In the same figure 5, a few schematic shell section profiles after the bifurcation
are shown, corresponding to modes from 2 to 7.

5. Conclusions

We considered the instabilities of an elastic spherical shell that swells during a chem-
ical dehydration process. The application of a difference in chemical potential induces
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Figure 5: Section of axisymmetric profile modes after the bifurcation. From top left to bottom right l
goes form 2 to 7. The shape observed solving the complete dynamical problem in Figure 2 is the mode
l = 6 obtained by using the linear analysis.

the emptying of the cavity enclosed by the shell, providing a negative pressure on the
inner wall and, at the same time, the swelling of the shell. When the enclosed volume
reaches a critical value, the pressure induces an instability and the shell loses its spherical
shape.

This phenomenon is captured by a finite element simulation, which solves the coupled
chemo-mechanical problem. More specifically, this consists of the new Hookean elastic
model for the shell and the diffusion equation for the solvent.

In order to understand how material and geometric parameters affect this instability,
we performed a linear bifurcation analysis about the spherical solution. We worked in a
quasi-static regime, by assuming that the characteristic time associated with diffusion is
small compared to the characteristic time of deformation. Furthermore, we also assume
that the external parameter change is much slower than the diffusion time. In this
approximation, the time is parameterized by the evolution of the volume enclosed by
the capsule.

Our analysis was inspired by other related works that dealt with the purely me-
chanical instability of elastic shells under pressure [19] or due to the combined effect of
pressure and differential growth [31]. However, a key and necessary ingredient of our
analysis, that makes it different from previous studies, is the introduction of the diffusion
equation. In fact in our case, the mechanical and chemical problems are strongly coupled
and the bifurcation is induced by the difference of the external and internal chemical
potentials. Therefore, the chemo-mechanical problem is more challenging for several
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reasons: (i) there is a larger number of state variables; (ii) the solution with spherical
symmetry cannot be determined analytically; (iii) the local volumetric deformation in
the spherical solution is not uniform in space and it is a-priori unknown. We observe
that a purely mechanical problem, with a neo-hookean incompressible shell with fixed
enclosed volume, would lead to an overestimated critical value βc ≈ 0.85 as opposed to
our βc ≈ 0.67.

Despite the richness of the model, the perturbed solution still has a classical math-
ematical structure in that it can be decomposed into the product of radial function
(to be determined numerically) and an angular function written in terms of Legendre
polynomials.

The thresholds obtained from the perturbative analysis successfully capture the in-
stability observed in the FEM simulation. In particular, the critical threshold of mode
l = 6, which corresponds to the simulated post-buckling shape, shows and excellent
agreement between perturbative (βc ≈ 0.67) and numerical (βc ≈ 0.68) values. Further-
more, the perturbation analysis reproduces correctly the dynamical concentration profile
at the bifurcation as a function of shell radius (see Fig. 3).

Finally, we observe that the linear analysis predicts that modes l = 4 and l = 5
occur at a higher critical volume (hence, before) that mode l = 6. However, this is not
in contrast with the FEM simulation results where we observe mode l = 6. In fact, since
we deal with a dynamical problem, the shape evolution depends crucially on the choice
of initial conditions.
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Appendix: Inhomogeneous capsules

A first study of mechanical instabilities in presence of inhomogeneous shells can be
numerically implemented. We assume, to keep the problem simple, that the inhomogene-
ity of the spherical capsule can be described by two parameters: the deepness parameter
Θ̄ identifies the amplitude of two stiffer regions around the poles whereas the stiffness
amplifier parameter α = Gp/Gd identifies the amount of increased stiffness at the poles
(see Figure 6, left).
As expected, we found that, under these conditions, the range of instability mechanisms
driven by the de-hydration process is wider. More specifically, using α = Gt/Gb = 3,
we observed two de-hydration dynamics represented by the blue and orange curve in
figure 6 (right), respectively for Θ̄ = 22◦ and Θ̄ = 64◦. The instability occurs at differ-
ent critical pressures but also at slight different values of the ratio vc/vco and the two
buckled shapes are considerably different for the two cases. It is also worth noting that
the shape before instability occurs is not a perfect sphere even if can be kept very close
to it. The first results indicate that tuning geometry and material of the shell there is a
vast range of achievable results in terms of shapes which might be controlled by Θ̄ and
α. The study of all the achievable shapes with local inhomogeneities is far beyond the
purpose of the paper but we think it is a very interesting topic and possibly a subject
of our future research.

Appendix: Coefficients of the ODEs system

We define

G0 :=
dµ0

dJ0

the nonvanishng coefficients of the of the linear system to solve are

A12 = 1
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Figure 2. Schematic of a spherical shell with inner and outer
radius Ri and Re, respectively, at the dry state.

Figure 3. Pressure vs change in volume curve in homo-
geneous (blue line) and inhomogeneous (red line) spherical
shells. what about � < 1 under all the other conditions un-
changed?

IV. BUCKLING STRATEGIES

The mechanical phenomenon above illustrated resem-
bles the buckling of pressurised spherical shells, largely
studied in the Literature (see? and references therein)
also in presence of softer regions around the poles. How-
ever, there are important di�erences between the two
situations: (i) water fills cavity and constraints cavity
volume; (ii) the pressure is not a control parameter of
the process, which is a dynamical process driven by the
de-hydration of the shell; (iii) the de-hydration process
realises a di�erential swelling across the thickness of the
shell so equipping the shell with a natural curvature
which can play a role in the mechanical instability we
observed.
All these reasons suggested to put under comparison the
two di�erent buckling strategies in our spherical micro-
capsules confining water-filled cavities.

Figure 4. p/pc and �/�o versus wpol/h compared to the
exact curve by Hutchinson giving p/pc = f(h/R)

A. Pressure buckling

B. Natural curvature buckling
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Figure 6: Active-elastic instability including inhomogeneity in the material.
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