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Abstract

We propose a nonparametric inferential framework for quantifying dependence among two families of multivariate 
functional data. We generalize the notion of Spearman correlation coefficient to situations where the observations are curves 
gen-erated by a stochastic processes. In particular, several properties of the Spearman index are illustrated emphasizing the 
importance of having a consistent estimator of the index of the original processes. We use the notion of Spearman index to 
define the Spearman matrix, a mathematical object expressing the pattern of dependence among the components of a 
multivariate functional dataset. Finally, the notion of Spearman matrix is exploited to analyze two different populations of 
multivariate curves (specifically, Electrocardiographic signals of healthy and unhealthy people), in order to test if the pattern 
of dependence between the components is statistically different in the two cases.
KEYWORDS:
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1 INTRODUCTION

Nowadays, the statistical analysis of complex and high dimensional data is experiencing a notable growth for application in
different fields of science such as medicine, finance, criminology, quality control, and many others. This leads to rethink the
way that classical statistics approaches the analysis of such data, since methodologies commonly implemented until now for
both descriptive and inferential purposes are increasingly limited or inefficient. Data dimensionality often leads multivariate
analysis to be not feasible and its results not easily interpretable. Functional Data Analysis (FDA) (see1,2,3, among others, for
complete overview) is clearly the main field of research in statistics which tried to overcome this issue. Despite the fact that
several multivariate methods are not usually well suited for functional datasets, many multivariate techniques have inspired
advances in FDA. For example, to quantify the relationship of dependence between two or more groups of functional data. In
fact the investigation of the dependence among curves is relatively a new issue in statistics. We aim at providing a non parametric
measure of dependence for families of multivariate curves, as well as a suitable corresponding inferential framework for testing
the presence of dependency among components and possible differences among patterns of dependency. For instance in4 the
authors provided a generalization of the Pearson correlation coefficient for functional data that allows to quantify the dependence
among two families of curves. This measure is called the concordance correlation coefficient and was used to evaluate the
reproducibility of repeated-paired curve data. In5 is defined a Kendall’s 𝜏 coefficient for functions considering pre-orders that
permit the sorting of the functional observations and the identification of the concordant and discordant pairs in a bivariate
sample of curves. In this work, we will consider the definition of the Spearman index for functions introduced by6 to set a
proper inferential framework for assessing dependency among families of multivariate curves. The paper is organized as follows:

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor



2

Section 2 recalls some basic notions about depths, the definition of the Spearman index and Spearman Matrix and the statistical
properties of the related sample estimators. Section 3 presents the whole inferential framework we propose for assessing the
presence of dependency in h-variate functional data, and the related application to a real case study considering two populations
of multivariate Electrocardiographic signals from healthy and unhealthy patients. Results are discussed in Section 4, together
with possible further developments. All the analyses are carried out using7. Codes are embedded in the roahd package, detailed
in8.

2 SPEARMAN INDEX IN THE FUNCTIONAL FRAMEWORK

Spearman index is a non-parametric measure of association between two random variables X and Y. It presents significant
advantages over the classical Pearson correlation coefficient that quantifies linear dependence. In fact its sample version is less
sensitive to outliers than the Pearson correlation coefficient, and it is able to capture also non linear dependences among two
random variables. Let us consider (𝑋1, 𝑌1), (𝑋2, 𝑌2) and (𝑋3, 𝑌3) be three independent copies of the random vector (X,Y) with
joint cumulative distribution function 𝐹𝑋𝑌 and margins 𝐹𝑋 and 𝐹𝑌 , respectively. The Spearman index9 between the variables
X and Y, denoted by 𝜌𝑠(𝑋, 𝑌 ), is defined as:

𝜌𝑠(𝑋, 𝑌 ) = 3(𝑃 [(𝑋1 −𝑋2)(𝑌1 − 𝑌3) > 0] − 𝑃 [(𝑋1 −𝑋2)(𝑌1 − 𝑌3) < 0]) (1)
The Spearman index is proportional to the difference between the probability of concordance and the probability of discordance
for two vectors (𝑋1, 𝑌1) and (𝑋2, 𝑌3).
However, we are interested in the equivalent definition of 𝜌𝑠 by computing the Pearson correlation coefficient, indicated with
𝜌𝑝, between the random variables 𝑈 = 𝐹𝑋(𝑋) and 𝑉 = 𝐹𝑌 (𝑌 ), that is:

𝜌𝑠(𝑋, 𝑌 ) = 𝜌𝑝(𝑈, 𝑉 ) =
𝐸(𝑈𝑉 ) − 𝐸(𝑈 )𝐸(𝑉 )
√

𝑉 𝑎𝑟(𝑈 )
√

𝑉 𝑎𝑟(𝑉 )
. (2)

U and V are called the grades of X and Y. For this reason, the Spearman index is also called the grade correlation coefficient.
Suppose now to have two samples of size n from the random variables X and Y, say x = (𝑥1, 𝑥2, ..., 𝑥𝑛), y = (𝑦1, 𝑦2, ..., 𝑦𝑛).
Consider the vectors of the estimated grades u = (𝑢1, 𝑢2, ..., 𝑢𝑛) and v = (𝑣1, 𝑣2, ..., 𝑣𝑛), defined evaluating each observation in
the empirical cumulative distribution function of the corresponding sample. So, we have

𝑢𝑖 = 𝐹𝑋(𝑥𝑖) =
1
𝑛

𝑛
∑

𝑗=1
𝐼(𝑥𝑗 ≤ 𝑥𝑖)},

𝑣𝑖 = 𝐹𝑌 (𝑦𝑖) =
1
𝑛

𝑛
∑

𝑗=1
𝐼(𝑦𝑗 ≤ 𝑦𝑖)},

for 𝑖 = 1, ..., 𝑛. Notice that 𝑢𝑖 (resp. 𝑣𝑖) can be interpreted as the relative position of the observation 𝑥𝑖 (resp. 𝑦𝑖) in the set x (resp.
y).
The sample version of the Spearman index is defined as the sample Pearson correlation coefficient of u and v:

�̂�𝑠(x, y) = �̂�𝑝(u, v) =

𝑛
∑

𝑖=1
(𝑢𝑖 − �̄�)(𝑣𝑖 − �̄�)

(
𝑛
∑

𝑖=1
(𝑢𝑖 − �̄�)2

𝑛
∑

𝑖=1
(𝑣𝑖 − �̄�)2)

1
2

, (3)

where �̄� and �̄� stand for the sample means of u and v, respectively.
The Spearman index 𝜌𝑠 defined for random variables can be extended, in a rigorous way, to the case of two stochastic processes

𝑋𝑡 and 𝑌𝑡 6, on the basis of (2) and the notion of grade of a stochastic process 𝑋𝑡 with respect to another process 𝑍𝑡 (see10,11).
Let 𝐶(𝐼) be the space of the continuous functions defined in a compact interval 𝐼 and consider a stochastic process 𝑋𝑡, with
distribution  and sample paths in 𝐶(𝐼).
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Definition 1. Let 𝑋𝑡 and 𝑍𝑡 be two stochastic processes. Then,
𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑋𝑡)𝑍𝑡

= 1
𝜆(𝐼)

𝐸𝑍𝑡
[𝜆{𝑡 ∈ 𝐼 ∶ 𝑋𝑡 ≥ 𝑍𝑡}],

𝑆𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑋𝑡)𝑍𝑡
= 1

𝜆(𝐼)
𝐸𝑍𝑡

[𝜆{𝑡 ∈ 𝐼 ∶ 𝑋𝑡 ≤ 𝑍𝑡}],

where 𝜆 stands for the Lebesgue measure on 𝑅. Consider now a functional dataset 𝑥1(𝑡), ..., 𝑥𝑛(𝑡), with 𝑡 ∈ I, composed by n
realizations of the process 𝑋𝑡. If we fix any curve x = x(t) of the dataset, the sample version of both IL-grade and SL-grade can
be easily obtained by substituting the expectation with the sample mean as follows:

𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥) = 1
𝑛𝜆(𝐼)

𝑛
∑

𝑖=1
𝜆{𝑡 ∈ 𝐼 ∶ 𝑥(𝑡) ≥ 𝑥𝑖(𝑡)},

𝑆𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥) = 1
𝑛𝜆(𝐼)

𝑛
∑

𝑖=1
𝜆{𝑡 ∈ 𝐼 ∶ 𝑥(𝑡) ≤ 𝑥𝑖(𝑡)}.

𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥) and 𝑆𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥) quantify the relative position of x with respect to the other curves of the sample, therefore
they represent two possible generalizations of the notion of grade in the infinite dimensional framework. The sample version of
the Inferior and Superior Length grade provide an effective way for ordering a set of curves. In fact, we can give the following
criterion:
Definition 2. Consider the functional dataset 𝑥1(𝑡), ..., 𝑥𝑛(𝑡), 𝑡 ∈ I, composed by n realizations of a stochastic process 𝑋𝑡. Then,

𝑥𝑖(𝑡) ⪯ 𝑥𝑗(𝑡) ⇐⇒ 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥𝑖) ≤ 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥𝑗), (4)
The alternative definition can be deduced by replacing the 𝐼𝐿𝑛−𝑔𝑟𝑎𝑑𝑒(𝑥) with𝑆𝐿𝑛−𝑔𝑟𝑎𝑑𝑒(𝑥). The relation given by Definition
2 meets important properties such as reflectivity and transitivity, but, unfortunately, it does not satisfy the antisymmetry property.
Therefore, the relation introduced is a pre-order, which is less restrictive than a partial order and allows to compare any pair of
functions in the sample. Notice that if the curves do not cross each other, Definition 2 corresponds to the pointwise order.

2.1 Spearman index for bivariate functional data
According to equation (2), as in6 we define the Spearman index for two stochastic processes as the Pearson correlation coefficient
between the random variables 𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑋𝑡) and 𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑌𝑡), as follows:
Definition 3. (Spearman index for stochastic processes) Let (𝑋𝑡, 𝑌𝑡) be a stochastic process with law  taking values on the
space C(I;𝑅2) of the continuous functions (f (t), g(t)) : I → 𝑅2, with I a compact interval of R. The Spearman index for (𝑋𝑡,𝑌𝑡)
is defined as

𝜌𝑠(𝑋𝑡, 𝑌𝑡) = 𝜌𝑝((𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑋𝑡), 𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑌𝑡)), (5)
where 𝜌𝑝 denotes the Pearson correlation coefficient and IL-grade(⋅) is the grade associated to a stochastic process, as in
Definition 2.
The corresponding sample version is the following:
Definition 4. (Spearman index for stochastic processes)
Consider the bivariate functional dataset,

[

x y
]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1(𝑡) 𝑦1(𝑡)
𝑥2(𝑡) 𝑦2(𝑡)
⋮ ⋮

𝑥𝑛(𝑡) 𝑦𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦𝑡∈𝐼
composed by n realizations of the stochastic process (𝑋𝑡,𝑌𝑡) as above. Then, the sample Spearman index, denoted by �̂�𝑠(x, y),
is defined as

�̂�𝑠(x, y) = �̂�𝑝(𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(x), 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(y)), (6)
where �̂�𝑝 is the sample Pearson correlation coefficient and

𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(x) = (𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥1), 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥2), ..., 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑥𝑛)),
𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(y) = (𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑦1), 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑦2), ..., 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒(𝑦𝑛)).

An alternative definition of the Spearman index for functions can be obtained by replacing 𝐼𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒 by 𝑆𝐿𝑛 − 𝑔𝑟𝑎𝑑𝑒.
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We can prove some asymptotic properties of the Spearman coefficient from the fact that it can be expressed as a UB-statistic.
Let B be a real separable Banach space. A UB-Statistic12 is defined as

𝑈𝑛 =
(

𝑛
𝑚

)−1
∑

1≤𝑖1<...<𝑖𝑚≤𝑛
Φ{(𝑋𝑖1 , ..., 𝑋𝑖𝑚)} (7)

where Φ ∶ 𝑋𝑚 → B of m variables given on 𝑋𝑚 and taking values in B, is an integrable symmetric function (kernel).

Definition 5. (Functional 𝜌) If (𝑋1, 𝑌1), (𝑋2, 𝑌2) and (𝑋3, 𝑌3) are copies of a bivariate stochastic process {(𝑋𝑡, 𝑌𝑡) ∶ 𝑡 ∈ 𝐼},
the population version of this dependence measure is

𝜌 = 6[𝑃 (𝑋1 ≺ 𝑋2, 𝑌1 ≺ 𝑌3) + 𝑃 (𝑋2 ≺ 𝑋1, 𝑌3 ≺ 𝑌1)] − 3. (8)
where ≺ is the preorder ⪯ defined in 4 in the case without considering ties. Consider a sample (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) of a two-
dimensional random process (𝑋, 𝑌 ) = {(𝑋𝑡, 𝑌𝑡) ∶ 𝑡 ∈ 𝐼} within the compact interval I, with 𝑋, 𝑌 ∈ 𝐶(𝐼). Then Spearman’s
extended correlation coefficient is estimated by the empirical version:

𝜌𝑛 =
(

𝑛
3

)−1
∑

1≤𝑖1<𝑖2<𝑖3≤𝑛
6𝐼(𝑥𝑖1 ≺ 𝑥𝑖2 , 𝑦𝑖1 ≺ 𝑦𝑖3) + 6𝐼(𝑥𝑖2 ≺ 𝑥𝑖1 , 𝑦𝑖3 ≺ 𝑦𝑖1) − 3. (9)

Now, consider (𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) to be independent copies of the bivariate stochastic process (X,Y) with identical distribution
P and whose realizations or paths are pairs of functions that take values in the measurable space (𝐶[𝑎, 𝑏] × 𝐶[𝑎, 𝑏], 𝜒).
Then, the functional �̂� given in (9) can be expressed as a UB-statistic,

𝑈𝑛 =
(

𝑛
3

)−1
∑

1≤𝑖1<𝑖2<𝑖3≤𝑛
Φ{(𝑋𝑖1 , 𝑌𝑖1), (𝑋𝑖2 , 𝑌𝑖2), (𝑋𝑖3 , 𝑌𝑖3)}, (10)

where Φ ∶ 𝐶2[𝑎, 𝑏] × 𝐶2[𝑎, 𝑏] × 𝐶2[𝑎, 𝑏] → 𝑅 is a Bochner integrable symmetric function according to13, and given by
Φ[(𝑥𝑖, 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗), (𝑥𝑧, 𝑦𝑧)] = 6𝐼(𝑥𝑖 ≺ 𝑥𝑗 , 𝑦𝑖 ≺ 𝑦𝑧) + 6𝐼(𝑥𝑗 ≺ 𝑥𝑖, 𝑦𝑧 ≺ 𝑦𝑖) − 3,

where I denotes the indicator function.

2.2 Properties of functional 𝜌𝑠
Let (𝑋𝑡, 𝑌𝑡) be a bivariate stochastic process and let 𝜌𝑠(𝑋𝑡, 𝑌𝑡) the corresponding Spearman index. Then:

1. 𝜌𝑠 is well defined for any (𝑋𝑡, 𝑌𝑡).
2. 𝜌𝑠(𝑋𝑡, 𝑌𝑡) = 𝜌𝑠(𝑌𝑡, 𝑋𝑡).
3. −1 ≤ 𝜌𝑠(𝑋𝑡, 𝑌𝑡) ≤ 1.
4. 𝜌𝑠(𝑋𝑡, 𝑔(𝑋𝑡)) = 1 for any increasing function g.
5. 𝜌𝑠(𝑋𝑡, 𝑔(𝑋𝑡)) = -1 for any decreasing function g.
6. The Spearman index is invariant under strictly increasing and continuous transformations of the processes, that is:

𝜌𝑠(𝛼(𝑋𝑡), 𝛽(𝑌𝑡)) = 𝜌𝑠(𝑋𝑡, 𝑌𝑡)

where 𝛼(⋅) and 𝛽(⋅) are strictly increasing functions.
7. If 𝑋𝑡 and 𝑌𝑡 are stochastically independent, then 𝜌𝑠(𝑋𝑡, 𝑌𝑡) = 0.
8. The sample Spearman index is a consistent estimator of the index of the original processes.

The proofs of properties 1,2 and 3 are trivial from the definition of 𝜌𝑠.
The details for the proofs of properties 4, 5 and 6 are reported in6.
Property 7 is based on the fact that, if 𝑋𝑡 and 𝑌𝑡 are independent, than the random variables 𝐼𝐿−𝑔𝑟𝑎𝑑𝑒(𝑋𝑡) and 𝐼𝐿−𝑔𝑟𝑎𝑑𝑒(𝑌𝑡)
are also independent. Therefore

𝜌𝑠(𝑋𝑡, 𝑌𝑡) = 𝜌𝑝(𝐼𝐿 − grade(𝑋𝑡), 𝐼𝐿 − grade(𝑌𝑡)) = 0,
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by the well known property of the Pearson correlation coefficient.
Expressing the functional �̂� given in (9) as a UB-statistic, we can get the consistency of functional �̂�𝑠 applying Theorem 2 of5
obtaining an asymptotic result in the functional field also for the Spearman’s coefficient.
Theorem (Asymptoticity of �̂�𝑛) Let (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) be a sample of independent and identical functional observations from
(X,Y). Then,

�̂�𝑛 → 𝜌𝑠 a.s. as 𝑛 → ∞

It is easy to check that the function
Φ[(𝑥𝑖, 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗), (𝑥𝑧, 𝑦𝑧)] = 6𝐼(𝑥𝑖 ≺ 𝑥𝑗 , 𝑦𝑖 ≺ 𝑦𝑧) + 6𝐼(𝑥𝑗 ≺ 𝑥𝑖, 𝑦𝑧 ≺ 𝑦𝑖) − 3,

which represents the kernel for the �̂�𝑛 belongs to the interval [-3, 11]. Then, the functional �̂�, given in (9) and expressed as a
UB-statistic in (10), has associated a kernel Φ such that 𝐸||Φ|| is finite.
Therefore, from Theorem 1 in12, we have that, if Φ is such that 𝐸||Φ|| < ∞, then the UB-statistic will converge almost surely
to the parameter 𝜌. Observe that the above theorem is valid in general for any well-defined preorder (≺𝑚, ≺𝑖).

2.3 Spearman Matrix for h-variate functional data
We introduce a new mathematical object for expressing the pattern of dependence among the components of a multivariate
functional dataset. Given the h-variate stochastic process 𝑋𝑡 as above, we define the Spearman Matrix (SM in the following) as
the h × h symmetric matrix

𝑆𝑀(X𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌𝑠(𝑋1
𝑡 , 𝑋

1
𝑡 ) 𝜌𝑠(𝑋1

𝑡 , 𝑋
2
𝑡 ) … 𝜌𝑠(𝑋1

𝑡 , 𝑋
ℎ
𝑡 )

𝜌𝑠(𝑋2
𝑡 , 𝑋

1
𝑡 ) 𝜌𝑠(𝑋2

𝑡 , 𝑋
2
𝑡 ) … 𝜌𝑠(𝑋2

𝑡 , 𝑋
ℎ
𝑡 )

⋮ ⋮ ⋱ ⋮
𝜌𝑠(𝑋ℎ

𝑡 , 𝑋
1
𝑡 ) 𝜌𝑠(𝑋

ℎ
𝑡 , 𝑋

2
𝑡 ) … 𝜌𝑠(𝑋ℎ

𝑡 , 𝑋
ℎ
𝑡 )

⎤

⎥

⎥

⎥

⎥

⎦

, (11)

where 𝜌𝑠(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 ) is the Spearman index between the i-th and j-th component of the stochastic process, as in Equation 5. Let then

X = [x1 x2 ... xℎ] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,1(𝑡) 𝑥1,2(𝑡) … 𝑥1,ℎ(𝑡)
𝑥2,1(𝑡) 𝑥2,2(𝑡) … 𝑥2,ℎ(𝑡)
⋮ ⋮ ⋱ ⋮

𝑥𝑛,1(𝑡) 𝑥𝑛,2(𝑡) … 𝑥𝑛,ℎ(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦𝑡∈𝐼

, (12)

be a multivariate functional dataset, composed by n realizations of the stochastic process 𝑋𝑡, where the vectors
x𝑖 = (𝑥1,𝑖(𝑡), 𝑥2,𝑖(𝑡), ..., 𝑥𝑛,𝑖(𝑡))′𝑡∈𝐼 , 𝑖 = 1, ..., ℎ

represent the functional samples containing the realizations of a specific component of the process. To avoid hard notations, the
vectors are represented neglecting the dependence on time. The sample Spearman Matrix 𝑆𝑀(X) is given by

𝑆𝑀(X) =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�𝑠(x1, x1) �̂�𝑠(x1, x2) … �̂�𝑠(x1, xℎ)
�̂�𝑠(x2, x1) �̂�𝑠(x2, x2) … �̂�𝑠(x2, xℎ)

⋮ ⋮ ⋱ ⋮
�̂�𝑠(xℎ, x1) �̂�𝑠(xℎ, x2) … �̂�𝑠(xℎ, xℎ)

⎤

⎥

⎥

⎥

⎥

⎦𝑡∈𝐼

, (13)

where �̂�𝑠(x𝑖, x𝑗) is the sample Spearman index computed on the bivariate functional dataset [x𝑖,x𝑗], as in Definition 3. It can be
immediately noticed that 𝑆𝑀(X) is an easy to handle and easy to interpret mathematical object and its cross diagonal elements
give a quick and effective overview of the pattern of dependence among components of a multivariate functional dataset. The
great advantage with respect to the variance-covariance operator is the fact that the dependence among components is described
through scalar indexes that may be tested in a suitable inferential context. Since SM(X𝑡) and 𝑆𝑀(X) are symmetric, in the
following we will show only their upper triangular part.

3 THE CASE STUDY

In this section, we apply the techniques previously described to a real case study. The aim is to compare the Spearman Matrix
arising from the 8-variate electrocardiographic signals (ECG hereafter) of a population of healthy people with the one arising
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from signals of people affected by Left Bundle Brunch Block (LBBB hereafter), a kind of Acute Myocardial Infarction. We want
to investigate if the pattern of dependence between the components of the multivariate signals presents remarkable differences
in the two cases.

3.1 The dataset
Our data consist in a multivariate functional dataset containing the ECG traces of a population of healthy people and one
composed by individuals affected by an heart disease called Left Bundle Brunch Block (LBBB). Each statistical unit (patient)
is characterized by the 8-variate functional datum of his/her electrocardiogram, which describes his/her heart dynamics on the
eight leads I, II, V1, V2, V3, V4, V5 and V6. The data are from PROMETEO (PROgetto sull’area Milanese Elettrocardiogrammi
Teletrasferiti dall’Extra Ospedaliero) database. PROMETEO project has been started in 2008 with the aim of spreading the
intensive use of ECGs as prehospital diagnostic tool. Each file contained in PROMETEO database can be associated to three
sub-files, called Details, Rhythm and Median. For the aims of the analysis, only the last one is necessary. The Median file depicts
a reference beat (obtained throught an authomatic filtering procedure applied to the Rhythm file) lasting 1.2 seconds on a grid
of 1200 points. It provides, among others, 8 curves (one for each ECG lead) for each patient, representing patient’s “Median”
beat for that lead. This representative heartbeat is a trace of a single cardiac cycle (heartbeat), i.e., of a P wave, a QRS complex,
a T wave, and a U wave. Actually PROMETEO database contains 6734 curves; among these, 1633 are healthy (i.e., not affected
by cardiovascular diseases detectable through the ECG), whereas 5101 are affected by different heart diseases. See14,15,16,17 for
further details on the dataset and its use for statistical applications.
In what follows we will focus just on one of the most common disease, that is easily detectable observing the ECG signal. It is a
kind of Myocardial Infarction named Left Bundle Brunch Block (LBBB). In the PROMETEO dataset, 314 people are affected by
this pathology. After suitable preprocessing and robustification (see17 for more details) of the dataset, the final sample available
for the analyses is composed by 1564 Physiological curves and 205 LBBB curves, discretized on a uniformly time grid T of
1024 points. Each patient is represented by his/her discretized multivariate signal, i.e., for 𝑖 = 1, ..., 𝑛, Φ𝑖(𝑡): T ⊂ ℝ → ℝ8. All
the curves of the available sample are registered and denoised (see14 for further details on wavelet denoising and landmarks
registration adopted for preprocessing data).
To fix the notation, we assume that the ECG signals of physiological and pathological patients are realizations of two different
multivariate stochastic processes,𝑋𝑡 = (𝑋1

𝑡 ,𝑋2
𝑡 ,...,𝑋8

𝑡 ) and 𝑌𝑡 = (𝑌 1
𝑡 ,𝑌 2

𝑡 ,...,𝑌 8
𝑡 ), respectively. For the two processes, we require the

same continuity assumptions introduced in Subsection 2.3. For the analysis, we construct two different multivariate functional
dataset from the available sample: the first is denoted with X and collects 𝑛𝑥 = 200 randomly chosen ECG signals from the
population of the physiological (healthy) patients. In other words, X is a dataset 200 × 8 discretized functions, where the i-th
row contains the multivariate curve (ECG) associated to the i-th selected patient. The second functional dataset is denoted with
Y and contains the multivariate curves of 𝑛𝑦 = 200 randomly chosen patients affected by LBBB. Notice that, without loss of
generality, we are considering in order to ease the computations two populations of data with the same number of realizations.

Figures 1 and 2 show the ECG signals selected in the datasets X and Y, respectively.

3.2 Comparison between the Spearman matrices of the two populations
As we said before, we aim to study the pattern of dependence among leads in the two populations of healthy people and patients
affected by LBBB and pointing out possibly significant differences. This aim is supported by the following argument: it is likely,
clinically speaking, that the presence of the disease might affect the way the leads depend on each other. In fact, the LBBB
patients have a region of the heart that is damaged, and this modifies the heart dynamics. So, we believe that the relation of
dependence among leads may change due to the presence of the disease. Tables 1 and 2 show the Spearman matrices for
physiological (𝑆𝑀(X)) and pathological (𝑆𝑀(Y)) ECGs, respectively (see8). The entries coloured in yellow represent those
for which there isn’t statistical evidence of being different from zero, based on the statistical procedure explained in the follow-
ing, and indicate that the corresponding pairs of leads can be assumed independent. Their detection is performed observing the
confidence intervals, based on bootstrap iterations contained in the matrices 𝑆𝑀(X)0.95 and 𝑆𝑀(Y)0.95 (reported in Tables 3
and 4 , respectively): if an interval contains zero, the hypothesis of independence between the corresponding pair of leads is
not rejected and so the component of the Spearman Matrix is highlighted to indicate a non significant dependence. We decide
to highlight the independent pairs of leads instead of the dependent ones in order to point out, in a easier way, the dissimilarities
between the patterns. The two matrices provide an effective insight on the way in which the leads of the ECG signals depend on
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each other and give us the possibility to compare the pattern of dependence in the two populations. Firstly, we notice a similar-
ity: the upper diagonals of the matrices are composed, except for one case, by high and significantly different from zero entries.
This means that in both cases the dynamics of the heart on a lead is strictly related to the dynamics on the following one.
However, we notice remarkable differences. For instance, the pattern of dependence of physiological signals is more connected,
whereas the one of LBBBs is more sparse, due to the presence of several pairs of independent leads. Moreover, it seems that V2
is particularly affected by the disease. In fact, in healthy patients, it depends on all the other leads, but the same does not hold in
the pathological patients, being V2 correlated with only 3 leads.
What we observe can be interpreted in terms of heart dynamics: in physiological patients, the heart dynamics is more regular
and expresses coordinated behaviours in all the components of the ECGs, whereas it becomes more chaotic and characterized
by disjointed behaviours when the pathology is present.
Another difference can be noticed comparing the two matrices: in the case of physiological signals, the entries that are signi-
ficatively different from zero are positive, indicating that there is agreement between the grades of the leads. The same does
not happen for the LBBB signals, where we notice that the entries associated to the pairs V1-I, V1-V5 and V1-V6 are negative.
Hence, it seems that the disease is able to change the natural relation of dependence among some leads of the ECG.

3.3 Testing the equality of two Spearman matrices
A test that compares the patterns of dependence of two populations of multivariate functional data can be formulated exploiting
the notion of Spearman Matrix, as follows.

Suppose to have two stochastic processes
X𝑡 = (𝑋1

𝑡 , 𝑋
2
𝑡 , ..., 𝑋

ℎ
𝑡 ), Y𝑡 = (𝑌 1

𝑡 , 𝑌
2
𝑡 , ..., 𝑌

ℎ
𝑡 ),

with h > 2 and assume that the same continuity assumptions of Section 2.3 hold. Assume also to have two multivariate functional
datasets sampled

X =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,1(𝑡) 𝑥1,2(𝑡) … 𝑥1,ℎ(𝑡)
𝑥2,1(𝑡) 𝑥2,2(𝑡) … 𝑥2,ℎ(𝑡)
⋮ ⋮ ⋱ ⋮

𝑥𝑛1,1(𝑡) 𝑥𝑛1,2(𝑡) … 𝑥𝑛1,ℎ(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦𝑡∈𝑇

, Y =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1,1(𝑡) 𝑦1,2(𝑡) … 𝑦1,ℎ(𝑡)
𝑦2,1(𝑡) 𝑦2,2(𝑡) … 𝑦2,ℎ(𝑡)
⋮ ⋮ ⋱ ⋮

𝑦𝑛2,1(𝑡) 𝑦𝑛2,2(𝑡) … 𝑦𝑛2,ℎ(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦𝑡∈𝑇

,

from X𝑡 and Y𝑡, respectively. We want to perform the test:
𝐻0 ∶ 𝑆𝑀(X𝑡) = 𝑆𝑀(Y𝑡) 𝑣𝑠 𝐻1 ∶ 𝑆𝑀(X𝑡) ≠ 𝑆𝑀(Y𝑡).

The two matrices that we want to test enjoy an important property. In fact, according to (5), we have
(𝑆𝑀(X𝑡))𝑖,𝑗 = 𝜌𝑠(𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡 ) = 𝜌𝑝((𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑋𝑖

𝑡 ), 𝐼𝐿 − 𝑔𝑟𝑎𝑑𝑒(𝑋𝑗
𝑡 ))),

for 𝑖, 𝑗 = 1, ..., ℎ, where 𝜌𝑝 indicates the Pearson correlation coefficient.
Hence, the equality of two Spearman matrices can be tested exploiting the multivariate realizations defined by the sample
Inferior (or Superior) Length grades of the multivariate curves.
In literature, the problem of testing the equality of two correlation matrices has been studied extensively and several tests in this
direction have been proposed. The typical approach is to assume a parametric model for the two populations of multivariate
data and determine a test statistic that is able to capture the possible deviation from the null hypothesis (e.g. Jennrich’s18 and
Larntz-Perlman’s19 statistics).
Since these methods require questionable assumptions on the grades of the curves, we move on to a non parametric approach
presenting a permutation-based testing procedure. Our proposal has a great advantage with respect to the tests mentioned above
since it does not require any distributional assumption on data that may restrict its application. In this section we will discuss
the newly proposed test statistic and its associated algorithm for the two-sample problem (see20).

Definition 6. Let 𝑅ℎ×ℎ be a vector space of symmetric matrices of size h × h and f : 𝑅ℎ×ℎ → 𝑅𝑚×𝑛. The angle between two
symmetric matrices M1 and M2 in 𝑅ℎ×ℎ with respect to f is defined as arccos(M1,M2) and

𝑐𝑜𝑠(M1,M2) =
⟨f(M1), f(M2)⟩
‖f(M1)‖‖f(M2)‖

, (14)
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𝑆𝑀(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐼 𝐼𝐼 𝑉 1 𝑉 2 𝑉 3 𝑉 4 𝑉 5 𝑉 6
𝐼 1 0.382 -0.069 0.303 0.327 0.386 0.439 0.456
𝐼𝐼 1 0.036 0.202 0.500 0.596 0.605 0.611
𝑉 1 1 0.674 0.372 0.146 -0.001 -0.046
𝑉 2 1 0.635 0.475 0.376 0.300
𝑉 3 1 0.830 0.678 0.496
𝑉 4 1 0.869 0.662
𝑉 5 1 0.811
𝑉 6 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

TABLE 1 Spearman Matrix for the population of the physiological signals. The non significant components (highlighted in
yellow) are detected according to the confidence intervals of Table 3 .

𝑆𝑀(Y) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐼 𝐼𝐼 𝑉 1 𝑉 2 𝑉 3 𝑉 4 𝑉 5 𝑉 6
𝐼 1 0.459 −0.392 -0.052 -0.016 0.346 0.607 0.653
𝐼𝐼 1 -0.095 0.036 0.198 0.471 0.599 0.582
𝑉 1 1 0.750 0.560 0.123 −0.220 −0.370
𝑉 2 1 0.734 0.363 0.010 -0.150
𝑉 3 1 0.688 0.246 -0.036
𝑉 4 1 0.727 0.451
𝑉 5 1 0.843
𝑉 6 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

TABLE 2 Spearman Matrix for the population of the LBBB signals. The non significant components (highlighted in yellow)
are detected according to the confidence intervals of Table 4 .

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐼 𝐼𝐼 𝑉 1 𝑉 2 𝑉 3 𝑉 4 𝑉 5 𝑉 6
𝐼 1 (0.259, 0.506) (-0.207,0.073) (0.19, 0.416) (0.183, 0.448) (0.25, 0.499) (0.316, 0.55) (0.319, 0.564)
𝐼𝐼 1 (-0.105,0.187) (0.063, 0.339) (0.397, 0.59) (0.493, 0.686) (0.506, 0.691) (0.514, 0.692)
𝑉 1 1 (0.554, 0.742) (0.255, 0.485) (0.002, 0.28) (-0.138,0.144) (-0.188,0.1)
𝑉 2 1 (0.538, 0.713) (0.36, 0.573) (0.261, 0.483) (0.165, 0.424)
𝑉 3 1 (0.778, 0.867) (0.588, 0.745) (0.373, 0.591)
𝑉 4 1 (0.809, 0.902) (0.551, 0.741)
𝑉 5 1 (0.741, 0.869)
𝑉 6 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

TABLE 3 Matrix of confidence intervals of coverage probability 0.95 for the components of the Spearman Matrix associated to
the population of the physiological signals where each interval is computed using 𝐵 = 1000 bootstrap iterations. The intervals
containing zero are highlighted in yellow.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐼 𝐼𝐼 𝑉 1 𝑉 2 𝑉 3 𝑉 4 𝑉 5 𝑉 6
𝐼 1 (0.308, 0.573) (−0.508,−0.261) (-0.205,0.082) (-0.147,0.123) (0.23, 0.46) (0.501, 0.686) (0.547, 0.732)
𝐼𝐼 1 (-0.239,0.064) (-0.125,0.183) (0.049, 0.333) (0.352, 0.569) (0.499, 0.69) (0.459, 0.676)
𝑉 1 1 (0.661, 0.807) (0.461, 0.653) (-0.021,0.257) (−0.355,−0.074) (−0.503,−0.225)
𝑉 2 1 (0.654, 0.796) (0.234, 0.49) (-0.162,0.16) (-0.302,0.012)
𝑉 3 1 (0.58, 0.77) (0.086, 0.375) (-0.179,0.111)
𝑉 4 1 (0.638, 0.795) (0.333, 0.561)
𝑉 5 1 (0.777, 0.884)
𝑉 6 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

TABLE 4 Matrix of confidence intervals of coverage probability 0.95 for the components of the Spearman Matrix associated
to the population of the pathological signals where each interval is computed using 𝐵 = 1000 bootstrap iterations. The intervals
containing zero are highlighted in yellow.
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where ⟨⋅, ⋅⟩ is an inner product and ‖ ⋅ ‖ is the corresponding norm in 𝑅𝑚×𝑛.

Since a h × h symmetric matrix is completely determined by its lower triangular elements together with the symmetry, we
construct the mapping f by applying the half-vectorization operator on M1 and M2 directly. The cosine between M1 and M2 can
be obtained from Equation (14) as follows:

𝑐𝑜𝑠(M1,M2) =
𝑣𝑒𝑐ℎ(M1)𝑇 𝑣𝑒𝑐ℎ(M2)

‖𝑣𝑒𝑐ℎ(M1)‖‖𝑣𝑒𝑐ℎ(M2)‖
. (15)

For correlation matrices, the computation can be simplified by introducing a modified half-vectorization operator 𝑣𝑒𝑐ℎ∗(⋅) from
vech(⋅) by excluding the diagonal elements of the matrix. Suppose M1 and M2 are two correlation matrices, the cosine can be
computed by Equation (14) as

𝑐𝑜𝑠(M1,M2) =
𝑣𝑒𝑐ℎ∗(M1)𝑇 𝑣𝑒𝑐ℎ∗(M2)

‖𝑣𝑒𝑐ℎ∗(M1)‖‖𝑣𝑒𝑐ℎ∗(M2)‖
. (16)

As mentioned in20 the half-vectorization operator, vech(⋅), for covariance matrices and the modified half-vectorization operator,
𝑣𝑒𝑐ℎ∗(⋅), for correlation matrices completely remove the redundancy in symmetric matrices and are very easy to compute.
Moreover, these two operators show better statistical power in pilot simulation studies. The cosine value computed from Equation
(14) measures the similarity between two symmetric matrices. When this value is one, the two matrices are identical. As proposed
in20 we consider the following test: let X𝑛1×𝑝 and Y𝑛2×𝑝 be two moultivariate functional dataset with sample Spearman correlation
matrices S1 and S2, respectively. We consider the following test statistic

1 −
𝑣𝑒𝑐ℎ∗(S1)𝑇 𝑣𝑒𝑐ℎ∗(S2)

‖𝑣𝑒𝑐ℎ∗(S1)‖‖𝑣𝑒𝑐ℎ∗(S2)‖
, (17)

We propose Algorithm 1 to compute p-values from the distribution of this test statistic under the null hypothesis of equality. In
this algorithm, two data matrices X𝑛1×ℎ and Y𝑛2×ℎ are stacked to form a new data matrix D𝑛×ℎ (n = 𝑛1 + 𝑛2). In each permutation
the rows of D𝑛×ℎ are randomly permuted to generate a permuted data matrix D∗

𝑛×ℎ, which is then split into two data matrices
X∗

𝑛1×ℎ
and Y∗

𝑛2×ℎ
to compute the test statistic (17). Algorithm 1 assumes that X1𝑖 in X and Y1𝑖 in Y have the same distribution for

all i’s under the null hypothesis. One advantage of our proposed two-sample test is that X1𝑖 and Y1𝑗 , for i ≠ j, need not to have
the same distribution. The rationale behind Algorithm 1 is that the cosine value between S∗

1 and S∗
2 is similar to that of S1 and

S2 under the null hypothesis and the permutations provide a good control of the type I error. Under the alternative, the repeated
random-mixing rows of X𝑛1×ℎ and Y𝑛2×ℎ produce S∗

1 and S∗
2 such that the cosine value between the two is bigger than that of S1

and S2, therefore the test statistic (17) has good power to reject the null at a pre-determined significance level.

Algorithm 1: Test for the equality of two Spearman matrices.
B ← the number of permutations
T(i) ← 0, i=1,...,B
S1 ← Compute the sample Spearman matrix from X𝑛1×ℎ
S2 ← Compute the sample Spearman matrix from Y𝑛2×ℎ
𝑇0 ← Compute (17)
D(𝑛1+𝑛2)×ℎ ← stack X𝑛1×ℎ and Y𝑛2×ℎFor i=1 to i=B

D∗
(𝑛1+𝑛2)×ℎ

← randomly shuffle the rows of D(𝑛1+𝑛2)×ℎ

X∗
𝑛1×ℎ

← the first 𝑛1 rows of D∗
(𝑛1+𝑛2)×ℎ

Y∗
𝑛2×ℎ

← the remaining 𝑛2 rows of D∗
(𝑛1+𝑛2)×ℎ

S∗
1 ← Compute the sample Spearman matrix from X∗

𝑛1×ℎ
S∗
2 ← Compute the sample Spearman matrix from Y∗

𝑛2×ℎ
T(i) ← Compute (17)

End For
Report p-value = (#(T(i) ≥ 𝑇0)+1)/(B+1)
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3.4 Application to the case study
Now we are ready to apply the two-sample Anderson-Darling test to the case of the Spearman matrices of physiological and
LBBB patients. In Figure 3 we report the histogram of B = 1000 permutational replications of T under H0 and a dashed line
denoting the observed value T0(X,Y). As you can see, the line is drawn on the right hand side of the replications, indicating
that the observed value is not likely under the null hypothesis (the p-value of the test is approximately 0.000999001). Therefore,
the test gives strong evidence to reject H0 and to state that the Spearman matrices of physiological and pathological signals are
different, coherently with the results presented in Section 3.2.
If we consider other distances between matrices such as the one induced by the one, infinity and Frobenius norm, the result does
not change confirming strong evidence in favour of the dissimilarity of the two Spearman matrices.

4 CONCLUSIONS

In this work, we consider the notion of Spearman index in the infinite dimensional framework to quantify the dependence among
two families of functional data. We studied also its properties to prove that it is a consistent estimator of the index of the original
processes. Starting from this definition, we build the Spearman Matrix, a new mathematical object that mimics the correlation
matrix of multivariate statistics and that provides an effective insight of the pattern of dependence among the components of a
multivariate functional dataset. This is a new tool in the literature of functional data analysis that can be adopted for different
applications. In both methodological and applicative parts of this work, we present interesting results.

The principal result of the methodological part is the definition of robust and innovative tools to investigate dependence in the
functional setting. We consider the Spearman index in the multivariate framework through the notion of grade for a stochastic
process. Subsequently we focus on the bivariate case defining the Spearman index for bivariate functional data based on the
Pearson correlation coefficient between grades associated with the two stochastic processes. We demonstrated the consistency
of functional Spearman estimator through the notion of UB-statistic, obtaining an asymptotic result in the functional field for
the Spearman’s coefficient. Finally, we define the Spearman Matrix for h-variate functional data, an easy to handle and easy
to interpret mathematical object with its cross diagonal elements that give us a quick and effective overview of the pattern of
dependence among components of a multivariate functional dataset. This matrix will be of great importance in the case study.

In the applicative part of our work, we moved to the analysis of a real dataset. We compared the Spearman Matrix arising
from the 8-variate electrocardiographic signals of a population of healthy people with the one arising from signals of people
affected by Left Bundle Brunch Block (LBBB). The aim was to verify if the pattern of dependence in the two cases are different
due to the presence of the disease. From a visual comparison between the sample Spearman matrices of the two populations,
we observed that the ECG signals of the physiological patients are characterized by a coordinated pattern in which most of the
components depend on the others. The some does not happen in the case of LBBB curves, where we noticed several pairs of
independent leads. Moreover, in pathological curves some components of the Spearman Matrix change sign with respect to the
physiological case. These basic observations induced us to believe that the pathology changes the relations between the leads
of the electrocardiographic signal. A statistical confirmation of this conjecture was provided using quantitative tools. We tested
the hypothesis that physiological and pathological signals have the same Spearman Matrix, adapting to our framework a non-
parametric test which checks the equality of Spearman correlation matrices arising from different populations of multivariate
data. This procedure is an alternative way to perform the test which avoids strong assumptions on the grade of the multivariate
curves. The test proposed is a permutational test procedure, based on the notion of the generalized cosine measure between two
symmetric matrices, and it gave us strong evidence to reject the null hypothesis and to consider the Spearman matrices of the
two populations different. Therefore, the synergy between the inferential framework built for the Spearman index and the test
for comparing the Spearman matrices of different multivariate functional datasets enabled us to show, in a rigorous way, that
LBBB affects the heart dynamics changing the way in which the leads of the electrocardiographic signal depend on each other.
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FIGURE 1 Registered and denoised ECG signals of the 𝑛𝑥 = 200 physiological patients used for the analysis.
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FIGURE 2 Registered and denoised ECG signals of the 𝑛𝑦 = 200 LBBB patients used for the analysis.
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FIGURE 3 Histogram of B = 1000 permutational replications of T under H0 computed using the notion of the generalized
cosine measure between two symmetric matrices. The dashed line is drawn at the observed value T0(X,Y) = 0.12.
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