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This paper presents the static bending of isotropic Kirchhoff’s nanoplates modelled us-
ing the second order strain gradient theory. The numerical analysis is conducted using
Mesh Free methods instead of traditional Finite Elements. To the best of the authors’
knowledge, no such meshless methods have been employed in the analysis of strain gra-
dient nanoplates. Hermite Radial point interpolation method is used to approximate
the bending degrees of freedom. Plates with different geometries and simply supported
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boundary conditions are studied. The results are then compared with the analytical
solution available in the literature.

Keywords: Radial Point Interpolation Method; Meshless method; Strain Gradient theory;
Nanoplates

1. Introduction

Recently, the focus of research on the topic of numerical methods is shifting from
the traditional, well known FEM to alternative methods which can overcome its
limitations while granting the same accuracy. In this context, the interest in Mesh
Less or Mesh Free methods is rapidly growing. Application of these methods on the
classical structural mechanical analysis has been widely studied [1, 2, 3]. The idea
of the methods is to get rid of the classical mesh used in FEM by substituting it
with a random nodal distribution used to represent the domain. It is true, however,
that unless the problem is studied in its strong formulation, a mesh is still needed
to evaluate the necessary integrals. But even in this case, the mesh and the nodal
distribution are two distinct objects.

Different kind of shape functions have been developed and applied to solve some
of the most famous structural mechanics problems [4, 5, 6]. Among them, the Point
Interpolation Method (PIM) has the advantage of possessing the Kronecker delta
function property, allowing for an easy imposition of the essential boundary con-
ditions [7, 8, 9, 10]. Although very effective, simple and accurate, the PIM showes
issues for regular nodal distributions. However, the method has been augmented
with an additional sub-routine to effectively solve the problem [2, 11].

Another powerful Mesh Free Method is the Radial Point Interpolation Method
(RPIM) which belongs to the same family as the PIM. It still possesses the Kro-
necker delta function property but overcomes the issues of the PIM [12, 13, 14, 15].
Which means that simple regularly distributed nodes can be used to represent the
domain.

In a different field but a similar fashion, increasing studies in micro and nano
structural components shifted researchers’ focus from classical linear elasticity to
nonlocal theories. These kind of structures, in fact, have proven to be extremely
versatile, finding wide applications in MEMS (Micro-Electro-Mechanical-Systems)
and NEMS (Nano-Electro-Mechanical-Systems) which require the employment of
nanorods, nanobeams and nanoplates [16, 17, 18, 19, 20, 21, 22, 23]. Nonlocal the-
ories have been widely applied in the study of these structural components to in-
vestigate nonlocal effects in both static [24, 25, 26, 27, 28] and dynamic [29, 30, 31,
32, 33, 34] analysis.

The mechanical behaviour of micro and nano components is affected by the
microstructure of the material and by the interaction forces among particles which
are far from each other [35, 36, 37, 38, 39]. All these effects are negligible on a
macroscale but became significant in micro and nano structures.

The issue with classical theories is that they are not able to properly model



the microscopic effects dominating in these materials and that is because they do
not involve any length scale parameter. On the other hand, nonlocal theories are
characterised by the introduction of this extra degree of freedom or parameter [40,
20, 41, 42, 43]. Among all of these theories, the second order strain gradient theories
are particularly easy to formulate, being characterised by the introduction of just
one nonlocal parameter which directly enters in the constitutive law. The second
order strain gradient theories have been widely applied to thin plates for which the
analytical solution is available for certain combinations of boundary conditions [44,
45, 46, 47]. Numerical Finite Element Method (FEM) analysis has also been widely
used in such applications [48, 49, 50, 51].

To the best of the authors’ knowledge, Mesh Free Methods and nonlocal theo-
ries have not yet been used together to solve structural mechanics problems. The
challenge of the present work is to implement a RPIM to solve the static bending
problem of a nanoplate modelled via negative strain gradient theory.

This paper is organized as follows. The present introduction section is followed by
the theoretical notions regarding thin isotropic Kirchhoff plates [52, 53]. The latter
is followed by a detailed explanation of the Radial Point Interpolation Method,
shape functions construction and numerical implementation. Section 3 presents the
numerical results and graphs that validate and compare the present analysis against
the available analytical solutions. Finally, a conclusion sections closes this work.

2. Formulation
2.1. Kirchhoff plates theory

A thin rectangular isotropic plate subjected to a uniformly distributed load ¢, is
considered. The dimensions of the plate are taken as a along the xz-axis, b along the
y-axis and A for the thickness which is considered uniform along the whole plate.
According to Kirchhoff’s flexural plate theory [54], the displacements along the x,
y and z directions are the once usually considered for isotropic plates in bending
configuration (in-plane plate motion is neglected). Thus, the unique plate degree
of freedom is the transverse displacement w of the mid-plane (z,y,0). The strain-
displacement relations can be written as:

e = zDw(z,y) (1)

where € = [e,4 €4y Vuy] | and the differential operator:

-
2 2 2
D= - % aa_y2 Q&)gay] 2)

has been introduced.
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2.2. Second order strain gradient theory

The nanoplate mechanics is modelled according to the second-order strain gradient
theory in which the non locality effects are expressed by the constitutive equation:

o= (1-07rA%Qe (3)

where 0 = {044 04y sz}‘r7 ¢ is the nonlocal parameter, A% = 92/0y* + 9% /0x>
denotes the Laplacian operator and Q is the classical matrix of reduced elastic
constants.

The equations of motions are obtained by means of the principle of virtual work:

§U + 6V =0 (4)

where §U is the virtual strain energy and 0V is the virtual work of the external
forces.

Being the only one affected by the strain gradient theory, let us focus on the first
term of Equation (4). The strain energy of the plate in bending can be obtained as:

o T
U—/As cdA (5)

where A stands for the arca of the plate. Considering the definition of strains and
stresses given in Equations (2) and (3) respectively, the explicit form of the strain
energy is given by:

2w\ ? 02w 0%w 2w\ 2 92w\ 2
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U\ 024 " 922042 ) 022 A\ 0y2022 " 0yt ) 922 (6)

0*w N tw N\ 0w 4D 0*w N o*w N
ozt 0x20y? ) Oy? 2 0x20y? oyt
*w tw \ Pw
2Des <8m33y e 5‘x3y3) 8:176‘y)] a4

where D;; are the components of the bending rigidity matrix D, which, for plane
stress problems, is expressed as:

1v 0
En3
D=——""_|v1 0 (7)
_ 4,2
12(1 V) 001511

where E is the Young’s modulus and v is the Poisson’s ratio.
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The variational form of the equation of motion can then be written as:

/ {<D5w<x,y>>TDDw<x,y>
A
+ 02 {(Dxdw(x, ) DD w(z,y) + (D 6w(z,y)) DD w(z,y) (8)

+ dw(z,y)q. }dA =0

where

0 0
D,=—-—D D,=—D 9
s L ax Y ay ( )
Note that the first term in Equation (8) represents the classical strain energy com-
ponent while the second includes the terms associated with the strain gradient

theory.

2.3. Mesh free formulation

The analysis is performed using mesh free method, namely the Radial Point Inter-
polation Method (RPIM). The advantage of using such method is that no mesh is
needed to perform the analysis. The domain is represented, not discretised, by an
arbitrarily distributed set of nodes. A further simplification comes from the use of
the RPIM, which possesses the Kronecker delta function property hence allowing
for an easy imposition of the essential boundary conditions.

In the case of a Kirchhoff plate the only degree of freedom is the transverse
deflection w. According to this theory, to properly impose the plate boundary con-
straints, its derivatives have to be considered as additional degrees of freedom, since
such are primary variables of the problem. In addition, since a strain gradient the-
ory is considered in the present work, not only first order derivatives of w (the
rotations) are involved in the formulation but also the second order derivatives (the
curvatures). In traditional finite element procedures in such cases Hermite interpo-
lation functions should be employed in order to incorporate the derivatives in the
finite element approximation. On the contrary in collocation methods, the shape
functions do not directly embed all the needed degrees of freedom at the node.
Therefore in this work the approximation involves the transverse motion w and its
two first derivatives with respect to z and y.

In the context of the strain gradient theory, the essential boundary conditions
for the plate are shown in Table 1 where the four edges are identified by the values
of the physical coordinates x and y.

In this work, the degrees of freedom for the problem are taken as the deflection w
and its first derivatives w, and w,. Any other higher-order derivative can be simply
obtained by derivation. The essential boundary conditions will be imposed accord-
ingly. Since both the deflection and its first derivatives are considered unknown, the
Hermite-RPIM formulation is here presented.
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BCs T = 0’ a Y= 0, b
Supported w:%_;'/f:() w:%zo
Clamped w:%:g_z:() w:%:%—Z:O

Free No variables involved No variables involved

Table 1: Essential boundary conditions considered.

Let’s consider a domain enclosing n arbitrarily scattered nodes. The approxi-
mation of the deflection w(x,y) can be expressed as:

i=1 i=1

i=1

=R'(x)a+R[(x)a” + R} (x)a’

where R;(z,y), Ri.(x,y) and R; ,(z,y) are the radial basis function (RBF) and its
derivatives and a;, a? and a! the corresponding unknown vectors of coefficients. In
this work, the multi-quadrics RBF is used in its general form:

Ri(z) = [(x — 2:)* + (y — 5:)* + (acde)’]? (11)

where ¢ and «, are two shape parameters, which have to be tuned, and d. is a
characteristic length given by the average distance between the nodes. For equally
distributed nodes, it is just the distance between two consecutive nodes. The group
of parameters a.d, is in this work indicated by a single letter C.

The derivatives of the function w(z,y) are considered to be equal to the deriva-
tive of its approximation function. The vectors of coefficients in Equation (10) can
be obtained by enforcing the field function and its derivatives to be satisfied at
all the n nodes falling within the support domain of the point of interest x. The
support domain is a local domain, typically circular or rectangular, centered in a
point of interest which can either be a node or an integration point. This leads to
3n linear equations which in matrix form are written as:

w R R, R, a a
W=<cw,,=|R,R.. Ruy a®» =G a® (12)
Wy R,R., R, a¥ a¥

where w, w, and w , are vectors of function values in the form:

w:{w1 wy ... wn}T (13)
W, = {wlﬁw Wy ... wn)I}T (14)

W, = {wl,y Way ... wnyy}—r (15)



Solving Equation (12) and substituting into Equation (10):

a
w(z,y) = {RT R:; R—Z'—/} a”
ay
={R"RLR}}G'W
It follows that the Hermite-RPIM shape functions are written as:
' (x)={RTRLR,} G = {p o ¢} (17)
={p1- @i on T T E Y b

An example of what the shape functions look like as computed with this method
is given in Figure 1. Here, a squared domain of size L = 1 is represented by means
of 9 regularly distributed nodes: one node on each corner, one node in the middle
of each side and one node in the middle. All of the nodes are used to construct the
shape functions for this domain. Figure 1 represents the shape functions and their
first derivatives with respect to = and y for the nodes in the bottom left corner,
in the middle left side, in the middle of the domain and in the top right corner
respectively. For this particular case, the dimensionless parameters of the RBF are
chosen as C' =1 and ¢ = 0.05.

In the same way as in conventional FEM[49], once the shape functions are carried
out, they are introduced in the weak form of the equations of motion as it is written
reported in Equation (8).

6W/A{

+((D,®") ' DD,®) + (D,yQT)TD(D,yQ))} W+ @qz}dA =0

De")'DMD®")

(18)

Although mesh free methods do not need any mesh for the representation of the
problem domain, a so-called background mesh is still needed to perform the inte-
gration. This mesh and the nodal distribution that represents the problem domain
are two independent sets.

The variational principle written in discrete form (Equation (18)) leads to the
following algebraic set of equations:

[Ke + Kog]W =F (19)

where the classical and strain gradient related components of the stiffness matrix
for node i are given by:

K. = / B, DB;dA (20)
A

Ksg, = / 2 (BJDBWLBJDB%)M (21)
A
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Fig. 1: (a) Shape functions. (b) Shape functions derivative with respect to z. (c)
Shape functions derivative with respect to y.

where
B,=D® B, =D,® B, =D,® (22)

In a similar way, the load vector is given by:

F:/Qiqsz (23)
A

2.3.1. Background Mesh and Integration

As mentioned in Section 2.3, the integrals appearing in the weak form of the equa-
tion of motion have to be evaluated numerically. In this work, a 3 x 3 Gauss in-
tegration scheme is used to perform the integration. This leads to the necessity of
introducing a mesh, called background mesh, whose purpose is to allow for the cal-
culation of the needed Gauss points and weights. Although, the background mesh



e Nodes

Gauss Points
«  Quadrature Point
Support Domain
Background Mesh

Fig. 2: Example of nodal distribution, background mesh, Gauss points and support
domain for a generic rectangular plate.

and the nodal distribution representing the domain are two independent objects, in
this work the points of the mesh and the nodes in the domain are considered to be
in the same locations, as shown in Figure 2.

It can be noticed that the background mesh is made of 4-node elements. More-
over, being the nodal distribution regular in the domain, the elements are all rect-
angular elements.

The position of the integration points z¢, in the element local domain and the
corresponding weights pg, are reported in Equation (24) and (25) respectively:

ra, = {=V3/5 0 35} (24)

pa; ={5/9 8/9 5/9} (25)

As in conventional FEM, an isoparametric transformation is used to move from the
local domain of the element to the global domain of the problem.

Figure 2 also illustrates an example of support domain. It shows how in Mesh
Free formulation the Gauss points have a twofold function. On the one hand, they
are used to evaluate the stiffness matrix and load vector integrals. On the other,
they are used as centering points for the support domain. In this case, they are also
called quadrature points.

The support domain is of capital importance in the construction of the shape
functions. In fact, at each step of the algorithm, only the nodes falling inside the
local domain are used for the construction of the shape function. The denomination
of moving local domain, which is often used when referring to the support domain,
is due to this peculiarity. At each step, the moving domain is centered in a different
Gauss (or quadrature) point. It ”jumps” from point to point, each time enclosing
different nodes.



Note that although it is common practice for the local domain to be centered in
the Gauss points, it is not mandatory. In fact, the nodes themselves are also used
for this purpose.

3. Numerical Results
3.1. Simply Supported nanoplates

This section aims to show the results of the numerical analysis of a simply-supported
(SSSS) isotropic Kirchhoff nanoplate modelled according to the second-order strain
gradient theory and analysed by means of a mesh free RPIM. The numerical codes
are developed in MATLAB.

The results in terms of maximum transverse displacement are presented in the
nondimensional form as follows:

o 100012;D (26)
q-=a
where w is the maximum (central) plate deflection, ¢, is the magnitude of the
external load and D is the bending rigidity D = Eh®/12(1 — v?).

Nanoplates with different geometries are analysed, all having thickness h = 0.34
nm. Young’s modulus and Poisson’s ratio are taken as 1100 GPa and 0.3 respectively.
Different nodal densities are also taken into account. Nanoplates represented by
5x5,9%x9,11 x 11 and 15 x 15 equally spaced node grids are studied to analyse
the convergence of the method. The local parameter ¢ also varies according to the
analysis and results presented in the available literature [44].

The support domain used for the mesh free implementation has rectangular
shape and is centered in the Gauss points. Its dimensions are considered in the
classical way [2] ds = asd. where d. is the average nodal spacing d. = y/Ax? + Ay?
and a; is a dimensionless parameter which, in this work, varies from 1.8 to 2.4.
Note that, in this work, 3 x 3 Gauss integration points are used in each cell of the
background integration mesh.

Results listed in Tables 2-5 compare the available analytical solutions [44] with
the present ones in terms of percentage error:

|we — D

errg, = 100 (27)

we
where w, is the exact solution taken from the aforementioned references.

The provided comparison is performed for different plate aspect ratios, num-
ber of collocation nodes and nonlocal parameter values. The C and ¢ coefficients
characterising the MQ radial basis functions vary as the ratio b/a changes.

It should be remarked that although in the case of 2 = 0 the results converge
monotonically, this is not always true for different values of the local parameter. This
behaviour might be justified by the relative influence that the nodal coordinates and
the number of nodes have on the result.



For a fixed geometry, it is obvious that locating a small or a large number
of nodes accuracy changes. In mesh free methods, this numerical trend is due to
the fact that nodal spacing appears in the derivative calculation. Since the strain
gradient theory requires the computation of high order derivatives of the RBF, the
spacial coordinates of the nodes appear to be multiplied several times (once per
each derivative order). The larger these are the larger the number appearing in the
shape functions will be. But as the nodal density increases, the coordinates of the
nodes will get smaller as well as the values in the shape functions, yielding larger
errors. It is clear as these two effects counteract each other in the cases in which
£? # 0. Hence, the convergence may not be monotonic due to the balancing of these
two behaviours.

Overall, as the number of nodes increases, the results show good convergence
with the analytical solution. As expected, the percentage error increases as the local
parameter increases and, even for high number of nodes, the value of the error when
¢? =1 remains quite high.

Table 2: Non dimensional values of @ for SSSS nanoplate
with b/a = 0.5 obtained for C =2, ¢ = —0.9

Nodes Nonlocal parameter £ (nm)  Result  Error (%)
0 0.5921 6.4613
0.2 0.5601 9.9228
5x%x5
0.5 0.4461 21.4613
1 0.2655 38.4847
0.6291 0.6161
9% 9 0.2 0.6161 0.9167
0.5 0.5641 0.6866
1 0.4484 3.8925
0.6325 0.0790
0.2 0.6212 0.0965
Hoc 0.5 05758  1.3732
1 0.4741 9.8471
0.6331 0.0158
0.2 0.6189 0.4664
1ots 05 05721  0.7218
1 0.4669 8.1789
0.6330 —
. 0.2 0.6218 —
Analytical 0.5 0.5680 B
1 0.4316 -

The graphical output of the aforementioned tables is given in Figure 3 where
the same error in logarithmic form is provided.

From such figure it is clear that a convergence trend can be observed for different
geometries and by increasing the number of grid points. Results are quite accurate
for local plates and errors tend to increase by increasing the nonlocality for the



Table 3: Non dimensional values of @ for SSSS nanoplate
with b/a = 1 obtained for C' = 2.5, ¢ = —0.9.

Nodes Nonlocal parameter ¢ (nm) Result  Error (%)
0 2.8622 3.2198
5% 5 0.2 3.9638 1.7158
0.5 3.3264 14.3652
1 2.4501 28.4245
4.0166 1.1274
9% 9 0.2 3.9550 1.9340
0.5 3.6656 5.6328
1 2.9224 14.6271
4.0543 0.1994
0.2 3.9818 1.2695
Mot 0.5 37327 3.9054
1 3.0560 10.7242
4.0624 0.0000
0.2 4.0323 0.0174
et 0.5 3.8906  0.1596
1 3.4699 1.3672
4.0624 -
. 0.2 4.0330 —
Analytical 05 38844 B
1 3.4231 -~

reasons mentioned above.

3.2. Clamped nanoplates

This section show the results of the analysis of clamped (CCCC) nanoplates ob-
tained following the same procedure as in the previous section.

The results are still considered in terms of nondimensional maximum transverse
displacement as shown in Equation (26). Again, the comparison is made in terms
of percentage error as given in Equation (27). The plate properties, aspect ratio,
nodal distribution and Gauss integration are the same as in the SSSS case.

As for the case of SSSS nanoplates analysis, a graphical output of the results
listed in the tables is provided in Figure 4.

The same considerations done for the SSSS nanoplates hold for the CCCC case
as well. The influence of the high-order derivatives can once again be observed in
the trend of the converge which can be not always strictly monotonic.

The numerical errors remain contained and, as expected, the highest values are
almost always observed in the case /2 = 1.

3.3. Random nodal distribution and FEM comparison

The analyses performed in the previous sections are now performed again on a
square plate which is represented by a set of randomly distributed nodes. An ini-



Table 4: Non dimensional values of w for SSSS nanoplate
with b/a = 2 obtained for C' = 2, ¢ = 1.03.

Nodes Nonlocal parameter ¢ (nm)  Result  Error (%)
0 9.4322 6.8765
5% 5 0.2 9.3656 71177
0.5 9.0424 8.2008
1 8.0692 11.2162
9.9510 1.7544
9% 9 0.2 9.9027 1.7911
0.5 9.6721 1.8081
1 8.9970 1.0079
10.0594 0.6842
0.2 10.0128 0.6992
Hoet 0.5 9.7945  0.5655
1 9.1645 0.8351
10.1214 0.0721
0.2 10.0761 0.0714
1ets 0.5 9.8672  0.1726
1 9.2689 1.9838
10.1287 -
. 0.2 10.0833 -~
Analytical 05 9.8502 B
1 9.0886 -~

tially regular nodal population of 15 x 15 nodes, is randomly perturbed by intro-
ducing a small perturbation of magnitude 0.3. The nodal distribution obtained is
shown in Figure 5.

As an advantage provided by Mesh Free Methods, the mesh is kept regular
and is detached from the nodal distribution. As for the previous analyses, a 3 X 3
Gauss integration rule is employed for numerical integrals evaluation. Both SSSS
and CCCC boundary conditions are accounted for. The results are presented in
their nondimentional form as expressed in Equation (26) and compared in terms of
percentage error (27) with respect to a reference solution as given in literature [44].
The results of the analyses are shown in Table 10.

The trend of the error remains coherent with the previous analyses and conver-
gence is ensured as well. Considering the results of Table 10, it can be seen how the
nodal distribution pays little to no influence on the accuracy of the results, which
remains high. On the other hand, the observations done in the previous section on
the influence of the nonlocal parameter ¢ as well as that of the high order derivatives
involved in the calculation, still stand.

As an additional investigation, the results obtained with both the regular and
random nodal distributions are compared against a FEM reference solution, as
shown in Tables 11 and 12.

It can be observed how all the different methods grants highly accurate results.
The comparison allows to understand in a clearer way how the influence of the



Table 5: Non dimensional values of @ for SSSS nanoplate
with b/a = 3 obtained for C' = 3, ¢ = —0.05.

Nodes Nonlocal parameter £ (nm)  Result  Error (%)
0 12.5044 2.2202
5% 5 0.2 12.2747 0.7451
0.5 11.2121 6.0365
1 8.6155 22.4155
11.9913 1.9745
9 9 0.2 11.9147 2.2098
x 0.5 11.5916 2.8562
1 10.7047 3.6009
12.0919 1.1519
0.2 12.0313 1.2522
Mot 0.5 117796  1.2801
1 11.1060 0.0125
12.2041 0.2344
0.2 12.1536 0.2483
oeto 05 11.9399  0.0627
1 11.3603 2.3029
12.2328 -
. 0.2 12.1839 —
Analytical 05 11.9324 B
1 11.1046 -

higher order derivatives seems to affect the RPIM slightly more than it does the
FEM. However, the accuracy of the results is in no way compromised and the RPIM
is proven to be a potential valid alternative to traditional FEM.

4. Conclusion

In this work, strain gradient nanoplates have been analyzed by means of the Ra-
dial Point Interpolation Method. Isotropic second order strain gradient Kirchhoff
nanoplates with simply-supported and clamped boundary conditions are analyzed.
The aim was to apply a RPIM formulation to thin plates modelled via strain gra-
dient theory. According to the current state of the art, an implementation of RPIM
with higher-order partial differential equations has never been presented in the lit-
erature. The paper provides a detailed explanation of the RPIM method theoretical
and numerical implementation as well as theoretical notions in both explicit and
matrix form. This work proves the validity of the RPIM for problems with higher
order of derivatives involved. Numerical convergence with the analytical results
achieved in recent literature was studied. The present results for simply supported
and clamped plates that have been obtained by using some of the traditionally most
used dimensionless parameters involved in the MQ radial basis functions employed
in the RPIM. The analyses are performed employing both a regular and random
nodal distribution for domain representation. In addition, a comparison with con-
forming and nonconforming FEM is provided. Further works will study how the
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Fig. 3: Convergence analysis results of isotropic SSSS plates with different geome-
tries and varying nodal distribution and local parameter value.

parameters influence the results when different kinds of constraints are involved,
checking the effects the parameters have both in the convergence and accuracy of

the results.



Table 6: Non dimensional values of w for CCCC
nanoplate with b/a = 0.5 obtained for C' =1, ¢ = —0.05

Nodes Nonlocal parameter £ (nm)  Result  Error (%)
0 0.1891 19.4557
0.2 0.1635 10.7286
5 x5
0.5 0.1025 7.5365
1 0.0449 23.9665
0.1622 2.4380
9x9 0.2 0.1486 0.6179
0.5 0.1063 4.1618
1 0.0533 9.6193
0.1603 1.2859
0.2 0.1482 0.3688
Moot 0.5 0.1088  1.9070
1 0.0562 4.6760
0.1584 0.0893
0.2 0.1472 0.3080
et 0.5 01098  1.0071
1 0.0579 1.8716
0.1583 -
. 0.2 0.1477 —
Analytical 05 0.1109 B
1 0.0590 -~

Table 7: Non dimensional values of w for CCCC
nanoplate with b/a = 1 obtained for C' = 2.5, ¢ = —0.9

Nodes Nonlocal parameter £ (nm)  Result  Error (%)
0 1.2178 3.7553
5% 5 0.2 1.1790 4.4045
0.5 1.0323 5.9749
1 0.7316 7.9286
1.2632 0.1698
9% 9 0.2 1.2263 0.5641
0.5 1.0746 2.1186
1 0.7548 5.0118
1.2698 0.3559
0.2 1.2352 0.1550
Hoet 0.5 1.0920  0.5351
1 0.7796 1.8888
1.2689 0.2863
0.2 1.2366 0.2715
et 0.5 11019 0.3602
1 0.8015 0.8742
1.2653 -
X 0.2 1.2333 —
Analytical 05 1.0979 -

1 0.7946 -




Table 8: Non dimensional values of w for CCCC
nanoplate with b/a = 2 obtained for C' =2, ¢ = 1.03

Nodes Nonlocal parameter ¢ (nm) Result  Error (%)
0 2.8283 11.6599
5% 5 0.2 2.7543 10.7863
0.5 2.4541 7.6428
1 1.8133 2.2072
2.5646 1.2472
9% 9 0.2 2.5144 1.1376
0.5 2.2978 0.7871
1 1.7773 0.1792
2.5517 0.7387
0.2 2.5035 0.7011
Hoetd 0.5 22959 0.7035
1 1.7901 0.8996
2.5604 1.0807
0.2 2.5012 0.6088
1ts 05 22804  0.4185
1 1.7784 0.2416
2.5330 -
. 0.2 2.4861 -
Analytical 05 2.9799 B
1 1.7741 -~

Table 9: Non dimensional values of w for CCCC
nanoplate with b/a = 3 obtained for C' = 3, ¢ = —0.05

Nodes Nonlocal parameter £ (nm)  Result  Error (%)
0 3.6127 38.0352
5% 5 0.2 3.4960 35.9997
0.5 3.0299 28.1722
1 2.1042 13.6300
2.7543 5.2388
0.2 2.6939 4.7982
9x9
0.5 2.4557 3.8836
1 1.8966 2.4187
2.6769 2.2829
0.2 2.6080 1.4560
Hoetd 0.5 2.3844  0.8654
1 1.8587 0.3743
2.6335 0.6227
0.2 2.5861 0.6015
1ots 05 2.3896  1.0880
1 1.9017 2.6957
2.6172 -
. 0.2 2.5706 —
Analytical 0.5 2.3639 B

1 1.8518 -
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Fig. 4: Convergence analysis results of isotropic CCCC plates with different geome-
tries and varying nodal distribution and local parameter value.

Table 10: Non dimensional values of @ for SSSS and CCCC square
nanoplate obtained for C' = 1.42, ¢ = 0.9.

Boundary Conditions ¢ (nm)  Reference solution  Result Error (%)

0 4.0624 4.0627 0.0074

9988 0.2 4.0330 4.0213 0.2901
0.5 3.8844 3.8756 0.2265

1 3.4231 3.4549 0.9290

1.2653 1.2723 0.5532

0.2 1.2333 1.2310 0.1865

cece 0.5 1.0979 1.0930 0.4463

1 0.7946 0.7906 0.5034
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Fig. 5: Square Plate discretised by a random nodal distribution. A regular mesh is
employed for integration.

Table 11: Comparison of non dimensional values of w for a squared SSSS nanoplate obtained

with different numerical methods.

¢ (nm)  Analytical

FEM Conforming [35]

FEM Nonconforming [35]

RPIM regular

RPIM random

0
0.2
0.5

1

4.0624
4.0330
3.8844
3.4231

4.0624
4.0333
3.8865
3.4305

4.0624
4.0331
3.8847
3.4240

4.0624
4.0323
3.8906
3.4699

4.0627
4.0213
3.8756
3.4549

Table 12: Comparison of non dimensional values of @ for a squared CCCC nanoplate obtained
with different numerical methods.

¢ (nm)  Analytical

FEM Conforming [35]

FEM Nonconforming [35]

RPIM regular

RPIM random

0
0.2
0.5

1

1.2653
1.2333
1.0979
0.7946

1.3725
1.2440
1.0999
0.7953

1.2662
1.2335
1.0985
0.7959

1.2689
1.2366
1.1019
0.8015

1.2723
1.2310
1.0930
0.7906
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