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Agglomeration-based geometric multigrid schemes for the
Virtual Element Method

P.F. Antonietti*, S. Berronef, M. Busettol M. Verani*

Abstract

In this paper we analyse the convergence properties of two-level, W-cycle and V-cycle
agglomeration-based geometric multigrid schemes for the numerical solution of the linear
system of equations stemming from the lowest order C°-conforming Virtual Element
discretization of two-dimensional second-order elliptic partial differential equations. The
sequence of agglomerated tessellations are nested, but the corresponding multilevel virtual
discrete spaces are generally non-nested thus resulting into non-nested multigrid algorithms.
We prove the uniform convergence of the two-level method with respect to the mesh size
and the uniform convergence of the W-cycle and the V-cycle multigrid algorithms with
respect to the mesh size and the number of levels. Numerical experiments confirm the
theoretical findings.
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1 Introduction

The Virtual Element Method (VEM) is a very recent extension of the Finite Element Method
(FEM) originally introduced in [I] for the discretization of the Poisson problem on fairly general
polytopal meshes. From its original introduction, the VEM has been applied to a variety of
problems [2, [3]. However, the design of efficient solvers for the solution of the linear system
stemming from the virtual element discretization is still a relatively unexplored field of research.
So far, the few existing works in literature have mainly focused on the study of the condition
number of the stiffness matrix due to either the increase in the order of the method or to the
degradation of the quality of the meshes [4, 5] and on the development of preconditioners based
on domain decomposition techniques [6l [7, 8, [, [I0]. Instead, the analysis of multigrid methods
for VEM is much less developed. In particular, [II] presents the development of an efficient
geometric multigrid (GMG) algorithm for the iterative solution of the linear system of equations
stemming from the p-version of the Virtual Element discretization of two-dimensional Poisson
problems, whereas [I2] presents the development of an efficient algebraic multigrid (AMG)
method for the solution of the system of equations related to the Virtual Element discretization
of elliptic problems. To the best of our knowledge, the design and analysis of a GMG method
for the h-version of the VEM has not been investigated yet.

In this paper, hinging upon the geometric flexibility of VEM, we consider agglomerated
grids and focus on the analysis of geometric multigrid methods (two-level, W-cycle, V-cycle)
for the h-version of the lowest order virtual element method. It is worth noticing that the
idea of exploiting the flexibility of the element shape has been investigated in [I3], [I4] where
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multigrid methods for the numerical solution of the linear system of equations stemming from
the discontinuous Galerkin discretization of second-order elliptic partial differential equations
have been analysed.

Throughout this paper we mainly consider nested sequences of agglomerated meshes obtained
from a fine grid of triangles by applying a recursive coarsening strategy. It is crucial to underline
that even if the tessellations are nested, the corresponding multilevel discrete virtual element
spaces are not. Therefore, our approach results into a non-nested multigrid method. A generalized
framework for non-nested multilevel methods was developed by Bramble, Pasciak and Xu in
[15] and later extended by Duan, Gao, Tan and Zhang in [16] to analyze the non-nested V-cycle
methods. Following the so called BPX framework, we study the convergence of our method. In
particular, we prove that, under suitable assumptions on the quality of the agglomerated coarse
grids, our two-level iterative method converges uniformly with respect to the granularity of the
mesh for inherited and non-inherited bilinear forms. Moreover, we prove that the W-cycle and
V-cycle schemes with non-nested virtual element spaces converge uniformly with respect to the
mesh size and the number of levels for both inherited and non-inherited bilinear forms. In the
case of non-inherited bilinear form the W-cycle and V-cycle schemes are proved to converge
provided that a sufficiently large number of smoothing steps is chosen. The theoretical results
are confirmed by the numerical experiments.

The outline of the paper is as follows. In Section [2| we describe the model problem and its
Virtual Element discretization. In Section [3| we introduce the two-level, the W-cycle and V-cycle
multigrid virtual element methods. In Section [ we present the coarsening strategy adopted
to construct the sequence of nested meshes, while in Section [5] we define suitable prolongation
operators that are a key ingredient in multilevel methods. In Section [6] we introduce the BPX
framework for the theoretical convergence analysis of our multigrid schemes, while in Section [7]
we analyse the convergence of our virtual element multigrid algorithm and state the main
theoretical results. In Section [§] we present the algebraic counterpart of the algorithm focusing
on the implementation details and we discuss some numerical results obtained applying the
method to the numerical solution of the linear systems stemming from the h-version of the
lowest order Virtual Element discretization of the Poisson equation. Finally, in Section [9] we
draw some conclusions.

Throughout this paper, we use the notation x < y and z 2 y instead of z < Cy and = > Cy,
respectively, where C' is a positive constant independent of the mesh size. When needed the
constant will be written explicitly. Moreover, P;(D) denotes the space of polynomials of degree
less than or equal to [ > 1 on the open bounded domain D and [P;(D)]? the corresponding
vector-valued space.

2 Model problem

Let Q@ C R? be a convex polygonal domain with Lipschitz boundary and let f € L?(£2). We
consider the following model problem: find u € V := H{(£2) such that

A(U,’U) = (f7U)L2(Q) Vo eV, (1)

where A(u,v) := (uVu, Vv) 2y with u € L>(Q) a positive constant. This problem is well-
posed and its unique solution u € H?(Q) satisfies

[ull zr20) < 1 f L2 (2)

For the analysis under weaker regularity assumptions see, e.g. [17].

For the purposes of this work, we consider a sequence {7}}3]:1 of tessellations of the domain
Q. Therefore, all the parameters characterizing a given tessellation 7; will be denoted by
the subscript j. Each tessellation is made of disjoint open polytopic elements E; such that
Q= UEjeTj Ej, Jj=1,...,J. For each element F;, we denote by &, the set of its edges and
by g, its diameter. The mesh size of 7} is denoted by d; := maxg;,e7; dp,. We assume that the
elements F; of each tessellation 7; satisfy the following assumptions [18].



Al. Foranyj=1,...,J, every element E; € T; is the union of a finite and uniformly bounded
number of star-shaped domains with respect to a disk of radius pg,0g, and every edge e; € &g,
must be such that |e;| > pp,dE,, being |e;| its length. Moreover, given a sequence of tessellations
{7}}3]:1 there exists a po independent of the tessellation such that pg; > po > 0.

A2. The sequence of tessellations {7}}3]:0 are quasi-uniform, i.e., they are regular and there
exists a constant T > 0 such that

min g, > 76; Vo, > 0.
E;€T; E; = J J

Moreover, {7}}3]:0 satisfies a bounded variation hypothesis between subsequent levels, i.e., 6;_1 <
5]' Séj—l V]:2,,J

We introduce the h-version of the enhanced Virtual Element Method and we associate to
each 7T; the corresponding global virtual element space V; of order k = 1, constructed from the
local element spaces Vi defined on each element E; €7;.

We define

By(0E;) i= {v e CO(0F;) v, €Pi(e;) Ve; € €},

B,

and the local enhanced virtual element space V*i of order k =1 as

VE = {v e H(E;) € Bi(0E)), Av,, € Py(E;),

“Vog,
(v,0)12(5)) = (g0, P)1as,) ¥ € Pa(Ey) ).
Here, ITY ;. : H'(E;) — P1(E}) is the H'(E;)-orthogonal operator, defined as
(VHXEJ-U, vp)L?(Ej) = (Vv, vP)L?(Ej) Vp € P1(E;),
(Y pv, 1) 12(08;) = (v,1)12(0E;)-

As a basis for the local polynomial space P1(E}), we choose the set of scaled monomials defined
as

( —zp;)*(y —yg; )™
Qg+ 0y
(5EJ_

My (Ej) = {meIP’l(Ej):m(ac,y) = , Ogam—kaygl}, (3)

where (2g;,yE,) are the coordinates of the center of the disk in respect of which the element
is star-shaped. We denote by N; = 3 the dimension of the local polynomial space P;(E;).

As set of degrees of freedom of the local virtual element space VFi | we choose the standard
set consisting of the values of v € Vi at the vertices of the polygon E;. We denote by N, fojf
the total number of degrees of freedom of Vi and by N'(E;) the set of the indices of the nodes
relative to the element E; € T;. Therefore, Nf;; := #N(E;). Moreover, we denote by

dof;(v) :=v(z;) Vi e N(Ej), (4)

the operator returning the i-th degree of freedom of v € Vi,
As basis functions for Vi, we choose the Lagrangian shape functions with respect to the

degrees of freedom of the element E; , i.e., the gof'j,i € N(E;) such that gofj (x;) =06 Vile
N (E;). Consequently, v € VEi can be written with respect to the local VEM basis as

v= Y dofi(v)e” = Y w(@i)e, .

ieN(E;) iEN(E;)

In addition, we consider the L?(Ej)-projection I} 5 : Vi — Py (E;) defined as

(H?,EJMP)L?(Ej) = (U,p)LQ(Ej) Vp € P1(E;),



and the projections of the derivatives H87Ej %, H8,E,- 8% : VEi — Po(E;) such that
v v
10 _—,) ( ) VpeP Vo e Vi
( 0.E; 5z P L2(Ej) 0x’ ") L2(E)) p € Po(E;), Vo
(3 9 ) —(@ ) Vp € PBo(E;), Vo € V5.
O 9y P ey~ \oy P e,y P

We denote by Hg B, Vv the vector having Ho B, % and HO @ as components.
We recall the followmg result reported in [18]

Lemma 1. For all E; € 7; and all smooth enough functions u on Ej, it holds
Hu_H(l),Eju”LQ(Ej) §6S|U|HS(EJ) S EN7 s = {1a2}7 (5)
where the hidden constant depends on pg defined as in Assumption

The global virtual element space V; is defined as
Vi={ve Hy(Q) v, €V VE; €T}, j=1,....J (6)

Its set of degrees of freedom can be defined similarly as done for the local space. We denote
by N] s the total number of degrees of freedom of V; and by N(T;) := Ug,er; N (Ej;) the set of
the 1nd1ceb of all the nodes of all the elements E; of the tessellation 7; (excludlng the nodes on
the boundary of the domain 92). Therefore, N éo 5= #N(T;).

Similarly to the local space, we choose the Lagrangian set gal, i € N(T;) with respect to the
global degrees of freedom as basis functions of V;. Consequently, v € V; can be written with
respect to the global VEM basis functions as

Z dofi(v)gagz Z v(ml)cp{

ieN(T;) iEN(T;)

We point out that ¢/, = gDiEj , with gDiEj defined as above.

ile
The VEM for the approximate solution of our model problem on the finest level grid J is:
find uy € V; such that

Aj(ug,vg) = (f,v5) Yvs €V (7)
The bilinear form A;(-,-) in is defined as

Aj(uy,vy) Z AJ uy,vy) Z [(ﬂHg,E,jvunhHg,EvaJ)L2(EJ)
E;eTy E;eTy (8)

+ llll o (5,5 (<I ~ Y, Jug, (1 =T g, oy )|,

and the right-hand side (f,v;) is defined as

(fivg) = Z (f)Hg,EJ'UJ)L?(E,;)- (9)

E;eT;

For the stabilization form SF7 in we consider the scalar product of the vectors of degrees
of freedom of the two functions

SPI((I =T gy gy (=TT g Jog) = S dof(([ HlEJ)uJ) dof(([ HlEJ)vJ)
iEN(Ey)

where dof;(-) is defined as in eq. ().



3 Multigrid algorithms

In this section we introduce the h-multigrid two-level, W-cycle and V-cycle schemes to solve the
VEM discrete formulation .

Let V;, j =1,...,J, be the sequence of finite-dimensional virtual element spaces defined
in @ In order to define the multigrid cycle, we introduce the following intergrid transfer
operators. The prolongation operator (see Section [5|) connecting the coarser space V;_; to the
finer space V;, j =2,...,J, is denoted by Ijj;l : Vj_1 = Vj, whereas the restriction operator
Ij]-'*1 Vi = Vi connecping the finer space V; to the coarser space V;_i, j = 2,...,J, is
defined as the adjoint of I]’-f1 with respect to the inner product (-,-);, i.e.,

(" wj,vj-1)j1 = (wi, I]_yv-1); Yojo1 € Vi,
where (-, -); is the L? scalar product on V;, j=1,...,J.
Let Ay (-,-) be the symmetric positive definite discrete bilinear form defined as in . On

each level j — 1, with j = 2,...,J, we define the symmetric and positive definite bilinear form
A;i—1(,-) 1 Vi1 x Vi1 = R as follows.

Definition 3.1 (Inherited and non-inherited bilinear forms). The inherited bilinear form
A;_1(-,-) is defined as

A1 (u,v) = Aj(I;_lu,Ij_lv) Yu,o€e Vioq, j=2,...,J.
The non-inherited bilinear form A;_1(,) is defined as in (8) but on the level j — 1.

We also introduce the operators A; : V; — Vj, defined as
(Ajw,v); = Aj(w,v) Yw,veV;, j=1,...,J (10)

For the theoretical analysis, we also need the operator Pj_l V= Vigforj=2,...,J,
defined as

Ajm1 (P wj vjm0) = Aj(wy, I_qvj-1) Yoy € Viey, wy €V,

As a smoothing scheme, we choose the symmetric Gauss-Seidel method. However, we point
out that other smoothing schemes can be selected. We denote by R; : V; — Vj the linear
smoothing operator and by RjT the adjoint operator of R; with respect to the selected inner

product (-,-);. We set R;l) equals to R; if [ is odd and RjT if [ is even.

Now, we are ready to introduce the multigrid method [I5]. We denote by v the number of
smoothing steps. Then, at the level j with j =1,...,J, the multigrid operator B; : V; — V; is
defined by induction in the following way. We set By := A1_1 and given an initial iterate 29, we
define Bjg € V; for g € V; as in algorithm

The quantity p is assumed to be a positive integer. We focus on the cases p = 1 and
p = 2 that correspond to the symmetric V-cycle and the symmetric W-cycle, respectively. We
underline that in Step 2 of the algorithm, we alternate between R; and Rf, whereas in Step 4,
we use their adjoints applied in the reverse order.

Furthermore, we introduce the following notation that will be useful in the convergence
analysis. We set K; := I — R;A;, where I is the identity operator, and we define its adjoint
with respect to A;(-,-) as K} =1 — RjTAj. Moreover, we set

R (K;Kj)= if v is even,
T (KiK;) T K ifvis odd.
It can be proved (see [19]) that the following fundamental recursive relation for the multigrid
operators B; introduced above holds true for j=2,...,J
[-BjA; = (K (I —L_ P+ I (I - Bj_1A; )PPIKY, (11)

The quantity I — B;jA; is known as the error propagation operator.



Algorithm 1 Multigrid algorithm (MG)  Bj;g = MG(p, j,g,2°%,v)

1. Set ¢° = 0.

2. Define z! for i =1,...,v by
ol =t 4 R (g — Ajal ).

3. Setrj_1 = ijl(g —Ajz¥)

4. Define ¢* fori=1,...,p by

5. Set y¥ =¥ +Ijilqp
6. Define y! forl=v+1,...,2v by
_ 1 _
y' =y R (g - At

7. Set Bjg = y2v.

4 Coarsening strategy

In this section, we describe the construction of the sequence of tessellations {7}}}’:1 by means
of an agglomeration strategy. Given the open bounded connected domain Q C R?, we introduce
a tessellation 7; of triangular elements E; having characteristic mesh size ;. Starting from
this tessellation 7, by agglomeration we generate a sequence of coarser nested meshes {7}}3]:1,
where j refers to the level of the agglomeration process. For instance, j = J—1, denotes the mesh
at level J — 1, i.e. the mesh T;_; generated by the agglomeration of the mesh 7;. Examples of
coarsening strategy are reported in Figure [3] each column is obtained by the coarsening strategy.

The elements of each mesh 7;, j =1,...,J can be expressed as the union of the triangular
elements of the original fine mesh 7;. More formally, each mesh 7; satisfies the following

requirements.

1. T;_1 represents a disjoint partition of 2 into elements obtained by a suitable cluster of
elements of the mesh 7;.

2. Each element E;_; € T;_; is an open bounded connected subset of the domain {2 and it is
possible to find a set T, , C 7T; such that E; | = UEjeTE]._l E;.

3. For every open polytopic element E; € 7; there exists ’TEJ?, C 7Ty such that Ej =
UEJGTE]j EJ‘

Remark 1. Given a fine-level tessellation T; consisting of uniformly star-shaped triangular
elements, a finite number of agglomeration steps will produce a sequence of tessellations such
that every element E; € T;, j =1,...,J —1, satisfies the above requirements and it is the union
of a finite and uniformly bounded number of star-shaped domains with respect to a disk of
radius pg,0p; as required by Assumption AE In particular, we can select the py in Assumption

to be the infimum of the values achieved by pg; on all the considered tessellations 7;.

As explained, the coarse tessellation 7;_; is obtained by agglomeration of the fine tessellation
7; and, in practice, each E;_; will be given by the bounded union of elements E; € 7j.
Consequently, in practical applications, the bounded variation hypothesis 6; 1 < d; <61, j =
2,...,J in Assumption AP|is usually satisfied by construction.

Remark 2. In general, what follows applies also to other nested meshes satisfying the following
boundary compatibility condition, i.e, the edges of the element E; € Ej_l that lie on the
boundary of the element F;_; share the same nodes of the element E;_;. In Figure|[l] we report
an example of nested elements that satisfy and that do not satisfy the boundary compatibility
condition.

Since the coarse level T;_1, j = 2,...,J, is obtained by agglomeration from 7}, the partitions
{7}}']»]:1 are nested and this is of fundamental importance for the theoretical analysis that we



(a) Admissible nested elements. (b) Non admissible nested elements.

Figure 1: Example of (a) admissible nested elements and (b) non-admissible nested elements.
Circles and squares represent the nodes of E; and E;_1, respectively. The green cross markers
in (b) highlight nodes violating the boundary compatibility condition.

will perform. We underline that even if the partitions satisfies a nestedness property, in
general the finite-dimensional spaces {VJ}}’:1 are non-nested. Indeed, V;_1 ¢ V;, 7=2,...,J.
Consequently, the analysis of the proposed method will make use of the general framework of
non-nested multigrid methods.

5 Prolongation operator

We underline that since in general V;_; ¢ V;, the prolongation operator Ij_l cannot be chosen

as the classical injection operator. In order to define the prolongation operator I Jj-_l Vo =V,
we introduce the following notation.
Let Tg, , the subset of 7; made of elements E; € 7; introduced in Section [f} i.e., Tg, , :=

Ug,e7;: BycE,_1} Ei- We introduce the virtual element space VJEJ ~' given by a patch of local

virtual element spaces V¥ where E; €Tg,_,, ie,

vE

j it = {U S Hl(Ej_l) N CO(Ej_l) : U|Ej € VEj, Ej S TEj—l}'

We denote by N(Tg,_,) := UEjeTEjle(Ej) the set of the indices of the nodes of all the
elements E; € Tg,_, and, finally, by N(Tg,_,\E;_1) := N(Tg,_,)\N(E;-1) the set of the
indices of the nodes that belong to the elements E; € TE]., but not to the element F;_;. In
Figure [2] we provide a graphic example of the different sets of nodes.

We choose I]_; as the operator locally defined as

. E E;
IJj'—lujfl\E,_l = Z dOfi(’LLjfl)(Pi J + Z dOfi(H(l)’Ej_l’Uzj—l)SOi ]7 (12)
! iEN(Ej_1) €N (T, \E;j-1)

with ijluj_llE.,l c ‘/J_Ejfl.

To better clarify the local construction of the prolongation operator, let us consider the
example shown in Figure [2| In this picture the coarse element E;_; consists of six elements E;.
Given the VEM function u;_; € V;_; restricted to the element E;_;, i.e., uj_l\Ej ) e VEi-1,

Ej1 J :
IS V] . As Ij—luﬂfle is

the prolongation operator gives the VEM function I ;—1uj*1\E
- -1

1
a VEM function on VjEj ~' then it is also a VEM function of the local virtual element space V ¥
defined on each of the six elements ;. Therefore, it is locally defined as the linear combination
of the local VEM basis functions gpiEj , 1 € N(Tg,_,). As coefficients of the linear combination we
select the values assumed by w;_; in the nodes z;,i € N(E;_1) (squared nodes) and the values
assumed by its local polynomial projection H?)Ej_luj,l in the nodes z;,7 € J\/’(TEjfl\Ej,l)
(circular nodes). '



u A((E;1)
® A (7E-1\Ej1)

Figure 2: Example of nodes related to the set of indices N (7g,_,\E;_1) (red squares) and to
the set of indices N'(E;_1) (green circles).

6 The BPX framework

In the following section, we apply the BPX multigrid framework to the theoretical convergence
analysis of our multigrid virtual element method. The BPX multigrid theory was firstly developed
by Bramble, Pasciak and Xu in [I5] for the analysis of multigrid methods with non-nested and
non-inherited quadratic forms. Then, it was later extended in [16].
First, we introduce the assumptions that stands at the basis of the BPX theory and then we
recall the theorems that guarantee the convergence of the method under these assumptions.
The BPX multigrid theory is based on the following assumptions.

A3. 3C 43 > 0 such that for any j=2,...,J
Aj(lj—luvlj—lu) < Cas Aj-1(u,u) Vu€Vj,

where Caz is independent of j.
A4. Approximation property: 3C a4 > 0 such that

j j—1 ||AJ’U“||? .
|A; (1 — I, P )u,u)|§CA4T YueV;, j=2...,J, (13)
j
where \; is the largest eigenvalue of A;, Caa is independent of j, and || - ||; is the norm induced
by ('a )J
A5. Smoothing property: 3C 45 > 0 such that
lull? A .
3 < Cys(Rju,u); YueVy, j=1...,J, (14)
J

where R; = (I — K;Kj)A_l and Cas is independent of j.

J

The validity of Assumptions and is proved in Section [7} Concerning Assumption
in [16] it has been proved that the following hypotheses are sufficient for the validity of
Assumption Al In Section [7] we prove that Hypotheses HI}H[7] are satisfied in our framework
involving the elliptic problem satisfying the elliptic regularity assumption .

H1. A;(-,-) : V; x V; = R is a symmetric, positive definite and bounded bilinear form and we
define

lullly; := +/Aj(u,u)  VueV;, Vj.
H2. There exists an interpolation operator ¢ : H*(2) — V; such that for all j =2,...,J,
lu— T 120y + 51|Hu - Iiumu < C8|lullpey i=7—1,j. (15)
H3. Forall j =2,...,J, it holds

11 _1ollz2@) < Cra |vll2@) Yo € Vit (16)



H4. Forallj=1,...,J, it holds
CH vl 2@ < Ilvlly < Cllvllzz@) Yo € V. (17)
HS5. Forall j =1,...,J, the following inverse inequality holds

llolly ; < C67 llzay Yo € V. (18)

H6. Let f € L*(Q). Let u € V and u; € V; be respectively the solution of
A(u,u) = (f,v)r2) YWweV, Ai(ui,v) = (f,v)r2) Y€V (19)
For all j =2,...,J, we require that
lu = will 20y + dillu = willl, ; < OO\ fllzz) i=37—1,7.
H7. The following estimate holds true
|Zw — I\ T~ wl| 2 () < Crr 8 llwlg2)  Yw € H*(Q).

The convergence analysis of the multigrid method is stated in the following two theorems
[15, [16] that prove that under Assumptions and the error propagation operator
I — B;jA;j defined in satisfies

|A; (I — BjAj)u,u)| <oAj(u,u) YueV; Vj>1, (20)

with constant o < 1. In particular, theorem [I] and theorem [2] state the convergence of the
symmetric V-cycle method and W-cycle methods, respectively. They include both the case in
which the bilinear form A;_;(-,-) is inherited and non-inherited as in definition

Theorem 1. [I5] Theorem 2; [16, Theorem 3.1] If Assumption holds with C'43 = 1 and if
Assumptions A and Af5] hold, then for the V-cycle multigrid (p = 1) inequality holds true
with
M
= , (21)
M+ v

where M depends on C'44 and Cys, and v is the number of smoothing steps. Moreover, if
Assumptions and hold, then for the V-cycle multigrid (p = 1) inequality holds
true with

g

o Ca4Cys
v—CasCyus’
provided that v > 2C 44C 45.

Theorem 2. [15, Theorems 3 and 7| If Assumption holds with C'43 = 1 and if Assumptions
Al4l and hold, then for the W-cycle multigrid (p = 2) holds true with o defined as in
(21). Moreover, if Assumptions Al4] and hold, then for the W-cycle multigrid (p = 2)
(20) holds true with o defined as in (21]) provided that v is chosen sufficiently large.

In the rest of the paper, we prove the validity of Hypotheses HI}HT7] and of Assumptions AJ|
and A for the two-level method. Therefore, we set J = 2 and we consider the two non-nested
spaces V;y_1 and V. Next, we generalize the analysis to the V-cycle and the W-cycle.

7 Convergence analysis

In this section we prove the validity of all Hypotheses HI}H7] and of Assumptions A3 and Af]
In Section [7.I] we focus on the convergence of the two-level method and then, in Section [7.2] we
extend the results to the analysis of the convergence of the V-cycle and the W-cycle multigrid
schemes.



7.1 Convergence analysis of the two-level method

Hypothesis Hl|is satisfied since by construction the forms A;(-,-) are symmetric, positive definite
and bounded bilinear forms for all j.

We set [[ull , = \/Aj” (u,u). Therefore,
2 2 E;
llly; = D Ml g, = D A7 (wyu) = Aj(u, ).
E;€T; E;€T;

In particular, proceeding as in [20], it can be proved that for any u € Vs, the following
norm equivalence holds
E‘.
|U\§{1(Ej) ~ ‘Aj](uvu)'
As a consequence, we conclude that
lllly ; = ulm (), (22)

and we will use this equivalence in the following proofs.
As interpolation operator, we consider the operator Z7 : H?(Q2) — V; defined as

dofi(u — Z/u) =0 Yu € Vj, i € N(T;). (23)

For the enhanced virtual element framework, Hypothesis H2|follows from the following proposition
given in [21].

Proposition 1. Assume that Assumption is satisfied. Then, for F; € T;, i=j—1,j and
for every u € H%(FE;), the interpolant Zu € V; defined in satisfies

||'I.L — IiuHL2(Ei) + (51|u — Iiu|H1(E NP (51 |U|H2(E ) (24)
the hidden constant depends on py defined in Assumption

If we choose (-,-); as the L2-inner product, then Hypothesis is satisfied. In the following,
we denote by Cligi-,l the set of elements E; € Tg,_, having the node x; as vertex and by #C}%
its cardinality.

—1

Proposition 2. [20, Corollary 4.6] For any u € VEi| E; € T;, the following norm equivalence
holds true

7 (dofi(w)” S Nullresy S0 [ Y (dofi(u (25)

€N (E;) €N (E;)
Moreover, for any u € X/jE'j_l, E;_1 € Tj_1, the following norm equivalence holds
023 e o) S fultae, S 62 S #CH|dofi(u)l
iEN(TEj,I) ZEN(TEjfl)

Hypothesis can be proved from the inverse inequality of a VEM function reported in the
following theorem [20].

Theorem 3. [20, Theorem 3.6] The following inverse inequality holds true
IVullpe(g;) < 05 Yl e E;) YUE v (26)

Assuming f € H'(Q), Hypothesis H@ results from and the following theorem reported
in [21].

Theorem 4. [2I, Theorem 3| Let u be the solution to the problem A(u,u) = (f,v)r2(q), Yv € V
and let u; € Vi, @ = j—1, j be the solution to the discrete problem A;(us,v) = (f,v)r2(q), Yv € Vi.
Assume further that € is convex, that the right-hand side f belongs to H'(£2), and that the
exact solution u belongs to H?(Q2). Then the following estimate holds true

lu = will 20y + illu — will g (o) S 67 [ulmz(q),

where the hidden constant is independent of d;.
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Remark 3. We underline that with respect to the standard BPX theory, we need to require
f € HY(Q) in order to have Hypothesis H|§| satisfied.

Now, we show that the stability result of the prolongation operator I j]-;l in Hypothesis
holds true.

Proposition 3. Let I 5—1 be the prolongation operator defined as in . The stability estimate
Hypothesis H3| holds true.

Proof. To begin with, let us focus on the element E;_; € 7;_;. We show that
1 _yuj—illzee; o) S luj—1llzee, ) Yuj-1 € Vi
We apply proposition [2| to ||Ij]-'_1uj,1||Lz(Ej71) and we use the definition of the prolongation

operator 1571- Moreover, we define #Cg,_, := MaX;e ' (Tg, ) #ng,l

||I]J"71U.7'—1||2L2(Ej,1) S 532' Z #CE,JdOfi(Ijjfl“j—l)F

Z‘G/\/’(TEjil)
= 3j Z #CE,_, |IJ]:71“J'—1(JU¢)|2 S OT#CE,_, Z |I:7]:71Uj_1(xi)|2
€N (Te;_,) €N (Te;_,)
=4, (X kP Y M ua)P),
1EN(Ej-1) €N (Te;_y \Ej-1)

Next, we bound each of the two terms on the right-hand side separately. For the first one,
we apply proposition [2|for u;_; € VFi-1 E; 1 € T;_; to obtain

1
> @) S e, - @7)
VN (B, 1) -

For the second one, firstly, we add positive quantities and then we make use of proposition [2]
and of the L?(E;_1)-stability of the projection operator H%E%l

> g, wja@) S D e ua ()

iEN(TEjil\Ejfl) iGN(TEjfl)
. 1 1
SJ Z #C§;,1|H?,Ej71uj_1(xi)|2 SJ ﬁHH?,Ejfluj_IH%}(Ej,l) 5 ?Huj_1||%2(Ej71)'
€N (Te; ) J J
(28)
Estimate together with estimate leads to
Ij 2 < 6j 2 C 2
| j71uj—1||L2(Ej,1) ~ 1\5,2, +1|# Ej—1||uj—1||L2(Ej,1)~
Finally, summing on all £;_; € 7;_1, we obtain
11 _yujallrz@) < Cralluj—1llL2 o),
where Cyy = Cpa (5]‘_511 , #CEFI) and the proof is complete. O
In order to verify Hypothesis H[7] we first prove the following preliminary results.
Lemma 2. For any u;_; € VJEJ ~', Ej_1 € T;_1, the following estimate holds
MY g, i = I qujallcee, ) S I g, w1 — wialle s, ), (29)

where the hidden constant depends on (5;51 - and #Cg;_, .
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Proof. To begin with, we apply proposition Ato the left hand side term of and then we use
the definition of the prolongation operator I Jj»_l

T g, s — I yusallieg, ) S0 D, #Cy |dofi(M 5 w1 — I ju;q)[?

iEN(TEj_l)
=07 Y HCE M o ua(w) — Ty (@)
iEN(TEjfl)
<6?  max Cg Z 9 5wy () — 2wy ()]
~ T N (Th, ) B By=1 -1

iG/\/’(TEj,I)

<o#s (X M e — uyalw)?
iEN(Ej_1)

Y M wea(m) — T (@) ).
iEN(TLy?l \Ej_1)
(30)
The second term of the last inequality of is zero. Therefore, we only need to estimate the
first term. Using proposition [2} we obtain

G#Ce, > M, uya (@) —ua ()]

i€EN(Ej-1)
< H4C 6j 2 1o 2 < 170 2
S #CE; 5 Juj—1 — 1,Ej,1uj71||L2(Ej,1) S lluj-1 — 1,Ej,1“j71HL2(Ej,1)v
j—
where the hidden constant depends on 5jf - and #Cg;_, . O

Lemma 3. For any w € H*(E;_1), Ej_1 € T;_1, the following estimate holds
HH?,E,-,JU - H?,Ej,lzjfle%%Ej,l) S 5;‘1”10”?12(153-,1)’ (31)

where the hidden constant depends on 6];1 .
J

Proof. First, adding and subtracting w — Z7~!w and applying the triangle inequality yields

I g, w =T 5 T wllem,_ ) < lw =T wllp2g, )

- (32)
I =108 5, )(w =T w)| L2z, y)-

Next, we bound each of the two terms on the right-hand side of separately. For the first
term, since w € H?(E;_1), we can apply proposition [I| Then

- Si1\4
177 0 = wlaq, S Sz, S (Z2) 6ol ) S SHlulbee, ) (33)
J

For the second term, we notice that Z7"'w € V;_y C H'(Q) and w € H*(Q). Therefore,
w— T3 1w € H'(E;_1). Consequently, we can apply lemma

N =T, ) =T ) B, ) S Ol — Tl . (34)
Since w € HQ(Ej,l), we can apply proposition |1l and we obtain

Si1\4
) ol s, 1y S 0wl s, -
j
(35)
Combining estimates , and leads to . O

Using the previous lemmata, we prove that the following holds true.

532‘71‘“) _Ij_lwhqu(Ej,l)? S 5;‘171”“)”%{2(13]-,1) S (

~
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Proposition 4. Let 77 be the interpolation operator defined in . Then, Hypothesis
holds true.

Proof. Let us focus on the element E;_; € T;_1. We want to show that

1ZPw = I T wl e, ) S G lwllmzes, ) Yw € HA(Q). (36)

~

By adding and subtracting w — H?) B, W+ H% By Z7~ 1w and applying the triangle inequality,
we obtain ‘ o ' ‘
1Z7w — I _\ T wllr2m, ) < [[TPw —wlp2g, )
=+ ||’UJ - H(l),Ej_lw”LQ(Ejfﬂ + ||H(1),Ej_1w - H?,Ej_lzjilw”LQ(Ejfﬂ (37)
+ 0, T =1 T w2,y

In order to estimate the first term on the right-hand side of , we use proposition |1f to

obtain 4 ,
1T = wlfem, = > ITw-wliw) S Y 6floleem,
E]’GTEJ-71 EJETEJ-,I

(38)
4
s D> S llwllir s,y S 05wl s, )
EjETEj,I
To estimate the second term on the right-hand side of , we use lemma
[Jw — H?,Ej,1w||%2(Ej_1) = Z Jw — H?,Ej,lw”%z(ﬁ;j)
E;€Te;
4 2 400,00 112 (39)
S Z 5j ||w||H2(Ej) S 5]‘ Hw||H2(Ej,1)~
EjETEj,I
To estimate the third term on the right-hand side of , we use lemma
I g, w =10 g T e, S 0 lwliie s, _,)- (40)

It remains to estimate the fourth term on the right-hand side of . Firstly, we apply
lemma [2] then we add and subtract the term H?’ B W—w and we apply the triangle inequality,
to obtain

||H(1),Ej,11j71w - I§—1Ij71w||L2(Ej,1) S ||H(1),Ej,1zj71w — T | 2p, )

< ||H(1),Ej,11j_1w - H?,Ej,leL?(Ej,l) + ||H(1),Ej,1w —w|g2e,_,) + 177~ w — w||L2(Ej71()- :
41

An estimate for the first term on the right hand side of is provided in lemma |3| whereas for

the second term we use lemma (1| as done in and for the third term we use proposition

Therefore, we obtain

||H(1),Ej_1zjilw - I]J:—ll.jilwuLz(Ejfl) 5 6]2||wHH2(E]71) (42)

Combining , , and , we obtain . Finally, summing on all E;_; € T;_1, we

obtain the thesis with constant Cy7 = Cyr (%, 5](;1 , #CEFI). O
j—1 J

If the bilinear form A;_;(-,-) is inherited, cf. definition then Assumption is trivially
satisfied with C'43 = 1. Consequently, it remains to prove the following proposition.

Proposition 5. Let A;_1(+,-) be the non-inherited bilinear form defined as in definition
Then, Assumption AB]holds true.
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Proof. Let tup, , be the mean value of u on E;_;. By the continuity of A;(-,-) and noticing

that I ug,. , =g, ,, we obtain
J 7 By 7

AJ(IJJ 1u,IJ X0 Z .A I] _u, I 7 u) Z ||VIJ 1u||L2

E,€T; E€T;

Z ||V(I U T UR;_ 1)HL2(E)N Z ||Vg 1 (u @Ejfl)”%z(ﬁ;j)'

E;eT; E;€T;

Next, we apply the inverse inequality eq. for VEM function on Vi and the stability of
IJ _, in L3(E;_1) proved in proposmloné

) - 1 ‘ 7
Z ||VI;—1(U—UE]»71)||%2(EJ-)5 Z ﬁ”IJJ‘—l(u_“Ejﬂ”@qEﬂ
B3 €T; E;eT; I
1 i —
- Z Z ﬁ”l_‘;—l(uquJ‘,lﬂ‘%Z(Ej)
B 1€Tj-1 Ej€Tg;_, 7

1 . ~ 1 ]
= ? Z HIJJfl(UJ — UEj,)||i2(Ej71) 5 6—2 ”u — g, H%2(Ej71)-

J Ej_1€Tj-1 B, et

Finally, we apply the Poincaré inequality to the virtual element function v — ug,_, that has
zero mean on E;_; by definition of g, , and we conclude by the coercivity of A; 1 (:,-)

1 i1\ 2
5 > lu=tn e ) S (32) X IV@—cn e,
J Ej_1€Tj-1 J Ej1€Tj—1

d; dj-1\2
(T) HVUHH(E] 1) S <T) Aj—1(u, u).

B 1€ ji—1
6]’71
=2). O

We prove Assumption relying on the abstract results reported in [22] for smoothing
operators defined in terms of subspace decomposition such as Parallel Subspace Correction
(PSC) and Successive Subspace Correction (SSC). Indeed, the Gauss-Seidel method can be
interpreted as a SSC method. Let us consider the following decomposition of the global virtual
element space V; defined in eq. @

Therefore, Assumption holds true with constant C'y3 = C A3<

dof

V= Z Vi, (43)

where V}/ := span{@’}. Moreover, let A;; : V} = V/ be defined by (A;v,u); = (Ajv,u); Yv €
Vf, and Q; V= Vf be the projection onto VJZ with respect to the inner product (-,-);. Let
w € Vj. Given the subspace decomposition of Vj, the SSC operator R; : V; — V; is defined
in algorithm [2]

Algorithm 2 Successive subspace correction method (SSC) R;w = SSC(j, w)

1. Set vg = 0.
2. Define v; for i = 1,...,Ngof by

vy = vi—1 + A;;Q;(w — Ajvi_1).

3. Set Rjw = v;.

In [22], it is shown that Assumption holds for R; defined as in algorithm

14



Theorem 5. [22, Theorem 3.2] Let R; be defined as in algorithm I 2| and let the projection
V= VZ be defined by

(A;Pjv,u); = (Ajv,u); Vue V]

Moreover, define k;,, = 0 if P;ij = 0 and equal to 1 otherwise, and set ng = max; > d”l Kim -
Assume that the following two conditions hold:

1. The subspaces satisfy a limited interaction property, i.e., ng < ¢, with ¢; independent of
j-
2. There exists a positive constant ¢y not depending on j such that for each u € V; there is a

" N . ; c e
decomposition u = ;7" u; with u; € V' satisfying

Nios
> il < collull3.
i=1
Then holds with
Cas = 2co(1+¢3). (44)

In our particular case, it turns out that ky,, is different from zero only if Q; nay # (), where
we denote by Q; the support of the Lagrangian basis function cpg i=1,...,N ({o 5 Consequently,
we can take c; as the maximum number of supports {Q}"} of the basis functions {¢7,} that
intersect €. Due to the mesh regularity requirements of Assumption All} ¢; is a bounded
quantity. Moreover, we can set ¢y = 1. Therefore, the two conditions stated in theorem [5] are
satisfied and we conclude that Assumption holds with C 45 defined as in in case we
choose R; to be the linear smoothing operator induced by to the Gauss-Seidel smoother.

7.2 Convergence analysis of the V-cycle and W-cycle methods

In this section we briefly deal with the convergence of V-cycle and W-cycle, i.e., when J > 2,
by generalizing the proof of the convergence of the two-level method. To this aim, let us first
remark that a closer inspection to the proofs of Hypotheses H2] H4] Hp| and Hf| reveals that the
constants appearing in , , and depend on the considered level j. Moreover,
the constants Cu3, Crs and Cry appearing in Assumption and Hypotheses and H[7]
depend on Jéi - 6j;1 and #Cg. respectively. Therefore, we denote by C7, C?,, C%, and

i 7 such constants. Since as explained in Assumptlon we assume a bounded variation

j—17

hypothesis between subsequent levels, then bot J L are bounded. Moreover, if the fine
tessellation 7 consisting of triangles is a shape regular tessellatlon then #Cpg,_, is uniformly
bounded by #Cg,. Indeed, due to the agglomeration procedure, the cardmahty of the set of
elements F; € Tg;_, having a certain node as vertex cannot increase. Hence, all the involved
constants are unlformly bounded independently of the level j. Consequently, Assumption Al
is satisfied setting Cag = max;{C%,} and Assumption Al|is satisfied settlng C = max;{C7},
Cpy = max;{C4,,} and Cpr = maxj{C’H7}. Furthermore, Assumption Af|is satisfied with Cs5
defined as in independently of the level j. To conclude it is sufficient to invoke theorems
and 21

8 Numerical results
In this section we describe the implementation of the multigrid method introduced in Section [3]

and then we present some numerical results to assess the convergence properties of our h-multigrid
virtual element algorithm.
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8.1 Implementation details

The algebraic linear system of equations stemming from the virtual element discretization of
the Poisson equation on the finest grid 77 is in the form

Aju; =1y, (45)

where u; € RV dos represents the vector of the degrees of freedom of u; € V; with respect
to the VEM basis, A € RNdos Niog represents the matrix associated to the operator Aj;
defined in and f; € RVNios is the vector associated to f7 €V defined as (f7,v)r2(0) =
EEJGTJ (f’ Hg,E,,U)LQ(EJ) Vv e V. )

The algebraic counterpart I§71 € RNVios>
is locally defined V¢t € N (E;_1) as

. 4
Nios of the prolongation operator L Vi =V

. Ej_y .
‘ (Z;V:l dofp, (g, ) (1Y g, , ¢ )gmg(xz’)> i € N(Tg,_,\Ej-1),
T, =14 1 i=t, ieN(Ej1),
0 it i€ N(E),

where dofp, (g,_,)(+) is the operator returning the degrees of freedom with respect to the basis of

Py (Ej_1) consisting of the set of scaled monomials M (F;_1) introduced in (3). The algebraic
. . j—1 i

counterpart of the restriction operator I]j'—1 : V; — Vj_1 is denoted by I;fl e RVaos Nios and

j—1 j—1

the algebraic counterpart of the operator A;_1, j =2,...,J is denoted by A;_; € RNaos Nios .

As a smoothing iteration, we have selected the Gauss-Seidel method. The algebraic

NiogNi

counterparts of the operators R; : V; — V; and R] are the matrix R; € R™aorVdor and

Rl € RNios Nios | vespectively. We set Rgl) equals to R; if [ is odd and equals to RT if if [ is
even.

Now, we are ready to introduce the algebraic counterpart of the multigrid method introduced
in Section [3] In algorithm [3] we outline the multigrid iteration algorithm for the computation of
uy. MG, (J, £, uy,v) represents either one iteration of the non-nested W-cycle (p = 2) or one
iteration of non-nested V-cycle (p = 1).

Algorithm 3 Multigrid iteration for the solution of problem

Initialize u®;
for k=0,1,... do

ubtl = MG, (J, f5,u”, v);
end for

In particular, algorithm [4] represents the solution obtained after one iteration of either the
W-cycle (p = 2) or the V-cycle (p = V) method with initial guess x° and v Gauss-Seidel
iterations of pre-smoothing and post-smoothing. The two-level method is a particular case of
algorithm [ corresponding to J = 2.

8.2 Tests

In this section we present some numerical results to assess the convergence properties of our
h-multigrid virtual element algorithm for the solution of the Poisson equation on the unit square
Q=(0,1) x (0,1) with u =1, f(z,y) = —2(z(x — 1) + y(y — 1)) and homogeneous Dirichlet
boundary conditions. We consider both the case in which the bilinear form is inherited and
non-inherited, cf. definition [3.1

We consider the set of agglomerated meshes shown in Figure [3] The coarsening strategy
has been realized through a code developed by the authors. The first row of Figure 3| shows
the sequence of initial fine grids corresponding to decreasing mesh sizes d;. They consist of
shape-regular triangle tessellations with 511 (Figure , 1034 (Figure , 1939 (Figure
and 3915 (Figure elements, respectively. The triangle mesh have been generated using the
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Algorithm 4 p-cycle Multigrid (p=1or p=2) y=MG,(j,g,x° v)

Set q° = 0.
if j =1 then
MGyp(1,g,x% v) = A;lg.
else
Pre-smoothing:
fori=1,...,vdo
— I+ -
xt =xl-1 +R§. U)(g — Axi—1y;
end for
Coarse grid correction:
rjo1 =17 (g — Ajx);
fori=1,...,pdo
q' =MGp(j —1rj_1,q
end for )
yu =xY + I;_lqp;
Post-smoothing:
fori=v+1,...,2v do
_ l _
v =y 4RI (g - Ay,
end for
MGP(j»gva»V) =Yy
end if

L)

2v

Triangle library [23]. The remaining rows of Figure [3| show the sequence of agglomerated nested
coarsened meshes.

Our aim is to analyse the performance of the two-level, the W-cycle and the V-cycle h-
multigrid schemes based on the virtual element method of order k£ = 1. We set a relative
tolerance of 108 as a stopping criterion.

In tables 1| to 4] we report the iteration counts (or cycles) needed to reduce the relative
residual below the chosen tolerance and the computed convergence factor defined as

p = exp (i In ”rN”2)
N lrollz /7

where ry and rg are the final and the initial residual vectors, respectively. The number of
iterations is presented as function of the number of levels and the number of smoothing steps. The
results are shown for the two-level (TL), the W-cycle and the V-cycle multigrid. In particular,
in tables [1| and |2| we report the results obtained in case the inherited bilinear form is chosen,
whereas in tables [3] and [4] we report the results obtained in case the non-inherited bilinear form
is selected. From the results of tables[] to [l we notice that for a given number of smoothing
iterations v, the number of iterations needed to reduce the relative residual below the fixed
tolerance does not vary significantly with respect to the dimension of the underlying algebraic
system, as predicted by theorems [1| and [2| Moreover, as expected, the iteration counts decrease
for larger values of v. From tables [3] and [ we further observe that the assumption on the
number of smoothing steps needed to guarantee convergence in the case of non-inherited bilinear
form does not seem to play a key role for the considered test case.

In table [1} for each set of tessellations, we report also the number of iterations N{© for the
Conjugate Gradient (CG) method and the number of iterations N;©“ for the Preconditioned
Conjugate Gradient (PCG) method accelerated with a Modified Incomplete Cholesky with dual
threshold precoditioner. The comparison shows that the proposed method outperforms both
the CG and the PCG scheme in terms of number of iterations required to achieve convergence
within the prescribed tolerance even for a small value v of smoothing steps.

We observe that even if the agglomerated grids obtained by the considered coarsening
strategy, in general, do not necessarily strictly satisfy the quasi-uniformity Assumption the
numerical results agree with the theoretical expected behaviour. This is probably due to the use
of a limited number of agglomeration levels. If a larger number of level j is considered, ad hoc
post-processing techniques can improve the quality of the meshes and enforce the satisfaction of
Assumption This will be the object of further investigations.
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Figure 3: Sequences of agglomerated grids for testing the h-multigrid method. The corresponding
fine grids T consist of 511 (a), 1034 (b), 1939 (c) and 3915 (d) elements, respectively.
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W-cycle W-cycle
TL 3 level 4 level TL 3 level 4 level
Set 1 Set 2
v=2 8 (0.092) 8 (0.092) 8 (0.092) 9 (0.107) 9 (0.109) 9 (0.109)
v=4 6 (0.035) 6 (0.036) 6 (0.036) 6 (0.045) 6 (0.046) 6 (0.046)
v=6 5 (0.022) 5 (0.022) 5 (0.022) 6 (0.027) 6 (0.027) 6 (0.027)
v=8 5 (0.017) 5 (0.017) 5 (0.017) 5 (0.017) 5 (0.017) 5 (0.018)
NGC =51, NECE =21 N{C =71, NECE =129
W-cycle W-cycle
TL 3 level 4 level TL 3 level 4 level
Set 3 Set 4
v=2 8(0.093) 8 (0.094) 8 (0.094) 9 (0.105) 9 (0.105) 9 (0.105)
v=4 6 (0.033) 6 (0.033) 6 (0.033) 6 (0.038) 6 (0.038) 6 (0.038)
v=6 5 (0.018) 5 (0.018) 5 (0.019) 5 (0.022) 5 (0.022) 5 (0.022)
v=8 5 (0.013) 5 (0.013) 5 (0.013) 5 (0.016) 5 (0.016) 5 (0.016)
NG©® =102, NLC© =40 NG© =146, NLC© =58

Table 1: (Inherited case). Iteration counts and convergence factor (within parentheses) for
both the two-level (TL) and the W-cycle algorithms as function of v and for the W-cycle scheme
as a function of the number of levels. The results are compared with the corresponding iteration
counts of the CG/PCG methods. The sequence of agglomerated meshes is shown in Figure

V-cycle V-cycle
3 level 4 level 3 level 4 level
Set 1 Set 2
v=2 9 (0.105) 9 (0.128) 10 (0.132) 10 (0.150)
v=4 7 (0.050) 7 (0.066) 7 (0.059) 8 (0.073)
v==6 6 (0.033) 6 (0.046) 6 (0.034) 7 (0.048)
v=3_8 5 (0.025) 6 (0.034) 5 (0.023) 6 (0.035)
V-cycle V-cycle
TL 3 level 4 level TL 3 level 4 level
Set 3 Set 4
v=2 9 (0.114) 11 (0.167) 9 (0.118) 10 (0.151)
v=4 6 (0.046) 8 (0.077) 7 (0.049) 7 (0.067)
v==6 6 (0.029) 7 (0.048) 6 (0.030) 6 (0.042)
v=2_, 5 (0.020) 6 (0.035) 5 (0.021) 6 (0.030)

Table 2: (Inherited case). Iteration counts and convergence factor (within parentheses) for
the V-cycle scheme as function of v and of the number of levels. The sequence of agglomerated
meshes is shown in Figure

9 Conclusions

In this work we have proposed two-level, W-cycle and V-cycle geometric multigrid schemes on
agglomeration-based nested polygonal grids and we have theoretically analysed their convergence.
In particular, we have focused on the solution of the linear system stemming from a primal
Virtual Element discretization of order k& = 1 of the Poisson equations. The novelty of our
approach lies in exploiting the flexibility of VEM in dealing with rather general element shapes
to generate nested sequences of tessellations via a geometric agglomeration procedure. However,
the nestedness of the tessellation does not guarantee the nestedness of the virtual element spaces.
This crucial aspect has asked for the use of the general BPX framework [I5] [I6] for non-nested
multigrid methods to prove that our multigrid schemes converge uniformly with respect to the
mesh size and number of levels. In the case of non-inherited bilinear form the convergence of
the W-cycle scheme is obtained for a sufficiently large number of smoothing steps. Finally, we
have validated the effectiveness of our algorithm though numerical experiments.
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W-cycle W-cycle
TL 3 level 4 level TL 3 level 4 level
Set 1 Set 2
v=2 8(0.0815) 8 (0.0817) 8 (0.0818) 8 (0.0967) 8 (0.0974) 8 (0.0975)
v=4 6 (0.0325) 6 (0.0327) 6 (0.0327) 6 (0.0397) 6 (0.0399) 6 (0.0399)
v=6 5 (0.0206) 5 (0.0207) 5 (0.0207) 5 (0.0207) 5 (0.0208) 5 (0.0208)
v=28 5(0.0151) 5 (0.0151) 5 (0.0151) 5 (0.0123) 5 (0.0123) 5 (0.0123)
W-cycle W-cycle
TL 3 level 4 level TL 3 level 1 level
Set 3 Set 4
vr=2 8(0.0885) 8 (0.0889) 8 (0.0890) 8 (0.0958) 8 (0.0958) 8 (0.0958)
v=4 6 (0.0299) 6 (0.0300) 6 (0.0300) 6 (0.0340) 6 (0.0341) 6 (0.0341)
vr=6 5 (0.0160) 5 (0.0161) 5 (0.0161) 5 (0.0189) 5 (0.0189) 5 (0.0189)
v=8 5 (0.0112) 5 (0.0112) 5 (0.0112) 5 (0.0126) 5 (0.0126) 5 (0.0126)

Table 3: (Non-inherited case). Iteration counts and convergence factor (within parenthesis)
for both the two-level (TL) and the W-cycle algorithms as function of v and for the W-cycle
scheme as function of the number of levels. The sequence of agglomerated meshes is shown in

Figure

V-cycle V-cycle
3 level 4 level 3 level 4 level
Set 1 Set 2
v=2 8 (0.0924) 9 (0.1112) 9 (0.1101) 9 (0.1259)
v=4 6 (0.0421) 7 (0.0563) 6 (0.0459) 7 (0.0600)
v==~6 6 (0.0273) 6 (0.0351) 5 (0.0249) 6 (0.0375)
v=2_8 5 (0.0197) 5 (0.0238) 5 (0.0161) 6 (0.0267)
V-cycle V-cycle
TL 3 level 4 level TL 3 level 4 level
Set 3 Set 4
v=2 8 (0.0989) 9 (0.1275) 8 (0.0972) 9 (0.1218)
v=4 6 (0.0369) 7 (0.0619) 6 (0.0370) 7 (0.0565)
v==~6 5 (0.0219) 6 (0.0401) 5 (0.0220) 6 (0.0352)
v=328 5 (0.0162) 6 (0.0298) 5 (0.0158) 6 (0.0256)

Table 4: (Non-inherited case). Iteration counts and convergence factor (within parenthesis)
for the V-cycle scheme as function of v and of the number of levels. The sequence of agglomerated
meshes is shown in Figure
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