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Starting from an applied problem related to the modeling of an element of a
cable-stayed bridge, we compute the elasticity solution for a hollow circular
cylinder under axial end loads. We prove results of symmetry for the solution
and we expand it in proper Fourier series; computing the Fourier coefficients
in adapted power series, we provide the explicit solution. We consider an engi-
neering case of study, applying the corresponding approximate formula and
giving some estimates on the error committed with respect to the truncation of
the series.

1 INTRODUCTION

We consider the problem of the stress distribution in a hollow circular cylinder subjected to axial loads on its opposite
faces. This theoretical problem has relevance in many engineering applications. Here the applied focus is suggested by
the structural civil engineering Studio De Miranda Associati, a company expertized in building long span bridges. We
refer to [1–6] for some mathematical models for suspension bridges and plates developed recently.

F IGURE 1 From the left a render of a recent cable stayed bridge designed by Studio De Miranda Associati and a detail of its deck.
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F IGURE 2 Detail of the executive draw of a blister of a recent prestressed concrete bridge.

The aim of this paper is to model the stress diffusion in a constructive detail of a bridge: the blister. In the cable-stayed
bridge the blister is the structural element where the steel forestay anchors to the deck. In Figure 1 is shown a render of
a future cable-stayed bridge, designed by Studio De Miranda Associati, that will be built in Brazil; a detail of the related
blister element is given in Figure 3.
When the deck is built in reinforced concrete, as in this case, high density of the steel reinforcement is present in the

blister; this may cause zone with low concrete capacity and possible remarkable cracking. In Figure 2 we show a detail of
the executive draw of a blister for another stayed bridge, designed by Studio De Miranda Associati.
Hence, a precise estimate of the stresses acting on the element is fundamental to compute the reinforcing steel without

surplus. In engineering literature some of the best known references related to the distribution of the stresses in prisms
of concrete are [7, 8]; here the authors consider many combinations of load on the prism and for each one the possible
strategies to design the steel bars. These results are obtained from particular solutions of the well known equation of the
linear elasticity; we recall it here briefly in the general 3D case, see for example [9–15].
Given Ω ⊂ ℝ3 an elastic homogeneous solid body, we denote by 𝐮 ∶ Ω → ℝ3 the displacement vector at any point of

the reference configuration of the elastic body itself, see the list of notations at the end of the paper. We denote by 𝐓𝐮 the
stress tensor and by 𝜆 and 𝜇 the classical Lamé constants; it is known that 𝜆 and 𝜇may be expressed in terms of the Young
modulus 𝐸 and Poisson ratio 𝜈 ∈

(
− 1,

1

2

)
as

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
, 𝜇 =

𝐸

2(1 + 𝜈)
. (1.1)

The equation of linear elasticity reads {
−𝜇Δ𝐮 − (𝜆 + 𝜇)∇(div𝐮) = 𝐟 in Ω,
(𝐓𝐮)𝐧 = 𝐠 on 𝜕Ω,

(1.2)

where 𝐟 and 𝐠 are respectively the forces per unit volume and the boundary forces per unit surface acting on Ω, while 𝐧
is the unit outward normal vector to 𝜕Ω.
In Section 2 we briefly derive (1.2) from variational principles and we recall the existence and uniqueness results in

Proposition 2.1; although these are classical topics in linear elasticity, see for example [10, 12], being some questions not
trivial and useful for our aims, we provide for completeness some details and the proof in the appendix.
The theoretical solution from which come the applicative cases considered in [7, 8] is given in [16], whereΩ is a rectan-

gular prism under end loads. Thanks to this simple geometry and loading condition the authors find explicitly the solution
in form of double Fourier series. To find the explicit solution of (1.2) for generic Ω and loading conditions is a very hard
task; some results are available simplifying the geometry or the load, see for example [16–18]. For cylindrical domains
the solution can be obtained only for particular cases, for instance applying Love representation of the solution [13] and
finding a biharmonic function on a cylindrical domain, see for example [14, 19].
In this paper we find the elasticity solution for Ω coincident with a hollow cylinder loaded on the opposite faces, since

this geometry fits the modeling of the concrete of the blister, see Figure 3 on the right; indeed, the forestay of the bridge
is circular and passes through the cylindrical hole, applying a distributed load on the opposite faces due to its tensioning,
see Figure 4 on the right.
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DEMIRANDA et al. 3 of 34

F IGURE 3 From the left a frontal view of the blister and its modelization through the hollow cylinder.

F IGURE 4 The domain Ω on the left and the loading condition in red on the right.

The precise definition of the model is given in Section 4; the application of axial loads leads to a solution having axial
symmetric properties, see Proposition 3.1. In the real blister it is also possible to have non radial loadings coming from the
deck, but this is a first attempt ofmodeling thatmay be implemented in futureworks; anyway, the solution found heremay
have general interest beyond this specific application and the technique is not based on the Love representation function.
The definition of the solution is given by steps: in subsection 3.1 we provide a periodic extension of the loads in the

variable 𝑧 corresponding to the symmetry axis of the hollow cylinder, in such a way that it becomes possible to expand
the solution in Fourier series with respect to the variable 𝑧; then we compute the Fourier coefficients which come to be
functions in the other two variables 𝑥 and 𝑦, corresponding to directions orthogonal to the symmetry axis of the hollow
cylinder; in subsection 3.2 we pass to the cylindrical coordinates and, exploiting the axial symmetry, we reduce ourself to
study a system of ODEs in the radial polar coordinate 𝜌; we compute the Fourier coefficients as functions of the variable
𝜌 through an adapted expansion in power series so that we are able to state Theorem 3.7, collecting the explicit solution.
In Section 4 we give some hints to truncate the series and we apply the results to an engineering case of study. As it will

be explained in details, it will be necessary to compute numerically the first𝑀 terms in the Fourier series expansion with
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4 of 34 DEMIRANDA et al.

𝑀 to be chosen sufficiently large in order to minimize the truncation error. The main question in this procedure is that
the computation of those Fourier coefficients, which are solutions of suitable boundary value problems of ODEs, requires
the numerical resolution of some algebraic linear systems in four variables which exhibit a condition number higher and
higher as𝑀 grows; if we need a truncation error smaller than ours, wemay consider alternative numerical procedures.We
emphasize that the main purpose of this article is to obtain an analytical representation of the unique symmetric solution
of (1.2) in the case of the hollow cylinder with the perspective of reproducing suchmethod inmore general situations with
not necessarily symmetric external loads.
Themain analytical and numerical results of the article are stated in Sections 2–4 and their proofs are given in Section 5.

The final part of the paper is devoted to the conclusions, see Section 6, the appendix on the details related to existence and
uniqueness of solutions, see Section A, and a list of notations which can be helpful for the reader.

2 THE EQUATION OF THE LINEAR ELASTICITY: EXISTENCE OF A SOLUTION

In this Section we derive the differential equations for the linear elasticity from variational arguments and we state exis-
tence results for the solutions. These topics are well known, see for example [9–15], anyway we decided to review them
from a mathematical point, basing our approach on the Fredholm alternative. Since many arguments are standard, we
recall here only the main results useful to deal with the hollow cylinder problem and we put all the details and the proof
in the appendix, see Section A.
We recall that Ω ⊂ ℝ3 is the domain of the elastic body and 𝐮 is the displacement function with components 𝐮 =

(𝑢1, 𝑢2, 𝑢3). We denote by 𝐃𝐮 the linearized strain tensor, which in the sequel will be simply called strain tensor, and by
𝐓𝐮 the stress tensor, recalling its precise definition in the notations at the end of the paper.
The Hooke’s Law for isotropic materials reads

𝐓𝐮 = 𝜆tr(𝐃𝐮) 𝐼 + 2𝜇𝐃𝐮 , (2.1)

where 𝜆 and 𝜇 are the Lamé constants. If we assume that on Ω act body forces per unit of volume 𝐟 = (𝑓1, 𝑓2, 𝑓3) and
boundary forces per unit of surface 𝐠 = (𝑔1, 𝑔2, 𝑔3) we obtain the total energy of the system

(𝐮) = 1

2 ∫
Ω

𝐓𝐮 ∶ 𝐃𝐮𝑑𝐱 − ∫
Ω

𝐟 ⋅ 𝐮 𝑑𝐱 − ∫
𝜕Ω

𝐠 ⋅ 𝐮 𝑑𝑆 , (2.2)

where the first term is the elastic energy related to the internal forces in the configuration corresponding to a generic
displacement 𝐮.
By looking at the total energy  in (2.2) as a functional  ∶ 𝐻1(Ω;ℝ3) → ℝ and exploiting the symmetry of the bilinear

form, see (A2) in the appendix, we obtain that a critical point 𝐮 ∈ 𝐻1(Ω;ℝ3) of  solves the variational problem

∫
Ω

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 = ∫
Ω

𝐟 ⋅ 𝐯 𝑑𝐱 + ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝑆 for any 𝐯 ∈ 𝐻1(Ω;ℝ3) . (2.3)

By (A1) in the appendix and a formal integration by parts, we find that (2.3) is the weak formulation of the boundary value
problem {

−div(𝐓𝐮) = 𝐟 in Ω,
(𝐓𝐮)𝐧 = 𝐠 on 𝜕Ω.

(2.4)

Inserting (2.1) into (2.4) we find the well known equations of linear elasticity (1.2).
Let us introduce the space

𝑉0 ∶=

{
𝐯0 ∈ 𝐻1(Ω;ℝ3) ∶ ∫

Ω

𝐓𝐯0 ∶ 𝐃𝐯 𝑑𝐱 = 0 ∀𝐯 ∈ 𝐻1(Ω;ℝ3)

}
. (2.5)
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DEMIRANDA et al. 5 of 34

We observe that 𝑉0 coincides with the eigenspace associated to the first eigenvalue of the following eigenvalue problem:
𝛼 is an eigenvalue if there exists a nontrivial function 𝐮 ∈ 𝐻1(Ω;ℝ3), which will be called eigenfunction associated to 𝛼,
such that

∫
Ω

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 = 𝛼 ∫
Ω

𝐮 ⋅ 𝐯 𝑑𝐱 for any 𝐯 ∈ 𝐻1(Ω;ℝ3).

In particular if 𝛼 = 0 and 𝐯0 is a corresponding eigenfunction we have

∫
Ω

𝐓𝐯0 ∶ 𝐃𝐯 𝑑𝐱 = 0 for any 𝐯 ∈ 𝐻1(Ω;ℝ3) . (2.6)

After some computation one can verify that 𝑉0 is the space of functions 𝐯 = (𝑣1, 𝑣2, 𝑣3) admitting the following
representation

⎧⎪⎨⎪⎩
𝑣1(𝑥1, 𝑥2, 𝑥3) = 𝛼𝑥2 + 𝛽𝑥3 + 𝛿1 ,

𝑣2(𝑥1, 𝑥2, 𝑥3) = −𝛼𝑥1 + 𝛾𝑥3 + 𝛿2 ,

𝑣3(𝑥1, 𝑥2, 𝑥3) = −𝛽𝑥1 − 𝛾𝑥2 + 𝛿3 .

(2.7)

where 𝛼, 𝛽, 𝛾, 𝛿1, 𝛿2, 𝛿3 ∈ ℝ. Roughly speaking, configurations associated with such functions 𝐯 ∈ 𝑉0 correspond to
translations and rotations of the solid body without deforming it in such a way the elastic energy equals zero.
In the next proposition we recall the existence result for problem (1.2).

Proposition 2.1. Let Ω ⊂ ℝ3 a bounded domain with Lipschitzian boundary and let 𝐟 ∈ 𝐿2(Ω;ℝ3) and 𝐠 ∈ 𝐿2(𝜕Ω;ℝ3).
Let us introduce the following compatibility condition

∫
Ω

𝐟 ⋅ 𝐯 𝑑𝐱 + ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝑆 = 0 for any 𝐯 ∈ 𝑉0 . (2.8)

Then the following statements hold true:

(i) problem (2.3) admits at least one solution 𝐮 ∈ 𝐻1(Ω;ℝ3), or equivalently the boundary value problem (1.2) admits at
least one weak solution, if and only if (2.8) holds true;

(ii) if 𝐮 ∈ 𝐻1(Ω;ℝ3) is a particular solution of (2.3) then for any 𝐯0 ∈ 𝑉0 the function 𝐮 + 𝐯0 is still a solution of (2.3);
(iii) if 𝐮 ∈ 𝐻1(Ω;ℝ3) is a particular solution of (2.3) and if 𝐰 ∈ 𝐻1(Ω;ℝ3) is any other solution of (2.3), then there exists

𝐯0 ∈ 𝑉0 such that𝐰 = 𝐮 + 𝐯0;
(iv) letting 𝑉⟂

0
be the space orthogonal to 𝑉0 with respect to the scalar product (A4), we have that problem (2.3) admits a

unique solution in 𝑉⟂
0
.

The proof of Proposition 2.1 is given in subsection A.1 in the appendix. In the next remarks we recall some issues related
to the uniqueness of solution for the elasticity equation.

Remark 2.2. The problem (2.3) admits solutions up to translations and rotations. This is why we introduce in Section 2
the space 𝑉0; such space includes functions as (2.6) that does not modify the elastic energy. Assuming for simplicity
𝛿1 = 𝛿2 = 𝛿3 = 0 in (2.6), deformations corresponding to displacements 𝐯 ∈ 𝑉0 can be considered good approximations of
a rotation only for 𝛼, 𝛽, 𝛾 small; when at least one of the constants 𝛼, 𝛽, 𝛾 is not small the corresponding deformation of the
solid body is no more negligible. In such a case, one may wonder why the elastic energy remains anyway zero; the answer
is that in the linear theory only small deformations are allowed so that large deformations are nomoremeaningful for our
model. Let us recall that we are considering in our model the linearized strain tensor 𝐃𝐯 which is a good approximation
of the real strain tensor only for small deformations since the last one also contains quadratic terms in the first order
derivatives of 𝑣1, 𝑣2, 𝑣3; these quadratic terms can be neglected when first order derivatives are small.
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6 of 34 DEMIRANDA et al.

Remark 2.3. We observe that, as a consequence of Proposition 2.1, if 𝐮 and𝐰 are solutions of (2.3), then the two config-
urations of the elastic body, corresponding to 𝐮 and𝐰, generate the same stress state. More precisely we have 𝐓𝐮 = 𝐓𝐰

in Ω as a consequence of the Hooke’s law and of the fact that 𝐃(𝐮 −𝐰) vanishes in Ω being 𝐮 −𝐰 ∈ 𝑉0. Physically, this
is completely reasonable since, given the configuration corresponding to 𝐮, the one corresponding to𝐰 can be obtained
from the first one by means of rotations and translations of the elastic body, which clearly do not affect the stress state of
the solid body itself.

3 THE HOLLOWCYLINDER UNDER AXIAL END LOADS

We consider a circular, finite, homogeneous, isotropic and elastic cylinder with height ℎ, radius 𝑏 > 0, having a coaxial
hole of radius 𝑎 > 0. In this section we use the usual notation 𝑥, 𝑦, 𝑧 for the three coordinates in ℝ3. We maintain the
notation 𝑑𝐱 to denote the differential volume 𝑑𝑥𝑑𝑦𝑑𝑧.
Therefore, we introduce the annular domain 𝐶𝑎,𝑏 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑎2 < 𝑥2 + 𝑦2 < 𝑏2} in such a way that

Ω = 𝐶𝑎,𝑏 ×
(
−

ℎ

2
,
ℎ

2

)
.

In the sequel we want to model a hollow cylinder subject to an external load acting on the upper and lower faces of the
cylinder compressing the cylinder itself; we denote this (constant) distributed load by 𝑝, see Figure 4 on the right. This
loading configuration corresponds to zero volume forces, that is, recalling the notations introduced in (1.2), 𝐟 = 𝟎 in Ω.
In order to better describe the surface forces represented by the vector function 𝐠, we split 𝜕Ω in four regular parts

Γ1 ∶= 𝐶𝑎,𝑏 ×
{
−

ℎ

2

}
, Γ2 ∶= 𝐶𝑎,𝑏 ×

{
ℎ

2

}
,

Γ3 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 𝑏2} ×
(
−

ℎ

2
,
ℎ

2

)
, Γ4 ∶= {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 𝑎2} ×

(
−

ℎ

2
,
ℎ

2

)
,

having respectively outward unit normal vectors (0, 0, −1), (0,0,1), (𝑥∕𝑏, 𝑦∕𝑏, 0) when (𝑥, 𝑦, 𝑧) ∈ Γ3 and (−𝑥∕𝑎,−𝑦∕𝑎, 0)
when (𝑥, 𝑦, 𝑧) ∈ Γ4. In this way, the outward unit normal vector 𝐧 is well defined on the whole 𝜕Ω, see also Figure 4 on
the left.
Exploiting the above notations, the vector function 𝐠 can be represented in the following way

𝐠(𝑥, 𝑦, 𝑧) =

⎧⎪⎨⎪⎩
(0, 0, 𝜒𝑝(𝑥, 𝑦)) for any (𝑥, 𝑦, 𝑧) ∈ Γ1,

(0, 0, −𝜒𝑝(𝑥, 𝑦)) for any (𝑥, 𝑦, 𝑧) ∈ Γ2,

(0, 0, 0) for any (𝑥, 𝑦, 𝑧) ∈ Γ3 ∪ Γ4,

(3.1)

where the function 𝜒𝑝 ∶ 𝐶𝑎,𝑏 → ℝ, 𝑝 ∈ ℝ+, is defined by

𝜒𝑝(𝑥, 𝑦) ∶=

{
𝑝 if 𝑎2 ≤ 𝑥2 + 𝑦2 < 𝜖2,

0 if 𝜖2 < 𝑥2 + 𝑦2 ≤ 𝑏2,
(3.2)

for some 𝜖 ∈ (𝑎, 𝑏). The parameter 𝜖may be varied until that the distributed load covers entirely the top and bottom faces
of the cylinder (𝜖 = 𝑏); since this study starts from the applied purpose to model a blister, we choose 𝜖 ∈ (𝑎, 𝑏), being
{(𝑥, 𝑦) ∈ 𝐶𝑎,𝑏 ∶ 𝑎

2 ≤ 𝑥2 + 𝑦2 < 𝜖2} ⊂ 𝐶𝑎,𝑏 the surface where the load of the forestay is transferred to the concrete through
anchor plates, see Figure 5 and Section 4 for details.
Therefore, we are led to consider the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−𝜇Δ𝐮 − (𝜆 + 𝜇)∇(div𝐮) = 𝟎 in Ω,

(𝐓𝐮)𝐧 = (0, 0, 𝜒𝑝) on Γ1,

(𝐓𝐮)𝐧 = (0, 0, −𝜒𝑝) on Γ2,

(𝐓𝐮)𝐧 = 𝟎 on Γ3 ∪ Γ4 .

(3.3)
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DEMIRANDA et al. 7 of 34

Among all solutions of (3.3) which can be obtained by a single solution by adding to it a function in the space 𝑉0, we
focus our attention on the unique solution 𝐮 = (𝑢1, 𝑢2, 𝑢3) of (3.3) in the space 𝑉⟂

0
where orthogonality is meant in the

sense of the scalar product defined in (A4), see Proposition 2.1. From a geometric point of view, condition 𝐮 ∈ 𝑉⟂
0
avoids

translations and rotations of the hollow cylinder, being𝑉0 the space of displacement functionswhich generate translations
and rotations.
In subsection 5.1 we prove a symmetry result for the unique solution of (3.3) in the space𝑉⟂

0
, whose validity is physically

evident, but which however needs a rigorous proof:

Proposition 3.1. Let 𝐮 be the unique solution of (3.3) in the space 𝑉⟂
0
. Then 𝐮 satisfies the following symmetry properties:

(i) for any (𝑥, 𝑦, 𝑧) ∈ Ω we have

𝑢1(𝑥, 𝑦, −𝑧) = 𝑢1(𝑥, 𝑦, 𝑧), 𝑢2(𝑥, 𝑦, −𝑧) = 𝑢2(𝑥, 𝑦, 𝑧) 𝑢3(𝑥, 𝑦, −𝑧) = −𝑢3(𝑥, 𝑦, 𝑧) , (3.4)

𝑢1(−𝑥, 𝑦, 𝑧) = −𝑢1(𝑥, 𝑦, 𝑧), 𝑢2(−𝑥, 𝑦, 𝑧) = 𝑢2(𝑥, 𝑦, 𝑧) 𝑢3(−𝑥, 𝑦, 𝑧) = 𝑢3(𝑥, 𝑦, 𝑧) , (3.5)

𝑢1(𝑥, −𝑦, 𝑧) = 𝑢1(𝑥, 𝑦, 𝑧), 𝑢2(𝑥, −𝑦, 𝑧) = −𝑢2(𝑥, 𝑦, 𝑧) 𝑢3(𝑥, −𝑦, 𝑧) = 𝑢3(𝑥, 𝑦, 𝑧) ; (3.6)

(ii) the third component 𝑢3 of the solution 𝐮 is axially symmetric in the sense that:

𝑢3(𝑥1, 𝑦1, 𝑧) = 𝑢3(𝑥2, 𝑦2, 𝑧) ∀(𝑥1, 𝑦1, 𝑧), (𝑥2, 𝑦2, 𝑧) ∈ Ω with 𝑥2
1
+ 𝑦2

1
= 𝑥2

2
+ 𝑦2

2
;

(iii) the first two components 𝑢1, 𝑢2 of the solution 𝐮 form a central vector field in two dimensions in the sense that

|(𝑢1, 𝑢2)||(𝑥1,𝑦1,𝑧) = |(𝑢1, 𝑢2)||(𝑥2,𝑦2,𝑧) ∀(𝑥1, 𝑦1, 𝑧), (𝑥2, 𝑦2, 𝑧) ∈ Ω with 𝑥2
1
+ 𝑦2

1
= 𝑥2

2
+ 𝑦2

2

and

(𝑢1, 𝑢2)|(𝑥,𝑦,𝑧) = |(𝑢1, 𝑢2)||(𝑥,𝑦,𝑧)
(

𝑥√
𝑥2 + 𝑦2

,
𝑦√

𝑥2 + 𝑦2

)
for any (𝑥, 𝑦, 𝑧) ∈ Ω .

The symmetries described in this proposition are crucial for themethod here presented and its possible generalizations.
Up to a greater computational burden, it is possible to include non zero body forcing 𝐟 , having the same symmetries of
the domain Ω. Also the load 𝑝 in (3.2) could be assumed not constant, for example 𝑝 = 𝑝(𝑥, 𝑦), but it has to agree the Ω
symmetries (i.e., the load has to be axial). Hence, possible changes in the loading conditions are allowed, in principle one
could consider also tangential (axially symmetric) loading conditions on 𝜕Ω. The fundamental point is that Proposition 3.1
has to hold so that the problem can be extended periodically as described in the following section.

3.1 Periodic extension of the problem

Our next purpose is to look for and construct a solution 𝐮 = (𝑢1, 𝑢2, 𝑢3) of (3.3) admitting a Fourier series expansion in
the 𝑧 variable and, hence, admitting a periodic extension defined on the whole 𝐶𝑎,𝑏 × ℝ. A posteriori, we show that it
necessarily coincides with the unique solution of (3.3) belonging to 𝑉⟂

0
, see the end of the proof of Theorem 3.7.

As a first step, since 𝐮 ∈ 𝐻1(Ω;ℝ3), we define a function, still denoted for simplicity by 𝐮, on the domain
𝐶𝑎,𝑏 ×

(
−

ℎ

2
,
3ℎ

2

)
by extending it in suitable way: the new function 𝐮 coincides with the original function 𝐮 on 𝐶𝑎,𝑏 ×(

−
ℎ

2
,
ℎ

2

)
and

𝑢1(𝑥, 𝑦, 𝑧) = −𝑢1(𝑥, 𝑦, ℎ − 𝑧) , 𝑢2(𝑥, 𝑦, 𝑧) = −𝑢2(𝑥, 𝑦, ℎ − 𝑧) , 𝑢2(𝑥, 𝑦, 𝑧) = 𝑢3(𝑥, 𝑦, ℎ − 𝑧) , (3.7)

for any (𝑥, 𝑦, 𝑧) ∈ 𝐶𝑎,𝑏 ×
(
ℎ

2
,
3ℎ

2

)
. This means that 𝑢1 and 𝑢2 are antisymmetric with respect to 𝑧 =

ℎ

2
and 𝑢3 is symmetric

with respect to 𝑧 = ℎ

2
. The second step is to extend the new function 𝐮 ∶ 𝐶𝑎,𝑏 ×

(
−

ℎ

2
,
3ℎ

2

)
→ ℝ to the whole 𝐶𝑎,𝑏 × ℝ

 15214001, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300169 by C

ochraneItalia, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 34 DEMIRANDA et al.

as a 2ℎ-periodic function in the variable 𝑧, having the obvious symmetries. This construction and the solution properties
stated in Proposition 3.1 allow expanding 𝐮 = (𝑢1, 𝑢2, 𝑢3) in Fourier series with respect to the variable 𝑧 in the following
way:

𝑢1(𝑥, 𝑦, 𝑧) =

+∞∑
𝑘=0

𝜑1
𝑘
(𝑥, 𝑦) cos

(
𝜋

ℎ
𝑘𝑧

)
, 𝑢2(𝑥, 𝑦, 𝑧) =

+∞∑
𝑘=0

𝜑2
𝑘
(𝑥, 𝑦) cos

(
𝜋

ℎ
𝑘𝑧

)
, (3.8)

𝑢3(𝑥, 𝑦, 𝑧) =

+∞∑
𝑘=0

𝜑3
𝑘
(𝑥, 𝑦) sin

(
𝜋

ℎ
𝑘𝑧

)
.

Remark 3.2. We observe that for 𝑘 = 0, the boundary value problem (3.3), or equivalently (5.17)–(5.18) and (5.20), see the
proof in Subsection 5.3, admits an infinite number of solutions. More precisely, these solutions are in form (𝜑1

0
, 𝜑2

0
, 𝜑3

0
) =

(𝑐1, 𝑐2, 𝑐3) where 𝑐1, 𝑐2, 𝑐3 are three arbitrary constants. We may choose 𝜑30 ≡ 0 being irrelevant in the Fourier expansion
of 𝑢3. Concerning the other two components, we have necessarily 𝜑10 ≡ 𝜑2

0
≡ 0 in 𝐶𝑎,𝑏 due to the odd symmetry of 𝑢1 and

𝑢2 with respect to the variables 𝑥 and 𝑦, as stated in (3.5) and (3.6).

Thanks to the expansion (3.8) and Remark 3.2 we infer that the horizontal displacements 𝑢1 and 𝑢2 vanish on the upper
and lower faces of the hollow cylinder Ω:

𝑢1

(
𝑥, 𝑦,

ℎ

2

)
= 𝑢1

(
𝑥, 𝑦, −

ℎ

2

)
= 0 and 𝑢2

(
𝑥, 𝑦,

ℎ

2

)
= 𝑢2

(
𝑥, 𝑦, −

ℎ

2

)
= 0 . (3.9)

Therefore, the symmetric extension, for instance with respect to 𝑧 = ℎ

2
, produces 𝐮 ∈ 𝐻1

(
𝐶𝑎,𝑏 ×

(
−

ℎ

2
,
3ℎ

2

)
; ℝ3

)
. More

in general, it is easy to understand that the periodic extension, still denoted for simplicity by 𝐮, is a function satisfying
𝐮 ∈ 𝐻1(𝐶𝑎,𝑏 × 𝐼;ℝ3) for any open bounded interval 𝐼.
We state here some lemmas in order to understand the main steps in the construction of the solution of (3.3), given in

the final theorem. The periodic extension of the boundary data can be achieved according to the next lemma, proved in
subsection 5.2.

Lemma 3.3. Let 𝐮 be the periodic extension of the solution of (3.3) defined as above and let𝚲 be the distribution defined by

−div(𝐓𝐮) = 𝚲 in′(𝐶𝑎,𝑏 × ℝ;ℝ3) . (3.10)

Then 𝚲 admits the following Fourier series expansion

𝚲 = (Λ1, Λ2, Λ3) =

(
0, 0, 𝜒𝑝(𝑥, 𝑦)

+∞∑
𝑚=0

(−1)𝑚+1 4

ℎ
sin

[𝜋
ℎ
(2𝑚 + 1)𝑧

])
. (3.11)

In subsection 5.3 we prove the following lemma.

Lemma 3.4. For any 𝑘 ≥ 1 odd, there exists a unique (𝜑1
𝑘
, 𝜑2

𝑘
, 𝜑3

𝑘
) ∈ 𝐻1(𝐶𝑎,𝑏; ℝ

3), satisfying (3.3) and (3.8). For any 𝑘 ≥ 2

even, there exists a unique trivial (𝜑1
𝑘
, 𝜑2

𝑘
, 𝜑3

𝑘
) ≡ (0, 0, 0) in 𝐶𝑎,𝑏, satisfying (3.3) and (3.8).

3.2 Cylindrical coordinates exchange

The symmetry properties of 𝐮 stated in Proposition 3.1 imply that 𝜑3
𝑘
is a radial function and the vector field (𝜑1

𝑘
, 𝜑2

𝑘
) is a

central vector field in the plane, in the sense that it is oriented toward the origin and its modulus is a function only of the
distance from the origin. This implies that for any 𝑘 ≥ 1 odd, there exist two radial functions 𝑌𝑘 = 𝑌𝑘(𝜌) and 𝑍𝑘 = 𝑍𝑘(𝜌)

such that in polar coordinates we may write

𝜑1
𝑘
(𝜌, 𝜃) = 𝑌𝑘(𝜌) cos 𝜃 , 𝜑2

𝑘
(𝜌, 𝜃) = 𝑌𝑘(𝜌) sin 𝜃 , 𝜑3

𝑘
(𝜌, 𝜃) = 𝑍𝑘(𝜌) , (3.12)

with 𝜌 ∈ [𝑎, 𝑏] and 𝜃 ∈ [0, 2𝜋).

 15214001, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300169 by C

ochraneItalia, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DEMIRANDA et al. 9 of 34

In Section 5 we show that 𝑌𝑘 and 𝑍𝑘 solve a proper boundary value problem. More precisely, this fact will be shown in
subsection 5.4 which is devoted to the proof of the next lemma, where we state existence and uniqueness for solutions of
the boundary value problem mentioned above.

Lemma 3.5. Let Ψ𝑘 ∶ 𝐶𝑎,𝑏 → ℝ be defined as

Ψ𝑘(𝑥, 𝑦) ∶=

⎧⎪⎨⎪⎩
(−1)

𝑘+1

2
4

ℎ
𝜒𝑝(𝑥, 𝑦) if 𝑘 is odd,

0 if 𝑘 is even,
∀(𝑥, 𝑦) ∈ 𝐶𝑎,𝑏. (3.13)

For any 𝑘 ≥ 1 odd, the boundary value problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑌′′
𝑘
(𝜌) +

𝑌′
𝑘
(𝜌)

𝜌
−
𝑌𝑘(𝜌)

𝜌2
−

𝜇

𝜆 + 2𝜇

𝜋2𝑘2

ℎ2
𝑌𝑘(𝜌) +

𝜆 + 𝜇

𝜆 + 2𝜇

𝜋𝑘

ℎ
𝑍′
𝑘
(𝜌) = 0 in (𝑎, 𝑏) ,

𝑍′′
𝑘
(𝜌) +

𝑍′
𝑘
(𝜌)

𝜌
−
𝜆 + 2𝜇

𝜇

𝜋2𝑘2

ℎ2
𝑍𝑘(𝜌) −

𝜆 + 𝜇

𝜇

𝜋𝑘

ℎ

[
𝑌′
𝑘
(𝜌) +

𝑌𝑘(𝜌)

𝜌

]
= −

1

𝜇
Ψ𝑘(𝜌) in (𝑎, 𝑏) ,

(𝜆 + 2𝜇)𝑌′
𝑘
(𝜌) +

𝜆

𝜌
𝑌𝑘(𝜌) + 𝜆

𝜋𝑘

ℎ
𝑍𝑘(𝜌) = 0 , 𝜌 ∈ {𝑎, 𝑏}

𝑍′
𝑘
(𝜌) −

𝜋𝑘

ℎ
𝑌𝑘(𝜌) = 0 , 𝜌 ∈ {𝑎, 𝑏}

(3.14)

admits a unique solution (𝑌𝑘, 𝑍𝑘) ∈ 𝐻1(𝑎, 𝑏;ℝ2).

About existence and uniqueness of solutions of (3.14), in subsection 5.4 we only give an idea of the proof since it can be
proved exactly as Lemma 3.4 of which Lemma 3.5 is the radial version.
Now we need a more explicit representation for the unique solution (𝑌𝑘, 𝑍𝑘) of (3.14). This will be done by performing

a power series expansion in which the coefficients will be characterized explicitly in terms of a suitable iterative scheme.
As a byproduct of this result in Section 4 we also obtain a numerical approximation of the exact solution and we estimate
the corresponding error. Being a linear problem, we proceed by applying the superposition principle and we provide the
explicit formula in the next lemma.

Lemma 3.6. For any 𝑘 ≥ 1, odd, let 𝚼𝑘 = (𝑌𝑘, 𝑍𝑘) the unique solution of (3.14). Omitting for brevity the 𝑘-index, we have a
unique (𝐶1, 𝐶2, 𝐶3, 𝐶4) ∈ ℝ4 such that

𝚼(𝜌) = 𝐶1𝚼
1(𝜌) + 𝐶2𝚼

2(𝜌) + 𝐶3𝚼
3(𝜌) + 𝐶4𝚼

4(𝜌) + 𝚼(𝜌), (3.15)

where 𝚼𝑗 = (𝑌𝑗, 𝑍𝑗) with 𝑗 = 1,… , 4 are four linear independent solutions of the corresponding homogenous system and
𝚼 = (𝑌, 𝑍) solves(

𝑌(𝜌) 𝑌
′
(𝜌) 𝑍(𝜌) 𝑍

′
(𝜌)

)𝑇
= 𝐖(𝜌)∫

𝜌

𝑎

(𝐖(𝑟))−1
(
0 0 0 −

1

𝜇
Ψ𝑘(𝑟)

)𝑇
𝑑𝑟 , 𝜌 > 0 , (3.16)

being𝐖(𝜌) the wronskian obtained through𝚼𝑗(𝜌) (𝑗 = 1,… , 4). Each of the linear independent solutions of the homogeneous
system can be written as

⎧⎪⎪⎨⎪⎪⎩
𝑌𝑗(𝜌) =

+∞∑
𝑛=−1

𝑎
𝑗
𝑛 𝜌

𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑏
𝑗
𝑛 𝜌

𝑛 ,

𝑍𝑗(𝜌) =

+∞∑
𝑛=0

𝑐
𝑗
𝑛 𝜌

𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑑
𝑗
𝑛 𝜌

𝑛

(𝑗 = 1,… , 4), (3.17)

where the coefficients are uniquely determined.
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10 of 34 DEMIRANDA et al.

In the proof of the Lemma we give all the details related to the computation of the constants 𝐶𝑗 in (3.15) and of the
coefficients in the series (3.17), see subsection 5.5. As a consequence of Lemmas 3.3-3.4-3.5-3.6 we state the main theorem,
whose proof can be found in subsection 5.6.

Theorem 3.7. Let 𝐮 be the unique solution of (3.3) satisfying 𝐮 ∈ 𝑉⟂
0
and let (𝑌𝑘, 𝑍𝑘), 𝑘 ≥ 1 odd, be the unique solution of

(3.14). Then, in cylindrical coordinates, 𝐮 = (𝑢1, 𝑢2, 𝑢3) admits the following representation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢1(𝜌, 𝜃, 𝑧) =

+∞∑
𝑚=0

𝑌2𝑚+1(𝜌) cos 𝜃 cos
[
(2𝑚+1)𝜋

ℎ
𝑧
]
,

𝑢2(𝜌, 𝜃, 𝑧) =

+∞∑
𝑚=0

𝑌2𝑚+1(𝜌) sin 𝜃 cos
[
(2𝑚+1)𝜋

ℎ
𝑧
]
,

𝑢3(𝜌, 𝜃, 𝑧) =

+∞∑
𝑚=0

𝑍2𝑚+1(𝜌) sin
[
(2𝑚+1)𝜋

ℎ
𝑧
]
,

(3.18)

with 𝜌 ∈ (𝑎, 𝑏), 𝜃 ∈ [0, 2𝜋), 𝑧 ∈
(
−

ℎ

2
,
ℎ

2

)
where the three series in (3.18) converge weakly in𝐻1(Ω) and strongly in 𝐿2(Ω).

Moreover, letting 𝑼𝑀 = (𝑈1
𝑀,𝑈

2
𝑀,𝑈

3
𝑀) be the sequence of vector partial sums corresponding to the series expansions in

(3.18), we have for any𝑀 ≥ 1

‖𝑈1
𝑀 − 𝑢1‖𝐿2(Ω) ≤ 𝑝𝑏2

𝜇

√
ℎ(𝑏 − 𝑎)

2𝑎𝜋

1√
𝑀

, ‖𝑈2
𝑀 − 𝑢2‖𝐿2(Ω) ≤ 𝑝𝑏2

𝜇

√
ℎ(𝑏 − 𝑎)

2𝑎𝜋

1√
𝑀

, (3.19)

‖𝑈3
𝑀
− 𝑢3‖𝐿2(Ω) ≤ 𝑝

𝜇𝑎𝜋2

√
ℎ3𝑏3(𝑏 − 𝑎)

24

1√
𝑀3

.

4 AN ENGINEERING APPLICATION

In this section we consider a case of study: a hollow cylinder having the features of a blister for the bridge in Figure 1.
In Table 1 we give the mechanical parameters, see also Figure 4. We consider stays composed of 19 strands, see Figure 5,
suitable to bear the concentrated load 𝑃 in Table 1. 𝑃 is computed from the executive project, while the diameter 2𝑎 is
taken from the catalogue of Protende ABS-2021 [20], a company producing such elements, see in Figure 5 the diameter
𝜙𝐷1 for 19 strands anchorage; hence, the distributed load in (3.2) is given by 𝑝 =

𝑃

𝜋(𝜖2−𝑎2)
= 22.80MPa.

Our purpose is to obtain a good approximation of the functions 𝚼𝑗 = (𝑌𝑗, 𝑍𝑗), 𝑗 ∈ {1, 2, 3, 4} introduced in Lemma 3.6.
For 𝑗 = 1,… , 4 we consider the approximate solution (𝑁 ≥ 1)

𝑌
𝑗
𝑁(𝜌) =

𝑁∑
𝑛=−1

𝑎𝑛 𝜌
𝑛 + (ln 𝜌)

𝑁∑
𝑛=0

𝑏𝑛 𝜌
𝑛 and 𝑍

𝑗
𝑁(𝜌) =

𝑁−1∑
𝑛=0

𝑐𝑛 𝜌
𝑛 + (ln 𝜌)

𝑁−1∑
𝑛=0

𝑑𝑛 𝜌
𝑛 . (4.1)

TABLE 1 Mechanical parameters assumed.

ℎ 3.00 m Height of the cylinder
2𝑎 273 mm Diameter of the cylindrical hollow
2𝑏 800 mm External diameter of the cylinder
2𝜖 425 mm External diameter of the load
𝑃 1900 kN Concentrated load
𝐸 35000 MPa Young modulus of the concrete
𝜈 0.2 Poisson ratio of the concrete
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DEMIRANDA et al. 11 of 34

F IGURE 5 Detail of the strands anchorage and in table the geometric features for a 19 strands element, from the commercial catalogue
[20].

The reason for in (4.1) we have 𝑛 = 0,… ,𝑁 − 1 in the expansion of 𝑍𝑗

𝑁
will be clarified in the proof in subsection 5.7 of

the next proposition about an estimate of the truncating error.

Proposition 4.1. Let 𝑘 > 1 , 𝑘 ∈ ℕ odd, and let 𝑁 ≥ 3, odd integer, be the truncating index of the series as in (4.1). Then,
letting

𝐸𝑘,𝑁 ∶= max
𝑗∈{1,2,3,4}

{
max

{
max
𝜌∈[𝑎,𝑏]

|𝑌𝑗

𝑁
(𝜌) − 𝑌𝑗(𝜌)|, max

𝜌∈[𝑎,𝑏]
|𝑍𝑗

𝑁
(𝜌) − 𝑍𝑗(𝜌)|}}

,

we have that

𝐸𝑘,𝑁 ≤ 𝐶(𝑎, 𝑏, 𝑘)
3(2𝜆 + 5𝜇)(𝜆 + 𝜇)2

16𝜇3

(
𝜋𝑘𝑏

ℎ

)𝑁+2

𝑒

(
𝜋𝑘𝑏

ℎ

)2
(𝑁 + 3)(3𝑁3 + 21𝑁2 + 42𝑁 + 32)

2𝑁
[(

𝑁+1

2

)
!
]2 , (4.2)

where

𝐶(𝑎, 𝑏, 𝑘) = max
{
1,

ℎ

𝜋𝑘𝑏

}
max

{
1,

||||ln(
𝜋𝑘𝑎

ℎ

)||||, | ln(
𝜋𝑘𝑏

ℎ

)|}max
{

𝜋𝑘

ℎ
,

𝜇

𝜆+𝜇

𝜋𝑘

ℎ
ln

(
𝜋𝑘

ℎ

)
,
2(𝜆+2𝜇)

𝜆+𝜇

ℎ

𝜋𝑘
ln

(
𝜋𝑘

ℎ

)}
.

Once we have (4.2), one may choose 𝑁 in such a way that

𝐸𝑘,𝑁

min
𝑗∈{1,2,3,4}

{
min

{
max
𝜌∈[𝑎,𝑏]

|𝑌𝑗
𝑁(𝜌)|, max

𝑡∈[𝑎,𝑏]
|𝑍𝑗

𝑁(𝜌)|}} < 𝜀 (4.3)

with 𝜀 small enough. Condition (4.3)means that the truncation error is relatively small compared to the order ofmagnitude
of both functions 𝑌𝑗

𝑁
and 𝑍𝑗

𝑁
for all 𝑗 ∈ {1, 2, 3, 4}.
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12 of 34 DEMIRANDA et al.

F IGURE 6 From the the left the vertical displacement 𝑢3 in mm, the vertical stress 𝜎𝑧 in MPa, the radial stress 𝜎𝑟 in MPa, the angular
stress 𝜎𝜃 in MPa and the tangential stress 𝜏𝑟𝑧 in MPa.

TABLE 2 Maximum absolute values and points of Ω in which they are assumed.

𝐦𝐚𝐱 | ⋅ | 𝝆 𝒛 [m]
𝑢3 0.24 mm 𝑎 ± 1.50
𝜎𝑧 20.77 MPa 𝑎 ± 1.42
𝜎𝑟 4.23 MPa 𝑎 ±1.42
𝜎𝜃 2.62 MPa 𝑎 ± 1.43
𝜏𝑟𝑧 2.52 MPa 𝜖 ± 1.34

In our numerical simulation the condition (4.3) is verified by making use of estimate (4.2) on the truncation error 𝐸𝑘,𝑁 ,
that is, the program verifies at each step the validity of (4.3) in which the numerator of the fraction is replaced by the
majorant in (4.2). The program runs until the value of 𝑁 is sufficiently large to guarantee (4.3).
In Figure 6 we plot a vertical section of the cylinder and the corresponding more stressed horizontal section. We show

the vertical displacement 𝑢3 and the following components of the stress tensor in cylindrical coordinates

𝜎𝑧 =
2𝜇

1 − 2𝜈

[
(1 − 𝜈)

𝜕𝑢3
𝜕𝑧

+ 𝜈

(
𝑢𝑟

𝜌
+
𝜕𝑢𝑟

𝜕𝜌

)]
𝜎𝑟 =

2𝜇

1 − 2𝜈

[
(1 − 𝜈)

𝜕𝑢𝑟

𝜕𝜌
+ 𝜈

(
𝑢𝑟

𝜌
+
𝜕𝑢3
𝜕𝑧

)]
𝜎𝜃 =

2𝜇

1 − 2𝜈

[
(1 − 𝜈)

𝑢𝑟

𝜌
+ 𝜈

(
𝜕𝑢𝑟

𝜕𝜌
+
𝜕𝑢3
𝜕𝑧

)]
𝜏𝑟𝑧 = 𝜇

[
𝜕𝑢𝑟

𝜕𝑧
+
𝜕𝑢3
𝜕𝜌

]
,

(4.4)

where 𝑢𝑟 =
√
𝑢2
1
+ 𝑢2

2
is the radial displacement. We point out that putting 𝐧 = (cos 𝜃, sin 𝜃, 0), 𝐭 = (− sin 𝜃, cos 𝜃, 0) and

𝐤 = (0, 0, 1), the four components introduced in (4.4) are defined by 𝜎𝑧 ∶= (𝐓𝐮)𝐤 ⋅ 𝐤, 𝜎𝑟 ∶= (𝐓𝐮)𝐧 ⋅ 𝐧, 𝜎𝜃 ∶= (𝐓𝐮)𝐭 ⋅ 𝐭

and 𝜏𝑟𝑧 ∶= (𝐓𝐮)𝐧 ⋅ 𝐤 and the representation (4.4) can be deduced by (A9) and (A10).
We consider an approximate solution𝑼𝑀 as stated in Theorem 3.7 truncating the Fourier series at𝑀 = 29with 𝜀 < 10−3

in (4.3), implying𝑁 = 123 in (4.1) and ‖𝑈1
29
− 𝑢1‖𝐿2(Ω) ≤ 4.46 ⋅ 10−5m5∕2, ‖𝑈3

29
− 𝑢3‖𝐿2(Ω) ≤ 1.02 ⋅ 10−6m5∕2 in (3.19). In

Table 2 we give the maximum absolute values of the variables involved, including the coordinate of the point (𝜌, 𝑧)where
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DEMIRANDA et al. 13 of 34

they are assumed (for all 𝜃 ∈ [0, 2𝜋) thanks to the radial symmetry of the problem).
As expected the vertical displacement 𝑢3 achieves its maximum absolute value at 𝑧 = ±

ℎ

2
. From the plots we see that

there are two (symmetric) critical zones where we observe the loading diffusion; they are close to the upper and bottom
faces of the cylinder and involve approximately the 20% of the closest volume, that is, the volume of Ω such that 𝑧 ∈(
−

ℎ

2
, −

2ℎ

5

)
∪
(
2ℎ

5
,
ℎ

2

)
.

5 PROOFS OF THE RESULTS

5.1 Proof of Proposition 3.1

Concerning part (i) of the Proposition we only give the proof of (3.4) since the proof of (3.5)–(3.6) can be obtained with a
similar procedure. For any function 𝐯 ∈ 𝐻1(Ω;ℝ3) we denote by �̄� = (𝑣1, 𝑣2, 𝑣2) ∈ 𝐻1(Ω;ℝ3) the function defined by

𝑣1(𝑥, 𝑦, 𝑧) = 𝑣1(𝑥, 𝑦, −𝑧) , 𝑣2(𝑥, 𝑦, 𝑧) = 𝑣2(𝑥, 𝑦, −𝑧) , 𝑣3(𝑥, 𝑦, 𝑧) = −𝑣3(𝑥, 𝑦, −𝑧) , ∀ (𝑥, 𝑦, 𝑧) ∈ Ω. (5.1)

Let 𝐮 be the unique solution of (3.3) in 𝑉⟂
0
and let �̄� be the corresponding function defined by (5.1).

We start by showing that �̄� solves problem (3.3). In doing this we show that it solves the variational problem (2.3) where
in the present case 𝐟 = 𝟎 and 𝐠 is the function defined in (3.1).
By direct computation one can see that for any test function 𝐯 ∈ 𝐻1(Ω;ℝ3) we have for any (𝑥, 𝑦, 𝑧) ∈ Ω

(𝐃�̄� ∶ 𝐃𝐯)|(𝑥,𝑦,𝑧) = (𝐃𝐮 ∶ 𝐃�̄�)|(𝑥,𝑦,−𝑧) , [(div �̄�)(div𝐯]|(𝑥,𝑦,𝑧) = [(div𝐮)(div �̄�]|(𝑥,𝑦,−𝑧) . (5.2)

By (2.3), (2.1), (5.2), (3.1) and a change of variables, we obtain

2𝜇 ∫
Ω

𝐃�̄� ∶ 𝐃𝐯 𝑑𝐱 + 𝜆 ∫
Ω

(div �̄�)(div𝐯) 𝑑𝐱 (5.3)

= 2𝜇 ∫
Ω

𝐃𝐮 ∶ 𝐃�̄� 𝑑𝐱 + 𝜆 ∫
Ω

(div𝐮)(div �̄�) 𝑑𝐱 = ∫
𝜕Ω

𝐠 ⋅ �̄� 𝑑𝑆 = ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝑆 .

By (5.3) we deduce that �̄� is a solution of (2.3) and hence a weak solution of (3.3). We now prove that �̄� ∈ 𝑉⟂
0
. Indeed,

proceeding as in (5.3) one can easily show that (�̄�, 𝐯)𝐓 = (𝐮, �̄�)𝐓 = 0 for any 𝐯 ∈ 𝑉0 since 𝐮 ∈ 𝑉⟂
0
and �̄� ∈ 𝑉0 whenever

𝐯 ∈ 𝑉0, as one can deduce by (2.7). This completes the proof of (3.4).
Let us proceed with the proof of part (ii) and (iii) of the proposition. For any 𝜃 ∈ (−2𝜋, 2𝜋)we denote by 𝑅𝜃 ∶ ℝ2 → ℝ2

the anticlockwise rotation of an angle 𝜃 and by𝐴𝜃 the associate matrix. Clearly we have that the inverse map of 𝑅𝜃 is given
by 𝑅−𝜃 and 𝐴−1

𝜃
= 𝐴−𝜃.

We use the notation 𝐮 = (𝑢′, 𝑢3) ∈ ℝ2 × ℝ with 𝑢′ = (𝑢1, 𝑢2) and we denote by

∇′𝑢′ =
⎛⎜⎜⎝
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑦
𝜕𝑢2

𝜕𝑥

𝜕𝑢2

𝜕𝑦

⎞⎟⎟⎠
its Jacobianmatrix in the𝑥 and 𝑦 variables, and by𝐃′𝑢′ the corresponding symmetric gradient given by 1

2
(∇′𝑢′ + (∇′𝑢′)𝑇);

more in general, throughout this proof we will use the symbol ∇′ for denoting the gradient with respect to the 𝑥 and
𝑦 variables.
We now define

𝐮𝜃(𝑥, 𝑦, 𝑧) = (𝑅−𝜃(𝑢1(𝑅𝜃(𝑥, 𝑦), 𝑧), 𝑢2(𝑅𝜃(𝑥, 𝑦), 𝑧)), 𝑢3(𝑅𝜃(𝑥, 𝑦), 𝑧)) for any (𝑥, 𝑦, 𝑧) ∈ Ω .
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14 of 34 DEMIRANDA et al.

Then, the Jacobian matrix ∇𝐮𝜃 ∈ ℝ3×3 and in turn the matrix 𝐃𝐮𝜃 admit a representation in terms of four blocks of
dimensions 2 × 2, 2 × 1, 1 × 2, 1 × 1 respectively. We proceed directly with the representation of 𝐃𝑢𝜃:

𝐃𝐮𝜃=

⎛⎜⎜⎜⎜⎝
𝐴−𝜃 𝐃

′𝑢′(𝑅𝜃(𝑥, 𝑦), 𝑧)𝐴𝜃 𝐴−𝜃
𝜕𝑢′

𝜕𝑧
(𝑅𝜃(𝑥, 𝑦), 𝑧)+

[
∇′𝑢3(𝑅𝜃(𝑥, 𝑦), 𝑧)𝐴𝜃

]𝑇
[
𝐴−𝜃

𝜕𝑢′

𝜕𝑧
(𝑅𝜃(𝑥, 𝑦), 𝑧)

]𝑇
+∇′𝑢3(𝑅𝜃(𝑥, 𝑦), 𝑧)𝐴𝜃

𝜕𝑢3

𝜕𝑧
(𝑅𝜃(𝑥, 𝑦), 𝑧)

⎞⎟⎟⎟⎟⎠
(5.4)

In the same way, for any test function 𝐯 ∈ 𝐻1(Ω;ℝ3) and any 𝜃 ∈ (−2𝜋, 2𝜋) we may define the corresponding function
𝐯𝜃. Looking at 𝐯 as (𝐯−𝜃)𝜃 and applying (5.4) to 𝐯−𝜃 we claim that for any (𝑥, 𝑦, 𝑧) ∈ Ω

𝐃𝐮𝜃(𝑥, 𝑦, 𝑧) ∶ 𝐃𝐯(𝑥, 𝑦, 𝑧) = 𝐃𝐮(𝑅𝜃(𝑥, 𝑦), 𝑧) ∶ 𝐃𝐯−𝜃(𝑅𝜃(𝑥, 𝑦), 𝑧) . (5.5)

This is a consequence of the fact that 𝐴𝜃 is orthogonal and the linear map 𝜃 ∶ ℝ
2×2 → ℝ2×2, 𝜃(𝑋) = 𝐴−𝜃𝑋𝐴𝜃 is an

isometry in ℝ2×2 as one can see by verifying the orthogonality of the associated matrix𝑀𝜃 ∈ ℝ4×4. This implies

(𝐴−𝜃 𝑋𝐴𝜃) ∶ 𝑌 = 𝜃(𝑋) ∶ 𝑌 = 𝜃(𝑋) ∶ 𝜃(−1
𝜃
(𝑌)) = 𝑋 ∶ −1

𝜃
(𝑌) = 𝑋 ∶ (𝐴𝜃𝑌𝐴−𝜃)

for any 𝑋,𝑌 ∈ ℝ2×2. This arguments allow to treat the scalar products between the 2 × 2 block appearing in the represen-
tation (5.4). Even easier is to treat the scalar products between the 2 × 1 and 1 × 2 blocks thanks to the orthogonality of
𝐴𝜃. This proves the claim (5.5).
The invariance of the trace of a matrix 𝑋 under maps of the form 𝑋 ↦ 𝐴−1𝑋𝐴 combined with (5.4) shows that

div𝐮𝜃(𝑥, 𝑦, 𝑧) = div𝐮(𝑅𝜃(𝑥, 𝑦), 𝑧) and in particular for any (𝑥, 𝑦, 𝑧) ∈ Ωwe have

(div𝐮𝜃(𝑥, 𝑦, 𝑧))(div𝐯(𝑥, 𝑦, 𝑧)) = (div𝐮(𝑅𝜃(𝑥, 𝑦), 𝑧))(div𝐯−𝜃(𝑅𝜃(𝑥, 𝑦), 𝑧)) . (5.6)

By (2.3), (3.1), (3.2), (5.5), (5.6), two changes of variables and the definitions of 𝐯−𝜃 and 𝐠, we obtain

2𝜇 ∫
Ω

𝐃𝐮𝜃 ∶ 𝐃𝐯 𝑑𝐱 + 𝜆 ∫
Ω

(div𝐮𝜃)(div𝐯) 𝑑𝐱 (5.7)

= 2𝜇 ∫
Ω

𝐃𝐮 ∶ 𝐃𝐯−𝜃 𝑑𝐱 + 𝜆 ∫
Ω

(div𝐮)(div𝐯−𝜃) 𝑑𝐱 = ∫
𝜕Ω

𝐠 ⋅ 𝐯−𝜃 𝑑𝑆 = ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝑆 .

We have just proved that 𝐮𝜃 is still a weak solution of (3.3). We now show that 𝐮𝜃 ∈ 𝑉⟂
0
as a consequence of the fact

that 𝐮 ∈ 𝑉⟂
0
. Proceeding as in (5.7), we infer

(𝐮𝜃, 𝐯)𝐓 = (𝐮, 𝐯−𝜃)𝐓 for any 𝐯 ∈ 𝐻1(Ω;ℝ3) . (5.8)

We need to prove that if 𝐯 ∈ 𝑉0 then 𝐯−𝜃 ∈ 𝑉0. For any 𝜃 ∈ (−2𝜋, 2𝜋), let 𝐵𝜃 be the 3 × 3 matrix corresponding to an
anticlockwise rotation of an angle 𝜃 around the 𝑧 axis. Clearly 𝐵𝜃 is orthogonal and 𝐵−1𝜃 = 𝐵−𝜃. With this notation wemay
write

𝐯−𝜃(𝐱) = 𝐵𝜃 𝐯(𝐵−𝜃 𝐱) for any 𝐱 ∈ ℝ3 (5.9)

where both 𝐱 and 𝐯 have to be considered vector columns in the right hand side of the identity.
If 𝐯 ∈ 𝑉0, then by (2.7) we have that 𝐯 admits the following matrix representation

𝐯(𝐱) = 𝑀𝐱 + 𝜹 for any 𝐱 ∈ ℝ3 (5.10)

where𝑀 is an antisymmetric matrix and 𝜹 = (𝛿1 𝛿2 𝛿3)
𝑇 .

Combining (5.9) and (5.10) we obtain 𝐯−𝜃(𝐱) = 𝐵𝜃𝑀𝐵−𝜃 𝐱 + 𝐵𝜃𝜹 where the matrix 𝐵𝜃𝑀𝐵−𝜃 is antisymmetric since

(𝐵𝜃𝑀𝐵−𝜃)
𝑇 = 𝐵𝑇

−𝜃
𝑀𝑇𝐵𝑇

𝜃
= 𝐵−1

−𝜃
(−𝑀)𝐵−1

𝜃
= −𝐵𝜃𝑀𝐵−𝜃 .

This proves that also 𝐯−𝜃 ∈ 𝑉0 since it admits a representation like in (2.7).
Now, ifwe choose𝐯 ∈ 𝑉0 in (5.8),we readily see that (𝐮𝜃, 𝐯)𝐓 = 0 being𝐮 ∈ 𝑉⟂

0
and𝐯−𝜃 ∈ 𝑉0. This proves that𝐮𝜃 ∈ 𝑉⟂

0
.
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DEMIRANDA et al. 15 of 34

By the uniqueness result stated in Proposition 2.1 (iv) we infer that 𝐮𝜃 = 𝐮 for any 𝜃 ∈ (−2𝜋, 2𝜋).
Now the validity of (ii) and of the first part of (iii) follows immediately from the definition of 𝐮𝜃.
It remains to observe that the vector field 𝑢′ is oriented radially in the 𝑥𝑦-plane. To do this, it is sufficient to combine the

identity 𝐮 = 𝐮𝜃 with the identity 𝑢2(𝑥, 0, 𝑧) = 0, valid for any 𝑎 < 𝑥 < 𝑏 and 𝑧 ∈
(
−

ℎ

2
,
ℎ

2

)
, as a consequence of (3.6). □

5.2 Proof of Lemma 3.3

Let us introduce the sequence of intervals 𝐼𝑘 ∶=
(
−

ℎ

2
+ 𝑘ℎ,

ℎ

2
+ 𝑘ℎ

)
, the corresponding sequence of domains Ω𝑘 ∶=

𝐶𝑎,𝑏 × 𝐼𝑘 and the sequence of functions 𝐠𝑘 ∶ 𝜕Ω𝑘 → ℝ3

𝐠𝑘(𝑥, 𝑦, 𝑧) ∶=

⎧⎪⎪⎨⎪⎪⎩
(0, 0, (−1)𝑘 𝜒𝑝(𝑥, 𝑦)) if (𝑥, 𝑦, 𝑧) ∈ 𝐶𝑎,𝑏 ×

{
−

ℎ

2
+ 𝑘ℎ

}
,

(0, 0, (−1)𝑘+1 𝜒𝑝(𝑥, 𝑦)) if (𝑥, 𝑦, 𝑧) ∈ 𝐶𝑎,𝑏 ×
{

ℎ

2
+ 𝑘ℎ

}
,

(0, 0, 0) if (𝑥, 𝑦, 𝑧) ∈ 𝜕𝐶𝑎,𝑏 × 𝐼𝑘 .

(5.11)

We know that the original function 𝐮 is a weak solution of problem (3.3) in the sense that

∫
Ω

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 = ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝑆 for any 𝐯 ∈ 𝐻1(Ω;ℝ3) . (5.12)

We need to find, starting from (5.12), the equation solved, in the sense of distributions, by the periodic extension. First of
all, we observe that by (3.7), (5.11), (5.12) and some computations, we have

∫
Ω𝑘

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 = ∫
𝜕Ω𝑘

𝐠𝑘 ⋅ 𝐯 𝑑𝑆 for any 𝐯 ∈ 𝐻1(Ω𝑘;ℝ
3) . (5.13)

Now, letting 𝝓 = (𝜙1, 𝜙2, 𝜙3) ∈ (𝐶𝑎,𝑏 × ℝ;ℝ3), by (5.13) we infer

∫
𝐶𝑎,𝑏×ℝ

𝐓𝐮 ∶ 𝐃𝝓𝑑𝐱 =
∑
𝑘∈ℤ

∫
Ω𝑘

𝐓𝐮 ∶ 𝐃𝝓𝑑𝐱 =
∑
𝑘∈ℤ

∫
𝜕Ω𝑘

𝐠𝑘 ⋅ 𝝓 𝑑𝑆

=
∑
𝑘∈ℤ

2(−1)𝑘+1 ∫
𝐶𝑎,𝑏

𝜒𝑝(𝑥, 𝑦) 𝜙3

(
𝑥, 𝑦,

ℎ

2
+ 𝑘ℎ

)
𝑑𝑥𝑑𝑦 .

This proves (3.10), where 𝚲 is the distribution defined by

⟨𝚲, 𝝓⟩ ∶= ∫
𝐶𝑎,𝑏

𝜒𝑝(𝑥, 𝑦)
∑
𝑘∈ℤ

2(−1)𝑘+1𝜙3

(
𝑥, 𝑦,

ℎ

2
+ 𝑘ℎ

)
𝑑𝑥𝑑𝑦 (5.14)

for any 𝝓 = (𝜙1, 𝜙2, 𝜙3) ∈ (𝐶𝑎,𝑏 × ℝ;ℝ3).
The distribution𝚲 admits a sort of factorization as a product of a function in the variables 𝑥 and 𝑦 and of a distribution

acting on functions of the variable 𝑧:

𝚲 = (Λ1, Λ2, Λ3) =

(
0, 0, 2 𝜒𝑝

∑
𝑘∈ℤ

(−1)𝑘+1 𝛿ℎ

2
+𝑘ℎ

)

where Λ1, Λ2, Λ3 ∈ ′(𝐶𝑎,𝑏 × ℝ;ℝ) are the scalar distributions defined by

⟨Λ𝑖, 𝜙⟩ ∶= ⟨𝚲, 𝜙 𝐞𝑖⟩ for any 𝜙 ∈ (𝐶𝑎,𝑏 × ℝ;ℝ) ,

with 𝐞1 = 𝐢, 𝐞2 = 𝐣, 𝐞3 = 𝐤, and 𝛿ℎ

2
+𝑘ℎ

are Dirac delta distributions concentrated at 𝑧 = ℎ

2
+ 𝑘ℎ.
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16 of 34 DEMIRANDA et al.

Expanding in Fourier series the periodic distribution
∑

𝑘∈ℤ
2(−1)𝑘+1 𝛿ℎ

2
+𝑘ℎ

we obtain (3.11), where the Fourier series

converges in the sense of distributions. For more details on this convergence see the arguments introduced in subsection
5.6. □

5.3 Proof of Lemma 3.4

First of all we insert (3.8) into (3.10); recalling the Hooke’s law (2.1) and exploiting (3.11), we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−𝜇Δ𝜑1
𝑘
+ 𝜇

𝜋2𝑘2

ℎ2
𝜑1
𝑘
− (𝜆 + 𝜇)

[
𝜕2𝜑1

𝑘

𝜕𝑥2
+

𝜕2𝜑2
𝑘

𝜕𝑥𝜕𝑦
+
𝜋𝑘

ℎ

𝜕𝜑3
𝑘

𝜕𝑥

]
= 0 in 𝐶𝑎,𝑏 ,

−𝜇Δ𝜑2
𝑘
+ 𝜇

𝜋2𝑘2

ℎ2
𝜑2
𝑘
− (𝜆 + 𝜇)

[
𝜕2𝜑1

𝑘

𝜕𝑥𝜕𝑦
+
𝜕2𝜑2

𝑘

𝜕𝑦2
+
𝜋𝑘

ℎ

𝜕𝜑3
𝑘

𝜕𝑦

]
= 0 in 𝐶𝑎,𝑏 ,

−𝜇Δ𝜑3
𝑘
+ 𝜇

𝜋2𝑘2

ℎ2
𝜑3
𝑘
+
𝜋𝑘

ℎ
(𝜆 + 𝜇)

[
𝜕𝜑1

𝑘

𝜕𝑥
+
𝜕𝜑2

𝑘

𝜕𝑦
+
𝜋𝑘

ℎ
𝜑3
𝑘

]
= Ψ𝑘 in 𝐶𝑎,𝑏 ,

(5.15)

where the forcing term is defined in (3.13). We observe that in (5.15), the operator Δ stands for the Laplace operator in the
variables 𝑥 and 𝑦, that is, Δ = 𝜕2∕𝜕𝑥2 + 𝜕2∕𝜕𝑦2.
Putting Φ𝑘 ∶= (𝜑1

𝑘
, 𝜑2

𝑘
) and �̄� ∈ ℝ2 the outward unit normal to 𝜕𝐶𝑎,𝑏, system (5.15) may be rewritten in the following

form ⎧⎪⎨⎪⎩
−𝜇ΔΦ𝑘 + 𝜇

𝜋2𝑘2

ℎ2
Φ𝑘 − (𝜆 + 𝜇)∇(divΦ𝑘) − (𝜆 + 𝜇)

𝜋𝑘

ℎ
∇𝜑3

𝑘
= 𝟎 in 𝐶𝑎,𝑏 ,

−𝜇Δ𝜑3
𝑘
+ 𝜇

𝜋2𝑘2

ℎ2
𝜑3
𝑘
+

𝜋𝑘

ℎ
(𝜆 + 𝜇)

(
divΦ𝑘 +

𝜋𝑘

ℎ
𝜑3
𝑘

)
= Ψ𝑘 in 𝐶𝑎,𝑏 ,

(5.16)

or equivalently in the following form⎧⎪⎨⎪⎩
−div(𝜆(divΦ𝑘)𝐼 + 2𝜇𝐃Φ𝑘) + 𝜇

𝜋2𝑘2

ℎ2
Φ𝑘 − (𝜆 + 𝜇)

𝜋𝑘

ℎ
∇𝜑3

𝑘
= 𝟎 in 𝐶𝑎,𝑏 ,

−𝜇Δ𝜑3
𝑘
+ (𝜆 + 2𝜇)

𝜋2𝑘2

ℎ2
𝜑3
𝑘
+ (𝜆 + 𝜇)

𝜋𝑘

ℎ
divΦ𝑘 = Ψ𝑘 in 𝐶𝑎,𝑏 ,

(5.17)

where 𝐃 represents here the symmetric gradient in the two-dimensional case and 𝐼 is the 2 × 2 identity matrix.
We also recall that by (3.3), (𝐓𝐮)𝐧 = 𝟎 on 𝜕𝐶𝑎,𝑏 × ℝ so that by the Hooke’s law (2.1) we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝜆 + 2𝜇)𝑥
𝜕𝑢1
𝜕𝑥

+ 𝜆𝑥
𝜕𝑢2
𝜕𝑦

+ 𝜆𝑥
𝜕𝑢3
𝜕𝑧

+ 𝜇𝑦

(
𝜕𝑢1
𝜕𝑦

+
𝜕𝑢2
𝜕𝑥

)
= 0 on 𝜕𝐶𝑎,𝑏 × ℝ ,

𝜆𝑦
𝜕𝑢1
𝜕𝑥

+ (𝜆 + 2𝜇)𝑦
𝜕𝑢2
𝜕𝑦

+ 𝜆𝑦
𝜕𝑢3
𝜕𝑧

+ 𝜇𝑥

(
𝜕𝑢1
𝜕𝑦

+
𝜕𝑢2
𝜕𝑥

)
= 0 on 𝜕𝐶𝑎,𝑏 × ℝ ,

𝜇𝑥

(
𝜕𝑢1
𝜕𝑧

+
𝜕𝑢3
𝜕𝑥

)
+ 𝜇𝑦

(
𝜕𝑢2
𝜕𝑧

+
𝜕𝑢3
𝜕𝑦

)
= 0 on 𝜕𝐶𝑎,𝑏 × ℝ ,

and by (3.8) we obtain ⎧⎪⎨⎪⎩
𝜆(divΦ𝑘)�̄� + 2𝜇(𝐃Φ𝑘)�̄� + 𝜆

𝜋𝑘

ℎ
𝜑3
𝑘
�̄� = 𝟎 on 𝜕𝐶𝑎,𝑏 ,

𝜇∇𝜑3
𝑘
⋅ �̄� − 𝜇

𝜋𝑘

ℎ
Φ𝑘 ⋅ �̄� = 0 on 𝜕𝐶𝑎,𝑏 .

(5.18)

Let us derive the weak formulation of (5.16)–(5.18). Testing (5.17) with (𝑤1, 𝑤2, 𝑤3), putting𝑊 = (𝑤1,𝑤2) and integrating
by parts we obtain

− ∫
𝜕𝐶𝑎,𝑏

[(𝜆(divΦ𝑘)𝐼 + 2𝜇𝐃Φ𝑘)�̄�] ⋅ 𝑊 𝑑𝑠 + ∫
𝐶𝑎,𝑏

(𝜆(divΦ𝑘)𝐼 + 2𝜇𝐃Φ𝑘) ∶ ∇𝑊 𝑑𝑥𝑑𝑦 (5.19)
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DEMIRANDA et al. 17 of 34

+ 𝜇
𝜋2𝑘2

ℎ2 ∫
𝐶𝑎,𝑏

Φ𝑘 ⋅ 𝑊 𝑑𝑥𝑑𝑦 − 𝜇
𝜋𝑘

ℎ ∫
𝐶𝑎,𝑏

∇𝜑3
𝑘
⋅ 𝑊 𝑑𝑥𝑑𝑦 − 𝜆

𝜋𝑘

ℎ ∫
𝜕𝐶𝑎,𝑏

𝜑3
𝑘
�̄� ⋅ 𝑊 𝑑𝑠 + 𝜆

𝜋𝑘

ℎ ∫
𝐶𝑎,𝑏

𝜑3
𝑘
div𝑊𝑑𝑥𝑑𝑦

− ∫
𝜕𝐶𝑎,𝑏

𝜇
𝜕𝜑3

𝑘

𝜕�̄�
𝑤3𝑑𝑠 + 𝜇 ∫

𝐶𝑎,𝑏

∇𝜑3
𝑘
⋅ ∇𝑤3 𝑑𝑥𝑑𝑦 + (𝜆 + 2𝜇)

𝜋2𝑘2

ℎ2 ∫
𝐶𝑎,𝑏

𝜑3
𝑘
𝑤3 𝑑𝑥𝑑𝑦

+ 𝜇
𝜋𝑘

ℎ ∫
𝜕𝐶𝑎,𝑏

𝑤3Φ𝑘 ⋅ �̄� 𝑑𝑠 − 𝜇
𝜋𝑘

ℎ ∫
𝐶𝑎,𝑏

Φ𝑘 ⋅ ∇𝑤
3 𝑑𝑥𝑑𝑦 + 𝜆

𝜋𝑘

ℎ ∫
𝐶𝑎,𝑏

divΦ𝑘 𝑤
3 𝑑𝑥𝑑𝑦 = ∫

𝐶𝑎,𝑏

Ψ𝑘 𝑤
3 𝑑𝑥𝑑𝑦 .

We observe that by (5.18) the boundary integrals in (5.19) disappear; on the other hand collecting the double integrals and
recalling that 𝐃Φ𝑘 ∶ ∇𝑊 = 𝐃Φ𝑘 ∶ 𝐃𝑊, we may write (5.19) in the form

2𝜇 ∫
𝐶𝑎,𝑏

𝐃Φ𝑘 ∶ 𝐃𝑊 𝑑𝑥𝑑𝑦 + 𝜆 ∫
𝐶𝑎,𝑏

(
divΦ𝑘 +

𝜋𝑘

ℎ
𝜑3
𝑘

)(
div𝑊 +

𝜋𝑘

ℎ
𝑤3

)
𝑑𝑥𝑑𝑦 (5.20)

+ 𝜇 ∫
𝐶𝑎,𝑏

(∇𝜑3
𝑘
−

𝜋𝑘

ℎ
Φ𝑘) ⋅ (∇𝑤

3 −
𝜋𝑘

ℎ
𝑊)𝑑𝑥𝑑𝑦 + 2𝜇

𝜋2𝑘2

ℎ2 ∫
𝐶𝑎,𝑏

𝜑3
𝑘
𝑤3𝑑𝑥𝑑𝑦=∫

𝐶𝑎,𝑏

Ψ𝑘𝑤
3𝑑𝑥𝑑𝑦

for any𝐰 ∈ 𝐻1(𝐶𝑎,𝑏; ℝ
3), where𝑊 = (𝑤1,𝑤2). This represents the weak form of (5.16)–(5.18).

For any 𝑘 ≥ 2 even we observe that, by (3.13), 𝜑1
𝑘
≡ 𝜑2

𝑘
≡ 𝜑3

𝑘
≡ 0 in 𝐶𝑎,𝑏, as one can deduce by testing (5.20) with

(𝑤1, 𝑤2, 𝑤2) = (𝜑1
𝑘
, 𝜑2

𝑘
, 𝜑3

𝑘
).

For any 𝑘 ≥ 1 odd, we define the following bilinear form

�̄�𝑘(𝝋,𝐰) ∶ = 2𝜇 ∫
𝐶𝑎,𝑏

𝐃Φ ∶ 𝐃𝑊 𝑑𝑥𝑑𝑦 + 𝜆 ∫
𝐶𝑎,𝑏

(
divΦ +

𝜋𝑘

ℎ
𝜑3
𝑘

)(
div𝑊 +

𝜋𝑘

ℎ
𝑤3

)
𝑑𝑥𝑑𝑦

+𝜇 ∫
𝐶𝑎,𝑏

(∇𝜑3 −
𝜋𝑘

ℎ
Φ) ⋅ (∇𝑤3 −

𝜋𝑘

ℎ
𝑊) 𝑑𝑥𝑑𝑦 + 2𝜇

𝜋2𝑘2

ℎ2 ∫
𝐶𝑎,𝑏

𝜑3 𝑤3 𝑑𝑥𝑑𝑦 for any 𝝋,𝐰 ∈ 𝐻1(𝐶𝑎,𝑏; ℝ
3)

(5.21)

where 𝝋 = (𝜑1, 𝜑2, 𝜑3), Φ ∶= (𝜑1, 𝜑2),𝐰 = (𝑤1, 𝑤2, 𝑤3) and𝑊 = (𝑤1,𝑤2).
For the uniqueness issue we claim that for any 𝜀 > 0 there exists 𝐶𝜀 > 0 such that

�̄�𝑘(𝝋, 𝝋) + 𝜀‖𝝋‖2
𝐿2

≥ 𝐶𝜀‖𝝋‖2𝐻1 for any 𝝋 ∈ 𝐻1(𝐶𝑎,𝑏; ℝ
3) . (5.22)

Suppose by contradiction that there exists 𝜀 > 0 such that for any𝑚 ≥ 1 there exists 𝝋𝑚 ∈ 𝐻1(𝐶𝑎,𝑏; ℝ
3) such that

�̄�𝑘(𝝋𝑚, 𝝋𝑚) + 𝜀‖𝝋𝑚‖2
𝐿2

≤ 1

𝑚
‖𝝋𝑚‖2

𝐻1 . (5.23)

Up to normalization, it is not restrictive to assume that the sequence {𝝋𝑚} satisfies ‖𝝋𝑚‖𝐻1 = 1 for any 𝑚 ≥ 1, so that
by (5.21) and (5.23) we infer

𝝋𝑚 → 𝟎 in 𝐿2(𝐶𝑎,𝑏; ℝ3) , ∫
𝐶𝑎,𝑏

|𝐃Φ𝑚|2𝑑𝑥𝑑𝑦 → 0 , ∇𝜑3𝑚 − 𝑘Φ𝑚 → 𝟎 in 𝐿2(𝐶𝑎,𝑏; ℝ2) (5.24)

as𝑚 → +∞. Applying (A3) in the two-dimensional case we obtain

∫
𝐶𝑎,𝑏

|∇Φ𝑚|2𝑑𝑥𝑑𝑦 ≤ 𝐶

(
∫
𝐶𝑎,𝑏

|𝐃Φ𝑚|2𝑑𝑥𝑑𝑦 + ∫
𝐶𝑎,𝑏

|Φ𝑚|2 𝑑𝑥𝑑𝑦)
for some constant 𝐶 > 0. This, combined with (5.24), proves that

∇Φ𝑚 → 𝟎 in 𝐿2(𝐶𝑎,𝑏; ℝ2×2) , ∇𝜑3𝑚 → 𝟎 in 𝐿2(𝐶𝑎,𝑏; ℝ2)

and, in turn, that 𝝋𝑚 → 𝟎 in 𝐻1(𝐶𝑎,𝑏; ℝ
3). This contradicts the assumption ‖𝝋𝑚‖𝐻1 = 1. We have completed the proof of

the claim (5.22).
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18 of 34 DEMIRANDA et al.

Thanks to (5.22), we may proceed as in the proof of Proposition 2.1 and apply the Fredholm alternative to show that
(5.17)–(5.18) admits a solution if and only if

∫
𝐶𝑎,𝑏

Ψ𝑘 𝑤
3 𝑑𝑥𝑑𝑦 = 0 for any𝐰 = (𝑤1, 𝑤2, 𝑤3) ∈ �̄�𝑘 (5.25)

where �̄�𝑘 ∶= {𝐰 ∈ 𝐻1(𝐶𝑎,𝑏; ℝ
3) ∶ �̄�𝑘(𝐰, 𝐯) = 0 for any 𝐯 ∈ 𝐻1(𝐶𝑎,𝑏; ℝ

3)}. Testing the variational identity in the defini-
tion of �̄�𝑘 with 𝐯 = 𝐰, we readily see that for any 𝑘 ≥ 1 we �̄�𝑘 = {𝟎} and hence, condition (5.25) is always satisfied. This
completes the proof of the lemma. □

5.4 Proof of Lemma 3.5

Before proceeding with the proof of the lemma, we devote the first part of this subsection to show that the functions 𝑌𝑘

and 𝑍𝑘 introduced in (3.12) really satisfy (3.14).
In order to simplify the notations we denote by 𝑌 and 𝑍 the unknown functions, omitting the index 𝑘. Testing (5.20)

with a test function (𝑤1, 𝑤2, 𝑤3) admitting in polar coordinates the following representation

𝑤1(𝜌, 𝜃) = 𝐻(𝜌) cos 𝜃 , 𝑤2(𝜌, 𝜃) = 𝐻(𝜌) sin 𝜃 , 𝑤3(𝜌, 𝜃) = 𝐾(𝜌) ,

by (3.12) we obtain

2𝜇 ∫
𝑏

𝑎

[
𝜌𝑌′(𝜌)𝐻′(𝜌) +

𝑌(𝜌)𝐻(𝜌)

𝜌

]
𝑑𝜌 + 𝜆 ∫

𝑏

𝑎

𝜌

[
𝑌′(𝜌) +

𝑌(𝜌)

𝜌
+
𝜋𝑘

ℎ
𝑍(𝜌)

][
𝐻′(𝜌) +

𝐻(𝜌)

𝜌
+
𝜋𝑘

ℎ
𝐾(𝜌)

]
𝑑𝜌 (5.26)

+ 𝜇 ∫
𝑏

𝑎

𝜌

[
𝑍′(𝜌) −

𝜋𝑘

ℎ
𝑌(𝜌)

][
𝐾′(𝜌) −

𝜋𝑘

ℎ
𝐻(𝜌)

]
𝑑𝜌 + 2𝜇

𝜋2𝑘2

ℎ2 ∫
𝑏

𝑎

𝜌𝑍(𝜌)𝐾(𝜌) 𝑑𝜌 = ∫
𝑏

𝑎

𝜌Ψ𝑘(𝜌)𝐾(𝜌) 𝑑𝜌

with obvious meaning of the notation Ψ𝑘(𝜌) being it a radial function.
Collecting in a proper way the terms of (5.26), we may rewrite it in the form

∫
𝑏

𝑎

[
(𝜆 + 2𝜇)𝜌𝑌′(𝜌) + 𝜆𝑌(𝜌) + 𝜆

𝜋𝑘

ℎ
𝜌𝑍(𝜌)

]
𝐻′(𝜌) 𝑑𝜌 (5.27)

+ ∫
𝑏

𝑎

[
𝜆𝑌′(𝜌) + (𝜆 + 2𝜇)

𝑌(𝜌)

𝜌
+ 𝜇

𝜋2𝑘2

ℎ2
𝜌𝑌(𝜌) − 𝜇

𝜋𝑘

ℎ
𝜌𝑍′(𝜌) + 𝜆

𝜋𝑘

ℎ
𝑍(𝜌)

]
𝐻(𝜌) 𝑑𝜌

+ ∫
𝑏

𝑎

[
𝜇𝜌𝑍′(𝜌) − 𝜇

𝜋𝑘

ℎ
𝜌𝑌(𝜌)

]
𝐾′(𝜌) 𝑑𝜌 + ∫

𝑏

𝑎

[
(𝜆 + 2𝜇)

𝜋2𝑘2

ℎ2
𝜌𝑍(𝜌) + 𝜆

𝜋𝑘

ℎ
𝜌𝑌′(𝜌) + 𝜆

𝜋𝑘

ℎ
𝑌(𝜌)

]
𝐾(𝜌) 𝑑𝜌

= ∫
𝑏

𝑎

𝜌Ψ𝑘(𝜌)𝐾(𝜌) 𝑑𝜌

Integrating by parts the terms in (5.27) containing 𝐻′(𝜌) and 𝐾′(𝜌), we see that (5.27) is the variational formulation of
(3.14).
Let us proceed now with the proof of the lemma which is the main point of this section. Actually, we give here only a

sketch of the proof since it essentially follows the ideas already introduced in the proof of Lemma 3.4.
About the uniqueness issue, on the space𝐻1(𝑎, 𝑏;ℝ2) it sufficient to define the bilinear form

𝑏𝑘 ∶ 𝐻
1(𝑎, 𝑏;ℝ2) × 𝐻1(𝑎, 𝑏;ℝ2) → ℝ

corresponding to the left hand side of (5.26) and prove for it an estimate of the type (5.22).
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DEMIRANDA et al. 19 of 34

Then, following again the proof of Lemma 3.4, one finds that the compatibility condition for Ψ𝑘 is given by

∫
𝑏

𝑎

𝜌Ψ𝑘(𝜌)𝐾(𝜌) 𝑑𝜌 = 0 (5.28)

for any (𝐻, 𝐾) ∈ 𝐻1(𝑎, 𝑏;ℝ2) satisfying 𝑏𝑘((𝐻,𝐾), (𝐻, 𝐾)) = 0. A simple check shows that (𝐻, 𝐾) ≡ (0, 0) so that (5.28) is
trivially satisfied.
The Fredholm alternative then implies the existence of a solution. □

5.5 Proof of Lemma 3.6

We omit for simplicity the dependence from the index 𝑘 in the unknowns 𝑌𝑘 and 𝑍𝑘. For more clarity we divide the
construction of this representation of 𝑌 and 𝑍 into different steps each of them is contained in the next subsections.

5.5.1 The solution of the homogeneous system

We consider the homogeneous version of the system in (3.14)

⎧⎪⎪⎨⎪⎪⎩
𝑌′′(𝜌) +

𝑌′(𝜌)

𝜌
−
𝑌(𝜌)

𝜌2
− 𝛼 𝑘2 𝑌(𝜌) + 𝛽 𝑘𝑍′(𝜌) = 0 𝜌 > 0 ,

𝑍′′(𝜌) +
𝑍′(𝜌)

𝜌
− 𝛾 𝑘2𝑍(𝜌) − 𝛿 𝑘

[
𝑌′(𝜌) +

𝑌(𝜌)

𝜌

]
= 0 𝜌 > 0 ,

(5.29)

where we put for simplicity

𝛼 =
𝜋2𝜇

ℎ2(𝜆 + 2𝜇)
, 𝛽 =

𝜋(𝜆 + 𝜇)

ℎ(𝜆 + 2𝜇)
, 𝛾 =

𝜋2(𝜆 + 2𝜇)

ℎ2𝜇
, 𝛿 =

𝜋(𝜆 + 𝜇)

ℎ𝜇
.

We look for a solution admitting the following expansion

⎧⎪⎪⎨⎪⎪⎩
𝑌(𝜌) =

+∞∑
𝑛=−1

𝑎𝑛 𝜌
𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑏𝑛 𝜌
𝑛 ,

𝑍(𝜌) =

+∞∑
𝑛=0

𝑐𝑛 𝜌
𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑑𝑛 𝜌
𝑛 .

(5.30)

Inserting the representation (5.30) in the system (5.29), we obtain for each of the two equations the following identities:

+∞∑
𝑛=−1

𝑛(𝑛 − 1)𝑎𝑛 𝜌
𝑛 +

+∞∑
𝑛=0

(𝑛 − 1)𝑏𝑛 𝜌
𝑛 +

+∞∑
𝑛=0

𝑛𝑏𝑛 𝜌
𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑛(𝑛 − 1)𝑏𝑛 𝜌
𝑛

+

+∞∑
𝑛=−1

𝑛𝑎𝑛 𝜌
𝑛 +

+∞∑
𝑛=0

𝑏𝑛 𝜌
𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑛𝑏𝑛 𝜌
𝑛

−𝛼𝑘2
+∞∑
𝑛=1

𝑎𝑛−2 𝜌
𝑛 − 𝛼𝑘2(ln 𝜌)

+∞∑
𝑛=2

𝑏𝑛−2 𝜌
𝑛 −

+∞∑
𝑛=−1

𝑎𝑛 𝜌
𝑛 − (ln 𝜌)

+∞∑
𝑛=0

𝑏𝑛 𝜌
𝑛

+𝛽𝑘

+∞∑
𝑛=1

(𝑛 − 1)𝑐𝑛−1 𝜌
𝑛 + 𝛽𝑘

+∞∑
𝑛=1

𝑑𝑛−1 𝜌
𝑛 + 𝛽𝑘(ln 𝜌)

+∞∑
𝑛=1

(𝑛 − 1)𝑑𝑛−1 𝜌
𝑛 = 0, (5.31)
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20 of 34 DEMIRANDA et al.

+∞∑
𝑛=0

𝑛(𝑛 − 1)𝑐𝑛 𝜌
𝑛 +

+∞∑
𝑛=0

(𝑛 − 1)𝑑𝑛 𝜌
𝑛 +

+∞∑
𝑛=0

𝑛𝑑𝑛 𝜌
𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑛(𝑛 − 1)𝑑𝑛 𝜌
𝑛

+

+∞∑
𝑛=0

𝑛𝑐𝑛 𝜌
𝑛 +

+∞∑
𝑛=0

𝑑𝑛 𝜌
𝑛 + (ln 𝜌)

+∞∑
𝑛=0

𝑛𝑑𝑛 𝜌
𝑛 − 𝛾𝑘2

+∞∑
𝑛=2

𝑐𝑛−2 𝜌
𝑛 − 𝛾𝑘2(ln 𝜌)

+∞∑
𝑛=2

𝑑𝑛−2 𝜌
𝑛

−𝛿𝑘

+∞∑
𝑛=0

(𝑛 − 1)𝑎𝑛−1 𝜌
𝑛 − 𝛿𝑘

+∞∑
𝑛=1

𝑏𝑛−1 𝜌
𝑛 − 𝛿𝑘(ln 𝜌)

+∞∑
𝑛=1

(𝑛 − 1)𝑏𝑛−1 𝜌
𝑛

−𝛿𝑘

+∞∑
𝑛=0

𝑎𝑛−1 𝜌
𝑛 − 𝛿𝑘(ln 𝜌)

+∞∑
𝑛=1

𝑏𝑛−1 𝜌
𝑛 = 0. (5.32)

To determine the values of the coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 we need an iterative scheme starting from the values of the coeffi-
cients 𝑎−1, 𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1, 𝑑0, 𝑑1. The values of these nine parameters have to be determined collecting the coefficients
of the terms 𝜌−1, 𝜌0, 𝜌0 ln 𝜌, 𝜌, 𝜌 ln 𝜌 appearing in (5.31)–(5.32) and equating them to zero.
As a result of this procedure we obtain the following constraint:{

𝑎0 = 𝑏0 = 𝑐1 = 𝑑1 = 0 ,

2𝑏1 + 𝛽𝑘𝑑0 = 𝛼𝑘2𝑎−1 .
(5.33)

Among the left five parameters 𝑎−1, 𝑎1, 𝑏1, 𝑐0, 𝑑0 that may be possibly different from zero, 𝑎1, 𝑐0 and two among 𝑎−1, 𝑏1, 𝑑0
can be chosen arbitrarily, while the remaining one is determined by the equation in the second line of (5.33); for example,
we may choose arbitrarily 𝑎−1, 𝑎1, 𝑏1, 𝑐0 and put 𝑑0 =

𝛼𝑘

𝛽
𝑎−1 −

2

𝛽𝑘
𝑏1.

In particular, we are interested in finding the general solution of (5.29) as a linear combination of four linearly indepen-
dent special solutions, denoted by 𝚼𝑗 = (𝑌𝑗, 𝑍𝑗)with 𝑗 = 1,… , 4. A possible choice for the independent solutions is given
respectively by the assumption on the following combinations of coefficients:

𝚼1 ∶ (𝑎−1, 𝑎1, 𝑏1, 𝑐0) = (1, 0, 0, 0) , 𝚼2 ∶ (𝑎−1, 𝑎1, 𝑏1, 𝑐0) = (0, 1, 0, 0) ,

𝚼3 ∶ (𝑎−1, 𝑎1, 𝑏1, 𝑐0) = (0, 0, 1, 0) , 𝚼4 ∶ (𝑎−1, 𝑎1, 𝑏1, 𝑐0) = (0, 0, 0, 1).
(5.34)

By (5.31)–(5.32) we deduce the following linear system in the unknowns 𝑎𝑛, 𝑏𝑛, 𝑐𝑛−1, 𝑑𝑛−1 with data expressed in terms
of 𝑎𝑛−2, 𝑏𝑛−2, 𝑐𝑛−3, 𝑑𝑛−3:

⎧⎪⎪⎨⎪⎪⎩

(𝑛2 − 1)𝑎𝑛 + 2𝑛𝑏𝑛 + 𝛽𝑘(𝑛 − 1)𝑐𝑛−1 + 𝛽𝑘𝑑𝑛−1 = 𝛼𝑘2𝑎𝑛−2

(𝑛2 − 1)𝑏𝑛 + 𝛽𝑘(𝑛 − 1)𝑑𝑛−1 = 𝛼𝑘2𝑏𝑛−2

(𝑛 − 1)2𝑐𝑛−1 + 2(𝑛 − 1)𝑑𝑛−1 = 𝛿𝑘(𝑛 − 1)𝑎𝑛−2 + 𝛿𝑘𝑏𝑛−2 + 𝛾𝑘2𝑐𝑛−3

(𝑛 − 1)2𝑑𝑛−1 = 𝛿𝑘(𝑛 − 1)𝑏𝑛−2 + 𝛾𝑘2𝑑𝑛−3

(𝑛 ≥ 3). (5.35)

We observe that the matrix of coefficients associated to system (5.35) is given by

⎛⎜⎜⎜⎜⎜⎝

𝑛2 − 1 2𝑛 𝛽(𝑛 − 1)𝑘 𝛽𝑘

0 𝑛2 − 1 0 𝛽(𝑛 − 1)𝑘

0 0 (𝑛 − 1)2 2(𝑛 − 1)

0 0 0 (𝑛 − 1)2

⎞⎟⎟⎟⎟⎟⎠
whose determinant is given by (𝑛 − 1)6(𝑛 + 1)2 ≠ 0, thus showing that the system is not singular for 𝑛 ≥ 2 and hence
admits a unique solution.
With the restriction 𝑛 ≥ 3 the coefficients 𝑎2, 𝑏2 remained excluded, but their calculation can be obtained from the first

two equations of (5.35) by choosing 𝑛 = 2; this gives 𝑎2 = 𝑏2 = 0.
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DEMIRANDA et al. 21 of 34

The linear independence of 𝚼1, 𝚼2, 𝚼3, 𝚼4 can be verified by looking at the asymptotic behavior of 𝑌𝑗(𝜌), 𝑗 = 1, 2, 3, 4

as 𝜌 → 0+ in the four cases (5.34):

case 1: 𝑌1(𝜌) ∼ 𝜌−1 as 𝜌 → 0+ ; case 2: 𝑌2(𝜌) ∼ 𝜌 as 𝜌 → 0+ ;

case 3: 𝑌3(𝜌) ∼ 𝜌 ln 𝜌 as 𝜌 → 0+ ; case 4: 𝑌4(𝜌) = 𝑂(𝜌2 ln 𝜌) as 𝜌 → 0+ .

Remark 5.1. We observe that, after a suitable scaling, the dependence of system (5.29) from the parameter 𝑘 can be dropped:
given a solution (𝑌, 𝑍) of (5.29), we may define the functions 𝑌(𝑡) = 𝑌

(
ℎ

𝜋𝑘
𝑡
)
and 𝑍(𝑡) = 𝑍

(
ℎ

𝜋𝑘
𝑡
)
in such a way that the

couple (𝑌, 𝑍) solves system

⎧⎪⎪⎨⎪⎪⎩
𝑌′′(𝑡) +

𝑌′(𝑡)

𝑡
−
𝑌(𝑡)

𝑡2
− �̃� 𝑌(𝑡) + 𝛽 𝑍′(𝑡) = 0 𝑡 > 0 ,

𝑍′′(𝑡) +
𝑍′(𝑡)

𝑡
− 𝛾 𝑍(𝑡) − 𝛿

[
𝑌′(𝑡) +

𝑌(𝑡)

𝑡

]
= 0 𝑡 > 0 ,

(5.36)

where �̃� = 𝜇∕(𝜆 + 2𝜇), 𝛽 = (𝜆 + 𝜇)∕(𝜆 + 2𝜇), 𝛾 = (𝜆 + 2𝜇)∕𝜇 and 𝛿 = (𝜆 + 𝜇)∕𝜇.

5.5.2 The particular solution

We write the nonhomogeneous system in the matrix form

⎛⎜⎜⎜⎜⎜⎝

𝑌(𝜌)

𝑌′(𝜌)

𝑍(𝜌)

𝑍′(𝜌)

⎞⎟⎟⎟⎟⎟⎠

′

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1

𝜌2
+ 𝛼𝑘2 −

1

𝜌
0 −𝛽𝑘

0 0 0 1

𝛿𝑘

𝜌
𝛿𝑘 𝛾𝑘2 −

1

𝜌

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝑌(𝜌)

𝑌′(𝜌)

𝑍(𝜌)

𝑍′(𝜌)

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

0

0

0

−
1

𝜇
Ψ𝑘(𝜌)

⎞⎟⎟⎟⎟⎟⎠
, 𝜌 > 0 , (5.37)

where the function Ψ𝑘 = Ψ𝑘(𝜌) is extended trivially outside the interval (𝑎, 𝑏).
Maintaining the order of the components, we may write the Wronskian matrix associated with 𝚼1, 𝚼2, 𝚼3, 𝚼4 in the

form

𝐖(𝜌) =

⎛⎜⎜⎜⎜⎜⎝

𝑌1(𝜌) 𝑌2(𝜌) 𝑌3(𝜌) 𝑌4(𝜌)

(𝑌1(𝜌))′ (𝑌2(𝜌))′ (𝑌3(𝜌))′ (𝑌4(𝜌))′

𝑍1(𝜌) 𝑍2(𝜌) 𝑍3(𝜌) 𝑍4(𝜌)

(𝑍1(𝜌))′ (𝑍2(𝜌))′ (𝑍3(𝜌))′ (𝑍4(𝜌))′

⎞⎟⎟⎟⎟⎟⎠
,

so that a particular solution 𝚼 = (𝑌, 𝑍) of (5.37) is given by (3.16).

5.5.3 The unique solution of (3.14)

Applying the superposition principle we get (3.15). In order to obtain the unique solution (𝑌, 𝑍) of the boundary value
problem (3.14), it remains to determine the constants 𝐶1, 𝐶2, 𝐶3, 𝐶4 so that the boundary conditions at 𝜌 = 𝑎 and 𝜌 = 𝑏

are satisfied.
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22 of 34 DEMIRANDA et al.

We check that the constants 𝐶1, 𝐶2, 𝐶3, 𝐶4 are uniquely determined. They solve the system

𝐴

⎛⎜⎜⎜⎜⎝
𝐶1
𝐶2
𝐶3
𝐶4

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
[
(𝜆 + 2𝜇)𝑌

′
(𝑎) +

𝜆

𝑎
𝑌(𝑎) + 𝜆

𝜋𝑘

ℎ
𝑍(𝑎)

]
−
[
(𝜆 + 2𝜇)𝑌

′
(𝑏) +

𝜆

𝑏
𝑌(𝑏) + 𝜆

𝜋𝑘

ℎ
𝑍(𝑏)

]
−
[
𝑍
′
(𝑎) −

𝜋𝑘

ℎ
𝑌(𝑎)

]
−
[
𝑍
′
(𝑏) −

𝜋𝑘

ℎ
𝑌(𝑏)

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where the matrix 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 ∈ {1, 2, 3, 4}, is given by

𝑎1𝑗 = (𝜆 + 2𝜇)(𝑌𝑗)′(𝑎) +
𝜆

𝑎
𝑌𝑗(𝑎) + 𝜆

𝜋𝑘

ℎ
𝑍𝑗(𝑎) , 𝑎2𝑗 = (𝜆 + 2𝜇)(𝑌𝑗)′(𝑏) +

𝜆

𝑏
𝑌𝑗(𝑏) + 𝜆

𝜋𝑘

ℎ
𝑍𝑗(𝑏) ,

𝑎3𝑗 = (𝑍𝑗)′(𝑎) −
𝜋𝑘

ℎ
𝑌𝑗(𝑎) , 𝑎4𝑗 = (𝑍𝑗)′(𝑏) −

𝜋𝑘

ℎ
𝑌𝑗(𝑏) .

We claim that thematrix𝐴 is not singular. Consider the homogeneous linear system𝐴𝐝 = 𝟎with 𝐝 = (𝐷1, 𝐷2, 𝐷3, 𝐷4)
𝑇 .

Then the function 𝚪 = (𝐺,𝐻) given by

𝚪(𝜌) = 𝐷1𝚼
1(𝜌) + 𝐷2𝚼

2(𝜌) + 𝐷3𝚼
3(𝜌) + 𝐷4𝚼

4(𝜌)

solves system (5.29) coupled with the boundary conditions

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝜆 + 2𝜇)𝐺′(𝑎) +
𝜆

𝑎
𝐺(𝑎) + 𝜆

𝜋𝑘

ℎ
𝐻(𝑎) = 0 ,

(𝜆 + 2𝜇)𝐺′(𝑏) +
𝜆

𝑏
𝐺(𝑏) + 𝜆

𝜋𝑘

ℎ
𝐻(𝑏) = 0 ,

𝐻′(𝑎) −
𝜋𝑘

ℎ
𝐺(𝑎) = 0 ,

𝐻′(𝑏) −
𝜋𝑘

ℎ
𝐺(𝑏) = 0 .

By Lemma 3.5 we then have that 𝚪 ≡ (0, 0) in (𝑎, 𝑏) but being 𝚪 also a solution of system (5.29) for 𝜌 ∈ (0, +∞), by local
uniqueness for Cauchy problems, 𝚪 ≡ (0, 0) in (0, +∞). The linear independence of the functions 𝚼1, 𝚼2, 𝚼3, 𝚼4, then
implies 𝐷1 = 𝐷2 = 𝐷3 = 𝐷4 = 0.
We just proved that the linear system 𝐴𝐝 = 𝟎 admits only the trivial solution, thus completing the proof. □

5.6 Proof of Theorem 3.7

The formal series contained in (3.18) are a consequence of (3.8), Lemma 3.4 and Lemma 3.5.
It remains to show how those series converge. We start by proving the weak convergence in𝐻1(Ω). Let  be the linear

functional defined by  (𝐯) ∶= ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝑆 for any 𝐯 ∈ 𝐻1(Ω;ℝ3)with 𝐠 as in (3.1). We observe that thanks to the Hölder
inequality and the trace inequality  ∈ (𝐻1(Ω;ℝ3))′:

||(𝐻1(Ω;ℝ3))′⟨ , 𝐯⟩𝐻1(Ω;ℝ3)
|| ≤ 2𝑝

√
𝜋(𝑏2 − 𝑎2) 𝐶(Ω) ‖𝐯‖𝐻1(Ω;ℝ3) for any 𝐯 ∈ 𝐻1(Ω;ℝ3) ,

where 𝐶(Ω) is such that ‖trace(𝑣)‖𝐿2(𝜕Ω) ≤ 𝐶(Ω)‖𝑣‖𝐻1(Ω) for any 𝑣 ∈ 𝐻1(Ω).
Writing  = (1,2,3) we have that 1,2,3 ∈ (𝐻1(Ω))′ with 1 = 2 are the null functionals and

(𝐻1(Ω))′⟨3, 𝑣⟩𝐻1(Ω) = −∫
𝐶𝑎,𝑏

𝜒𝑝(𝑥, 𝑦)
[
𝑣
(
𝑥, 𝑦,

ℎ

2

)
− 𝑣

(
𝑥, 𝑦, −

ℎ

2

)]
𝑑𝑥𝑑𝑦 for any 𝑣 ∈ 𝐻1(Ω) .

Let us define the sequence of partial sums corresponding to the Fourier expansion in (3.11):

𝑆𝑀(𝑥, 𝑦, 𝑧) ∶= 𝜒𝑝(𝑥, 𝑦)

𝑀∑
𝑚=0

(−1)𝑚+1 4

ℎ
sin

[𝜋
ℎ
(2𝑚 + 1)𝑧

]
.
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DEMIRANDA et al. 23 of 34

We claim that 𝑆𝑀 ⇀ 3 weakly in (𝐻1(Ω))′ as𝑀 → +∞. We first prove that the sequence {𝑆𝑀} is bounded in (𝐻1(Ω))′.
In the next estimate we use the following notations: we put Ω̃ ∶= 𝐶𝑎,𝑏 ×

(
−

ℎ

2
,
3ℎ

2

)
, we still denote by 𝑣 the symmetric

and 2ℎ-periodic extension of a function 𝑣 ∈ 𝐻1(Ω) (see Section 3.1) and by 𝑣
(
𝑥, 𝑦,

3ℎ

2

)
and 𝑣

(
𝑥, 𝑦, −

ℎ

2

)
, the traces of a

function 𝑣 ∈ 𝐻1(Ω̃) on the upper and lower faces of the hollow cylinder Ω̃, respectively.

||(𝐻1(Ω))′⟨𝑆𝑀, 𝑣⟩𝐻1(Ω)
|| = ||||||

𝑀∑
𝑚=0

(−1)𝑚+1 4

ℎ ∫
Ω

𝜒𝑝(𝑥, 𝑦) sin
[𝜋
ℎ
(2𝑚 + 1)𝑧

]
𝑣(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧

||||||
=

||||||
𝑀∑

𝑚=0

(−1)𝑚+1 2

ℎ ∫
Ω̃

𝜒𝑝(𝑥, 𝑦) sin
[𝜋
ℎ
(2𝑚 + 1)𝑧

]
𝑣(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧

||||||
(integration by parts) =

||||||||
𝑀∑

𝑚=0

(−1)𝑚+1 2

ℎ

⎧⎪⎨⎪⎩∫𝐶𝑎,𝑏 −
ℎ cos

[
3𝜋

2
(2𝑚 + 1)

]
𝜒𝑝(𝑥, 𝑦)

𝜋(2𝑚 + 1)
𝑣

(
𝑥, 𝑦,

3ℎ

2

)
𝑑𝑥𝑑𝑦

+ ∫
𝐶𝑎,𝑏

ℎ cos
[
−

𝜋

2
(2𝑚 + 1)

]
𝜒𝑝(𝑥, 𝑦)

𝜋(2𝑚 + 1)
𝑣

(
𝑥, 𝑦, −

ℎ

2

)
𝑑𝑥𝑑𝑦

+∫
Ω̃

ℎ𝜒𝑝(𝑥, 𝑦)

𝜋(2𝑚 + 1)
cos

[𝜋
ℎ
(2𝑚 + 1)𝑧

]𝜕𝑣
𝜕𝑧

(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧

}|||||
(2ℎ-periodicity of 𝑣) =

||||||
𝑀∑

𝑚=0

(−1)𝑚+1 2

ℎ

{
∫
Ω̃

ℎ𝜒𝑝(𝑥, 𝑦)

𝜋(2𝑚 + 1)
cos

[𝜋
ℎ
(2𝑚 + 1)𝑧

]𝜕𝑣
𝜕𝑧

(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧

}||||||
=

||||||||
2

𝜋 ∫
𝐶𝑎,𝑏

⎧⎪⎨⎪⎩
𝑀∑

𝑚=0

(−1)𝑚+1𝜒𝑝(𝑥, 𝑦)

2𝑚 + 1 ∫
3ℎ

2

−
ℎ

2

cos
[𝜋
ℎ
(2𝑚 + 1)𝑧

]𝜕𝑣
𝜕𝑧

(𝑥, 𝑦, 𝑧) 𝑑𝑧

⎫⎪⎬⎪⎭𝑑𝑥𝑑𝑦
||||||||

(Cauchy-Schwarz inequality in ℝ𝑛+1)

≤ 2𝑝

𝜋

[
𝑀∑

𝑚=0

1

(2𝑚 + 1)2

] 1

2

∫
𝐶𝑎,𝑏

⎡⎢⎢⎢⎣
𝑀∑

𝑚=0

⎛⎜⎜⎝∫
3ℎ

2

−
ℎ

2

cos
[𝜋
ℎ
(2𝑚 + 1)𝑧

]𝜕𝑣
𝜕𝑧

(𝑥, 𝑦, 𝑧) 𝑑𝑧
⎞⎟⎟⎠
2⎤⎥⎥⎥⎦

1

2

𝑑𝑥𝑑𝑦

(Bessel inequality) ≤ 2𝑝

𝜋

[
+∞∑
𝑚=0

1

(2𝑚 + 1)2

] 1

2

∫
𝐶𝑎,𝑏

⎡⎢⎢⎣ 1ℎ ∫
3ℎ

2

−
ℎ

2

(
𝜕𝑣

𝜕𝑧
(𝑥, 𝑦, 𝑧)

)2

𝑑𝑧
⎤⎥⎥⎦
1

2

𝑑𝑥𝑑𝑦

(Hölder inequality) ≤ 2𝑝

𝜋

[
+∞∑
𝑚=0

1

(2𝑚 + 1)2

] 1

2√
𝜋(𝑏2 − 𝑎2)

⎧⎪⎨⎪⎩∫𝐶𝑎,𝑏
⎡⎢⎢⎣ 1ℎ ∫

3ℎ

2

−
ℎ

2

(
𝜕𝑣

𝜕𝑧
(𝑥, 𝑦, 𝑧)

)2

𝑑𝑧
⎤⎥⎥⎦𝑑𝑥𝑑𝑦

⎫⎪⎬⎪⎭
1

2

= 2𝑝

√
𝑏2 − 𝑎2

𝜋ℎ

[
+∞∑
𝑚=0

1

(2𝑚 + 1)2

] 1

2 ‖‖‖‖𝜕𝑣𝜕𝑧‖‖‖‖𝐿2(Ω̃)
≤ 4𝑝

√
𝑏2 − 𝑎2

𝜋ℎ

[
+∞∑
𝑚=0

1

(2𝑚 + 1)2

] 1

2 ‖𝑣‖𝐻1(Ω) .
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24 of 34 DEMIRANDA et al.

This readily implies

‖𝑆𝑀‖(𝐻1(Ω))′ ≤ 4𝑝

√
𝑏2 − 𝑎2

𝜋ℎ

[
+∞∑
𝑚=0

1

(2𝑚 + 1)2

] 1

2

(5.38)

and boundedness of {𝑆𝑀} in (𝐻1(Ω))′ is proved.
Now we claim that

∫
Ω

𝑆𝑀𝜙 𝑑𝐱 → −∫
𝐶𝑎,𝑏

𝜒𝑝(𝑥, 𝑦)
[
𝜙
(
𝑥, 𝑦,

ℎ

2

)
− 𝜙

(
𝑥, 𝑦, −

ℎ

2

)]
𝑑𝑥𝑑𝑦 =(𝐻1(Ω))′ ⟨3, 𝜙⟩𝐻1(Ω) (5.39)

as 𝑀 → +∞, for any 𝜙 ∈ 𝐶∞(Ω). First of all, by using the classical results about pointwise convergence of the Fourier
Series applied to suitable 2ℎ-periodic extensions of the functions

𝑧 ↦ 𝜙(𝑥, 𝑦, 𝑧) , 𝑧 ∈
[
−

ℎ

2
, 0

]
and 𝑧 ↦ 𝜙(𝑥, 𝑦, 𝑧) , 𝑧 ∈

[
0,

ℎ

2

]
one can show that for any (𝑥, 𝑦) ∈ 𝐶𝑎,𝑏

∫
ℎ

2

−
ℎ

2

𝑆𝑀(𝑥, 𝑦, 𝑧)𝜙(𝑥, 𝑦, 𝑧)𝑑𝑧 → −𝜒𝑝(𝑥, 𝑦)
[
𝜙
(
𝑥, 𝑦,

ℎ

2

)
− 𝜙

(
𝑥, 𝑦, −

ℎ

2

)]
. (5.40)

Then applying to the test function 𝜙 the estimates used for proving boundedness of {𝑆𝑀} in (𝐻1(Ω))′, one can show that
for any𝑀

||||||∫
ℎ

2

−
ℎ

2

𝑆𝑀(𝑥, 𝑦, 𝑧)𝜙(𝑥, 𝑦, 𝑧)𝑑𝑧

|||||| ≤
2
√
2𝑝

𝜋

[
+∞∑
𝑚=0

1

(2𝑚 + 1)2

] 1

2 ‖‖‖‖𝜕𝜙𝜕𝑧 ‖‖‖‖𝐿∞(Ω)

for any (𝑥, 𝑦) ∈ 𝐶𝑎,𝑏 . (5.41)

By (5.40), (5.41) and the Dominated Convergence Theorem the proof of (5.39) follows. With an essentially similar proce-
dure one can prove that 𝑆𝑀 converges in the sense of distributions to Λ3 where Λ3 is the third component of the vector
distribution 𝚲 defined in (5.14).
Since (𝐻1(Ω))′ is a reflexive Banach space, by (5.38) we infer that along suitable subsequences, the partial sums are

weakly convergent in (𝐻1(Ω))′. Thanks to (5.39), we deduce that theweak limits of this subsequences coincide on the space
𝐶∞(Ω) and they equal 3 on it. By density of 𝐶∞(Ω) in 𝐻1(Ω), they actually coincide on the whole 𝐻1(Ω). This proves
that all weakly convergent subsequences weakly converge to 3 and hence the sequence 𝑆𝑀 is itself weakly convergent
to 3 in (𝐻1(Ω))′. We can now denote by 𝑺𝑀 = (0, 0, 𝑆𝑀) the sequence of vector partial sums in such a way that 𝑺𝑀 ⇀ 

weakly in (𝐻1(Ω;ℝ3))′ as𝑀 → +∞.
Now, let us consider the linear continuous operator 𝐿 introduced in the proof of Proposition 2.1 and its restriction to

𝑉⟂
0
, where we recall that orthogonality is with respect to the scalar product (A4). Then, by Proposition 2.1 (iv) we deduce

that 𝐿|𝑉⟂
0
∶ 𝑉⟂

0
→ (𝐻1(Ω;ℝ3))′ is invertible and by the Open Mapping Theorem it follows that its inverse is continuous.

If we define𝑼𝑀 ∶= 𝐿−1|𝑉⟂
0

𝑺𝑀 , then𝑼𝑀 is the vector partial sum corresponding to the Fourier expansion (3.18). Since 𝑺𝑀
is weakly convergent in (𝐻1(Ω;ℝ3))′ to  , then the continuity of 𝐿−1|𝑉⟂

0

implies that𝑼𝑀 is weakly convergent in𝐻1(Ω;ℝ3)

to the unique solution 𝐮 of (3.3) as𝑀 → +∞.
The strong convergence 𝑼𝑀 → 𝐮 in 𝐿2(Ω;ℝ3) as 𝑀 → +∞ is a consequence of the compactness of the embedding

𝐻1(Ω;ℝ3) ⊂ 𝐿2(Ω;ℝ3).
It remains to prove (3.19). In order to emphasize the dependence on 𝑘 we reintroduce it for denoting the functions 𝑌𝑘

and 𝑍𝑘 appearing in the proof of Lemma 3.5. Testing (5.26) with (𝐻, 𝐾) = (𝑌𝑘, 𝑍𝑘) we have

2𝜇𝜋2

ℎ2
𝑘2 ∫

𝑏

𝑎

𝜌(𝑍𝑘(𝜌))
2𝑑𝜌 ≤ ∫

𝑏

𝑎

𝜌Ψ𝑘(𝜌)𝑍𝑘(𝜌) 𝑑𝜌
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DEMIRANDA et al. 25 of 34

from which we obtain

(
∫

𝑏

𝑎

(𝑍𝑘(𝜌))
2𝑑𝜌

) 1

2

≤ 2𝑝𝑏ℎ
√
𝑏 − 𝑎

𝜇𝑎𝜋2

1

𝑘2
. (5.42)

Testing again (5.26) with (𝐻, 𝐾) = (𝑌𝑘, 𝑍𝑘) we also have

2𝜇 ∫
𝑏

𝑎

(𝑌𝑘(𝜌))
2

𝜌
𝑑𝜌 ≤ ∫

𝑏

𝑎

𝜌Ψ𝑘(𝜌)𝑍𝑘(𝜌) 𝑑𝜌

from which we obtain

∫
𝑏

𝑎

(𝑌𝑘(𝜌))
2 𝑑𝜌 ≤ 2𝑝𝑏2

√
𝑏 − 𝑎

𝜇ℎ

(
∫

𝑏

𝑎

(𝑍𝑘(𝜌))
2𝑑𝜌

) 1

2

≤ 4𝑝2𝑏3(𝑏 − 𝑎)

𝜇2𝑎𝜋2

1

𝑘2
(5.43)

where in the last inequality we used (5.42).
Let us proceed by considering the difference between the partial sum for 𝑢1 and 𝑢1 itself:

‖𝑈1
𝑀
− 𝑢1‖2𝐿2(Ω) = ∫

𝐶𝑎,𝑏

‖‖‖‖‖‖
+∞∑

𝑚=𝑀+1

𝑌2𝑚+1(𝜌) cos 𝜃 cos

[
(2𝑚 + 1)𝜋

ℎ
𝑧

]‖‖‖‖‖‖
2

𝐿2
(
−
ℎ

2
,
ℎ

2

)𝑑𝑥𝑑𝑦

=
ℎ

2

+∞∑
𝑚=𝑀+1

∫
𝐶𝑎,𝑏

(cos2 𝜃)(𝑌2𝑚+1(𝜌))
2𝑑𝑥𝑑𝑦 =

𝜋ℎ

2

+∞∑
𝑚=𝑀+1

∫
𝑏

𝑎

(𝑌2𝑚+1(𝜌))
2𝜌 𝑑𝜌

≤ 2𝑝2𝑏4(𝑏 − 𝑎)ℎ

𝜇2𝑎𝜋

+∞∑
𝑚=𝑀+1

1

(2𝑚 + 1)2
≤ 𝑝2𝑏4(𝑏 − 𝑎)ℎ

2𝜇2𝑎𝜋

+∞∑
𝑚=𝑀+1

1

𝑚2
≤ 𝑝2𝑏4(𝑏 − 𝑎)ℎ

2𝜇2𝑎𝜋

1

𝑀
,

where we also used (5.43). The estimate for ‖𝑈2
𝑛 − 𝑢2‖𝐿2(Ω) gives the same result for obvious reasons.

With a completely similar procedure by exploiting this time (5.42), we obtain

‖𝑈3
𝑛 − 𝑢3‖2𝐿2(Ω) ≤ 2𝑝2𝑏3ℎ3(𝑏 − 𝑎)

𝜇2𝑎2𝜋4

+∞∑
𝑚=𝑀+1

1

(2𝑚 + 1)4
≤ 𝑝2𝑏3ℎ3(𝑏 − 𝑎)

8𝜇2𝑎2𝜋4

+∞∑
𝑚=𝑀+1

1

𝑚4
≤ 𝑝2𝑏3ℎ3(𝑏 − 𝑎)

24𝜇2𝑎2𝜋4

1

𝑀3
.

Let us denote by 𝐮 the solution we found by means of the Fourier series expansion. Then, 𝐮 satisfies (3.9) in the sense
of traces of 𝐻1-functions. Moreover, by construction, see subsections 3.1–3.2 for more details, the function 𝐮 is a solution
of the variational problem (2.3) with 𝐟 ≡ 0 and 𝐠 as in (3.1). In particular, as it follows from a classical argument based on
integration by parts, 𝐮 is a solution of (3.3), in the sense that it satisfies the equations of the linear elasticity coupled with
the Neumann-type boundary conditions on Γ1, Γ2 and Γ3.
We conclude the proof of the theorem by observing that 𝐮 coincides with the unique solution of (3.3) belonging to 𝑉⟂

0
.

To see this, denote by 𝐰 the solution in 𝑉⟂
0
. Both 𝐮 and 𝐰 possesses the symmetry properties stated in Proposition 3.1

as it occurs to their difference 𝐮 −𝐰. But from Proposition 2.1 we have that 𝐮 −𝐰 ∈ 𝑉0 and it is readily seen from (2.7)
that functions in 𝑉0 satisfying those symmetry properties are necessarily the null function. This proves that 𝐮 = 𝐰 and
completes the proof of the theorem. □
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26 of 34 DEMIRANDA et al.

5.7 Proof of Proposition 4.1

We rewrite the homogeneous system (5.29) as in (5.36) so that the corresponding series expansion can be written in the
form

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑌(𝑡) =

+∞∑
𝑛=−1

𝑎𝑛 𝑡
𝑛 + (ln 𝑡)

+∞∑
𝑛=0

𝑏𝑛 𝑡
𝑛 ,

𝑍(𝑡) =

+∞∑
𝑛=0

𝑐𝑛 𝑡
𝑛 + (ln 𝑡)

+∞∑
𝑛=0

𝑑𝑛 𝑡
𝑛 .

(5.44)

The coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 are related to the corresponding coefficients 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 appearing in (5.30), by the
formulas

𝑎−1 =
𝜋𝑘

ℎ
𝑎−1 , 𝑎𝑛 =

(
ℎ

𝜋𝑘

)𝑛[
𝑎𝑛 − ln

(
𝜋𝑘

ℎ

)
𝑏𝑛

]
, 𝑏𝑛 =

(
ℎ

𝜋𝑘

)𝑛

𝑏𝑛 , (5.45)

𝑐𝑛 =

(
ℎ

𝜋𝑘

)𝑛[
𝑐𝑛 − ln

(
𝜋𝑘

ℎ

)
𝑑𝑛

]
, 𝑑𝑛 =

(
ℎ

𝜋𝑘

)𝑛

𝑑𝑛 .

Inserting (5.44) into (5.36) or alternatively combining (5.45) and (5.35), we see that 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 solve the system

⎧⎪⎪⎨⎪⎪⎩

(𝑛2 − 1)𝑎𝑛 + 2𝑛𝑏𝑛 + 𝛽(𝑛 − 1)𝑐𝑛−1 + 𝛽𝑑𝑛−1 = �̃�𝑎𝑛−2

(𝑛2 − 1)𝑏𝑛 + 𝛽(𝑛 − 1)𝑑𝑛−1 = �̃�𝑏𝑛−2

(𝑛 − 1)2𝑐𝑛−1 + 2(𝑛 − 1)𝑑𝑛−1 = 𝛿(𝑛 − 1)𝑎𝑛−2 + 𝛿𝑏𝑛−2 + 𝛾𝑐𝑛−3

(𝑛 − 1)2𝑑𝑛−1 = 𝛿(𝑛 − 1)𝑏𝑛−2 + 𝛾𝑑𝑛−3

(5.46)

for 𝑛 ≥ 3; moreover 𝑎0 = 𝑏0 = 𝑐1 = 𝑑1 = 𝑎2 = 𝑏2 = 0, the coefficients 𝑎−1, 𝑎1, 𝑏1, 𝑐0 may be chosen arbitrarily and 𝑑0 =
�̃�

𝛽
𝑎−1 −

2

𝛽
𝑏1.

By direct computation one can verify that the unique solution of system (5.46) can be written in form

⎛⎜⎜⎜⎜⎝
𝑎𝑛
𝑏𝑛
𝑐𝑛−1
𝑑𝑛−1

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
𝜆

𝜇

1

(𝑛+1)(𝑛−1)

2𝜆

𝜇

𝑛

(𝑛+1)2(𝑛−1)2
−

𝜆+𝜇

𝜇

1

(𝑛+1)(𝑛−1)2

𝜆+𝜇

𝜇

3𝑛+1

(𝑛+1)2(𝑛−1)3

0 −
𝜆

𝜇

1

(𝑛+1)(𝑛−1)
0 −

𝜆+𝜇

𝜇

1

(𝑛+1)(𝑛−1)2

𝜆+𝜇

𝜇

1

𝑛−1
−

𝜆+𝜇

𝜇

1

(𝑛−1)2

𝜆+2𝜇

𝜇

1

(𝑛−1)2
−

2(𝜆+2𝜇)

𝜇

1

(𝑛−1)3

0
𝜆+𝜇

𝜇

1

𝑛−1
0

𝜆+2𝜇

𝜇

1

(𝑛−1)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
𝑎𝑛−2
𝑏𝑛−2
𝑐𝑛−3
𝑑𝑛−3

⎞⎟⎟⎟⎟⎠
(5.47)

for any 𝑛 ≥ 3.
We are interested in the case 𝑛 odd since when 𝑛 is even, thanks to (5.46), we know that 𝑎𝑛 = 𝑏𝑛 = 𝑐𝑛−1 = 𝑑𝑛−1 = 0.

Looking at (5.47), for any 𝑛 ≥ 3 odd, we introduce the matrices

𝑆𝑛 ∶=

⎛⎜⎜⎜⎝
−

𝜆

𝜇

1

(𝑛+1)(𝑛−1)
−

𝜆+𝜇

𝜇

1

(𝑛+1)(𝑛−1)2

𝜆+𝜇

𝜇

1

𝑛−1

𝜆+2𝜇

𝜇

1

(𝑛−1)2

⎞⎟⎟⎟⎠ , 𝑇𝑛 ∶=

⎛⎜⎜⎜⎝
2𝜆

𝜇

𝑛

(𝑛+1)2(𝑛−1)2

𝜆+𝜇

𝜇

3𝑛+1

(𝑛+1)2(𝑛−1)3

−
𝜆+𝜇

𝜇

1

(𝑛−1)2
−

2(𝜆+2𝜇)

𝜇

1

(𝑛−1)3

⎞⎟⎟⎟⎠ .
In this way, system (5.47) may written in the form(

𝑏𝑛

𝑑𝑛−1

)
= 𝑆𝑛

(
𝑏𝑛−2

𝑑𝑛−3

)
,

(
𝑎𝑛

𝑐𝑛−1

)
= 𝑆𝑛

(
𝑎𝑛−2

𝑐𝑛−3

)
− 𝑇𝑛

(
𝑏𝑛−2

𝑑𝑛−3

)
.
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DEMIRANDA et al. 27 of 34

After an iterative procedure we may write

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
𝑏𝑛

𝑑𝑛−1

)
=

⎛⎜⎜⎝
(𝑛−3)∕2∏
𝑚=0

𝑆𝑛−2𝑚

⎞⎟⎟⎠
(
𝑏1

𝑑0

)
,

(
𝑎𝑛

𝑐𝑛−1

)
=

⎛⎜⎜⎝
(𝑛−3)∕2∏
𝑚=0

𝑆𝑛−2𝑚

⎞⎟⎟⎠
(
𝑎1

𝑐0

)
−

(𝑛−3)∕2∑
𝑗=0

⎡⎢⎢⎣
(

𝑗∏
𝑚=1

𝑆𝑛−2𝑚+2

)
𝑇𝑛−2𝑗

⎛⎜⎜⎝
(𝑛−3)∕2∏
𝑚=𝑗+1

𝑆𝑛−2𝑚

⎞⎟⎟⎠
(
𝑏1

𝑑0

)⎤⎥⎥⎦,
(5.48)

for any 𝑛 ≥ 3 odd, with the convention that for any sequence of matrices 𝐴𝑚 ∈ ℝ2×2

𝑚2∏
𝑚=𝑚1

𝐴𝑚 =

(
1 0

0 1

)
and

𝑚2∑
𝑚=𝑚1

𝐴𝑚 =

(
0 0

0 0

)
whenever𝑚1 > 𝑚2.
By induction one can verify that for any 𝑗 ≤ 𝑛−3

2

𝑗∏
𝑚=0

𝑆𝑛−2𝑚 =

⎛⎜⎜⎜⎜⎝
−

(𝑗+1)𝜆+𝑗𝜇

𝜇(𝑛+1)[𝑛+1−2(𝑗+1)]
∏𝑗

𝑚=1(𝑛+1−2𝑚)2
−

(𝑗+1)(𝜆+𝜇)

𝜇(𝑛+1)
∏𝑗+1

𝑚=1(𝑛+1−2𝑚)2

(𝑗+1)(𝜆+𝜇)

𝜇[𝑛+1−2(𝑗+1)]
∏𝑗

𝑚=1(𝑛+1−2𝑚)2

(𝑗+1)𝜆+(𝑗+2)𝜇

𝜇
∏𝑗+1

𝑚=1(𝑛+1−2𝑚)2

⎞⎟⎟⎟⎟⎠
and, in turn, by (A12) we infer

‖‖‖‖‖‖
𝑗∏

𝑚=0

𝑆𝑛−2𝑚

‖‖‖‖‖‖∞ ≤ (𝜆 + 𝜇)(𝑛 − 2𝑗)(𝑗 + 2)

𝜇
∏𝑗+1

𝑚=1
(𝑛 + 1 − 2𝑚)2

. (5.49)

In particular, with appropriate choices of the minimum and the maximum values of the index in the product (5.49) and
with appropriate changes of index, for any 𝑛 ≥ 3 odd, we obtain the estimates

‖‖‖‖‖‖
(𝑛−3)∕2∏
𝑚=0

𝑆𝑛−2𝑚

‖‖‖‖‖‖∞ ≤ 3(𝜆 + 𝜇)(𝑛 + 1)

𝜇2𝑛
[(

𝑛−1

2

)
!
]2 ,

‖‖‖‖‖‖
𝑗∏

𝑚=1

𝑆𝑛−2𝑚+2

‖‖‖‖‖‖∞ ≤ (𝜆 + 𝜇)(𝑛 − 2𝑗 + 2)(𝑗 + 1)

𝜇
∏𝑗

𝑚=1
(𝑛 + 1 − 2𝑚)2

, (5.50)

‖‖‖‖‖‖
(𝑛−3)∕2∏
𝑚=𝑗+1

𝑆𝑛−2𝑚

‖‖‖‖‖‖∞ ≤ 3(𝜆 + 𝜇)(𝑛 − 2𝑗 − 1)

2𝜇
∏(𝑛−1)∕2

𝑚=𝑗+2
(𝑛 + 1 − 2𝑚)2

.

On the other hand, we observe that for the components of the matrices 𝑆𝑛 and 𝑇𝑛 the following inequalities hold true:

|(𝑇𝑛)𝑖𝑗| ≤ 3

𝑛−1
|(𝑆𝑛)𝑖𝑗| for any 𝑖, 𝑗 ∈ {1, 2} and 𝑛 ≥ 3,

which, in turn, implies ‖𝑇𝑛‖∞ ≤ 3

𝑛−1
‖𝑆𝑛‖∞ = 3(𝜆 + 𝜇)

2𝑛

𝜇(𝑛−1)3
; the last inequality is obtained by (5.49) with 𝑗 = 0.

Therefore, combining (5.49) and (5.50), for any 𝑛 ≥ 3 odd, we obtain

‖‖‖‖‖‖‖
(𝑛−3)∕2∑
𝑗=0

⎡⎢⎢⎣
(

𝑗∏
𝑚=1

𝑆𝑛−2𝑚+2

)
𝑇𝑛−2𝑗

⎛⎜⎜⎝
(𝑛−3)∕2∏
𝑚=𝑗+1

𝑆𝑛−2𝑚

⎞⎟⎟⎠
⎤⎥⎥⎦
‖‖‖‖‖‖‖∞ (5.51)

≤
(𝑛−3)∕2∑
𝑗=0

‖‖‖‖‖‖
𝑗∏

𝑚=1

𝑆𝑛−2𝑚+2

‖‖‖‖‖‖∞
‖‖‖𝑇𝑛−2𝑗‖‖‖∞

‖‖‖‖‖‖
(𝑛−3)∕2∏
𝑚=𝑗+1

𝑆𝑛−2𝑚

‖‖‖‖‖‖∞
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28 of 34 DEMIRANDA et al.

≤
(𝑛−3)∕2∑
𝑗=0

18(𝜆 + 𝜇)3(𝑛 − 2𝑗 + 2)(𝑛 − 2𝑗)(𝑗 + 1)

𝜇3 2𝑛
[(

𝑛−1

2

)
!
]2 ≤ 9(𝜆 + 𝜇)3 𝑛(𝑛 + 2)(𝑛2 − 1)

4𝜇3 2𝑛
[(

𝑛−1

2

)
!
]2 ,

where in the last inequality we used the estimate (𝑛 − 2𝑗 + 2)(𝑛 − 2𝑗) ≤ 𝑛(𝑛 + 2) and the identity
∑(𝑛−3)∕2

𝑗=0
(𝑗 + 1) =

𝑛2−1

8
.

Combining (A11) with (5.48), (5.50) and (5.51), for any 𝑛 ≥ 3 odd, we obtain|||||
(

𝑎𝑛
𝑐𝑛−1

)|||||∞ ≤ 3(𝜆 + 𝜇)(𝑛 + 1)

𝜇2𝑛
[(

𝑛−1

2

)
!
]2 |||||

(
𝑎1
𝑐0

)|||||∞ +
9(𝜆 + 𝜇)3 𝑛(𝑛 + 2)(𝑛2 − 1)

4𝜇3 2𝑛
[(

𝑛−1

2

)
!
]2 |||||

(
𝑏1
𝑑0

)|||||∞ (5.52)

≤ 3(2𝜆 + 5𝜇)(𝜆 + 𝜇)2 (𝑛 + 1)(3𝑛3 + 3𝑛2 − 6𝑛 + 4)

4𝜇3 2𝑛
[(

𝑛−1

2

)
!
]2 max{𝑎−1, 𝑎1, 𝑏1, 𝑐0}

and |||||
(

𝑏𝑛
𝑑𝑛−1

)|||||∞ ≤ 3(𝜆 + 𝜇)(𝑛 + 1)

𝜇2𝑛
[(

𝑛−1

2

)
!
]2 |||||

(
𝑏1
𝑑0

)|||||∞ ≤ 3(2𝜆 + 5𝜇)(𝑛 + 1)

𝜇2𝑛
[(

𝑛−1

2

)
!
]2 max{𝑎−1, 𝑎1, 𝑏1, 𝑐0} (5.53)

where we exploited the fact that 𝑑0 =
�̃�

𝛽
𝑎−1 −

2

𝛽
𝑏1, accordingly with what already explained in the lines below (5.46), so

that

|𝑑0| ≤ �̃� + 2

𝛽
max{𝑎−1, 𝑏1} =

2𝜆 + 5𝜇

𝜆 + 𝜇
max{𝑎−1, 𝑏1} ,

from which it follows that

max

{|||||
(
𝑎1
𝑐0

)|||||∞,
|||||
(
𝑏1
𝑑0

)|||||∞
}

≤ 2𝜆 + 5𝜇

𝜆 + 𝜇
max{𝑎−1, 𝑎1, 𝑏1, 𝑐0} .

Since we are interested to the restrictions of the functions 𝑌 and 𝑍 to the interval [𝑎, 𝑏], we have to evaluate the series
expansion (5.44) of the functions 𝑌 and 𝑍 for 𝑡 ∈ [

𝜋𝑘

ℎ
𝑎,

𝜋𝑘

ℎ
𝑏].

Let 𝑁 odd be the number at which we want to truncate the series expansions in (5.44). Recalling that the coefficients
𝑎𝑛, 𝑏𝑛, 𝑐𝑛−1, 𝑑𝑛−1 vanish for 𝑛 even, we may write⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑌(𝑡) =

(
𝑁∑

𝑛=−1

𝑎𝑛 𝑡
𝑛 + (ln 𝑡)

𝑁∑
𝑛=0

𝑏𝑛 𝑡
𝑛

)
+

(
+∞∑

𝑛=𝑁+2

𝑎𝑛 𝑡
𝑛 + (ln 𝑡)

+∞∑
𝑛=𝑁+2

𝑏𝑛 𝑡
𝑛

)
,

𝑍(𝑡) =

(
𝑁−1∑
𝑛=0

𝑐𝑛 𝑡
𝑛 + (ln 𝑡)

𝑁−1∑
𝑛=0

𝑑𝑛 𝑡
𝑛

)
+

(
+∞∑

𝑛=𝑁+1

𝑐𝑛 𝑡
𝑛 + (ln 𝑡)

+∞∑
𝑛=𝑁+1

𝑑𝑛 𝑡
𝑛

)
,

and define the truncation error as

𝐸𝑘,𝑁 = max

⎧⎪⎨⎪⎩ max
𝑡∈

[
𝜋𝑘

ℎ
𝑎,

𝜋𝑘

ℎ
𝑏
]
||||||

+∞∑
𝑛=𝑁+2

𝑎𝑛 𝑡
𝑛 + (ln 𝑡)

+∞∑
𝑛=𝑁+2

𝑏𝑛 𝑡
𝑛

||||||, max
𝑡∈

[
𝜋𝑘

ℎ
𝑎,

𝜋𝑘

ℎ
𝑏
]
||||||

+∞∑
𝑛=𝑁+1

𝑐𝑛 𝑡
𝑛 + (ln 𝑡)

+∞∑
𝑛=𝑁+1

𝑑𝑛 𝑡
𝑛

||||||
⎫⎪⎬⎪⎭

By (5.52) and (5.53), we see that for any 𝑡 ∈ [
𝜋𝑘

ℎ
𝑎,

𝜋𝑘

ℎ
𝑏] we have

0 ≤ 𝐸𝑘,𝑁 ≤ 𝐶(𝑎, 𝑏, 𝑘)
⎡⎢⎢⎣

+∞∑
𝑛=𝑁+2

(
𝜋𝑘𝑏

ℎ

)𝑛||||||
(

𝑎𝑛

𝑐𝑛−1

)||||||∞ +

+∞∑
𝑛=𝑁+2

(
𝜋𝑘𝑏

ℎ

)𝑛||||||
(

𝑏𝑛

𝑑𝑛−1

)||||||∞
⎤⎥⎥⎦
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≤ 𝐶(𝑎, 𝑏, 𝑘)max{𝑎−1, 𝑎1, 𝑏1, 𝑐0}

+∞∑
𝑛=𝑁+2
𝑛 odd

(
𝜋𝑘𝑏

ℎ

)𝑛
3(2𝜆 + 5𝜇)(𝜆 + 𝜇)2 (𝑛 + 1)(3𝑛3 + 3𝑛2 − 6𝑛 + 8)

4𝜇3 2𝑛
[(

𝑛−1

2

)
!
]2

where we put 𝐶(𝑎, 𝑏, 𝑘) = max{1,
ℎ

𝜋𝑘𝑏
}max{1, | ln(𝜋𝑘𝑎

ℎ
)|, | ln(𝜋𝑘𝑏

ℎ
)|}.

Since we are interested to truncation of the series expansion with a sufficiently large number of terms, letting 𝑃(𝑛) ∶=
(𝑛 + 1)(3𝑛3 + 3𝑛2 − 6𝑛 + 8), it is not restrictive to assume 𝑁 ≥ 3 in such a way that the sequence 𝑛 ↦ 2−𝑛𝑃(𝑛) becomes
decreasing for 𝑛 ≥ 𝑁 + 2 ≥ 5.
In this way, for 𝑁 ≥ 3 odd, we obtain for all 𝑡 ∈ [

𝜋𝑘

ℎ
𝑎,

𝜋𝑘

ℎ
𝑏]

0 ≤ 𝐸𝑘,𝑁 ≤ 𝐶(𝑎, 𝑏, 𝑘)max{𝑎−1, 𝑎1, 𝑏1, 𝑐0}
3(2𝜆 + 5𝜇)(𝜆 + 𝜇)2 𝑃(𝑁 + 2)

4𝜇3 2𝑁+2
(
𝑁+1

2

)
!

+∞∑
𝑚=

𝑁+1

2

(
𝜋𝑘𝑏

ℎ

)2𝑚+1

𝑚!
(5.54)

≤ 𝐶(𝑎, 𝑏, 𝑘)max{𝑎−1, 𝑎1, 𝑏1, 𝑐0}

(
𝜋𝑘𝑏

ℎ

)𝑁+2

𝑒

(
𝜋𝑘𝑏

ℎ

)2
3(2𝜆 + 5𝜇)(𝜆 + 𝜇)2 𝑃(𝑁 + 2)

16𝜇3 2𝑁
[(

𝑁+1

2

)
!
]2 ,

where in the last estimate we used the Lagrange form of the reminder in the Taylor formula for the exponential function
and 𝑃(𝑁 + 2) = (𝑁 + 3)(3𝑁3 + 21𝑁2 + 42𝑁 + 32).
According to the rescaling introduced in (5.36) one may define the functions 𝚼𝑗 , whose series expansions are given by

(5.44) with coefficients in (5.45) and with 𝑎−1, 𝑎1, 𝑏1, 𝑐0 given by (5.34) in the cases corresponding to 𝑗 ∈ {1, 2, 3, 4}.
In these four cases, the quantity max{𝑎−1, 𝑎1, 𝑏1, 𝑐0}, appearing in the right hand side of (5.54), admits the following

estimates:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max{𝑎−1, 𝑎1, 𝑏1, 𝑐0} =
𝜋𝑘

ℎ
max

{
1,

𝜇

𝜆+𝜇
ln

(
𝜋𝑘

ℎ

)}
if 𝑗 = 1,

max{𝑎−1, 𝑎1, 𝑏1, 𝑐0} =
ℎ

𝜋𝑘
if 𝑗 = 2,

max{𝑎−1, 𝑎1, 𝑏1, 𝑐0} =
ℎ

𝜋𝑘
max

{
1,

2(𝜆+2𝜇)

𝜆+𝜇
ln

(
𝜋𝑘

ℎ

)}
if 𝑗 = 3,

max{𝑎−1, 𝑎1, 𝑏1, 𝑐0} = 1 if 𝑗 = 4.

(5.55)

For 𝑘 > 1 is easy to see that all the maximum in (5.55) are less or equal than

max
{

𝜋𝑘

ℎ
,

𝜇

𝜆+𝜇

𝜋𝑘

ℎ
ln

(
𝜋𝑘

ℎ

)
,
2(𝜆+2𝜇)

𝜆+𝜇

ℎ

𝜋𝑘
ln

(
𝜋𝑘

ℎ

)}
,

so that (4.2) follows. □

6 CONCLUSIONS

In this work we started from an applied problem, suggested by Studio De Miranda Associati. They proposed to study the
blister, a structural element in bridges where the steel forestay anchors to the deck. The aim is to obtain an explicit formula
to estimate the tensions in the blister, useful for the practical design of bridges.
The problem can be solved through the resolution of the elasticity equation with a specific geometry and load config-

uration. Hence, the first step was to define the geometry of the element. Through some simplifications we end up with
a hollow circular cylinder axially loaded at the end faces; the volume of the cylinder represents the portion of the deck
concrete where the stresses diffusion happens, while the applied load is given by the force that the stay has to transfer to
the deck. Clearly this geometry and load configuration can be refined in order to model a real blister, but this is a first step
in this way and we leave more sophisticated models to future works.
As matter of fact, from literature we learn that the elasticity equation was explicitly solved only for very particular

domains and loading conditions. In this paper we provide the explicit solution for the hollow cylinder axially loaded,
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proceeding by steps: first of all we provide a periodic extension of the load in 𝑧 direction, so that we expand the solution
in Fourier series with respect to the variable 𝑧. Then we compute the Fourier coefficients in 𝑥 and 𝑦 passing to cylindrical
coordinates and expanding such functions in power series. In Theorem 3.7 we write the explicit solution for the problem,
written in series expansion. We point out that this solution may have an own interest in the construction science field,
beyond the application to the blister.
To employ directly the formula in real situations, such as the blister design, it is necessary to consider approximated

solutions, giving some estimates on the errors due to the truncating of the series. In Section 4 we proposed a case of study,
where, fixing the parameters involved in the problem, we are able to find the distribution of the stresses in the cylinder.
These plots can be obtained through a simple code, written inMATLAB orGNUOctave, running in brief time, for example
1–3 min, depending on the number where we truncate the series.
From these results it is possible to find the maximum and the minimum of the different stresses acting on the cylinder,

their position on the element and an estimate on the error due to the truncation of the series. Knowing these values, the
engineering designer can choice for instance the most appropriate strand anchorage from the commercial catalogue, see
Figure 5, in order to not exceed specific limit stresses in the reinforced concrete. Since the map of the tensions is given,
see for example Figure 6, the engineer can design the steel reinforcements in the concrete, at least on a pre-dimensioning
level, and can check the concrete cracking stresses.
As we explained, to get more precise results on realistic blisters we should modify the geometry of the element and

the configuration of the loads; this may be a future work, but we point out that, more the geometry and the distribution
of the loads are complex more the expectations to find explicit solutions are few, so that the finite element analysis may
be preferred.
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APPENDIX A
We collect in this appendix all the details related to Section 2. First of all we recall some properties useful to write the weak
form of the elasticity problem (2.3) and to infer (2.4).
Thanks to the symmetry of the stress tensor 𝐓𝐮 = (𝐓𝐮)𝑇 we infer that for any 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ3)

𝐓𝐮 ∶ ∇𝐯 = (𝐓𝐮)𝑇 ∶ (∇𝐯)𝑇 = 𝐓𝐮 ∶ (∇𝐯)𝑇

so that

2(𝐓𝐮 ∶ ∇𝐯) = 𝐓𝐮 ∶ ∇𝐯 + 𝐓𝐮 ∶ (∇𝐯)𝑇 ⇒ 𝐓𝐮 ∶ ∇𝐯 = 𝐓𝐮 ∶ 𝐃𝐯 . (A1)

Recalling the Hooke’s law (2.1), we observe that the bilinear form

(𝐮, 𝐯) ↦ ∫
Ω

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 , (𝐮, 𝐯) ∈ 𝐻1(Ω;ℝ3) × 𝐻1(Ω;ℝ3)

is symmetric, since

𝐓𝐮 ∶ 𝐃𝐯 = 𝜆 (div𝐮) (div𝐯) + 2𝜇𝐃𝐮 ∶ 𝐃𝐯 . (A2)

We recall here the Korn inequality which is known to be fundamental in the study of the equations of linear elasticity.
This inequality admits a general validity for vector valued functions in ℝ𝑁 for any 𝑁 ≥ 1. Clearly, in the present paper
we will be mainly interested to the case 𝑁 = 3, being ℝ3 the natural space where a solid elastic body can be modeled.
For completeness, we state the inequality in the general 𝑁-dimensional case. Let Ω ⊂ ℝ𝑁 be a bounded domain, that is,
an open connected bounded set of ℝ𝑁 , with Lipschitz boundary. Let us denote by 𝐱 = (𝑥1, … , 𝑥𝑁) the generic variable of
a function defined in a domain of ℝ𝑁 and 𝑑𝐱 = 𝑑𝑥1 …𝑑𝑥𝑁 the 𝑁-dimensional volume integral in ℝ𝑁 . Then there exists
𝐶 > 0 such that

∫
Ω

|∇𝐮|2𝑑𝐱 ≤ 𝐶

(
∫
Ω

|𝐮|2𝑑𝐱 + ∫
Ω

|𝐃𝐮|2𝑑𝐱) for any 𝐮 ∈ 𝐻1(Ω;ℝ𝑁) . (A3)

Among the others, for a clear and elegant proof of (A3), we address the reader to [21] by V. A. Kondrat’ev & O. A. Oleinik.
As a consequence of the Korn inequality we have that the following symmetric continuous bilinear form

(𝐮, 𝐯)𝐓 = ∫
Ω

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 + ∫
Ω

𝐮 ⋅ 𝐯 𝑑𝐱 for any 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ3) (A4)
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is coercive in𝐻1(Ω;ℝ𝑁) and in particular (⋅, ⋅)𝐓 is a scalar product in𝐻1(Ω;ℝ𝑁) which is equivalent to its natural scalar
product

(𝐮, 𝐯)𝐻1 = ∫
Ω

∇𝐮 ∶ ∇𝐯 𝑑𝐱 + ∫
Ω

𝐮 ⋅ 𝐯 𝑑𝑥 for any 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ𝑁) .

Therefore,𝐻1(Ω;ℝ𝑁) still remains a Hilbert space if endowed with the equivalent scalar product (⋅, ⋅)𝐓.
In the next subsection we provide a proof of the existence results stated in Proposition 2.1.

A.1 Proof of Proposition 2.1
Let us introduce the following continuous and symmetric bilinear form

𝑎(𝐮, 𝐯) = ∫
Ω

𝐓𝐮 ∶ 𝐃𝐯 𝑑𝐱 , 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ3)

and the linear continuous functional Λ ∈ (𝐻1(Ω;ℝ3))′ defined by

⟨Λ, 𝐯⟩ = ∫
Ω

𝐟 ⋅ 𝐯 𝑑𝐱 + ∫
𝜕Ω

𝐠 ⋅ 𝐯 𝑑𝐱 , 𝐯 ∈ 𝐻1(Ω;ℝ3) .

With these notations, the variational problem (2.3) may be written in the form

𝑎(𝐮, 𝐯) = ⟨Λ, 𝐯⟩ for any 𝐯 ∈ 𝐻1(Ω;ℝ3) .

Introducing the linear continuous operator 𝐿 ∶ 𝐻1(Ω;ℝ3) → (𝐻1(Ω;ℝ3))′ defined by

⟨𝐿𝐮, 𝐯⟩ = 𝑎(𝐮, 𝐯) for any 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ3) ,

we may write (2.3) in the form

𝐿𝐮 = Λ , (A5)

as an identity between elements of the dual space (𝐻1(Ω;ℝ3))′.
The next step is to introduce the following operator 𝑅 ∶ (𝐻1(Ω;ℝ3))′ → 𝐻1(Ω;ℝ3) which maps each element 𝐡 ∈

(𝐻1(Ω;ℝ3))′ into the unique solution𝐰 of the variational problem

(𝐰, 𝐯)𝐓 = ⟨𝐡, 𝐯⟩ for any 𝐯 ∈ 𝐻1(Ω;ℝ3) .

This problem admits a unique solution by the Lax-MilgramTheorem, being (⋅, ⋅)𝐓 a scalar product in𝐻1(Ω;ℝ3) equivalent
to the original one, as already explained above. In particular 𝑅 is well defined and continuous. Moreover, 𝑅 is invertible
and by the Open Mapping Theorem its inverse is also continuous.
In the rest of the proof we denote by 𝐽 ∶ 𝐻1(Ω;ℝ3) → (𝐻1(Ω;ℝ3))′ the linear operator defined by

⟨𝐽𝐮, 𝐯⟩ = ∫
Ω

𝐮 ⋅ 𝐯 𝑑𝐱 for any 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ3) ,

which is compact as a consequence of the compact embedding𝐻1(Ω;ℝ3) ⊂ 𝐿2(Ω;ℝ3).
We now introduce the linear compact operator 𝑇 ∶ 𝐻1(Ω;ℝ3) → 𝐻1(Ω;ℝ3) defined by 𝑅◦𝐽. Then, 𝑇 is self-adjoint

with respect to the scalar product (⋅, ⋅)𝐓, that is, (𝑇𝐮, 𝐯)𝐓 = (𝐮, 𝑇𝐯)𝐓 for any 𝐮, 𝐯 ∈ 𝐻1(Ω;ℝ3), as one can verify by
direct computation.
By definition of 𝑅 and 𝐽 we observe that 𝐿 = 𝑅−1 − 𝐽 and hence 𝐮 is a solution of (A5) if and only if 𝐮 − 𝑇𝐮 = 𝑅Λ. Then,

applying the Fredholm alternative to the self-adjoint compact operator𝑇, we deduce that (A5), or equivalently (2.3), admits
a solution 𝐮 ∈ 𝐻1(Ω;ℝ3) if and only if

𝑅Λ ∈ (Ker(𝑇∗ − 𝐼𝐻1))
⟂
= (Ker(𝑇 − 𝐼𝐻1))

⟂ (A6)

where 𝑇∗ denotes the adjoint operator of 𝑇, 𝐼𝐻1 denotes the identity map in 𝐻1(Ω;ℝ3) and the orthogonal spaces are
defined in the sense of the scalar product (⋅, ⋅)𝐓. It can be verified that Ker(𝑇 − 𝐼𝐻1) = 𝑉0 as we deduce by (2.5).
We now have all the tools to proceed with the proofs of (i)–(iv).
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DEMIRANDA et al. 33 of 34

The proof of (i) is complete once we show that (A6) is equivalent to condition (2.8). Condition (A6) is equivalent to

(𝑅Λ, 𝐯)𝐓 = 0 for any 𝐯 ∈ 𝑉0, (A7)

being Ker(𝑇 − 𝐼𝐻1) = 𝑉0. On the other hand, by definition of 𝑅, we have that

(𝑅Λ, 𝐯)𝐓 = ⟨Λ, 𝐯⟩ for any 𝐯 ∈ 𝐻1(Ω;ℝ3) . (A8)

Combining (A7) and (A8) we finally obtain ⟨Λ, 𝐯⟩ = 0 for any 𝐯 ∈ 𝑉0, which is exactly (2.8) in view of the definition of
the functional Λ.
For the proof of (ii) we observe that by (2.1), (2.3), (2.5) and (2.6) we have for any 𝐯 ∈ 𝐻1(Ω;ℝ3)

𝑎(𝐮 + 𝐯0, 𝐯) = 𝑎(𝐮, 𝐯) + 𝑎(𝐯0, 𝐯) = 𝑎(𝐮, 𝐯) = ⟨Λ, 𝐯⟩
which shows that 𝐮 + 𝐯0 is a solution of (2.3).
For the proof of (iii) we consider two solutions 𝐮 and𝐰 of (2.3) and let 𝐯0 = 𝐰 − 𝐮. By (2.1) and (2.3) we obtain

𝑎(𝐯0, 𝐯) = 𝑎(𝐰, 𝐯) − 𝑎(𝐮, 𝐯) = ⟨Λ, 𝐯⟩ − ⟨Λ, 𝐯⟩ = 0 for any 𝐯 ∈ 𝐻1(Ω;ℝ3)

which immediately gives 𝐯0 ∈ 𝑉0 thanks to (2.5).
Finally, let us proceed with the proof of (iv). First we prove the existence of a solution of (2.3) in 𝑉⟂

0
.

Let 𝐮 be a generic solution of (2.3) and consider its orthogonal decomposition 𝐮 = 𝐮0 + 𝐮1 ∈ 𝑉0 ⊕ 𝑉⟂
0
with respect to

the scalar product (A4). Then, 𝐮1 = 𝐮 − 𝐮0 ∈ 𝑉⟂
0
and by part (ii) we deduce that 𝐮1 is still a solution of (2.3).

Once we have proved existence, let us prove uniqueness. Let 𝐮,𝐰 ∈ 𝑉⟂
0
be two solutions of (2.3). Then, on one hand

we have that 𝐮 −𝐰 ∈ 𝑉⟂
0
and on the other hand 𝐮 − 𝐯 ∈ 𝑉0 thanks to part (iii). Therefore, 𝐮 −𝐰 ∈ 𝑉0 ∩ 𝑉⟂

0
= {0} and

this readily implies 𝐮 = 𝐰 thus completing the proof of (iv). □

Notations. We give some notations that will be used throughout this paper about functional spaces and differential oper-
ators acting on scalar functions, vector valued functions, matrix valued functions. We denote by Ω a general domain in
ℝ𝑁 , 𝑁 ≥ 1 where by domain we mean a connected open set in ℝ𝑁 .

∙ For 𝑁 = 3 we have

𝐓𝐮 =
⎡⎢⎢⎣
𝜎1 𝜏12 𝜏13

𝜏12 𝜎2 𝜏23

𝜏13 𝜏23 𝜎3

⎤⎥⎥⎦ , (A9)

where, combining (1.1) and (2.1), we infer

𝜎1 =
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
(1 − 𝜈)

𝜕𝑢1
𝜕𝑥

+ 𝜈

(
𝜕𝑢2
𝜕𝑦

+
𝜕𝑢3
𝜕𝑧

)]
𝜏12 =

𝐸

2(1 + 𝜈)

(
𝜕𝑢1
𝜕𝑦

+
𝜕𝑢2
𝜕𝑥

)
𝜎2 =

𝐸

(1 + 𝜈)(1 − 2𝜈)

[
(1 − 𝜈)

𝜕𝑢2
𝜕𝑦

+ 𝜈

(
𝜕𝑢1
𝜕𝑥

+
𝜕𝑢3
𝜕𝑧

)]
𝜏13 =

𝐸

2(1 + 𝜈)

(
𝜕𝑢1
𝜕𝑧

+
𝜕𝑢3
𝜕𝑥

)
𝜎3 =

𝐸

(1 + 𝜈)(1 − 2𝜈)

[
(1 − 𝜈)

𝜕𝑢3
𝜕𝑧

+ 𝜈

(
𝜕𝑢1
𝜕𝑥

+
𝜕𝑢2
𝜕𝑦

)]
𝜏23 =

𝐸

2(1 + 𝜈)

(
𝜕𝑢2
𝜕𝑧

+
𝜕𝑢3
𝜕𝑦

)
.

(A10)

∙ Given two vectors 𝐱 = (𝑥1, … , 𝑥𝑁), 𝐲 = (𝑦1, … , 𝑦𝑁) ∈ ℝ𝑁 we denote by 𝐱 ⋅ 𝐲 =
∑𝑁

𝑖=1
𝑥𝑖𝑦𝑖 their Euclidean scalar product

and by |𝐱| = √
𝐱 ⋅ 𝐱 the Euclidean modulus of 𝐱;

∙ the∞-norm of vectors is |𝐱|∞ ∶= max
1≤𝑖≤𝑁 |𝑥𝑖|;

∙ ℝ𝑀×𝑁 : space of𝑀 ×𝑁 matrices;
∙ if𝐴 ∈ ℝ𝑀×𝑁 and 𝐱 ∈ ℝ𝑁 is a vector,𝐴𝐱 denotes the usual product ofmatriceswhere 𝐱has to be seen as a vector column;
∙ letting 𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗) ∈ ℝ𝑁×𝑁 we denote by 𝐴 ∶ 𝐵 =

∑𝑁

𝑖,𝑗=1
𝑎𝑖𝑗𝑏𝑖𝑗 their Euclidean scalar product and by |𝐴| =√

𝐴 ∶ 𝐴 its Euclidean modulus;
∙ given 𝐴 ∈ ℝ𝑀×𝑁 we denote by 𝐴𝑇 ∈ ℝ𝑁×𝑀 its transpose;
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34 of 34 DEMIRANDA et al.

∙ given 𝐴 ∈ ℝ𝑁×𝑁 we introduce the operator ∞-norm of matrices by ‖𝐴‖∞ ∶= sup
𝐱∈ℝ𝑁⧵{𝟎}

|𝐴𝐱|∞|𝑥|∞ so that we have in

particular

|𝐴𝐱|∞ ≤ ‖𝐴‖∞ |𝐱|∞ for any 𝐱 ∈ ℝ𝑁. (A11)

Letting 𝐴 = (𝑎𝑖𝑗), ∈ ℝ𝑁 , the following characterization of ‖ ⋅ ‖∞ holds:

‖𝐴‖∞ = max
1≤𝑖≤𝑁

𝑁∑
𝑗=1

|𝑎𝑖𝑗|; (A12)

being ‖ ⋅ ‖∞ an operator norm, it is sub-multiplicative in the sense that ‖𝐴𝐵‖∞ ≤ ‖𝐴‖∞ ‖𝐵‖∞ for any 𝐴, 𝐵 ∈ ℝ𝑁×𝑁 .
∙ some well known functional spaces of functions defined from on an open set Ω ⊂ ℝ𝑁 to a vector space 𝑉 which could
be ℝ𝑀 or a space of matrices: 𝐶𝑘(Ω;𝑉), 𝐿𝑝(Ω;𝑉),𝐻𝑘(Ω;𝑉) with 0 ≤ 𝑘 ≤ ∞ integer and 1 ≤ 𝑝 ≤ ∞;

∙ for 0 ≤ 𝑘 ≤ ∞ integer, 𝐶𝑘(Ω;𝑉) denotes the space of restrictions to Ω of functions in 𝐶𝑘(ℝ𝑁;𝑉);
∙ (Ω;𝑉): space of 𝐶∞(Ω;𝑉) with compact support in Ω;
∙ ′(Ω; 𝑉): space of vector distributions, that is, the dual space of(Ω;𝑉);
∙ given a scalar function 𝑔 ∈ 𝐶1(Ω;ℝ), we denote by ∇𝑔 ∈ 𝐶0(Ω;ℝ𝑛) its gradient;
∙ given a vector valued function 𝐮 ∈ 𝐶1(Ω;ℝ𝑀), we denote by ∇𝐮 ∈ 𝐶0(Ω;ℝ𝑀×𝑁) its Jacobian matrix;
∙ given a vector valued function 𝐮 ∈ 𝐶1(Ω;ℝ𝑁), Ω ⊆ ℝ𝑁 , we denote by 𝐃𝐮 ∈ 𝐶0(Ω;ℝ𝑁×𝑁) its symmetric gradient

defined by 𝐃𝐮 =
∇𝐮 + ∇𝐮𝑇

2
(linearized strain tensor when 𝑁 = 3);

∙ given 𝑈 ∈ 𝐶1(Ω;ℝ𝑀×𝑁), Ω ⊆ ℝ𝑁 , we denote by div𝑈 ∈ 𝐶0(Ω;ℝ𝑀) the vector field 𝐯 = (𝑣1, … , 𝑣𝑀) such that 𝑣𝑖 =∑𝑁

𝑗=1

𝜕𝑈𝑖𝑗

𝜕𝑥𝑗
, 𝑖 = 1, … ,𝑀;

∙ given 𝐮 = (𝑢1, … , 𝑢𝑀) ∈ 𝐶2(Ω;ℝ𝑀), we denote by Δ𝐮 ∈ 𝐶0(Ω;ℝ𝑀) the Laplacian of 𝐮 defined component by com-
ponent, that is Δ𝐮 = (Δ𝑢1, … , Δ𝑢𝑀) where in the last identity Δ denotes the usual Laplacian of a real valued
function.

 15214001, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300169 by C

ochraneItalia, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Elasticity solution for a hollow cylinder under axial end loads: Application to a blister of a stayed bridge
	1 | INTRODUCTION
	2 | THE EQUATION OF THE LINEAR ELASTICITY: EXISTENCE OF A SOLUTION
	3 | THE HOLLOW CYLINDER UNDER AXIAL END LOADS
	3.1 | Periodic extension of the problem
	3.2 | Cylindrical coordinates exchange

	4 | AN ENGINEERING APPLICATION
	5 | PROOFS OF THE RESULTS
	5.1 | Proof of Proposition 3.1
	5.2 | Proof of Lemma 3.3
	5.3 | Proof of Lemma 3.4
	5.4 | Proof of Lemma 3.5
	5.5 | Proof of Lemma 3.6
	5.5.1 | The solution of the homogeneous system
	5.5.2 | The particular solution
	5.5.3 | The unique solution of (3.14)

	5.6 | Proof of Theorem 3.7
	5.7 | Proof of Proposition 4.1

	6 | CONCLUSIONS
	ACKNOWLEDGMENTS
	ORCID
	REFERENCES
	APPENDIX A
	A.1 | Proof of Proposition 2.1



