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HIGHLIGHTS 

 Windtrax can be used to quantify Emission Rates from complex sources; 

 Windtrax has been investigated in terms of validation and sensitivity to model specific parameters;  

 The model appears to be reliable under neutral conditions; 

 Model specific parameters slightly influence the results. 
 

ABSTRACT: In last years, atmospheric dispersion models have reached considerable popularity in environmental 
research field. In this regard, given the difficulties associated to the estimation of emission rate for some kind of sources, 
and due to the importance of this parameter for the reliability of the results, backward dispersion models may represent 
promising tools. In particular, by knowing a measured downwind concentration in ambient air, they provide a numerical 
value for the emission rate. This paper discusses a critical validation of the Windtrax backward model: the investigation 
does not only deal with the strict reliability of the model but also assesses under which conditions (i.e. stability class, 
number, and location of the sensors) the model shows the greatest accuracy. For this purpose, Windtrax results have been 
compared to observed values obtained from available experimental datasets. In addition, a sensitivity study regarding 
model-specific parameters required by Windtrax to replicate the physics and the random nature of atmospheric dispersion 
processes is discussed. This is a crucial point, since, for these settings, indications on the numerical values to be adopted 
are not available. From this study, it turns out that the investigated model specific settings do not lead to a significant 
output variation. Concerning the validation study, a general tendency of the model to predict the observed values with a 
good level of accuracy has been observed, especially under neutral atmospheric conditions. In addition, it seems that 
Windtrax underestimates the emission rate during unstable stratification and overestimates during stable conditions. 
Finally, by the definition of alternative scenarios, in which only a portion of the concentration sensors was considered, 
Windtrax performance appears better than acceptable even with a small number of concentration sensors, as long as the 
positioning is in the middle of the plume and not in the strict vicinity of the source. 

Keywords: Dispersion Modelling; Backward Lagrangian Stochastic Model; Inverse Modelling; Sensitivity Analysis; 

Validation; Complex Sources 

1. Introduction  

In last years, urbanization and industrialization have been major contributing factors to poor air 

quality. As the air quality deteriorates, exposure to air pollution remains a fundamental concern to 

public health: chemical species in the atmosphere, such as NO2, SO2, CO, PM10, PM2.5, C6H6, could 

severely damage the health of the population (Breton et al., 2021; Haga et al., 2021).  

Information on atmospheric pollution and its environmental impact on citizens is the starting point 

for improving air quality: the evaluation of the extent of exposure to chemicals becomes a key issue 



(Piccardo et al., 2022). In this regard, dispersion modelling represents a useful tool for reproducing 

spatio-temporal distribution of contaminants emitted by a specific source thereby quantifying the 

areas of population exposure as well as the ground level concentrations of contaminants (Mangia et 

al., 2014). 

There are several types of atmospheric dispersion models, Gaussian (Gifford, 1959), Eulerian 

(Jacobson, 2005; Seinfeld and Pandis, 1998), Lagrangian (Rodean, 1996), and fluid dynamics models 

(Moon et al., 1997). The aim of these tools is the calculation of the ambient air concentration of a 

species, given the meteorological and emissive conditions of the source 

et al., 2014; Tagliaferri et al., 2020). 

In recent years, while the calculation of dispersion in atmospheric models has advanced (Herring and 

Huq, 2018; Yudego et al., 2018), model accuracy also depends on the quality of the input dataset: 

particularly the mass flux rate from the source (Tagliaferri et al., 2022). For point sources, such as 

stacks and chimneys, emission rates can be measured rapidly. On the other hand, when dealing with 

non-point sources, the estimation of the emission rate is a particularly challenging task due to the 

difficulties of direct sampling and the possible influence of different external variables, such as 

temperature and wind speed, on the emission rate of this kind of source (Invernizzi et al., 2019; 

Tagliaferri et al., 2021). Also, management and logistical practices may influence the emission from 

aerated basins and storage tanks (Invernizzi et al., 2020; Invernizzi and Sironi, 2021).   

To this end, it would be useful to have a continuous and indirect method to estimate the emission rate. 

The use of an inverse dispersion model would be very fit for this purpose: this tool, by knowing a 



concentration value in ambient air, is able to quantify the emission rate of the source (Flesch et al., 

2007).  

Windtrax software (Crenna, 2006) is a backward Lagrangian stochastic model, based on the principles 

of Monin-Obukhov Similarity Theory (MOST) that computes an ensemble of random paths thus 

quantifying the unknown emission rates from measured downwind concentrations (Flesch and 

Wilson, 2005, 1995).   

Windtrax is widely used for the evaluation of emission rates in the agro-meteorology field, where 

emissions of greenhouse gases, methane, or ammonia are typically measured (Gao et al., 2009; Lin 

et al., 2015; McBain and Desjardins, 2005; Thomas B. McKee, 1993; Yang et al., 2016). The papers 

published in the literature about Windtrax are generally focused on the evaluation of how well it 

predicts the emission of pollutants from area sources (Gao et al., 2009; McBain and Desjardins, 2005; 

Ro et al., 2014; Thomas B. McKee, 1993; Wang et al., 2013; Yang et al., 2016). 

On the contrary, the present paper focuses on the application of Windrax for a different type of source. 

In fact, before tackling datasets with complex sources, it was decided to initially test the model by 

considering sources, such as stacks, which, to the best knowledge of the authors, were rarely discussed 

in the literature in similar studies.  

In addition, when dealing with point sources, thanks to their easy measurement and characterisation, 

the observed emission rate to be compared with the model output is more reliable: consequently, the 

model validation is more robust. In this study, two experimental campaigns with a point source (i.e. 

stack) will be considered. 



Windtrax model was chosen mainly because it is freely downloadable, easy-to-use thanks to a user-

friendly interface, and widespread mentioned in the literature.   

Initially, a critical validation of the model is carried out: the investigation does not only deal with the 

strict reliability of the model but also assesses under which conditions (i.e. stability class, number, 

and location of the sensors) the model shows the greatest accuracy. In this regard, a further aspect of 

novelty of this paper, in addition to the investigated type of source, concerns the validation study. 

More in detail, it is not limited to evaluating the impact of the measurement fetch (i.e. distance from 

the source and the concentration sensor) and the atmospheric stability conditions, previously 

discussed in the literature in case of agricultural area sources. It also focuses on the influence of the 

number of available detectors: it investigates if high model performance can be achieved with a single 

concentration sensor or if the model response may be improved by increasing the number of detectors. 

In addition, to improve the current state of the art, a sensitivity study regarding some model-specific 

parameters required by Windtrax to replicate the physics and the random nature of atmospheric 

dispersion processes, is discussed. This is a crucial point, since, for these settings, indications on the 

numerical values to be adopted are not available, 

guides. 

In summary, the present work aims to validate the Windtrax model by comparing the model results 

with observed values obtained from experimental datasets available in the literature, to perform a 

sensitivity analysis in order to quantify the influence of the model-specific parameters and to identify 

optimal values of these variables. Moreover, a specific analysis, to provide information on the optimal 

positioning of the sensor concentration, has been conducted.  



The structure of the paper includes a brief summary of the theory of the model, the experimental 

campaigns, the elaborated statistics and an insight on sensitivity (Section 2). Section 3 reports the 

results and a critical discussion. Finally, Section 4 summarizes the conclusions and possible 

improvements to optimize the performance of the software. 

2. Methods and Materials  

2.1 Windtrax model  

WindTrax 2.0.9.7 (Crenna, 2021) is a software that simulates the transport of gaseous substances in 

the atmosphere. It is based on the theory of the Lagrangian Particle Model (Crenna, 2006): the 

dispersion of pollutants is considered as a flow of dimensionless particles whose trajectory is 

described in a stochastic way. 

It can be used either to calculate the concentration of a gaseous substance at a given point if the 

Emission Rate is known, or to calculate the Emission Rate if the concentration of the pollutant at a 

given point is known. The generic equations on which the model is based are: 

  

         [1] 

Where is the background concentration,  are the emission rates,  are the coefficients, 

computed by the model, relating the emission rate to the measured concentration .  

In order to solve the system of equations, there must be at least as many known concentration 

measurements as there are unknown emission rates. If the number of known concentrations is 



greater than the number of unknown sources , the solution will be the best fit in the least-squares 

sense (Crenna, 2006).  

A full description of the Windtrax model is not presented here, since it has been widely discussed in 

the literature (Crenna, 2006; Flesch and Wilson, 2005, 1995). 

2.2 Uttenweiler and Round Hill campaigns 

In this paragraph, a very brief description of the field experiments used in the present study to validate 

the model is provided. For further details, the authors resend to the field test reports (Bachlin et al., 

2002; Cramer et al., 1958). 

The Uttenweiler campaign was conducted in a pre-existing pig farm on 12 and 13 December 2000 

and 31 October 2001. The farm is situated outside the small village Uttenweiler, 20 km west of the 

city of Bielberach (5331621 m N, 548508 m E, UTM zone 32U) in Germany. The surrounding area 

is mostly flat. This farm consists of the pig barn and the feed processing room. The gas tracer, sulphur 

hexafluoride (SF6), was continuously emitted by a single point source located on a building and 

measured with a sampling rate of 0.1 Hz. The stack was at 8.5 m above the ground level, and it was 

connected to the internal ventilation system. 14 trials were performed, named in alphabetical order 

from B to O: experiment A was an attempt. Concentration sensors were located on two parallel 

transects, one at 140 m from the source, the other at 280 m. 

During the field tests, meteorological measurements were carried out using different devices (i.e. an 

ultrasonic anemometer and a cup anemometer). To set the simulations, meteorological data from 

ultrasonic anemometer (with a sampling frequency of 10 Hz) were taken into account, since it 

provides atmospheric turbulence parameters from which to derive the stability conditions. This 



instrument was located downwind at z = 3.5 m near the first transect at which concentration 

measurements were undertaken. 

The second campaign is the Round Hill experiment (Cramer et al., 1958). The site area, with flat 

terrain, is close to the Round Hill Field Station of the Massachusetts Institute of Technology (338022 

E, 4600793 N, UTM zone 19T). The vertical emission consisted of a stack at 30 cm from the ground 

releasing SO2. The dataset from the Round Hill campaign provides several concentration values 

measured from sensors positioned along arcs at different distances downwind of the release (i.e 50 

m, 100 m and 200 m). Each arc is composed of receptors spaced at 3-degrees covering 180 degrees. 

A large number of experiments were conducted, some of which have been considered in the present 

study. In particular, eight experiments characterized by different stability classes, were chosen to be 

tested: three of them are conducted under Moderately Unstable (MU) conditions, two in Neutral (NN) 

conditions, two in Moderately Stable (MS) conditions and only one in Extremely Stable (ES) 

conditions. The data set was obtained by means of the website http://www.harmo.org/jsirwin. 

Meteorological data were obtained by means of a system composed by cup anemometers and 

ventilated thermocouples, installed at four levels (1.5, 3, 6 and 12m) on a portable tower, for 

measuring vertical gradients of mean wind speed and air temperature. In addition, a cup anemometer 

located at a height of 2 m near the release point, was installed to estimate mean wind speeds and 

frequency distributions of azimuth wind direction. 

2.3  Model Validation 

The first objective of this work was to estimate the performance of Windtrax in predicting the 

experimental data of emission rate from the source, by using as input the measured ambient air 



concentrations. For this purpose, some statistical indicators were used (Chang and Hanna, 2004; 

Gustafson and Yu, 2012; Hanna and Chang, 2015; Willmott, 1981): Mean Bias (MB), Normalized 

Mean Bias (NMB), Root Mean Squared Error (RMSE), Normalized Mean Squared Error (NMSE), 

Index of Agreement (IOA) and FAC2.  

The equations of each indicator are reported below: 

          [2] 

         [3] 

         [4] 

           [5] 

         [6] 

           [7] 

Where  is the single modelled emission rate and  is the single observed value. The optimal values 

of these parameters indicating the best fit between the model results and the experimental data are: 

, , , , . Regarding the last index, FAC2, the 

percentage of values within the factor 2 range will be expressed.  

The percentage (%) error of the modelled value with respect to the observed one has also been 

calculated. The latter is computed by means of the following formula: 

              [8] 



2.4 Sensitivity of model to specific parameters 

A further target of this study is to assess the sensitivity of Windtrax to some model-specific 

parameters and settings. They might represent a significant source of uncertainty because clear 

indications on the numerical values to be adopted are not available. As a result, their definition is left 

to the professional judgment of the modelist. The sensitivity study allows to evaluate the effect on 

the estimated emission rate caused by a variation of an input datum, thereby identifying the most 

influential variables. 

In particular, the investigated parameters are:  

- concentration-sensor box dimension: the particles released from the source are collected 

within a volume surrounding the sensor. In the graphical interface of the software, it is 

necessary to set the box size to identify how many particles pass through the sensor. Ideally, 

it should be as small as possible. The drawback of making it too small is that huge numbers 

of particles need to be released to get a reasonable particle sample passing through the sensor's 

collection box.   

- numerical approach generating the random stochastic trajectory of the particles. In particular, 

two different options are available:  

 Just-in-time , which generates new random numbers for each calculation,  

 Precalculated is pre-generated and 

stored in an array. They are then selected from the array by indicating a random array 

index. 



To evaluate the sensitivity of the model to these parameters, the percentage error of the modelled 

value with respect to the observed one was computed for different values of the investigated 

parameters (Equation [8]).  

3. Results and Critical discussions  

3.1 Uttenweiler campaign 

The Uttenweiler campaign was carried out in 14 experiments (B-O) lasting ten minutes each.  

All these experiments had their own characteristics, such as weather data (wind velocity, wind 

direction, stability class) and instrument placements (sonic anemometer and concentration sensors). 

Therefore, each experiment was implemented separately in the software, in order to obtain as many 

calculated Emission Rate values as the number of experiments. As an example, a picture of the spatial 

configuration of experiment B is given in Figure 1a. In detail, the star with outgoing arrows next to a 

question mark represents the point source having unknown emission rate; the columns having the 

remaining column represents the anemometer. In Figure 1b, an example of the Windtrax interface is 

shown while the simulation is running, with particles emitted from the point source. 



 (a) (b) 

Figure 1. Experiment B spatial configuration on Windtrax on the left (a); Windtrax simulation, in which the trajectories traced by the 

emitted particles are visible, on the right (b) (Crenna, 2006). 

In this section, the sensitivity study and the validation of the model with the Uttenweiler experimental 

campaign will be discussed (Bachlin et al., 2002). 

3.1.1 Sensitivity to model specific parameters  

First of all, the sensitivity of the model to the parameters previously described (concentration sensor 

box dimension and random sequence generation mode) is tested. In the following figure (Figure 2), 

the percentage error between the modelled and the observed value, obtained for all the experiments 

considered when changing the concentration sensor box, is reported.  

The dimensions (for both height and width) tested are: 0.5 m, 0.8 m and 1 m. From this plot, it can 

be inferred that the box dimension seems to have a negligible influence on the model output.  

The other parameter considered is the Random Number Generation Mode, for which Windtrax offers 

Precalculated Just in time  In Figure 3, the percentage errors in twenty runs 



are reported: first, ten simulations of experiment B were performed with Just in time  and 

the same input data, no variables were changed. Then, ten simulations of the same experiment with 

Precalculated From the results of this test, a maximum error of about 10% is 

highlighted, regardless of the option selected. Thus, it can be concluded that there is not a remarkable 

Precalculated Just in time the random generation option 

does not produce significant differences in the results.  

 

Figure 2. Percentage Error of all experiments considered in function of the Box Side Dimensions. 



 

Figure 3 methods for the calculation of Random Number Generation. Percentage errors 

resulting from 20 different runs are reported for experiment B. 

3.1.2 Model validation  

Before starting the validation study, based on the results obtained from the sensitivity analysis, the 

model-specific parameters were defined. In particular, it was decided to adopt Just in time

for the generation of stochastic trajectories and the dimension of concentration sensors was selected 

as default (0.2 m as height, 2 m as width). These parameters were fixed for all the runs. 

As first test, all the possible ambient air concentration data (12 measurement points) of the 

Uttenweiler campaign were entered as input data. In Table 1 the statistical indicators, computed by 

considering all the 12 sensors of all the 14 experiments (B-O), are reported.  



MB [g/h] NMB [-] RMSE [g/h] NMSE [-] IOA [-] FAC2 [%] 

46.3 0.3 94.1 0.21 0.7 100 

Table 1. Statistical indicators computed by considering all the experiments; from the left: Mean Bias, Normalized Mean Bias, Root 

Mean Square Error, Normalized Mean Square Error and Index of Agreement. 

Focusing on the statistical indicators NMB, NMSE and IOA, the values predicted by the Windtrax 

model (Crenna, 2006) appear quite good. To confirm this, it is emphasized that the totality of the 

values obtained belong to the FAC2 range.  

From Equation [1], it is possible to deduce the number of the unknown emission rates should be at 

least equal to the number of the ambient air concentration data. In the present experimental campaign 

the situation is someway fanciful: 12 ambient air concentration measurements are available, whereas 

only one emission rate should be estimated. Thanks to this amount of data, an analysis has been 

conducted in order to evaluate the performance of the model by reducing the number of the available 

air concentration data. This assessment is intended to reflect a more realistic condition for 

measurement campaigns and estimation of emission fluxes using inverse modelling, where the 

number of concentration sensors is smaller. As discussed in the previous paragraph, the Uttenweiler 

campaign is characterized by a particular positioning of the concentration sensors: it develops in one 

or two transects (depending on the specific experiment) placed approximately perpendicular to the 

direction of the wind. In experiments with two transects, these are placed parallel to each other and 

downwind to the emission source, one at 140 from the stack, the other at 280 m, as for example 

reported in Figure 1.  



Besides the assessment of the influence of the number of sensors, to obtain useful information about 

the placement of concentration detectors and the optimal distance from the emission source, only 

experiments that have two parallel transects of receptors (B-H, M-O), have been considered in the 

following analysis. Therefore, trials I, J, K, L, with a single transect, are neglected. In this way it was 

also possible to test the influence of the distance of the receptor from the source on the accuracy of 

the results, i.e. to highlight if there is a significant difference when considering receptors closer or 

farther from the emission.  

The different configurations implemented into the model are:  

1) Two transects of concentration sensors, placed parallel to each other (as in the Uttenweiler 

experimental campaign), 

2) The entire transect of concentration sensors closest to the source, 

3) The entire transect of concentration sensors farthest from the source, 

4) Two downwind sensors on the transect closest to the source,  

5) Two downwind sensors on the transect farthest from the source,  

6) One downwind sensor on the transect closest to the source,  

7) One downwind sensor on the transect farthest from the source,  

8) Two downwind sensors, one on the transect closest to the source and one farthest from the 

source. 

The choice of receptors to be considered, when reducing the number of detectors (conf. 1-7), has been 

made according to the position of sensors with respect to the plume direction: detectors located closest 

to the plume axis have been preferably considered. This is because Windtrax, in some cases, does not 



provide the estimation of the emission rate whether the concentration sensors are positioned far from 

the plume centerline.  

To show the results of this test, the percentage errors between the modelled and the observed value 

(calculated with Equation [8]) for experimental trials conducted in neutral/stable conditions (B, C, E, 

F, G) and very stable (D, H, M, N, O) atmospheric conditions are shown (Figure 4). In doing so, the 

way in which the stability class affects the performance of the model can be easily recognized in order 

to identify the optimal meteorological conditions to run the model.  

In particular, for each experiment, the eight different configurations (1-8) of receptors discussed 

above are considered. Therefore, in each plot, 40 points are shown, obtained by the combination of 

the 5 experimental trials (B, C, E, F, G for neutral/stable conditions and D, H, M, N, O for stable and 

very stable conditions) and the 8 receptors configurations (1-8), reported on x-axis. In addition, in 

order to evaluate the influence of the source distance, different indicators are adopted to distinguish 

the configurations in which all the receptors are located near (N) from the emission source 

(configurations 2, 4, 6), far (F) from the source (conf. 3, 5, 7) or some in the vicinity and others far 

(N&F) from the source (conf. 1, 8).  

 It is worth noting that values reported on the y-axis in the two plots are different, ranging from -60 

% to 100 % in the case of neutral/stable conditions and -100 % to 350 % for unstable conditions.  



 

 

From these plots, it is possible to observe that the highest values of error occur when considering 

experiments with stable and very stable conditions. In addition, under stable stratification, high 

standard deviations are frequently estimated (see Supplementary Material). 

 



The high errors obtained in stable conditions may be related to the fact that the plume emitted from 

the source under stable conditions is poorly dispersed in both the vertical and horizontal directions. 

As a result, concentration sensors are less likely to be crossed by the plume.  

Moreover, errors estimated in stable and very stable conditions are more pronounced when the 

concentration sensor is positioned close to the emission source, with a significant overestimation of 

the observed value. This may be related to the fact that the poor dispersion of the plume is more 

pronounced in the vicinity of the emission source where the pollutant is less diluted and dispersed. 

Another consideration concerns the influence of the number of receptors on the model accuracy. From 

Figure 5, it turns out that the reduction of the number of sensors does not necessarily improve the 

model performance. Thus, it can be inferred that the correct downwind placement of the sensor is 

much more significant than the number of sensors. In other words, the model results show a good 

accuracy even when considering a single measurement point provided that the sensor is properly 

located. 



Figure 5. Estimated error (%) for the experiments under neutral/stable and stable or very stable atmospheric conditions when 

considering receptors configurations involving 1 or 2 sensors (conf. 3-7) or 6 or 12 sensors (conf. 0-2). 

To conclude, the implementation of the Uttenweiler dataset shows good performance of the model in 

predicting the emission rate under neutral/stable condition. Under stable and very stable conditions 

great care must be taken with the location of the sensor due to the fact that the plume is poorly 

dispersed. In this sense, a possible solution might be to move the sensor away from the source.  

3.2 Round Hill campaign  



In this section of the paper the validation of the model with the Round Hill Campaign (Cramer et al., 

1958) will be discussed. It is worth highlighting that, due to the low influence associated to the model-

specific parameters previously investigated, the sensitivity study was not repeated for the Round Hill 

dataset. 

3.2.1  Model validation  

The simulations of Round Hill campaign allow to test the performance of the model in a wide range 

of stability conditions (i.e. Moderately Unstable, Neutral, Moderately Stable and Extremely Stable).  

In addition, for each experiment, different configurations of receptors were considered:   

1) One arc of six downwind receptors at 50 m from the source; 

2) One downwind receptor at 50 m from the source; 

3) Two downwind receptors, one at 50 m and one at 100 m from the source; 

4) One downwind receptor at 100 m from the source; 

5) One downwind concentration at 200 m from the source. 

The choice of receptors to be considered has been made following the same approach discussed for 

the Uttenweiler campaign, i.e. according to the position of sensors with respect to the plume axis. 

In Figure 6 the % errors obtained for the different configurations of receptors (1-5) for the eight 

experiments are reported. It should be noted that for configuration 5 two points are missing 

(experiments n.1 and n.3), due to the failure to obtain a model result for the specific experiments.  



 

Figure 6. Percentage Error for the eight experiments with different stability classes (MU=Moderately Unstable, NN=Neutral, 

MS=Moderately Stable and ES=Extremely Stable), in five different spatial configurations of concentration sensors (1-5). The 

absence of two indicators in configuration 5 means that there were no results provided by the model. 

From Figure 6 a general tendency of the model to overestimate in stable atmospheric conditions, as 

for the Uttenweiler dataset, and to underestimate in unstable conditions may be observed.  

In addition, the best fit between the modelled value and the observed emission rate is shown in neutral 

stability conditions: in this situation, the percentage errors range between ±40% with an average value 

of about 10 %.  

Conversely, the mean % error for experiments in unstable conditions is about -60%; while the mean 

error for trials in stable conditions is about 50%. Although the absolute values of the percentage errors 

obtained under stable and unstable stratification are comparable (50% vs 60%), it seems that, in 

unstable conditions, the model shows a general tendency to underestimate the observed values, 



whereas in stable conditions it generally overestimates the emission rate, as confirmed by the 

Uttenweiler dataset.  

Moreover, in unstable situations, a more scattered error pattern (i.e. very low errors in some 

experiments, very high in others and eventually no results provided by the model) is shown. This 

behaviour is probably attributable to the high level of turbulence in unstable conditions. For this 

reason, it might be concluded that the model is more reliable in stable than in unstable conditions, 

even because the positioning of the sensor not too close to the emission source might help in the 

improvement of the model predictions. In fact, in stable conditions, the average percentage error 

seems to decrease as the distance of the sensors from the source increases: in particular, when 

considering the three experiments under stable stratification (n.6, n.7, n.8), in configuration 2 

(receptor at 50 m from the source) the resulting error is about 60%, in configuration 4 (receptor at 

100 m from the source) it decreases up to 40% and in configuration 5 (receptor at 200 m from the 

source) the error is 32%. This outcome confirms what previously discussed for the Uttenweiler 

campaign: in stable conditions the slow dispersion of the plume may lead to incorrect estimation in 

near-field assessments.  

By reducing the number of concentration sensors, for instance by comparing (Figure 6) the errors 

obtained for configuration 1 (6 receptors at 50 m) and configuration 2 (1 receptor at 50 m), it turns 

out what previously verified with the Uttenweiler dataset even considering a single concentration 

value, provided that the sensor is crossed by the plume, it seems that the model still responds well. 

Thus, it can be concluded that the number of sensors is not so limiting, but rather their correct 

placement. 



In Table 2, the statistical indicators presented in section 2.3 are shown, taking into account all the 

simulated experiments of the Round Hill campaign. Overall, considering the absolute values of these 

statistical indicators, it seems that the model predicts the experimental data with a quite high level of 

accuracy: for example, FAC2 is 74%.  

MB [g/s] NMB [-] RMSE [g/s] NMSE [-] IOA [-] FAC2 [%] 

-1.1 -0.14 5.0 0.32 0.11 74 

Table 2. Statistical indicators for all the considered experiments; from the left: Mean Bias, Normalized Mean Bias, Root Mean 

Square Error, Normalized Mean Square Error and Index of Agreement 

Moreover, given the wide range of atmospheric stability conditions available, for the Round Hill 

campaign, the performance parameters are computed (Figure 7) even distinguishing between the 

experiments conducted in neutral, stable and unstable conditions.  

As for the Uttenweiler dataset, the best response is obtained when considering neutral conditions: in 

this situation, a FAC2 value of 100% is computed. Also, the other performance indicators are very 

close to the optimal values.  

Therefore, from this study, it appears that the model is more reliable for neutral conditions, where a 

good agreement between the experimental data and the simulated values is observed.  



Figure 7. Statistical indicators for all the simulated experiments (Round Hill dataset) by distinguishing between unstable, neutral 
and stable conditions. 

4. Conclusions  

Due to the high complexity associated with the quantitative characterization of some kind of emission 

sources, the availability of a reliable tool to estimate the source emission rate starting from a 

downwind measured concentration would be of great interest.  

This work arises from this intent. It aims to test the performance and the potential usability of the 

backward Lagrangian model Windtrax, widespread mentioned in agrometeorological literature.  



In particular, this validation study is not limited to investigating the reliability of the model in 

predicting the observed emission rate, but it also tries to understand under which conditions the 

performance of the model are expected to be higher. In addition, the present paper discusses a 

sensitivity analysis of Windtrax to some model-specific parameters since the definition of these 

variables is mandatory, but no clear indications are available.  

First of all, a sensitivity analysis was carried out on model specific parameters (i.e. concentration 

sensor box dimension and random number generation mode). It was found that these variables do not 

lead to a significant output variation. 

Concerning the validation, from the results of this study, it turns out a general tendency of the model 

to predict the observed values with a good level of accuracy. In particular, for the Uttenweiler and 

the Round Hill campaigns, acceptable values of the performance indicators are obtained. For the 

Uttenweiler dataset, it turns out that all the values obtained belong to the FAC2 range. The estimated 

FAC2 indicator for the second campaign is satisfactory, corresponding to 74%. By the definition of 

alternative testing scenarios, where only a portion of the concentration measurement sensors were 

considered, further information have been obtained: the performance of the software is better than 

acceptable even with a small number (1 or 2) of concentration sensors, as long as the positioning is 

in the middle of the plume and not in the strict vicinity of the source. This appears particularly 

strengthened in stable conditions.  

In addition, from this evaluation, the performance of the model in different stability conditions were 

investigated. In this regard, it appears that the model is more reliable in neutral conditions, where a 

good agreement between the experimental data and the simulated values is observed. Accordingly, 



studies available in the literature revealed lower emission calculation errors under neutral atmospheric 

conditions (Gao et al., 2009; Wang et al., 2013) even though, as discussed in the introduction, they 

focus on a different source configuration with respect to the point source implemented in this study. 

In addition, Gao et al., (2009) confirmed the general tendency, observed in this study, of Windtrax to 

underestimate the emission rate during unstable stratification and overestimate during stable 

conditions, whereas an opposite behaviour is observed by Wang et al., (2013). The latter also showed 

higher performance in stable conditions when moving the sensor far away from the emission source 

as long as the distance is not excessively increased. 

In conclusion, Windtrax appears to be a very promising tool for the estimation of the emission rates. 

Its use may be very attractive also for the continuous monitoring of the emission rate, in order to 

 

However, it is worth highlighting that it is not a trivial tool, and therefore, in order to obtain useful 

results, it requires a preliminary analysis, regarding the position of the concentration sensors and the 

optimal meteorological conditions. 

Finally, to improve and optimize the performance of the model, it could be helpful to implement into 

the software an algorithm to simulate the plume rise mechanism and elevated (not-ground-level) area 

sources. 
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