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A B S T R A C T

As advanced production capabilities are moving towards novel types of geometries as well as higher custom-
ization demands, a new and more efficient approach for process and part qualification is becoming an urgent 
need in industry. The layerwise nature of additive manufacturing (AM) potentially allows anticipating qualifi-
cation tasks in-line and in-process, aiming at reducing the time and costs devoted to post-process inspections, 
enabling at the same time an early detection of defects since their onset stage. Such opportunity is particularly 
attractive in the presence of highly complex shapes like lattice structures or metamaterials, which have been 
increasingly investigated for industrial adoption in various sectors, aiming to achieve enhanced mechanical 
properties and innovative functionalities. This paper presents a novel methodology to inspect the geometry of 
lattice structures while the part is being built. The method is specifically designed to tackle the natural variability 
affecting layerwise images gathered in laser powder bed fusion. To this aim, it combines the segmentation of in- 
situ powder bed images of solidified layers with a data modelling approach to synthesize the 3-D shape of each 
unit cell into a 1-D profile representation. Such low-dimensional representation is suitable to quickly detect 
undesired distortions that may have a detrimental impact on final quality and performance. By using post-process 
X-ray computed tomography as ground truth reference, this study shows the effectiveness of the proposed 
approach for in-line inspection, opening a novel and cost-efficient way to address complex shape qualification for 
lattice structures in AM.

1. Introduction

Additive Manufacturing (AM) has enabled a quick and widespread 
evolution from traditional product designs to full 3-dimensional (3-D) 
complex shapes in many real industrial applications. New levels of part 
complexity allow meeting new market demands, including increased 
customization, higher sustainability of the whole production chain and 
enhanced product performances, from extended life to novel embedded 
functionalities. Nevertheless, making use of such design freedom implies 
a wider adoption of advanced non-destructive inspection methodolo-
gies. The only viable solution to inspect the intricate internal features of 
additively manufactured parts is X-ray computed tomography (CT). It 
allows determining discrepancy models of both external and internal 
features, inspecting volumetric defects and qualifying high-value-added 
components. However, the adoption of X-ray CT inflates the time and 
cost required by quality assurance procedures, while in the presence of 
large parts of highly dense materials it can be even unfeasible. On the 

other side, an approach to detect defective products in-situ and in-line, 
as soon as they appear during the process can significantly reduce 
resource and energy waste allowing detection of nonconforming prod-
ucts as soon as they appear.

Aforementioned qualification challenges are even more crucial for a 
specific family of complex shapes enabled by AM processes, i.e., lattice 
structures. These structures, also known as metamaterials, are structures 
that inherit their functional properties from their shape rather than from 
the material they are composed of. They represent one of most inno-
vative light-weight design solutions in today’s industry, thanks to the 
advanced mechanical, thermal, and functional performances enabled by 
their geometrical properties, and by the highly efficient use of the ma-
terial they are composed of [1,2]. The spread of lattice structures makes 
the lack of adequate and efficient qualification methods a relevant in-
dustrial problem. Local and internal inaccuracies may have a detri-
mental effect on the functional performance of the whole structure, and 
such inaccuracies can only be determined by means of expensive X-ray 
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CT measurements. As an example, a local dimensional and/or geomet-
rical mismatch between the manufactured part and the nominal geom-
etry may worsen the mechanical properties and influence the type of 
failure mechanism [3]. It can also affect other functionalities, like fluid 
separation in heat exchangers or the osteo-integration effectiveness in 
biomedical applications [4].

The present study is specifically aimed at developing an approach for 
in-situ and in-line data modelling and inspection of lattice structures to 
take advantage of the layerwise AM production paradigm, to 1) antici-
pate the detection of possible anomalies while the part is being built, and 
2) reduce the need for post-process non-destructive analysis. Despite 
dimensional and geometrical estimates gathered in-situ may be not fully 
representative of the actual size and shape of parts obtained at the end of 
the build – since shrinkage effects and distortions occurring under the 
layer cannot be captured – significant geometrical anomalies can be 
observed during the build, and should bring to an alarm, to early detect 
non-conformities. Indeed, in-situ measurements and monitoring have 
been pointed out to play a critical role towards more efficient qualifi-
cation and certification practices for AM products [5,6]. They cannot 
fully replace post-process metrology systems, but they aid anticipated 
anomaly detection as well as enriched information about part quality. 
The present study aims to contribute to this specific framework.

Amid the wide literature devoted to in-situ sensing and monitoring in 
AM [7-9], various studies investigated the possibility of in-situ inspec-
tion of dimensional and geometrical deviation, by measuring the de-
viations from the target geometry observed layerwise [10-15]. These 
methods rely on the in-situ reconstruction of the printed shape in every 
layer by means of so-called powder bed cameras commonly available in 
most industrial powder bed fusion (PBF) systems. The methods proposed 
in the literature entail a segmentation of high-spatial resolution images 
of the solidified surface acquired at the end of the melting phase in each 
manufactured layer. Pagani et al. [14] also proposed to combine the 
layerwise comparison between the reconstructed shape and the nominal 
one with a statistical monitoring scheme to automatically signal an 
alarm in the presence of actual anomalies. However, only few authors 
investigated the application of layerwise geometry reconstruction to 
in-situ inspection of lattice structures. Starting from the seminal work by 
Colosimo et al. [16], proposing an innovative solution for layerwise 
inspection of lattice structures starting from ex-situ X-ray CT data, 
Colosimo et al. [17] proposed a novel procedure for in situ inspection of 
lattice structures via machine learning applied to in-situ images. A 
similar procedure was proposed in Guerra et al. [18]. Forien et al. [19]
proposed a different sensing approach, namely co-axial pyrometry, to 
detect missing strut errors.

The present study extends and further develops the seminal concept 
proposed in Colosimo et al. [17], grounding on the seminal idea of 
modelling in-situ reconstructed quantities and their deviation from the 
nominal at the unit cell level, what we will call the “feature” level, 

differently from all other works on in-situ monitoring that focused on 
the deviation at single layer level. The proposed methodology involves 
two major novelty aspects. First, we explicitly address the natural 
variability affecting in-situ reconstructed geometries gathered via 
powder bed imaging. Indeed, layer-by-layer varying patterns in the 
brightness and contrast between the image foreground (i.e., the solidi-
fied region) and the background (i.e., the surrounding powder) may 
result in layer-by-layer varying reconstruction inaccuracies. This inflates 
the variability of shape deviation metrics and possibly decreases the 
capability to detect local geometrical distortions. We tackle this chal-
lenge through a weighted functional data modelling [20] approach, 
which allows enhancing the accuracy of the in-line geometry recon-
struction, while reducing the prediction error with respect to the ground 
truth. The second novelty contribution consists of an automated in-
spection approach where the uncertainty of the in-situ reconstruction is 
used to design the control limits that can be applied to detect deviations 
from the nominal geometry while considering the reconstruction error 
to avoid false alarms. Any deviation violating these limits represents a 
possible anomaly affecting the way in which the corresponding unit cell 
is being produced, thus anticipating possible non-conformities in the 
printed part.

The proposed approach is demonstrated by means of an experi-
mental study involving the production of metal lattice structures with an 
industrial laser powder bed fusion (L-PBF) system. In-situ sensing was 
performed using the powder bed camera and lighting setup available in 
the industrial machine. Ex-situ X-ray CT inspection was used to deter-
mine the ground truth of as-built lattice structure geometries. The results 
highlight the potential to shift the quality inspection of lattice structures 
from costly post-process controls to cost-effective in-situ and in-line 
implementation.

The paper is organized as follows. Section 2 presents the proposed 
methodology. Section 3 presents the real case study, namely the L-PBF 
production of trabecular lattice structures. Section 4 is devoted to the 
discussion of results and Section 5 concludes the paper.

2. Methods and materials

2.1. Underlying principle and terminology

The term “lattice structure” refers to a variety of geometrical con-
figurations, ranging from surface-based structures, also known as 
gyroids, to strut-based structures. The former consists of alternating and 
intersecting surfaces that repeat in space. The latter consists of a series of 
rod-like shapes that are connected to each other in different orientations 
to form unit cells. In this study, we focus on lattice structures charac-
terized by unit cells of fixed size and shape that periodically repeat in 
space. Thanks to their isotropic characteristics they represent the most 
common type of structures studied in the literature, which have a wide 
range of industrial applications.

Regardless of the specific shape and nature of the cells composing the 
lattice, its structure can be represented in terms of an array of I × J × H 
unit cells of fixed shape and size, placed side by side in a regular grid 
along the x and y directions, and stacked on top of one another along the 
z direction, where z also indicates the build direction (Fig. 1). Let l be the 
side length of the bounding box of each unit cell. Without loss of 
generally, we consider a cubic bounding box whose volume is equal to l3 

for all cells, as shown in Fig. 11. Being t the layer thickness applied to 
additively manufacture the lattice structure, then each unit cell consists 
of N = l/t layers, if both l and t are expressed in mm.

Unit cells can be identified by a unique index i, such that i = 1,…,I×
J× H, such that the spatial location of the ith cell within one copy of the 

Fig. 1. Schematic view of a lattice structure envelope as a 3-D array of 
unit cells.

1 A possible extension of the methodology to different configurations of lat-
tice structures represents on-going research and future development of the 
present study.
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lattice structure is the same for every other manufactured copy of the 
same structure. Unit cells can also be identified by the level, h, along the 
build direction, such that h = 1,…,H. Cells placed at the same hth level 
are manufactured at the same time.

In this paper, the term “nominal shape” refers to the original STL 
(Standard Triangulation Language) model designed to manufacture the 
part. The AM production entails a slicing of the nominal 3-D shape into 
2-D nominal slices, which can be used as a reference of the desired ge-
ometry in every layer. The term “ground truth shape” refers to the as- 
built manufactured geometry inspected after the process and by means 
of ex-situ metrology. In this study, we refer to post-process X-ray CT for 
the ground truth determination. The term “in-situ reconstructed shape” 

refers to the shape measured via in-situ imaging of every solidified layer.
The proposed approach was tested on a dataset acquired during the 

production of lattice structures via L-PBF on an industrial Trumpf Tru-
Print 3000 system. Lattice structures were produced using a gas atom-
ized maraging steel powder. Each lattice specimen was composed of 64 
equal rhombic cells, with a struct diameter equal to 1.5 mm. The overall 
specimen dimension was 40 × 40 × 40 mm, with cell size l = 10 mm. 
Lattice structures were produced with two lateral walls of thickness 
equal to 0.6 mm, removed from the analysis of the current work. Fig. 2
shows three views of the rhombic unit cell.

Table 1 summarizes the main process parameters adopted to produce 
the specimens.

The scan direction was rotated by 67◦ every layer, according to the 
standard practice in L-PBF. The Trumpf TruPrint 3000 machine was 
equipped with a Basler acA3800–14uc USB 3.0 camera having a 
100μm/pixel spatial resolution and with a light source inclined at about 
60◦ with respect to the building plate. Fig. 3 shows the light source 

position and the specimen location within the building plate. In the 
following, results are shown for three copies of the lattice structure 
named as specimen A, specimen B and specimen C, placed as shown in 
Fig. 3 (left panel) within the build platform. Two specimens, namely A 
and B, were used for the calibration phase, while specimen C was used to 
demonstrate the proposed methodology in the use phase, for in-situ 
inspection.

As-built specimens were inspected using a North Star Imaging X25 X- 
ray CT scan system with a voxel size of 33 μm. The registration of the X- 
ray CT data with respect to the nominal shape followed the same 
approach proposed in Colosimo et al. [16], based on the Iterative Closest 
Point (ICP) algorithm.

3. Proposed approach

The overall scheme of the method is shown in Fig. 4. Post-scan 
powder bed images are acquired in every layer by means of an off-axis 
powder bed camera. The geometry of the solidified layer is then 
reconstructed via image segmentation, and dimensional / geometrical 
properties are estimated for each unit cell on a layer-by-layer basis. One 
key aspect of the proposed approach consists of moving from a layerwise 
estimation of any quantity of interest (e.g., the area of the solidified 
layer within each unit cell) to a 1-D representation of that quantity as a 
function of the build direction (i.e., step (5) in Fig. 4). In the following, 
the term “1-D profile” will be used. It refers to the discrete vector of 
values of the quantity measured in-situ, one value per layer, graphically 
represented as a discrete curve.

Such 1-D representation can be used as a synthetic “signature” of the 
dimensional or geometric properties of each manufactured cell, enabling 
the use of a family of statistical methods known as “profile monitoring” 

[21-25] for automated detection of local anomalies affecting one or 
more cells. The term “profile” comes from such class of methods suitable 
to deal with data patterns in the form of curves.

However, the layer-by-layer variability of in-situ geometry re-
constructions is affected by several nuisance factors ([10-13], zur 
Jacobsmuhlen et al., 2019, [14]). A foremost source of undesired vari-
ations involves the chamber lighting setup and the way in which the 
solidified layer reflects the light towards the camera ([26,11,27]). Being 
fixed the lighting setup, foreground pixel intensity patterns strongly 
depend on the solidified surface topography, which in turns is affected 
by the layerwise varying scan path and direction. This inflates the 
variability of the image segmentation outcome, reducing the in-situ 
reconstruction accuracy. Because of this, we present a weighted 
modelling scheme suitable to enhance the accuracy of the 1-D profile 
reconstruction, which is on key aspect of the proposed approach.

Leveraging the 1-D profile representation of every manufactured unit 
cell in the lattice structure, the proposed approach for in-situ automated 
inspection and detection of possible anomalies consists of two phases. A 
calibration phase is used to compare the in-situ reconstruction against a 
reference ground truth (i.e., post-process X-ray CT of the as-built 
structures). A 1-D profile of the deviation from the ground truth is 
estimated for all unit cells of M copies of the same structure. The stan-
dard error of this deviation is estimated too and used as a measure of the 
natural variability of the in-situ reconstruction. This standard error al-
lows one to design control limits to be adopted during the actual use 
phase, i.e., the in-situ inspection of every manufactured structure. While 
new parts are produced, the 1-D deviation between the in-situ recon-
struction and the nominal is computed. If the deviation is within the 
previously estimated control limits, it is judged to be generated by the 
natural variability induced by the process and by the in-situ measure-
ment system. If, on the contrary, the 1-D deviation from the nominal is 
partially or entirely outside these limits, an automated alarm can be 
signaled, as it points out an anomalous shift whose amplitude cannot be 
explained purely by the known natural variability.

The details of the methodology are deepened and discussed in the 
following sub-sections.

Fig. 2. Top view (left), side view (center) and 3D view (right) of the rhombic 
unit cell.

Table 1 
L-PBF process parameters.

Scan 
strategy

Scan mode Laser 
power

Laser 
speed

Hatch 
distance

Layer 
thickness

Meander Continuous 
mode

275 W 1200 mm/ 
s

0.09 mm 0.05 mm

Fig. 3. Specimen location inside the build area (left) and front view of the 
camera and lighting setup (right).
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Fig. 4. Scheme of the proposed approach.

Fig. 5. Example of in-situ determination of the contours of the solidified layer (left panel) and corresponding binary image generation (right panel); vertical and 
horizontal dashed lines separate individual unit cells.
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3.1. In-situ geometry reconstruction

The in-situ geometry reconstruction relies on a pre-processing step 
devoted to the perspective correction of the powder bed image and the 
alignment with respect to the reference geometry (namely the ground 
truth geometry in the calibration phase, and the nominal geometry in 
the use phase). Then, powder bed image segmentation is applied for the 
identification of solidified layer’s contours.

Perspective correction and image alignment represent well consoli-
dated methods in image processing, and hence they are not discussed in 
detail here. The reader is referred to Szeliski [28] and Avants et al. [29]
for an overview of available methods. In this study, a standard 
landmark-based projective algorithm was used for fine alignment be-
tween powder bed images and a reference mask [28].

Regarding the in-situ reconstruction of the solidified layer, an active 
contours methodology is proposed [30,31]. It involves an iterative 
segmentation that, starting from a first boundary definition in the form 
of one (or more) closed curve, iteratively changes and adapts the shape 
of the reconstructed boundary by applying shrink/expansion operations 
driven by the minimization of an energy functional through the level set 
formulation [32]. Active contours are particularly suitable to deal with 
powder bed images in L-PBF, since the nominal geometry of the slice can 

be used as starting boundary [26,11,33,14]. In this study, we used the 
method proposed in Pagani et al. [14], which relies on an active con-
tours formulation that combines edge-based and region-based segmen-
tation operations, using the nominal shape as the starting point. 
Additional details about the methodology can be found in Appendix A.

The output of the segmentation consists of a binarized image, where 
the original greyscale intensity of the pixels is transformed into a binary 
set [0,1], as shown in Fig. 5.

3.2. From layerwise to feature-level modelling

A key aspect of the proposed approach consists of modelling any 
dimension and geometrical quantity of interest at unit cell-level, i.e., 
passing from a layerwise estimate of the quantity to a 1-D curve (or 
profile) along the build direction, z. This allows estimating a 1-D profile 
of the deviation from the nominal geometry computed for each unit cell, 
aiding the detection of local distortions and geometrical errors. In this 
study we refer to the in-situ reconstructed area of the ith unit cell, Ai(z), 
as the quantity of interest, but the methodology can be extended and 
generalized to other quantities as well.

One major challenge to face at this stage regards the layer-to-layer 

Fig. 6. Top panel: superimposition of in-situ and ex-situ (ground truth) reconstructed area profiles for one cell of specimen A, with periodic fluctuations due to the 
layerwise 67◦ scan rotation (see Section 3 for details about the experimental settings); bottom panel: examples of powder bed images in layers where a severe area 
underestimation with respect to the ground truth was observed (denoted as A, B, C, D) and powder bed images of layers where a good agreement between in-situ and 
ex-situ reconstructed areas was observed (denoted as a, b, c, d); the ROI of the considered unit cell is highlighted with a square on all powder bed images.
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variations that affect the 1-D profile, Ai(z). Such undesired variations are 
largely induced by the chamber lighting setup and the way in which the 
solidified layer reflects the light towards the camera, which depends also 
on the layerwise varying scan path and direction. An example of the 
extent to which such variations may influence the reconstruction accu-
racy is shown in Fig. 6.

Fig. 6 (top panel) shows an example of the in-situ reconstructed area 
profile, Ai(z), and the ex-situ reconstructed area profile, hereafter 
referred to as AGT

i (z), for a unit cell of a lattice structure among the ones 
discussed in Section 2. The ground truth profile, AGT

i (z), was determined 
by 1) slicing the X-ray CT reconstruction of the as-built shape, such that 
every slice corresponds to one printed layer, and 2) applying the same 
active contours approach to determine the boundaries of the solid ma-
terial. A fine landmark-based alignment was applied to superimpose the 
in-situ reconstructed shape with the ground truth mask in every layer.

Despite the two curves in Fig. 6 (top panel) exhibit a good agreement 
in the underlying pattern, the Ai(z) profile has periodic valleys that 
deviate from the ground truth leading to an underestimation of the in- 
situ reconstructed area. Such periodic pattern is driven by the 67◦

scan rotation applied every layer, which causes a variation of the surface 
reflections towards the camera and, consequently, a variation of the in- 
situ area estimation. Fig. 6 (top panel) also shows that the peaks of the 
Ai(z) profile oscillate above and below the ground truth area profile, 
which indicates the absence of a systematic bias in layers where favor-
able light reflection conditions are met.

The valleys shown in Fig. 6 (top panel) correspond to layers where 
the scan direction produced a bright-field-like intensity pattern, and 
hence a worse reconstruction of the solidified geometry. Fig. 6 (bottom 
panel) highlights four examples of powder bed images corresponding to 
four such valleys, labeled with capital letters, together with four ex-
amples of powder bed images corresponding to layers were there was a 
very good agreement between in-situ and ex-situ reconstructed areas, 
labeled with lowercase letters. The examples in Fig. 6 (bottom panel) 
show that layers where a large deviation from the ground truth was 
observed also exhibited a more intense light reflection, visible as a 
higher pixel intensity within the whole solidified region. This occurred 
at specific scan directions with respect to the fixed camera orientation, 
being the scan angle varied by 67◦ every layer as in the common in-
dustrial practice. Notably, also the amplitude of the valleys depends on 

the intensity pattern observed at each layer too, and is not constant, thus 
inducing an additional level of variability.

A high intensity of foreground pixels is typical of so-called “bright 
field” illumination conditions, which are known to yield poor edge 
detection results, as they tend to force the segmentation algorithm to 
isolate the brightest area rather than the real boundary between fore-
ground and background regions [34].

This undesired variability of in-situ reconstructed dimensional and 
geometrical properties of the part can be tackled and mitigated in three 
possible ways. One would consist of finding a powder bed image seg-
mentation algorithm that is insensitive to layerwise varying pixel in-
tensity patterns and contrasts. However, although margins for 
improvements exist, tuning or changing the algorithm would be hardly 
sufficient to fix the problem, as the segmentation performances neces-
sarily depend on the information enclosed in the image. Another solu-
tion would consist of rethinking the way in which powder bed images 
are acquired, minimizing, or even avoiding, layerwise variations of 
captured patterns. This is an interesting and promising research direc-
tion (which also represents an on-going research and future develop-
ment of the present study), but it would imply using a sensing equipment 
different from those currently available in every L-PBF system. Examples 
can be found in Bugatti and Colosimo [35], and Tan Phuc and Seita [36]. 
The third solution consists of designing a profile modelling approach 
that explicitly considers the intrinsic variations of in-situ shape re-
constructions, aiming to reduce the variability of in-situ quality esti-
mates and enable a more accurate assessment of departures from the 
nominal geometry. This third research direction is the one addressed by 
the present study.

The underlying principle consists of fitting a weighted model to the 
1-D profile of the quantity of interest such that a lower weight is given to 
layers where pixel intensities and contrast patterns are likely to generate 
a low contour reconstruction accuracy, while a high weight is given to 
all other layers. To this aim, we propose a weighting scheme whose 
rationale is schematically shown with the aid of Fig. 7.

In the presence of intense light reflections or even saturated pixels 
within the solidified region, a large variation is expected between 
foreground and background pixel intensities. Thus, the inverse of this 
variance can be used as a weight in the fitted model. We propose to 
estimate the weight by automatically identifying a ROI that is centered 
on the in-situ reconstructed contour in every layer. The ROI is such that 

Fig. 7. Example of automated isolation of a region of interest consisting of a band centered along the reconstructed contour to evaluate the pixel intensity contrast 
between foreground and background.

Fig. 8. Morphological operations applied to the binary image obtained as output from the segmentation step; the binary image in panel d) is the band region used for 
the computation of the weight ω(z).
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its inner portion includes foreground pixels, while the outer portion 
includes background pixels. Fig. 8 schematically shows one automated 
way to isolate, on a layer-by-layer basis, the ROI in the form of a band of 
width equal to n pixels. Let b(z) be the band region identified in the zth 

layer and let sb2(z) be the pixel intensity variance of all pixels belonging 
to the b(z). Then, the proposed weight ω(z) function is proportional to 
the inverse of sb2(z): 

ω(z) = 1
sb2(z) (1) 

A larger value of ω(z) implies a higher confidence in the accuracy of 
the in-situ reconstruction, whereas a lower value implies a lower 
confidence.

The proposed approach to identify the band region and to estimate 
the weight ω(z) in each layer relies on a combination of image pro-
cessing operations known as morphological dilation and erosion oper-
ations. Such operations are applied to the binary image generated by the 
active contours algorithm. The erosion operation shrinks the boundary 
of the reconstructed contour towards the inside, whereas the dilation 
expands it towards the outside. They result from the application of a 
square structuring element of size n × n pixels such that if at least one 
pixel in the structuring element coincides with a foreground pixel, then 
all pixels are labelled as foreground if dilation is applied, and the 
opposite if erosion is applied. A real example of these two operations is 
shown in Fig. 8. The ROI is finally obtained by subtracting the eroded 
image from the dilated one, resulting in a band region centered along the 
in-situ reconstructed contour (Fig. 8, panel d).

The weight ω(z) is then used to fit a weighted least square (WLS) 
model to the 1-D profile of the in-situ reconstructed quantity, i.e., Ai(z). 
We advocate the combination of a weighted least-squares scheme with a 
B-Spline functional model [37]. A B-Spline model of Ai(z) is denoted as 
Âi(z), and it can be defined as: 

Â i(z) =
∑Q+L−1

q=1
Bq(z, τ)Pi,q (2) 

i = I × J × H, z = 1,…,N 

where Bq are the B-Spline basis functions, defined using the Cox-de Boor 
algorithm, of order Q = 3. The basis functions depend on the choice of 
the knot sequence, τ = {τl, l = 1,2,…, L−1} where L is the number of 
subintervals. Pi,1, Pi,2,…,Pi,Q+L−1 are the control points for the ith unit 
cell. They can be computed using the WLS method as follows: 
Pi =

(BTW(z)B)−1BTW(z)Ai(z) 3) 

where B is the model matrix with the B-splines basis functions and W(z)
is a diagonal matrix whose diagonal elements are the weights ω(z)
multiplied by a corrective factor S =

∑N
z=1 1

Sb2(z).
The number of knots and their location within the vector τ can be 

estimated in the calibration phase. Another parameter to be defined is 
the width of the band region, n, expressed in number of pixels. n shall be 
an odd number, as the centroid of the squared element of size n × n 
pixels used for erosion and dilation operations belongs to the contour, 
and the band extends n∗ pixels towards the foreground region and n∗

pixels towards the background. Therefore, n = 1 + 2n∗. The width n 
should be selected such than n∗ is lower than half the minimum width of 
the foreground region, and greater than at least 2 or 3 pixels to avoid too 
narrow bands. In this study, we used n = 11, which corresponds to 
1.1 mm.

Eventually, it is worth noticing that by assigning a low weight to 
layers where the pixel intensity pattern is expected to cause a poor 
reconstruction accuracy, actual geometrical anomalies affecting only 
those layers may be mitigated as well. However, if the deviation from 
the nominal shape occurs is consistently occurring in consecutive layers, 

the proposed approach is suited to detect it while reducing possible false 
alarms due to reconstruction inaccuracies affecting individual layers 
with no effect on the final part quality.

3.3. In-situ inspection and automated detection of local anomalies

The proposed methodology is aimed at detecting, in-situ and in- 
process, any actual distortion and geometrical error affecting one or 
multiple unit cells of manufactured lattice structures. The underlying 
principle consists of monitoring the deviation between the in-situ 
reconstructed profile, Âi(z), and the nominal one, hereafter referred to 
as ANOM

i (z), while considering the natural variability of the in-situ 
reconstruction. To this aim, the method entails two sequential phases, 
namely a calibration phase and the actual use phase. They are described 
in the following two sub-sections.

3.3.1. Calibration phase
The aim of the calibration phase is to determine the standard error of 

the in-situ reconstruction with respect to a ground truth reference. It is 
then used as a measure of the in-situ reconstruction variability to design 
the control limits that are applied during the inspection of every man-
ufactured part during the following use phase.

As a ground truth we refer to the X-ray-CT measurement of the as- 
built structure. The X-ray CT reconstruction can be sliced along the 
build direction such that successive slices are spaced apart by a distance 
equal to the layer thickness. The active contour segmentation can be 
applied to the X-ray CT slices and the result can be aligned, on a slice-by- 
slice basis, to the in-situ reconstructed geometry. Let M be the number of 
copies of the same lattice structures that are made available during the 
calibration phase. Then, the deviation between the in-situ reconstruc-
tion and the ground truth can be expressed as follows: 
ΔGT

i,k (z) = Âi,k(z)−AGT
i,k (z) , k = 1,…,M (4) 

During the calibration phase, the parameters of the in-situ segmen-
tation based on the active contours algorithm can be tuned to minimize 
the deviation from the ground truth, ΔGT

i,k (z). Once the optimal in-situ 
reconstruction settings have been determined, the standard error of 
the deviation from the ground truth is estimated for each copy of the 
lattice structure, as the average standard error of all unit cells belonging 
to the structure, namely sΔ,1,…,sΔ,k,…,sΔ,M. The overall pooled standard 
deviation, sΔ, namely the average of individual standard deviations, is 
then used as a measure of the natural variability of the deviation. Such 
variability measurement allows one setting control limits to be applied 
in the use phase.

3.3.2. Use phase
The use phase consists of the actual in-situ inspection operation, 

conceived to enable the automated detection of undesired variations of 
the dimensions and shape of individual unit cells during the AM process. 
Differently from the calibration phase, the reference to determine the 
quality of the build is the nominal area, ANOM

i (z), as the deviation from 
the nominal is the only type of deviation that could be assessed while the 
part is being built: 
ΔNOM

i,k (z) = Âi,k(z)−ANOM
i,k (z) , k = 1, 2,… (5) 

We propose a control charting scheme for automated anomaly 
detection with control limits in the form: 
ΔNOM

h (z) ± ksΔ (6) 

where ΔNOM
h (z) is the sample mean deviation across all unit cells built 

up from height level h = 1 to the current height level h, whereas k = zα/2 

is the upper 100
(

α
2
)

% percentile of the standard normal distribution, 
and α is the family-wise false positive error, also known as Type I error. 
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Being l the number of layers within one unit cell, i.e., the number of 
datapoints along the ΔNOM

i (z) profile, the familywise α error can be 
determined as α = α∗/l, where α∗ is the target Type I error. In this study, 
we used α∗ = 0.0027, as in the common statistical process monitoring 
practice.

Since unit cells are built on top of each other, once all the cells at the 
height level h have been manufactured, their corresponding deviation 
profiles, ΔNOM

i (z), can be estimated, the sample mean ΔNOM
h (z) can be 

computed, and the individual deviation profiles can be compared 
against the control limits in Eq. (6).

Setting the control limits at ±k times the standard deviation esti-
mated during the calibration phase, i.e., sΔ, allows tuning the control 
limit design based on the natural variation from the ground truth 
reference. The more accurate is the in-situ reconstruction, the smaller is 
sΔ, and the tighter control limits could be, thus enabling an enhanced 
detectability of small deviations.

It is worth noticing that other metrics, different from the one in Eq. 
(5), can be considered to quantify the deviation from the nominal shape. 
Examples have been proposed in Pagani et al. (2021) and Colosimo et al. 
(2022). Each metric has its own advantages and limitations. The area- 
based deviation in Eq. (5) is robust to small misalignment errors 

Fig. 9. Comparison of ex-situ (top panel) and in-situ (central panel) reconstructed area profiles for all the unit cells of the three specimens, while bottom panels show 
the proposed weighted B-Spline models of in-situ reconstructed area profiles, Âi(z).

Fig. 10. deviation profiles ΔGT
i (z) for all the unit cells of the calibration specimens (top panels), and the corresponding raw deviation ΔGTraw

i (z).
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between the powder bed image and the nominal shape, but it is not 
suitable to detect geometrical errors that do not cause any variation in 
the solidified area. However, the proposed approach can be applied 
regardless of the specific deviation metric. A performance analysis 
including a comparison among different ways to quantify the deviation 
from the nominal can be part of future investigations.

4. Results

4.1. Calibration

Fig. 9 shows a comparison between 1-D profiles of in-situ recon-
structed areas, Ai(z), their weighted B-Spline model, Âi(z), and the 
corresponding 1-D profiles of ex-situ reconstructed areas, AGT

i (z), for all 
unit cells of analyzed lattice structures. Fig. 9 shows a superimposition 
of profiles for all unit cells of specimens A and B.

Fig. 9 (top panels) shows that the “signature” in terms of the printed 
area of all cells in both analysed structures is highly repeatable. The 
profile pattern along the build direction depends on the specific geom-
etry of the rhombic cell. Fig. 9 (central panels) shows that the same 
underlying pattern is captured by the in-situ reconstruction, although 
periodic valleys inflate the variability of Ai(z) profiles, introducing 
major deviations from the ground truth. Fig. 9 (central panels) also 

shows that such valleys are prominent in specimen A, while less evident 
in specimen B. Indeed, depending on the part location within the build 
area, layerwise variations caused by the varying scan direction may 
result in stronger or weaker variations of the light reflected towards the 
camera, with a consequent stronger or weaker effect on the image seg-
mentation performance.

Fig. 9 (bottom panels) shows that by fitting the proposed weighted 
model those local inaccuracies are filtered out, leading to an estimation 
of the reconstructed area profile, Âi(z), that is much closer and more 
representative of the actual ground truth. Due to the smoothness of the 
area profile, we adopted a simple B-Spline knot sequence τ composed by 
21 equi-spaced knots along the z direction to fit the model.

To better highlight the consistency between the in-situ reconstruc-
tion and the ground truth reference, Fig. 10 shows the deviation profiles 
ΔGT

i (z) for all the unit cells of the calibration specimens (top panels), and 
the corresponding raw deviation ΔGTraw

i (z) defined as: 
ΔGTraw

i (z) = Ai(z)−AGT
i (z) (7) 

where the ground truth area is subtracted from the raw area, Ai(z), 
rather than from the proposed weighted model. Fig. 10 shows that the 

Fig. 11. 95 % confidence intervals of the RMS of the deviation from the ground 
truth for the raw deviation ΔGTraw

i (z) and the deviation based on the proposed 
weighted model ΔGT

i (z) (left panel: specimen A, right panel: specimen B).

Fig. 12. – 95 % confidence intervals for the mean RMS deviation from the ground truth, comparing the proposed weighted B-spline model against a standard least 
square (non-weighted) model (left panel); 95 % confidence intervals for the mean standard error of the deviation from the ground truth obtained by using the 
proposed (weighted) approach (right panel).

Fig. 13. in-situ reconstructed 1-D area profiles Âi(z) for specimen C (top panel) 
and the corresponding deviation from the nominal (bottom panel).
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proposed weighted modelling approach allows a considerable reduction 
of the variability of the deviation from the ground truth. ΔGT

i (z) profiles 
vary between ±3 mm2, which means that the deviation between in-situ 
and ex-situ reconstructed areas is one order of magnitude lower than the 
measured area itself.

Fig. 11 shows a quantitative comparison between the root mean 
square (RMS) of the raw deviation from the ground truth, ΔGTraw

i (z), and 
the RMS of the deviation based on the proposed weighted model, ΔGT

i (z).
Fig. 11 shows that the proposed modelling approach yields a 

considerable and statistically significant reduction of the mismatch be-
tween in-situ estimated areas and the ground truth reference. The 
improvement is more evident for specimen A, i.e., the one that was more 
affected by the layerwise variation of the pixel intensity pattern. The 
resulting RMS of the deviation from the ground truth area is lower than 1 
mm2 for specimens A and B. Such deviation between in-situ and ex-situ 
reconstructed areas corresponds to an average deviation in terms of 
average strut thickness lower than 0.1 – 0.2 mm, i.e., in the same order 
of magnitude of the powder bed image’s spatial resolution.

Fig. 12 (left panel) shows a comparison between the proposed 

Fig. 14. Control charts for in-situ inspection of specimen C; each panel refers to unit cells produced at a given height level, h = 1,…,4.
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weighted model and a model that entails no weighting scheme, i.e., a 
standard ordinary least square model. The competitor approach simply 
consists of fitting a B-Spline model of the same order and type, and with 
the same knot sequence, but without the introduction of the weight 
matrix W. In practise, this model does not consider the intrinsic varia-
tions of the surface reflections periodically occurring because of varying 
scan directions. Fig. 12 (left panel) shows that, for specimen A and B, the 
proposed weighted model yields a more accurate reconstruction than 
using an ordinary least square model.

Fig. 12 (right panel) compares the confidence intervals of the mean 
standard errors of the deviation from the ground truth, ΔGT

i (z), esti-
mated using the proposed weighted B-spline model. It shows that there 
is no statistically significant difference in the natural variations from the 
ground truth reference between the two specimens. This allows using 
the pooled standard deviation sΔ to design the control limits to be used 
in the actual use phase, namely for in-situ inspection of other manu-
factured lattice structures.

The consistency of the standard error of the deviation across all in-
dividual unit cells of specimens A and B is also displayed in Appendix B, 
where the 95 % prediction intervals of the deviations from the ground 
truth are shows for each cell. Figures B1 and B2 in Appendix B highlight 
that all prediction intervals include the 0, which confirms that the in-situ 

reconstruction is not statistically different from the ground truth refer-
ence in terms of the proposed deviation metric. Moreover, they show 
that the amplitude of prediction intervals is very similar for all unit cells, 
which confirms that the natural variability of the reconstruction is stable 
both within and between calibration samples.

4.2. In-situ inspection

In this study, we referred to the third sample, specimen C, to 
demonstrate the use of the proposed method for in-situ inspection.

Fig. 13 shows the in-situ reconstructed 1-D area profiles Âi(z) for 
specimen C and the corresponding deviation from the nominal.

Fig. 13 shows that the 1-D pattern of the in-situ reconstructed area, 
Âi(z), for specimen C is close to the one observed for the other two 
specimens. The deviation from the nominal oscillates around 0 with 
peak deviations in the range −2 ÷ 5 mm2. The proposed control 
charting scheme for in-situ quality inspection was applied to such de-
viations from the nominal shape for unit cells manufactured at 
increasing height levels above the baseplate. The resulting control charts 
are shown in Fig. 14.

Fig. 14 shows that all unit cells at all height levels are within the 
control limits. This highlights the absence of dimensional and geomet-
rical errors, which was confirmed by the post-process inspection of 
specimen C. Once the production of the h-th level of unit cell is 
completed, the corresponding control chart can be generated and dis-
played. In case of any violation of the control limits, an automated alarm 
can be signaled, and the operator may decide whether any action is 
needed. As the process goes on, new control charts for subsequent height 
levels are generated and displayed, enabling the on-line inspection of 
the whole structure. The same approach can be applied in the presence 
of multiple lattice structures manufactured in the same build. Ongoing 
research is devoted to the characterization of the anomaly detection 
performance of the proposed approach in the presence of real 
deviations.

4.3. Performance analysis

An additional analysis was performed to determine the power of the 
proposed control charting scheme for automated detection of anomalous 
deviations from the nominal. To this aim, a lack of material was simu-
lated by dilating the nominal contour of one unit cell belonging to 
Specimen C in a subset of layers. By dilating the nominal geometry, the 
in-situ reconstructed area results to be smaller than the nominal, which 
is representative of defects that may occur in-process, leading to insuf-
ficient solidified material in a given region.

The simulation settings were the following. The anomaly was 
intruded in the 60th unit cell of Specimen C (placed at level h = 4), in 

Fig. 15. Power curves for the simulated anomaly consisting of a lack of ma-
terial affecting the 60th unit cell of Specimen C: comparison between the pro-
posed approach and the competitor approach involving a control chart designed 
and applied directly to the raw deviation profiles.

Fig. 16. Left panel: sample image of one layer of the 60th unit cell of Specimen C with a superimposition of both in-situ reconstructed and nominal contours (dilation 
factor = 0.3 mm); right panel: example of control chart with the injection of the simulated anomaly with dilation factor = 0.3 mm in layer z = 51 to z = 60 (the 
detected anomaly is indicated by the arrow).
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five consecutive layers, randomly selected. The magnitude of the dila-
tion applied to the nominal geometry was in the range [0,10] pixels, 
with a step of 1 pixel, corresponding to a deviation of [0,1] mm, given 
the 100 μm/pixel resolution of the camera. The dilation was randomly 
applied in different layers, and for each dilation magnitude the power of 
the control chart was determined as the ratio between the number of 
detected anomalies and the total number of simulated anomalies. Such 
analysis was performed for the proposed approach, relying on the 
weighted least square fitting of the deviation profiles, and for a 
competitor approach where the raw deviation profiles are used without 
any fitting. Such competitor approach is representative of performances 
that could be achieved by directly comparing the in-situ reconstructed 
contours with the nominal shape, without any profile modeling step. In 
both cases, the control limits were estimated using the data gathered for 
Specimen A and B, and discussed in sub-Section 4.2.

Fig. 15 shows the power curves for the proposed approach and its 
basic competitor. Fig. 15 shows that the proposed approach allows 
detecting an anomalous deviation of 0.3 mm (three times the spatial 
resolution of the camera) with a probability of detection higher than 
90 %. For the competitor approach, instead, the probability of detection 
raises above 90 % only for deviations larger than 0.7 mm. This is due to 
the much larger variability of the raw deviation profiles compared to 
their weighted least square estimations. Such larger variability inflates 
the false negative rates, reducing the power of the control charts.

Fig. 16 (left panel) shows an example of the 60th unit cell in one 
layer, with a superimposition of both the in-situ reconstructed contours 
and the nominal ones with dilation factor equal to 0.3 mm. Fig. 16 (right 
panel) shows an example of control chart for the cells places at level h =
4 of Specimen C, where a lack of material was simulated in layer z = 51 
to z = 60. The red arrow indicates the detection of such anomaly.

The results highlight the benefit of modelling the 1-D deviation 
profiles from the nominal with a weighting scheme aimed at mitigating 
the extra variability induced by the layerwise varying pixel intensity 
patterns in powder bed images. Future developments will involve testing 
the proposed approach in the presence of real defects, to validate its 
suitability as in-line and in-situ inspection and monitoring tool.

5. Conclusions

Given the increasing shape complexity enabled by the widespread 
adoption of AM technologies, process and quality engineers must face 
new challenges related to the design of suitable and efficient product 
qualification methodologies and statistical quality modelling and 
monitoring instruments. Lattice structures represent a class of innova-
tive complex shapes that impose to rethink qualification methods and 
procedures in a more efficient way. Leveraging on high resolution im-
aging made available by embedded powder bed cameras in L-PBF, we 
presented a method to support the in-line inspection of periodic lattice 
structures and the anticipated detection of geometrical distortions while 
the part is being built. The method aims to model the deviation of the in- 
situ reconstructed geometry from the nominal one at feature level, i.e., 
at the level of the unit cell, rather than at layer level. One key issue of the 
proposed approach is its ability to address the natural variability 
involved in geometry reconstructions from in-situ powder bed images. 
The proposed approach, relying on a 1-D functional representation 
combined with a weighted modelling technique, allows enhancing the 
accuracy of in-situ reconstructions. The accuracy improvement was 
demonstrated in a real case study where X-ray CT scan of as-built 
structures was used as ground truth. Moreover, an automated control 
chart scheme was presented to enable the automated detection of 

anomalous deviations from the desired shape. A preliminary analysis 
highlighted the effectiveness of the approach in detecting such anoma-
lies and its enhanced power with respect to directly monitoring raw 
deviations between in-situ reconstructed and nominal contours.

The proposed approach opens the possibility to move from expensive 
and time-consuming ex-situ inspections to in-situ analysis, to detect 
anomalous dimensional and geometrical errors affecting individual cells 
in a serial production of lattice structures. A future work will test the 
proposed approach in the presence of actual geometrical distortions, 
aiming to demonstrate the suitability of the method to anticipate the 
detection of real anomalous shifts. The authors are working on two other 
promising research directions. One regards the transferability of the 
proposed modelling framework to more complex lattice structures, 
where unit cells are characterized by dimensional and/or geometrical 
variations within the structures. One further research direction consists 
of combining the proposed approach with alternative sensing methods. 
Although powder bed cameras are easily available in L-PBF systems, 
they produce images that are prone to a wide variety of nuisance effects 
and undesired sources of variability. The modelling approach proposed 
in this paper was specifically aimed at tackling some of these issues, 
allowing a more effective use of powder bed images from industrial 
cameras. Another promising way to tackle the problem consist of 
combining an in-line quality modelling approach, like the one here 
proposed, with an enhanced sensing setup, where perspective errors, 
misalignments and layerwise varying effects caused by light reflections 
are mitigated or even avoided. Examples can be found in Bugatti and 
Colosimo [35], and Tan Phuc and Seita [36]. Indeed, we believe that the 
key to bridge the gap between research solutions and industrial appli-
cations relies in the ability to merge and combine advanced data 
modelling methodologies with novel and effective in-situ data acquisi-
tion techniques.
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Appendix A 

The foreground contour in one layer can be represented as the zero-level set of a signed distance function, φ(x, y), defined as follows: 
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φ(x, y) =
{
−d(x, y, δΩ)if(x, y) ∈ Ω

d(x, y, δΩ)if(x, y) ∕∈ Ω
(A1) 

where the region Ω corresponds to the foreground (i.e., the solidified layer), and d(x, δΩ) is the distance between any pixel in the (x,y) location and the 
boundary δΩ of the region Ω. At the first iteration, namely at t = 0, the signed distance φ(x, y, t = 0) is computed using the nominal shape of the 
manufactured part in the layer as initial boundary δΩ. The adaptive contour evolution is such that: 
δφ(x, y, t)

δt = w(t)δregion +(1−w(t))δedge (A2) 

where δregion represents the region-based term of the active contour formulation, δedge represents the edge-based term, and w(t) is a weight to balance 
the influence of the region-based and edge-based terms in the convergence to the final reconstructed contour. The region-based term relies on the 
average difference of pixel intensity inside and outside the boundary to drive the shrink/expansion operations. Conversely, the edge-based term relies 
on pixel intensity gradients within the image to drive the iterative evolution of the reconstructed boundary. The weight w(t) is such that 0 ≤ w(t) ≤ 1. 
It is a function of the iteration counter, t, as higher weight is given to the region-based term in initial iterations for first rough segmentation, then a 
higher weight is given to the edge-based term in last iterations. This allows using the edge-based segmentation to refine and fine-tune the region-based 
one, aiming to achieve a more accurate reconstruction of actual boundaries. We refer the reader to Pagani et al. [14] for full details on the active 
contours segmentation technique.

Appendix B

Fig. B1. WLS fitting with 95 % prediction intervals of the deviation from the ground truth for all unit cells of specimen A.
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Fig. B2. WLS fitting with 95 % prediction intervals of the deviation from the ground truth for all unit cells of specimen B.

Data Availability

Data will be made available on request. 
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