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ABSTRACT 

Guided wave propagation constitutes a promising physical approach for the structural health 
monitoring of composites in aerospace applications. An efficient and reliable numerical simulation on 
guided wave propagating in composites is highly valuable as it offers both theoretical reference and 
technological support. As a commonly used approach, the time-explicit algorithm with the Finite 
element method (FEM) could be coded to implement simple algebraic equations instead of solving the 
inversion of large matrices. However, due to the restriction of spatial and temporal discretization, it is 
memory and computation expensive for 3D composite laminate problems. In this paper, a fast dynamic 
explicit FEM-based simulation method is developed using a one-dimensional compressing data storage 
technique to reduce memory and computational cost. The method is applied to simulate guided waves 
in a glass fiber-reinforced polymer cross-ply laminate. Firstly, the analytical disperse solution in multi-
layers plates is obtained based on the stiffness matrix method (SMM) with the assumption of 
transversely isotropic in each ply. Then, the COMSOL/Explicit package is used to simulate the same 
model as the fast FEM-based simulation. The results show that the proposed method offers a significant 
reduction in computation time and storage capacity, making it an efficient and reliable tool for 
simulating guided waves in composites. Afterward, the accuracy of the fast FEM-based method for each 
propagation direction is verified with the comparison to analytical disperse solutions by wavenumber 
analysis. Finally, the predicted signal from the proposed method is validated by experiments.  
 
1 INTRODUCTION 

Elastic guided wave (GW), which is widely used in structural health monitoring of composite 
material [1-5], is susceptible to material degradation with long distance and low attenuation detection 
capability. In flat plates, GWs travel as Lamb waves, which are vertically polarized, and shear horizontal 
(SH) waves, which are horizontally polarized. Lamb waves are classified as symmetric (S) and anti-
symmetric (A) waves based on the symmetric and anti-symmetric behaviour of the mode shape to the 
mid-plane. With multi-mode characteristics, the guided waves are denoted as Sn, An, and SHn with the 
subscript n=0,1,2,…. For the SH waves, even and odd subscripts represent the symmetric and anti-
symmetric SH modes [6]. Below the cut-off frequency value (depending on the frequency-thickness 
product, and generally lies in the 0.5 and 1 MHz·mm range for composite), only two basic Lamb wave 
modes exist: S0, which is a symmetrical Lamb wave at low frequencies, similar to a longitudinal wave; 
and A0, which is an anti-symmetrical flexural wave at low frequencies. Due to the typically high 
damping values in such material [7], the majority of reported studies on GW detection in composites 
have been carried out under cut-off frequencies, focusing on the A0, S0, and SH0 modes. 

Effective numerical simulation is needed to analyse the GW propagation in the given composite, as 
well as the interaction with imperfect boundaries or defects caused by material degradation. For the 
three-dimensional (3D) simulation of GWs in composite, many numerical methods have been 
investigated and most of them are based on the finite element method (FEM) [8-11], finite difference 
method (FDM) [12], spectral element method (SEM) [13], and finite integration technique (FIT) [14]. 
Among these methods, FEM is the most popular numerical approach for solving differential equations 
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by utilization of subdomains and has become an industry standard to solve practical complicated 
engineering problems. Nowadays, FEM is the most used numerical approach to investigate GWs in 
composite plates. 

For finite element (FE) simulation of multi-layer material, the continuum-based three-dimensional 
(3D) elasticity method can capture the entire wave motion types accurately and efficiently, compared to 
other approaches such as equivalent single layer and layer-wise methods. For FE analysis of GW 
propagation, there are two main approaches: the explicit and the implicit schemes. The 3D problem 
introduces a large number of DOFs that depends on the number of layers constituting the laminate and 
results in low calculation efficiency in large implicit FE simulations, which can be extremely 
computationally expensive due to the required inversion of the mass matrix. Explicit FE schemes do not 
suffer this inversion drawback and can be coded to implement simple algebraic equations. To avoid 
numerical instability, the element dimension should be smaller than the minimum wavelength, and the 
time step must be less than the wave propagation time across a single element [7]. Both explicit and 
implicit schemes are used by most commercial software and have been adopted in many studies. 
Reference [10] presented 3D modelling of GWs in carbon fiber reinforced polymer (CFRP) laminates 
with four commercial FE tools: Ansys/Implicit, COMSOL/Implicit, Abaqus/Implicit, and 
Abaqus/Explicit. Benchmark comparisons are made between the simulation tools, as well as 
experimental data and theoretical dispersion curves, to evaluate their computational performance. 
Reference [11] used Abaqus/Implicit and Abaqus/Explicit software packages to simulate GW 
propagation in composite panels. In comparison to the experimental dataset, the results proved that both 
implicit and explicit schemes can provide accurate results. The explicit method is preferable, due to the 
considerably reduced computational costs. However, with the restriction of spatial and temporal 
discretization, the challenge for time-explicit FEM analysis is the memory and computation costs, 
especially for the 3D composite laminate problem. 

Hence, to reduce memory and computational costs, a fast dynamic explicit FEM-based simulation 
method, faster than the commercial ones, is developed for the GW propagation in composite plates. The 
one-dimensional compressing data storage technique is used to reduce the required memory capacity, 
which only stores the nonzero elements in the coefficient matrixes. Firstly, the disperse characteristics 
in multi-layers plates are obtained based on the stiffness matrix method (SMM) with the assumption of 
transversely isotropic in each ply. Then, the COMSOL/Explicit package is used to simulate the same 
model as the fast FEM-based simulation. The results show that the proposed method offers a significant 
reduction in computation time and in the required storage capacity. Afterward, by 3D fast Fourier 
Transformation, the accuracy of the fast FEM-based method for each propagation direction is verified 
with the comparison to analytical disperse solutions, in the wavenumber domain. Finally, the signal 
predicted by the proposed method is compared with the experiment result, to validate the efficiency and 
reliability of the method. 
 
2 THEORY AND NUMERICAL METHOD 

2.1 Elastic guided wave in multi-layer composite 

In the multi-layer model, the composite laminate is composed of N transversely isotropic plies, as 
shown in Fig. 1. The propagation direction of the GW is set as x axis, while the thickness direction is z. 
The density, thickness, and elastic constants of the n-th layer are ( ) ( ),n ndρ , and ( )nD . The wave equation 
of the plate is given by: 
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where ui is the components of displacement. The motion can generally have three nonzero spatial 
components ux, uy and uz, where uy corresponds to SH wave, while ux and uz corresponds to lamb waves. 
The particle motions for Lamb and SH modes are uncoupled if propagation occurs along an in-plane 
axis of symmetry [15]. 
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Figure 1: The multi-layer model. 
 
 

Given that the axial direction of fiber is along x direction, each ply in the model in y-z plane can be 
considered transversely isotropic. The single-layer is rotated of an angle θ counterclockwise along the 
axis z, then the stiffness matrix of n-th layer with different arrangement angle is: 

 ( )n T= 0D MD M  (2) 

The specific expression of the stiffness matrix, before rotated D0, and the transformation matrix M 
are reported in [16]. 

In the n-th layer, the displacement of wave ( ) ( ) ( )( , , )n n n
x zyu u u can be expressed as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( , , ) ( , , )exp( ( ))n n n n n n n
x y x zz y pu u u U U U ik x z c tα= + −  (3) 

where k is the x-component of the wave number, i is the imaginary units, α denotes the ratio of wave 
number along axis z and x, ( ) ( ) ( )( , , )n n n

x zyU U U  are constants, pc is the phase velocity along axis x which is 
given by /pc kω= , and ω is the angular frequency. 

GWs have distinct disperse characteristics, which means the propagation velocities and mode shapes 
are frequency dependent. There are serval methods to calculate the dispersion curves in multi-layer 
composites. Considering the numerical stability and calculation efficiency [6], the SMM is used to 
obtain the disperse curves in this paper. In the SMM method, the relationship in the n-th layer can be 
written as [17]: 
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Matrix ( )nK contains the coefficients associated with stresses, displacements, and the thickness of n-
layer. 

Considering the continuity of the displacements and stress components at the interface of the layers, 
the global stiffness matrix can be obtained recursively. This matrix relates the stresses to the 
displacement from the top and bottom surface of the whole composite laminate: 
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Assuming that the stress components are free on the uppermost and lowermost surfaces of the plate, 
the guided wave dispersion equation is: 



Xing Kou, Emanuele Casciaro, Cheng Qian, Cuixiang Pei, Paolo Bettini and Zhenmao Chen 
 

 det( ) 0=K  (6) 

 
2.2 Finite element method with explicit integration 

In the absence of an external force, the governing equation can be expressed in matrix form as: 

 [ ] [ ][ ]{ } { } { } { }T fD u u uρ γ∇ ∇ + = +   (7) 

where [ ]D  is the stiffness matrix which can be obtained from Equation (2), { }u  is the displacement 
vector, { }f  is the external force vector, [ ]∇ is the gradient matrix function, γ is the acoustic damping 
coefficient. 

The boundary conditions on the solid surfaces are: 

 [ ] { } { } ( )ˆTn t On surfaceσ =  (8) 

where, { } { }ˆ ˆ ˆ ˆ, ,yx z

T
t t t t= is the external force tensor loading on the solid surface. 

In addition to boundary conditions, the initial condition for the elastic wave field is: 

 { } { }
0 0

0
t t

u u
= =
= =  (9) 

For the 3D simulation, the eight-node hexahedral isoperimetric elements can be used in a discrete 
model. Based on the weighted residual method, the differential governing equation of the elastic wave 
field can be transformed into an integration form. According to the principle of the partial integration 
method, and considering the boundary condition, the element governing equation can be given as: 

 { } { } { } { }24 124 24 24 1 24 24 24 1 24 24 24 1

e e e eU U UM D G F
×× × × × × ×

+ +      =     
   (10) 

The element mass matrix, damping matrix, stiffness matrix, and force vector are expressed as: 

 [ ] [ ]
1 1 1

24 3 3 2424 24 1 1 1

TeM N N J d d dρ ξ η ζ
× ×× − − −

  =  ∫ ∫ ∫  (11) 

 [ ] [ ]
1 1 1

24 3 3 2424 24 1 1 1

TeD N N J d d dγ ξ η ζ
× ×× − − −

  = ∫ ∫ ∫  (12) 

 [ ] [ ] [ ]
1 1 1

24 6 6 6 6 2424 24 1 1 1

TeG B D B J d d dξ η ζ
× × ×× − − −

   = ∫ ∫ ∫  (13) 
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1 1 1

3 124 324 1 1 1 1

TeF N J d dF dξ η ζ
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  =  ∫ ∫ ∫  (14) 

where , ,ξ η ζ are the natural coordinates in the master element, Ni is the shape function, [J] is the 
Jacobi matrix, [ ] [ ] [ ]6 24 6 3 3 24

B N
× × ×

= ∂ . 
Gauss quadrature is applied in generating element matrices. This method locates sampling points and 

assigns weights to minimize integration error when the integrand is a general polynomial. Based on the 
concept of FEM, after assembling the element governing equation, the global governing equation of the 
3D elastic wave field can be described as: 

 [ ]{ } [ ]{ } [ ]{ } { }M U U U FD G =+ +   (15) 

Where, [M], [D], and [G] are the global mass matrix, damping matrix, and stiffness matrix; {F}is the 
external force vector applied on the discrete model. The mass of the element is assumed to be distributed 
to each node of the element, which means the element mass matrix is transformed into a diagonal matrix. 
[18]. 

The FEM-formed global governing equation is established at a particular time t. To obtain the entire 
time history of the generalized ultrasonic field, time-domain integration over the whole time is needed. 
The existing integration algorithms can be divided into implicit and explicit methods. With the time-
implicit algorithm, it will take very huge memory and computation costs to solve the linear equation, 
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even in a small model, as the dimension of the sparse coefficient matrixes for the elastic wave field is 
very huge. The explicit algorithm does not suffer this drawback and can be coded to calculate algebraic 
equations. In our simulation, the time-explicit integration algorithm based on the central difference 
method and Newmark average velocity method is used, which has more than second-order accuracy to 
meet the needs of practical engineering applications [19]. 
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Therefore, the displacement field can be directly calculated with less consumed time and storage. 
For the convergence of the explicit integration algorithm, the element size should be smaller than λmin/10, 
where λmin is the shortest wavelength of interest. Meanwhile, the time step should be smaller than lmin/Cl, 
where lmin is the fastest wave in the material. 

To further reduce the amount of storage capacity and calculation cost, the explicit integration 
algorithm is combined with the non-zero element one-dimensional compressed storage method , as the 
damping and stiffness matrices are sparse. Only the non-zero elements in the matrices and their 
corresponding locations are stored, to calculate the required displacement field. The storage capacity is 
highly reduced compared with the traditional half-bandwidth storage method. This provides an 
improvement in calculation efficiency. 

 
3 NUMERICAL MODEL AND EXPERIMENT SETUP 

3.1 Numerical model 

The combination of the time-explicit integration algorithm and the one-dimensional compressed 
storage method enables the development of a memory-efficient code, which could perform a larger 
three-dimensional (3D) model than current commercial tools. With the feature of high-performance 
computing, the FORTRAN language is used to implement the numerical program. The custom fast 
FEM-based program and COMSOL/Explicit commercial package are used to simulate the interested 
guided wave in a glass fiber reinforced polymer (GFRP) cross-ply laminate. The attenuation caused by 
material damping is not considered in the models. The comparison of the two models is used to verify 
the efficiency and accuracy of the fast FEM-based method. 

Table 1 lists the material properties of the GFRP composite (3M’s unidirectional SP250 S29A) used 
in the models, with the assumption of transversely isotropic in each ply. The layout of the composite 
material is [0/90]s with a total thickness of 1.6 mm, which matches the measured value of the 
experimental specimens. 

 
 

Property Symbol Value 

Density (kg·m-3) ρ 1.88×103 

Young’s moduli 
(GPa) 

E1 45.7 

E2 (=E3) 13.5 

Shear moduli 
(GPa) 

G12 (=G13) 5.41 

G23 5.19 

Poisson’s ratios 
ν12 (=ν13) 0.27 

ν23 0.42 
 

Table 1: Mechanical properties. 
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The disperse curves of the group velocity are obtained based on SMM. Fig. 2 shows both symmetric 
and anti-symmetric modes of propagating Lamb wave in the GFRP cross-ply. Only basic (in solid line) 
and first-order (in dotted line) modes are plotted, as the basic modes generated under a low frequency-
thickness product are used in this paper. 

 
 

 
 

Figure 2: Dispersion curves of group velocity. 
 
 

The excitation frequency f0 is set as below 300 kHz in this paper, at which only the symmetric S0 
mode and anti-symmetric A0 mode are generated. The proposed fast FEM-based simulation is 
performed to simulate an area of 100 mm × 100 mm as Fig. 3 (a) shows. All edges are set as stress-free 
boundaries. The probe points are set as a 41×41 array with a spacing of 2×2 mm for two-dimensional 
wavenumber analysis. For the commercial package, to reduce memory cost, a simplified model (45 mm 
× 10 mm area) in Fig. 3 (b) is established by the Elastic Waves- Time Explicit Interface in COMSOL, 
with the setting of the absorbing layers and symmetric boundaries. A single probe point is set in the 
COMSOL model, to collect displacement signals and compare them with that obtained by the probe 
point which has the same propagation distance (40 mm) in the fast-FEM model. 

 
 

 
 

(a)                                                                       (b) 
Figure 3: Established numerical model of (a) fast FEM-based program and (b) COMSOL/Explicit. 

 
 

The 3-cycle sinusoidal tone-burst signal with Hanning-window is incident normally over a 4-mm 
diameter circular on the surface. The expression of the loading P(t) can be written as: 
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where q is the amplitude of the excitation signal, and f0 is the excitation frequency. 
Considering the convergence condition, as well as the element distortion due to high aspect ratios in 

the 3D FEM model, the maximum in-plane element dimension is set as 0.4 mm × 0.4 mm for the fast 
FEM-based model and 0.8 mm × 0.8 mm for the COMSOL model. In the thickness direction, two 
elements are set in each plyfor all the models.  For the simplified model in COMSOL, the quartic shape 
functions are used, and the physical thickness of the absorbing layer contains 3 mesh elements. The 
fixed time step size is set as Δt = 0.03 μs. 

 
3.2 Experiment setup 

A GFRP panel (3M’s unidirectional SP250 S29A) with the same layout and overall thickness as the 
simulation is fabricated, with the size of 434 mm × 60 mm.  To excite and receive guided waves in the 
panel, two Ferroperm Pz27 piezoceramic plates are bonded by a two-component epoxy on the central 
line of the surface symmetrically as both actuator and sensor. The dimension of the Pz27 plate is 30 mm 
× 30 mm × 0.5 mm. The distance between the two Pz27 plates is 114 mm. To drive the actuator, a signal 
generator (LeCroy Wave Station 2052) is used and generates a tone-burst signal with a central frequency 
of 100 kHz and peak-to-peak voltage of 4 V. The signal type is the same as in the simulation. The signal 
received by the sensor is amplified by a high-voltage amplifier (Elba Tech T-506) and then recorded by 
an oscilloscope (Agilent Technologies DSO-X 2024A). The experiment setup is shown in Fig. 4.  

 
 

 
 

Figure 4: Experiment setup. 
 
 

4 RESULTS AND DISCUSSION 

4.1 Comparison with COMSOL/Explicit results 

The excitation frequency is set at 300 kHz to investigate the performance of the two numerical 
approaches. The calculation total time is Tsim = 36 μs. Figure 5 shows the simulated wave field at a time 
of 18 μs in a grayscale map. The amplitude of the particle oscillation velocity is denoted in the color bar. 
Both A0 mode and S0 mode can be distinguished in Fig. 5 (a). Under low frequency-thickness product 
excitation, the motion of particles at S0 mode is mainly in-plane, while that at A0 mode is mainly out-
plane. As the displacement generated by a normal incident force is mainly out-of-plane, the amplitude 
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of the obtained A0 mode is much bigger than the S0 mode. In the wave field resulting from the simplified 
COMSOL model, the A0 mode also can be identified, as shown in Fig. 5 (b). 

 
 

       
 

(a)                                                                       (b) 
Figure 5: The simulated wave field from (a) fast FEM-based program and (b) COMSOL/Explicit. 

 
 

          
 

(a)                                                                       (b) 

Figure 6: The comparison of the (a) in-plane and (b) out-of-plane displacement signals 
 
 

The comparison of the in-plane displacement (along the x-axis) and out-of-plane displacement is 
shown in Fig. 6. All the curves are normalized by the maximum value. The arriving time and waveforms 
of both S0 and A0 modes are nearly consistent with each other. The main reason for the existence of the 
small difference is that the absorbing layer is set in the simplified COMSOL model, which means there 
is almost no reflection wave by the boundaries.  

The cross-correlation method is applied to the signals in Fig. 6 (b) to determine the arriving times of 
S0 and A0 mode, which means the value of the time instant for which the cross-correlation integral of 
the received signals and excitation signals reaches a maximum. The relative errors δ are obtained with 
the calculated velocities from models and reference velocities from the disperse curve, in which the 
theoretical S0 and A0 velocities are around 3883 m/s and 1740 m/s. The results are in Tab. 2. The 
calculated wave velocities from both the fast FEM-based code and commercial package are in good 
agreement with the theoretical values. 
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Table 2 also shows the performance of the two approaches. The number of Degrees of Freedom (DoF) 
is estimated with the product of nodes number and the number of displacement variables. Even 
calculating a model with 7 times DoF more than commercial software, the proposed fast-FEM program 
is much more efficient. The calculation running time (Trun) of the proposed method is only several 
minutes, while requires many hours in the commercial software. And the storage capacity (Mem) is 10 
times less than it. 

 
 

 Metric 
Approach 

Fast FEM-based 
method 

COMSOL/ 
Explicit 

Velocity 

vS0 (m/s) 3745.3 3777.1 
δS0  (%) -3.5 -2.7 

vA0 (m/s) 1784.9 1768.3 
δA0 (%) +2.6 +1.6 

Performance 

Δt (μs) 0.03 0.03 
Tsim (μs) 36 36 

DoF (102) 15681.87 2223 
Trun (min) 2.94 504 

Mem (GB) 1.42 18.71 
 

Table 2: Velocity results and Performance comparison of the two numerical approaches. 
 
 

4.2 Comparison with analytical disperse result 

The 3D fast Fourier transform (FFT) algorithm is used to perform the wavenumber analysis of time-
domain signals, in order to compare computational wavefields from developed fast-FEM code and 
analytical SMM solutions for each propagation direction. Fig. 7 shows the calculated wavenumber 
domain signals in colormap and the SMM results in solid lines. The peak in the color bar is related to 
the wave amplitude and normalized by the maximum. There are no obvious peaks under the S0 curves, 
as the normal incidence under low frequency-thickness product mainly actuates the A0 wave. The fast-
FEM results and the analytical SMM curves overlap well for the A0 Lamb waves, confirming the 
reliability of the model in each direction. 
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Figure 7: The wavenumber domain signals in colormap and the SMM results in solid lines. 
 
 

4.3 Predicted signal and experiment validation 

Based on the proposed fast FEM-based program, a model with the same dimension as the experiment 
plate is established. The actuator is simplified as a normal incidence in a 30 mm × 30 mm area. 
31×31points are set in the sensor area with a spacing of 1 mm, and the integral of the signals is used to 
predict the signals generated by the actuator. The simulated wave field at a time of 54 μs is shown in 
Fig. 8. The amplitude of the particle oscillation displacement is denoted in the grayscale color bar. Both 
A0 mode and S0 mode can be distinguished, although the amplitude of the S0 mode is much smaller. 
The measured signal by experiment and the predicted signal from the simulation are shown in Fig. 9. 
The piezoceramic plates are sensitive to the out-of-plane motion; however, the measured signal is closer 
to the predicted in-plane signal compared to the out-of-plane displacement. The main reason is that the 
induced additional stiffness and similar thickness of the sensor/actuator to the plate result in the mode 
conversion, which could be reduced by other generation and detection approaches. The predicted model 
can also be improved by adding a sensor/actuator to the model, which would be further studied. However, 
it has been demonstrated that the proposed program could predict the arrival time and waveform signals 
of experiments, as shown in Fig. 9., 

 
 

 
 

Figure 8: The simulated wave field of the GFRP plate used in experiment. 
 
 

 
 

Figure 9: Measured signal and predicted signal. 
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5 CONCLUSIONS 

In this paper, a fast FEM-based numerical program is established to simulate the guided wave 
propagation in composite plates. Combing the time-explicit algorithm and one-dimensional compressing 
data storage technique, the memory and computational costs are highly reduced. The method is applied 
to simulate guided waves in a glass fiber-reinforced polymer cross-ply laminate. Firstly, the analytical 
disperse solution in multi-layers plates is obtained based on the stiffness matrix method (SMM) with the 
assumption of transversely isotropic in each ply. Then, the COMSOL/Explicit package is used to 
simulate the same model as the fast FEM-based simulation. The results from both the two models are in 
good agreement with the theoretical values. With 7 times DoF more than commercial software, the 
storage capacity is 10 times less. And the calculation running time of the proposed method is only several 
minutes, while requires many hours in the commercial software. The results show that the proposed 
method offers a significant reduction in computation time and storage capacity, making it an efficient 
and reliable tool for simulating guided waves in composites.  

Afterward, the accuracy of the fast FEM-based method for each propagation direction is verified 
with the comparison to analytical disperse solutions by wavenumber analysis. The fast-FEM results and 
the analytical SMM curves overlap well for the A0 Lamb waves, confirming the reliability of the model 
in each direction. Finally, the predicted signal from the proposed method is validated by experiments. 
The arrival time and waveform agree well with the signals. It shows that this efficient and reliable 
numerical approach could provide theoretical and technological support to guided waves-based 
structural health monitoring in composites. 
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