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Abstract: In this research we tackle the scheduling problem in additive manufacturing for
unrelated parallel machines. Both the nesting and scheduling aspects are considered. Parts have
several alternative build orientations. The goal is to minimize the total tardiness of parts. We
propose a mixed-integer linear programming model which considers the nesting subproblem as
a 2D bin-packing problem, as well as a model which simplifies the nesting subproblem to a
1D bin-packing problem. The computational efficiency and properties of the proposed models
are investigated by numerical experiments. Results show that the total tardiness optimization
significantly increases the complexity of the problem, only the simple instances are solved
optimally, whereas the makespan variant is able to solve all testing instances. Using the 1D
bin-packing simplification allows for solving more instances to optimality, but with a risk of
obtaining nesting-infeasibility. We also observed the compromise between the total tardiness and
makespan objectives, which originates from the dilemma of “packing more parts to benefit from
the common machine setup/recoating time” or “packing less parts to maintain the flexibility
for handling distributed duedates”.
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1. INTRODUCTION

Additive Manufacturing (AM) is versatile at fabricating
complex designs using digital representations and thus,
AM acts as a key for highly customized orders. This stim-
ulates the on-demand business models such as Factory-as-
a-Service (FaaS) (Kang et al., 2018). In FaaS, customers
can place production orders via the online market, and
the factory has to perform the delivery before a duedate,
otherwise a penalty will be paid. Due to the layer-by-
layer construction feature, AM process is generally time
consuming, production decisions are hence having great
impacts on the system performance. To satisfiy the increas-
ing demand, how to efficiently schedule the production
tasks becomes a critical problem for the on-time order
delivery.

In recent years, the scheduling problem for AM machines
has drawn an increasing attention (Oh et al., 2020). Gener-
ally, the production scheduling is to allocate the jobs to the
machines and decide their processing sequence to optimize
certain objectives. Compared to the scheduling problems
� This work is sponsored by Shanghai Pujiang Program
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in conventional manufacturing environment, some specific
features of AM introduce new challenges.

An AM machine is generally capable of printing a set of
parts, known as a build, at a time. We use the term “batch”
to represent a general concept in the following context.
The nesting problem thus arises during the production,
which concerns the placement of parts in the limited build
platform. The decisions include part displacement and
rotation around the z-axis (vertical axis). A proper nesting
leads to a high machine usage rate. There are two types
of nesting, 2D and 3D, depending on whether the parts
can be put upon each other. In this study, we consider the
case of selective laser melting (SLM) technique, and thus,
no stacks are permitted because supporting structures
are required for heat dissipation and fixing parts on
the platform (Zhang et al., 2020). Hence, the nesting
problem concerns the packing of parts’ projections into the
platform, which is usually a rectangular area. To reduce
the difficulty of considering complex part geometries, a
common way is to represent parts’ projections by their
minimum bounding boxes, which leads to a 2D bin-packing
problem (2D-BPP) (Lodi et al., 2002). However, even for
this case, the nesting problem is NP-hard.
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otherwise a penalty will be paid. Due to the layer-by-
layer construction feature, AM process is generally time
consuming, production decisions are hence having great
impacts on the system performance. To satisfiy the increas-
ing demand, how to efficiently schedule the production
tasks becomes a critical problem for the on-time order
delivery.

In recent years, the scheduling problem for AM machines
has drawn an increasing attention (Oh et al., 2020). Gener-
ally, the production scheduling is to allocate the jobs to the
machines and decide their processing sequence to optimize
certain objectives. Compared to the scheduling problems
� This work is sponsored by Shanghai Pujiang Program
(21PJ1413300).

in conventional manufacturing environment, some specific
features of AM introduce new challenges.

An AM machine is generally capable of printing a set of
parts, known as a build, at a time. We use the term “batch”
to represent a general concept in the following context.
The nesting problem thus arises during the production,
which concerns the placement of parts in the limited build
platform. The decisions include part displacement and
rotation around the z-axis (vertical axis). A proper nesting
leads to a high machine usage rate. There are two types
of nesting, 2D and 3D, depending on whether the parts
can be put upon each other. In this study, we consider the
case of selective laser melting (SLM) technique, and thus,
no stacks are permitted because supporting structures
are required for heat dissipation and fixing parts on
the platform (Zhang et al., 2020). Hence, the nesting
problem concerns the packing of parts’ projections into the
platform, which is usually a rectangular area. To reduce
the difficulty of considering complex part geometries, a
common way is to represent parts’ projections by their
minimum bounding boxes, which leads to a 2D bin-packing
problem (2D-BPP) (Lodi et al., 2002). However, even for
this case, the nesting problem is NP-hard.
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Fig. 1. A batch of parts with different build orientations

The selection of build orientation of parts is also impor-
tant. Fig. 1 illustrates a batch of specimens for tensile
trails, which are printed with different build orientations
of 0◦ (vertical), 45◦ and 90◦ (horizontal) deviation from
the z-axis. Obviously, vertical orientation accounts for the
smallest projection area but the largest height, while the
horizontal orientation is the opposite case. Since the batch
processing time depends on the maximum height of the
parts in the batch, the selection of build orientation can
be viewed as a trade-off between the maximum number
of nested parts and the batch processing time. Thus, the
build orientation selection has an impact on the schedule
performance.

In the literature, the scheduling and nesting are generally
tackled in steps, i.e., parts are firstly grouped to form
batches (nesting), then, the batches are assigned and se-
quenced on the AM machines (scheduling).This divide-
and-conquer methodology inevitably leads to potential gap
from the optimal joint decisions. Recently, the number of
works tackling the joint nesting-scheduling problems is in-
creasing, such as Li and Zhang (2018), Zhang et al. (2020)
and Alicastro et al. (2021). Further, most studies assume
that the build orientation is fixed before the nesting and
scheduling. This simplifies the problem but also restricts
the potential to find better schedules by adopting different
orientation strategies, which has been shown by Griffiths
et al. (2019) and Che et al. (2021). Lastly, machine pro-
ductivity and cost are the most common objectives, while
under the on-demand manufacturing mode, the duedate
performance is more critical.

Several mathematical models have been proposed for the
AM scheduling problems. Kucukkoc (2019) proposed three
models for different shop environments without consider-
ing the 2D-BPP. Altekin and Bukchin (2021) extended
one of these models for the cost objective. Although the
model of Li and Zhang (2018) tackles the joint problem
of bin-packing and scheduling, it adopts the “p-batch”
(parallel batch) assumption, i.e., the batch processing time
equals to the greatest processing time of the batched parts.
This might not fit well for the AM procedure. Che et al.
(2021) provided the first model considering alternative
build orientations. However, none of these models address
the total tardiness objective.

In this study, we investigate the nesting-scheduling prob-
lem in a system of parallel AM machines. Machines are
unrelated due to different platform capacities (sizes). A

set of parts are to be scheduled. Each part comes with a
duedate, and a set of alternative build orientations satis-
fying the quality constraint. When printing, we consider
the case that a part is not allowed to stack upon another.
We aim at deciding the joint decision of build orientation
selection, nesting and scheduling of the parts, to minimize
the total tardiness. The contributions of this research are:

• Two mixed-integer linear programming (MILP) mod-
els considering different fidelity levels of the underly-
ing bin-packing problem (1D and 2D) are provided.
To improve the solvability, the constraints are lin-
earized. To the best of our knowledge, this is the first
time that this nesting-scheduling problem is modeled
and tackled.

• The performance of the proposed models are tested
and compared on instances taken from the literature.
By doing so, we provide some insights including: (a)
the difference between optimizing the makespan and
total tardiness objective (2) the pros and cons of
simplifying the bin-packing problem.

The remaining of the paper is organized as follows. Section
2 describes the problem. Section 3 proposes the mathemat-
ical models. Section 4 reports the numerical results, and
Section 5 concludes the paper.

2. PROBLEM DESCRIPTION

A collection of parts J = {1, . . . , n} are to be printed
on a set of parallel machines I = {1, . . . ,m}. Each part
j ∈ J has a given duedate dj , a volume vj and a set
of optional build orientations Kj . Each build orientation
k ∈ Kj corresponds to a 3D geometry with four param-
eters {hjk, ljk, wjk, sjk}, which are the height, length and
width of the rectangle projection, and the volume of the
supporting structure, respectively. Each machine i ∈ I
can process a batch of parts simultaneously. The capacity
of the build platform of machine i is defined by a cube
with length Li, width Wi and height Hi. Parts are not
allowed to stack on each other, therefore, a set of parts
can be placed in a batch only when their projections do
not overlap, and their geometries are within the platform
boundaries. The batch processing time Pib consists of three
components: the machine setup time, the laser scanning
time and the recoating time, as given in (5) . The parts
must be placed parallel to the length or width of the
platform, and can rotate around the z-axis by 90 degrees.
Let cj be the completion time of part j, and Cib be that
of the b-th build on machine i, cj = Cib if part j is in the
batch. The tardiness Tj = max{0, cj − dj}. All parts are
available at the beginning. The goal is to decide the build
orientation for each part, place and schedule them on the
machines to minimize the total tardiness.

3. MATHEMATICAL PROGRAMMING MODELS

This section proposes two MILP models for the nesting-
scheduling problem.

3.1 Nesting and Scheduling Model

The MILP model is given as follows. The sets are:
I : Set of machines;
J : Set of parts;
Kj : Set of alternative build orientation of part j;
Bi : Set of available batches on machine i;

The parameters are:
Si : Setup time of machine i;
Vi : Scanning speed of machine i;
vj : Volume of part j;
Ui : Recoating speed of machine i;
Li,Wi,Hi: Length, width and height of the build

platform on machine i;
hjk, ljk, wjk, sjk: Height, length, width and supporting

structure volume of the k-th orientation
of part j.

The decision variables are:
Xjib : equals 1 if part j is assigned to the b-th batch of

machine i, 0 otherwise;
Yjk : equals 1 if part j selects the k-th optional build

orientation, 0 otherwise;
(xj , yj):coordinates of the left-bottom point of part j’s

projection in a batch;
oj : equals 1 if part j is placed with its length parallel

to the that of the platform, 0 otherwise.

The auxiliary variables are:
Zib : equals 1 if the b-th batch on machine i is formed,

0 otherwise;
PLjj′ : equals 1 if part j’s right-top point is placed to

the left of part j′’s left-bottom point in the same
batch, 0 otherwise;

PBjj′ : equals 1 if part j’s right-top point is placed below
part j′’s left-bottom point in the same batch, 0
otherwise;

Pib : processing time of the b-th batch on machine i;
Cib : completion time of the b-th batch on machine i;
Hib : height of the b-th batch on machine i.
cj : completion time of part j;
Tj : tardiness of part j;
M : a large number.

PLjj′ ,PBjj′ ,PLj′j and PBj′j together describe the posi-
tion relationship of part j and j′.

The nesting-scheduling problem of parallel AM machines,
denoted by NSPM , is formulated as:

NSPM : min
∑
j∈J

Tj , (1)

s.t. ∑
j∈J

Xjib ≤ MZib, ∀i ∈ I, b ∈ Bi, (2)

∑
i∈I

∑
b∈Bi

Xjib = 1, ∀j ∈ J, (3)

∑
k∈Kj

Yjk = 1, ∀j ∈ J, (4)

Pib = SiZib + Vi

∑
j∈J

(Xjibvj +Xjib

∑
k∈Kj

Yjksjk)+

UiHib, ∀i ∈ I, b ∈ Bi,
(5)

xj +
∑
k∈Kj

Yjk · ljk ≤ Li+ M(1−
∑
b∈Bi

Xjib)+

M(1− oj), ∀j ∈ J, i ∈ I,
(6)

xj +
∑
k∈Kj

Yjk · wjk ≤ Li+ M(1−
∑
b∈Bi

Xjib)+

Moj , ∀j ∈ J, i ∈ I,
(7)

yj +
∑
k∈Kj

Yjk · wjk ≤ Wi+ M(1−
∑
b∈Bi

Xjib)+

M(1− oj), ∀j ∈ J, i ∈ I,
(8)

yj +
∑
k∈Kj

Yjk · ljk ≤ Wi +M(1−
∑
b∈Bi

Xjib)+

Moj , ∀j ∈ J, i ∈ I,
(9)

xj +
∑
k∈Kj

Yjk · ljk ≤ xj′+ M(1− PLjj′)+

M(1− oj), ∀j, j′ ∈ J,

(10)

xj +
∑
k∈Kj

Yjk ·wjk ≤ xj′ +M(1−PLjj′)+Moj , ∀j, j′ ∈ J,

(11)

yj+
∑
k∈Kj

Yjk·wjk ≤ yj′+M(1−PBjj′)+M(1−oj), ∀j, j′ ∈ J,

(12)

yj +
∑
k∈Kj

Yjk · ljk ≤ yj′ +M(1− PBjj′) +Moj , ∀j, j′ ∈ J,

(13)
PLjj′ + PBjj′ + PLj′j + PBj′j ≥
Xjib +Xj′ib − 1, ∀j, j′ ∈ J, j < j′, i ∈ I, b ∈ Bi,

(14)

Hib ≥
∑
k∈Kj

Yjkhjk −M(1−Xjib), ∀i ∈ I, b ∈ Bi, j ∈ J,

(15)
Hib ≤ Hi, ∀i ∈ I, b ∈ Bi, (16)

Cib ≥ Ci(b−1) + Pib, ∀i ∈ I, b ∈ Bi, (17)

Ci0 = 0, ∀i ∈ I, (18)

cj ≥ Cib −M(1−Xjib), ∀j ∈ J, i ∈ I, b ∈ Bi, (19)

Tj ≥ cj − dj , ∀j ∈ J. (20)

xj , Zj ≥ 0, ∀j ∈ J, (21)

cj , Tj ≥ 0, ∀j ∈ J, (22)

Pib, Cib, Hib ≥ 0, ∀i ∈ I, b ∈ Bi, (23)

Xjib ∈ {0, 1}, ∀j ∈ J, i ∈ I, b ∈ Bi, (24)

Zib ∈ {0, 1}, ∀i ∈ I, b ∈ Bi, (25)

Yjk ∈ {0, 1}, ∀j ∈ J, k ∈ Kj , (26)

PLjj′ , PBjj′ ∈ {0, 1}, ∀j, j′ ∈ J. (27)

Constraints (2) ensure that a batch cannot be assigned
to if not formed. Constraints (3) specify that a part
is assigned to only one batch. Constraints (4) ensure
that a part selects one build orientation. Constraints (5)
calculate the processing time of a batch. Constraints (6) -
(9) guarantee that the part is within the build boundaries.
Constraints (10) - (13) guarantee that the parts are
not overlapped when assigned to the same batch. More
specifically, Constraints (10) and (11) impose that when
PLjj′ = 1, i.e., part j is placed to the left of part j′, the
right edge of part j does not exceed the left edge of part j′.
These constraint are relaxed when PLjj′ = 0. Constraints
(12) and (13) impose for the vertical direction with the
same logic. Constraints (14) ensure that when part j and
j′ are allocated on the same batch, i.e., Xjib and Xj′ib
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3.1 Nesting and Scheduling Model

The MILP model is given as follows. The sets are:
I : Set of machines;
J : Set of parts;
Kj : Set of alternative build orientation of part j;
Bi : Set of available batches on machine i;

The parameters are:
Si : Setup time of machine i;
Vi : Scanning speed of machine i;
vj : Volume of part j;
Ui : Recoating speed of machine i;
Li,Wi,Hi: Length, width and height of the build

platform on machine i;
hjk, ljk, wjk, sjk: Height, length, width and supporting

structure volume of the k-th orientation
of part j.

The decision variables are:
Xjib : equals 1 if part j is assigned to the b-th batch of

machine i, 0 otherwise;
Yjk : equals 1 if part j selects the k-th optional build

orientation, 0 otherwise;
(xj , yj):coordinates of the left-bottom point of part j’s

projection in a batch;
oj : equals 1 if part j is placed with its length parallel

to the that of the platform, 0 otherwise.

The auxiliary variables are:
Zib : equals 1 if the b-th batch on machine i is formed,

0 otherwise;
PLjj′ : equals 1 if part j’s right-top point is placed to

the left of part j′’s left-bottom point in the same
batch, 0 otherwise;

PBjj′ : equals 1 if part j’s right-top point is placed below
part j′’s left-bottom point in the same batch, 0
otherwise;

Pib : processing time of the b-th batch on machine i;
Cib : completion time of the b-th batch on machine i;
Hib : height of the b-th batch on machine i.
cj : completion time of part j;
Tj : tardiness of part j;
M : a large number.

PLjj′ ,PBjj′ ,PLj′j and PBj′j together describe the posi-
tion relationship of part j and j′.

The nesting-scheduling problem of parallel AM machines,
denoted by NSPM , is formulated as:

NSPM : min
∑
j∈J

Tj , (1)

s.t. ∑
j∈J

Xjib ≤ MZib, ∀i ∈ I, b ∈ Bi, (2)

∑
i∈I

∑
b∈Bi

Xjib = 1, ∀j ∈ J, (3)

∑
k∈Kj

Yjk = 1, ∀j ∈ J, (4)

Pib = SiZib + Vi

∑
j∈J

(Xjibvj +Xjib

∑
k∈Kj

Yjksjk)+

UiHib, ∀i ∈ I, b ∈ Bi,
(5)

xj +
∑
k∈Kj

Yjk · ljk ≤ Li+ M(1−
∑
b∈Bi

Xjib)+

M(1− oj), ∀j ∈ J, i ∈ I,
(6)

xj +
∑
k∈Kj

Yjk · wjk ≤ Li+ M(1−
∑
b∈Bi

Xjib)+

Moj , ∀j ∈ J, i ∈ I,
(7)

yj +
∑
k∈Kj

Yjk · wjk ≤ Wi+ M(1−
∑
b∈Bi

Xjib)+

M(1− oj), ∀j ∈ J, i ∈ I,
(8)

yj +
∑
k∈Kj

Yjk · ljk ≤ Wi +M(1−
∑
b∈Bi

Xjib)+

Moj , ∀j ∈ J, i ∈ I,
(9)

xj +
∑
k∈Kj

Yjk · ljk ≤ xj′+ M(1− PLjj′)+

M(1− oj), ∀j, j′ ∈ J,

(10)

xj +
∑
k∈Kj

Yjk ·wjk ≤ xj′ +M(1−PLjj′)+Moj , ∀j, j′ ∈ J,

(11)

yj+
∑
k∈Kj

Yjk·wjk ≤ yj′+M(1−PBjj′)+M(1−oj), ∀j, j′ ∈ J,

(12)

yj +
∑
k∈Kj

Yjk · ljk ≤ yj′ +M(1− PBjj′) +Moj , ∀j, j′ ∈ J,

(13)
PLjj′ + PBjj′ + PLj′j + PBj′j ≥
Xjib +Xj′ib − 1, ∀j, j′ ∈ J, j < j′, i ∈ I, b ∈ Bi,

(14)

Hib ≥
∑
k∈Kj

Yjkhjk −M(1−Xjib), ∀i ∈ I, b ∈ Bi, j ∈ J,

(15)
Hib ≤ Hi, ∀i ∈ I, b ∈ Bi, (16)

Cib ≥ Ci(b−1) + Pib, ∀i ∈ I, b ∈ Bi, (17)

Ci0 = 0, ∀i ∈ I, (18)

cj ≥ Cib −M(1−Xjib), ∀j ∈ J, i ∈ I, b ∈ Bi, (19)

Tj ≥ cj − dj , ∀j ∈ J. (20)

xj , Zj ≥ 0, ∀j ∈ J, (21)

cj , Tj ≥ 0, ∀j ∈ J, (22)

Pib, Cib, Hib ≥ 0, ∀i ∈ I, b ∈ Bi, (23)

Xjib ∈ {0, 1}, ∀j ∈ J, i ∈ I, b ∈ Bi, (24)

Zib ∈ {0, 1}, ∀i ∈ I, b ∈ Bi, (25)

Yjk ∈ {0, 1}, ∀j ∈ J, k ∈ Kj , (26)

PLjj′ , PBjj′ ∈ {0, 1}, ∀j, j′ ∈ J. (27)

Constraints (2) ensure that a batch cannot be assigned
to if not formed. Constraints (3) specify that a part
is assigned to only one batch. Constraints (4) ensure
that a part selects one build orientation. Constraints (5)
calculate the processing time of a batch. Constraints (6) -
(9) guarantee that the part is within the build boundaries.
Constraints (10) - (13) guarantee that the parts are
not overlapped when assigned to the same batch. More
specifically, Constraints (10) and (11) impose that when
PLjj′ = 1, i.e., part j is placed to the left of part j′, the
right edge of part j does not exceed the left edge of part j′.
These constraint are relaxed when PLjj′ = 0. Constraints
(12) and (13) impose for the vertical direction with the
same logic. Constraints (14) ensure that when part j and
j′ are allocated on the same batch, i.e., Xjib and Xj′ib
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equal 1, there is at least one active positioning relationship.
Constraints (17) calculate the batch completion time,
while Constraints (19) calculate the part completion time.
Constraints (20) calculate the tardiness of a part.

The following constraints are introduced to break the
symmetry of batches:

Zi(b−1) ≥ Zib, ∀i ∈ I, b ∈ Bi \ {1}. (28)

To linearize (5), we introduce an auxiliary variable ejib to
represent the support structure volume of part j printed
on the b-th batch of machine i, and replace Constraints
(5) with the followings:

Pib = SiZib + Vi

∑
j∈J

(Xjibvj + ejib) +UiHib, ∀i ∈ I, b ∈ Bi,

(29)

ejib ≥
∑
k∈Kj

Yjksjk −M(1−Xjib), ∀j ∈ J, i ∈ I, k ∈ Kj ,

(30)
ejib ≥ 0, ∀j ∈ J, i ∈ I, b ∈ Bi (31)

3.2 Nesting and Scheduling Model with Packing Simplification

The integration of the 2D-BPP and the parallel machine
scheduling problem greatly increases the difficulty. To
tackle this, the common way is to simplify the 2D-BPP
into a 1D-BPP, as in Kucukkoc (2019). The basic idea is to
replace the two-dimensional machine capacity constraint
with a one-dimensional one, i.e., the total projection area
of the parts printed on the machine cannot succeed the
platform area. Thus, we replace Constraints (7) - (14) by∑

j∈J

Xjibaj ≤ LiWi, ∀i ∈ I, b ∈ Bi, (32)

aj =
∑
k∈Kj

Yjkljkwjk, ∀j ∈ J (33)

where aj ≥ 0, j ∈ J is an auxiliary variable representing
the projection area of part j on the build platform. Note
that Constraints (32) are non-linear. To linearize them, we
introduce the following auxiliary decision variable:

αjib : projection area of part j on the b-th batch of
machine i,

and the parameter:

āj : maximum projection area of part j, i.e.,
maxj∈Kj ljkwjk.

Constraints (32) are replaced by the followings.∑
j∈J

αjib ≤ LiWi, ∀i ∈ I, b ∈ Bi, (34)

αjib ≤ ājXjib, ∀j ∈ J, i ∈ I, b ∈ Bi, (35)

αjib ≥ aj − (1−Xjib)āj , ∀j ∈ J, i ∈ I, b ∈ Bi, (36)

αjib ≤ aj , ∀j ∈ J, i ∈ I, b ∈ Bi, (37)

αjib ≥ 0, ∀j ∈ J, i ∈ I, b ∈ Bi, (38)

Constraints (34) are the capacity constraints. Constraints
(35) ensure that αjib is 0 when part j is not assigned to the
b-th batch on machine i. Constraints (36) and (37) impose
that αjib = aj when part j is assigend to the b-th batch
on machine i.

In summary, the model, denoted by NSPM − 1D, is
constructed as below:

NSPM − 1D : min
∑
j∈J

Tj , (39)

s.t. (2) - (4), (29) -(31), (34 - 38), (33), (28), (15) -(26).

However, one should notice that, the nesting details are not
given by NSPM−1D and should be generated afterwards
by, e.g., some packing heuristics. Also, there is a risk that
the given part-to-batch assignment cannot lead to any
feasible nesting due to the packing simplification.

4. NUMERICAL RESULTS

In this section, we investigate the model efficiency. Partic-
ularly, we are interested in the following questions:

(a) Is it more difficult to optimize the total tardiness than
the makespan?

(b) How much can we benefit from simplifying the 2D-
BPP into 1D-BPP, and what is the disavantage?

4.1 Testing Instances

The testing instances are adopted from Che et al.
(2021) (http://www.computational-logistics.org/orlib/2L-
BPM). In these instances, the parts are downloaded from
the website “Thingiverse”, the part information is col-
lected using a 3D printing application named “Repetier-
Host”, and the AM machine information is from Kucukkoc
(2019). We select five instances as listed in Table 1, in
which the number of parts are adjusted for better testing
our models. We generate the duedates for the part, e.g., j,
from a discrete uniform distribution as:

dj = Unif[µ(1− TF −RDD/2), µ(1− TF +RDD/2)],
(40)

where TF and RDD are the average tardiness factor and
the range of duedates, respectively. A large TF value
indicates the case of urgent orders. µ is the estimated
makespan, which is calculated under the following as-
sumptions: (1) the parts select the build orientation with
the largest height; (2) the parts are sequenced in a non-
decreasing order of their projection area; (3) the batching
is a 1D-BPP; (4) the parts are assigned in sequence to the
machine with the earliest completion time.

Table 1. Testing instances

ID Name #parts #machines #build orientations

1 ht1 1-10 10 2 1 to 3
2 ht1 2-15 15 2 1 to 3
3 ht1 3 -20 20 2 1 to 3
4 ht2 2-25 25 2 1 to 3
5 ht2 1-30 30 2 1 to 3

4.2 Experiment Setup

To investigate question (a) and (b), we perform a full fac-
torial design of experiment with the following factors and
levels: Models - {M: NSPM (Cmax), NSPM , NSPM −
1D }, Instance - {1,2,3,4,5}, TF - {0.3, 0.6}, RDD - {0.3,
0.6}.
The performance of NSPM (Cmax), NSPM , NSPM −
1D are compared, where NSPM (Cmax) is identical to

Table 2. Results of NSPM (Cmax)

Instance Opt. Cmax t (sec.) OptGap

ht1 1-10 opt. 14.5 1.0 0.00
ht1 2-15 opt. 14.2 7.0 0.00
ht1 3-20 opt. 29.6 59.9 0.00
ht2 2-25 opt. 35.0 121.5 0.00
ht2 1-30 opt. 46.6 282.3 0.00

Table 3. Results of NSPM

Instance TF RDD Opt.
∑

Tj Cmax t Gap[%]

ht1 1-10 0.3 0.3 opt. 0.01 16.91 36.7 0.00
ht1 1-10 0.3 0.6 feas. 0.01 16.89 1800 1.09
ht1 1-10 0.6 0.3 opt. 26.05 17.20 72.9 0.00
ht1 1-10 0.6 0.6 opt. 26.28 17.20 345 0.00
ht1 2-15 0.3 0.3 opt. 0.43 16.70 274 0.09
ht1 2-15 0.3 0.6 feas. 0.01 19.30 1800 2.33
ht1 2-15 0.6 0.3 feas. 32.54 20.75 1800 64.75
ht1 2-15 0.6 0.6 feas. 34.95 18.35 1800 68.89
ht1 3-20 0.3 0.3 feas. 0.02 36.68 1800 7.82
ht1 3-20 0.3 0.6 feas. 0.02 43.56 1800 13.43
ht1 3-20 0.6 0.3 feas. 58.20 39.82 1800 99.98
ht1 3-20 0.6 0.6 feas. 70.17 42.88 1800 92.30
ht2 2-25 0.3 0.3 feas. 28.19 45.29 1800 99.93
ht2 2-25 0.3 0.6 feas. 6.88 42.34 1800 99.75
ht2 2-25 0.6 0.3 feas. 188.24 50.62 1800 99.99
ht2 2-25 0.6 0.6 feas. 179.17 51.19 1800 97.97
ht2 1-30 0.3 0.3 feas. 35.86 59.21 1800 99.93
ht2 1-30 0.3 0.6 feas. 24.55 62.38 1800 99.90
ht2 1-30 0.6 0.3 feas. 154.41 66.19 1800 99.62
ht2 1-30 0.6 0.6 feas. 128.10 62.66 1801 96.48

Table 4. Results of NSPM -1D

Instance TF RDD Opt.
∑

Tj Cmax t Gap[%]

ht1 1-10 0.3 0.3 opt. 0.01 16.19 1.3 0.00
ht1 1-10 0.3 0.6 opt. 0.01 19.11 1.0 0.00
ht1 1-10 0.6 0.3 opt. 23.51∗ 16.80 93.4 0.00
ht1 1-10 0.6 0.6 opt. 23.74∗ 16.80 217 0.00
ht1 2-15 0.3 0.3 opt. 0.43 16.70 135 0.00
ht1 2-15 0.3 0.6 opt. 0.01 18.67 8.5 0.00
ht1 2-15 0.6 0.3 feas. 31.68 18.48 1800 72.22
ht1 2-15 0.6 0.6 feas. 31.76 20.41 1800 59.53
ht1 3-20 0.3 0.3 opt. 0.01 34.55 10.5 0.00
ht1 3-20 0.3 0.6 opt. 0.01 42.91 15.5 0.00
ht1 3-20 0.6 0.3 feas. 44.90 34.97 1800 99.97
ht1 3-20 0.6 0.6 feas. 65.74 40.46 1800 86.10
ht2 2-25 0.3 0.3 feas. 13.40 43.03 1800 99.85
ht2 2-25 0.3 0.6 feas. 1.13 42.82 1800 98.10
ht2 2-25 0.6 0.3 feas. 168.99 47.64 1800 99.99
ht2 2-25 0.6 0.6 feas. 175.34 51.48 1800 96.61
ht2 1-30 0.3 0.3 feas. 24.24 53.09 1800 99.88
ht2 1-30 0.3 0.6 feas. 5.43 54.40 1800 99.45
ht2 1-30 0.6 0.3 feas. 124.64 59.15 1800 99.41
ht2 1-30 0.6 0.6 feas. 109.23 58.76 1800 95.87
∗ Note that the optimal objective values in this table might be
lower than those in Table 3 due to the packing infeasibility.

NSPM except that the objective is the makespan. The
models are solved by Gurobi solver (ver. 9.1.2) in a
computer with Intel i7-9750H CPU (2.6GHz), given a
maximum CPU time of 1800 seconds. The acceptable
optimality gap is set as 0.1%.

4.3 Results Analysis

The results are reported in Tables 2 - 4, respectively. The
column “Opt.” indicates whether the optimal solution is

Table 5. NSPM (Cmax) solution on ht 1 2-15.

NSPM(Cmax)

Machine Batch Completion
time

Parts in Batch Part duedates

1 1 14.14 1,2,3,4,8,9,10, -
12,13,14,15

2 1 14.18 5,6,7,11 -

Table 6. NSPM solution on ht 1 2-15
(TF=0.3, RDD=0.3). The tardy part is

marked in bold.

Machine Batch Completion
time

Parts in Batch Part duedates

1 1 12.71 7,9,12,14 13,14,14,14
1 2 16.42 13,15 16,17
2 1 10.64 1,2,6,8,11 12,15,11,11,14
2 2 16.7 3,4,5,10 17,17,17,17

obtained in the given time (opt.) or not (feas.). The column
“t” is the CPU time in seconds. The column “Gap” is
the optimality gap of the best feasible solution, given
by (|BestFeas. − BestBound|)/BestFeas. The column
Cmax and

∑
Tj are the makespan and total tardiness,

respectively. Note that the solution of NSPM (Cmax) is
not affected by the TF and RDD values, and thus these two
columns are not included in Table 2. In Table 3 and 4, we
include the makespan values though the objective function
of NSPM and NSPM − 1D is the total tardiness.

As shown, NSPM (Cmax) solves all instances within 1800
seconds to optimality, whilst NSPM cannot tackle any
instance with #part ≥ 15. The nesting-scheduling problem
with total tardiness objective seems more difficult than
that with makespan objective.

Table 5 and 6 report the optimal schedules for ht 1 2-15
in terms of the makespan and total tardiness (TF=0.3,
RDD=0.3), respectively. As shown, in the case of makespan,
the parts are allocated in such a way that the batch com-
pletion times are balanced. While in the case of total tardi-
ness, only the parts with similar duedates are batched and
processed together. Characterizing by the processing time
in (5), the batch is between a p-batch (parallel batch) and
an s-batch (serial batch). Packing more parts in the batch
brings a benifit of sharing machine setup and recoating
time, but also increases the batch processing time (laser
scanning), leading to late delivery. Therefore, the “packing
as much as possible” rule that works well for the makespan
is not necesary true for the total tardiness, which reveals
the potential conflict between these two objectives.

We further investigate, when optimizating the total tar-
diness, how the order urgency (TF) and duedate range
(RDD) would influence the makespan values. Figure 2
shows that the makespan value tends to increase with
either TF or RDD, with only a few exceptions. This implies
a greater conflict between these two objectives when the
duedates are tight or widely distributed.

The part placement in the schedule of ht 1 2-15 is illus-
trated in Figure 3, where the parts are represented by
their bounding boxes. The parts are placed as closed to
the bottom-left corner as possible, because we added in
the objectve function a term of η

∑
j∈J(xj +yj), scaled by

a small η factor. Note that other reference points can be
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Table 2. Results of NSPM (Cmax)

Instance Opt. Cmax t (sec.) OptGap

ht1 1-10 opt. 14.5 1.0 0.00
ht1 2-15 opt. 14.2 7.0 0.00
ht1 3-20 opt. 29.6 59.9 0.00
ht2 2-25 opt. 35.0 121.5 0.00
ht2 1-30 opt. 46.6 282.3 0.00

Table 3. Results of NSPM

Instance TF RDD Opt.
∑

Tj Cmax t Gap[%]

ht1 1-10 0.3 0.3 opt. 0.01 16.91 36.7 0.00
ht1 1-10 0.3 0.6 feas. 0.01 16.89 1800 1.09
ht1 1-10 0.6 0.3 opt. 26.05 17.20 72.9 0.00
ht1 1-10 0.6 0.6 opt. 26.28 17.20 345 0.00
ht1 2-15 0.3 0.3 opt. 0.43 16.70 274 0.09
ht1 2-15 0.3 0.6 feas. 0.01 19.30 1800 2.33
ht1 2-15 0.6 0.3 feas. 32.54 20.75 1800 64.75
ht1 2-15 0.6 0.6 feas. 34.95 18.35 1800 68.89
ht1 3-20 0.3 0.3 feas. 0.02 36.68 1800 7.82
ht1 3-20 0.3 0.6 feas. 0.02 43.56 1800 13.43
ht1 3-20 0.6 0.3 feas. 58.20 39.82 1800 99.98
ht1 3-20 0.6 0.6 feas. 70.17 42.88 1800 92.30
ht2 2-25 0.3 0.3 feas. 28.19 45.29 1800 99.93
ht2 2-25 0.3 0.6 feas. 6.88 42.34 1800 99.75
ht2 2-25 0.6 0.3 feas. 188.24 50.62 1800 99.99
ht2 2-25 0.6 0.6 feas. 179.17 51.19 1800 97.97
ht2 1-30 0.3 0.3 feas. 35.86 59.21 1800 99.93
ht2 1-30 0.3 0.6 feas. 24.55 62.38 1800 99.90
ht2 1-30 0.6 0.3 feas. 154.41 66.19 1800 99.62
ht2 1-30 0.6 0.6 feas. 128.10 62.66 1801 96.48

Table 4. Results of NSPM -1D

Instance TF RDD Opt.
∑

Tj Cmax t Gap[%]

ht1 1-10 0.3 0.3 opt. 0.01 16.19 1.3 0.00
ht1 1-10 0.3 0.6 opt. 0.01 19.11 1.0 0.00
ht1 1-10 0.6 0.3 opt. 23.51∗ 16.80 93.4 0.00
ht1 1-10 0.6 0.6 opt. 23.74∗ 16.80 217 0.00
ht1 2-15 0.3 0.3 opt. 0.43 16.70 135 0.00
ht1 2-15 0.3 0.6 opt. 0.01 18.67 8.5 0.00
ht1 2-15 0.6 0.3 feas. 31.68 18.48 1800 72.22
ht1 2-15 0.6 0.6 feas. 31.76 20.41 1800 59.53
ht1 3-20 0.3 0.3 opt. 0.01 34.55 10.5 0.00
ht1 3-20 0.3 0.6 opt. 0.01 42.91 15.5 0.00
ht1 3-20 0.6 0.3 feas. 44.90 34.97 1800 99.97
ht1 3-20 0.6 0.6 feas. 65.74 40.46 1800 86.10
ht2 2-25 0.3 0.3 feas. 13.40 43.03 1800 99.85
ht2 2-25 0.3 0.6 feas. 1.13 42.82 1800 98.10
ht2 2-25 0.6 0.3 feas. 168.99 47.64 1800 99.99
ht2 2-25 0.6 0.6 feas. 175.34 51.48 1800 96.61
ht2 1-30 0.3 0.3 feas. 24.24 53.09 1800 99.88
ht2 1-30 0.3 0.6 feas. 5.43 54.40 1800 99.45
ht2 1-30 0.6 0.3 feas. 124.64 59.15 1800 99.41
ht2 1-30 0.6 0.6 feas. 109.23 58.76 1800 95.87
∗ Note that the optimal objective values in this table might be
lower than those in Table 3 due to the packing infeasibility.

NSPM except that the objective is the makespan. The
models are solved by Gurobi solver (ver. 9.1.2) in a
computer with Intel i7-9750H CPU (2.6GHz), given a
maximum CPU time of 1800 seconds. The acceptable
optimality gap is set as 0.1%.

4.3 Results Analysis

The results are reported in Tables 2 - 4, respectively. The
column “Opt.” indicates whether the optimal solution is

Table 5. NSPM (Cmax) solution on ht 1 2-15.

NSPM(Cmax)

Machine Batch Completion
time

Parts in Batch Part duedates

1 1 14.14 1,2,3,4,8,9,10, -
12,13,14,15

2 1 14.18 5,6,7,11 -

Table 6. NSPM solution on ht 1 2-15
(TF=0.3, RDD=0.3). The tardy part is

marked in bold.

Machine Batch Completion
time

Parts in Batch Part duedates

1 1 12.71 7,9,12,14 13,14,14,14
1 2 16.42 13,15 16,17
2 1 10.64 1,2,6,8,11 12,15,11,11,14
2 2 16.7 3,4,5,10 17,17,17,17

obtained in the given time (opt.) or not (feas.). The column
“t” is the CPU time in seconds. The column “Gap” is
the optimality gap of the best feasible solution, given
by (|BestFeas. − BestBound|)/BestFeas. The column
Cmax and

∑
Tj are the makespan and total tardiness,

respectively. Note that the solution of NSPM (Cmax) is
not affected by the TF and RDD values, and thus these two
columns are not included in Table 2. In Table 3 and 4, we
include the makespan values though the objective function
of NSPM and NSPM − 1D is the total tardiness.

As shown, NSPM (Cmax) solves all instances within 1800
seconds to optimality, whilst NSPM cannot tackle any
instance with #part ≥ 15. The nesting-scheduling problem
with total tardiness objective seems more difficult than
that with makespan objective.

Table 5 and 6 report the optimal schedules for ht 1 2-15
in terms of the makespan and total tardiness (TF=0.3,
RDD=0.3), respectively. As shown, in the case of makespan,
the parts are allocated in such a way that the batch com-
pletion times are balanced. While in the case of total tardi-
ness, only the parts with similar duedates are batched and
processed together. Characterizing by the processing time
in (5), the batch is between a p-batch (parallel batch) and
an s-batch (serial batch). Packing more parts in the batch
brings a benifit of sharing machine setup and recoating
time, but also increases the batch processing time (laser
scanning), leading to late delivery. Therefore, the “packing
as much as possible” rule that works well for the makespan
is not necesary true for the total tardiness, which reveals
the potential conflict between these two objectives.

We further investigate, when optimizating the total tar-
diness, how the order urgency (TF) and duedate range
(RDD) would influence the makespan values. Figure 2
shows that the makespan value tends to increase with
either TF or RDD, with only a few exceptions. This implies
a greater conflict between these two objectives when the
duedates are tight or widely distributed.

The part placement in the schedule of ht 1 2-15 is illus-
trated in Figure 3, where the parts are represented by
their bounding boxes. The parts are placed as closed to
the bottom-left corner as possible, because we added in
the objectve function a term of η

∑
j∈J(xj +yj), scaled by

a small η factor. Note that other reference points can be
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Fig. 2. Cmax values in intances of different #Parts

(a) Machine 2 – Batch 1 (b) Machine 2 – Batch 2

(d) Machine 1 – Batch 2(c) Machine 1 – Batch 1

L=25,W=25,H= 32.5

L=40,W=40,H= 40

L=25,W=25,H= 32.5

L=40,W=40,H= 40

Fig. 3. Part placement for the optimal schedule by NSPM
on ht 1 2-15 (TF=0.3, RDD=0.3).

chosen. As observed, since there are enough free area in
the platform, the parts tend to select the alternative build
orientation with a low height to avoid high recoating time.

The comparison of Table 3 and 4 shows that, the ad-
vantage of simplying the bin-packing problem is obvious.
NSPM − 1D can solve larger instances and quicker than
NSPM to optimality. However, inconsistent objective
values are observed in some cases, e.g., ht1 1-10, TF =
0.6, RDD = 0.3. After investigating the optimal solutions,
we found that in the schedule provided by NSPM −
1D, one of the five batches is actually infeasible, because
a part’s length (or width) is greater than that of the
platform. Therefore, to generate feasible schedules, the
batches obtained by NSPM − 1D should undergo a
feasibility checking procedure. Then, parts in infeasible
batches have to be reassigned to another batch, or at
least, selects another build orientation, which inevitably
alters the processing times of the batches and one may
lose the schedule optimality. This is the main drawback of
the MILP models using packing simplification, e.g., those
in Kucukkoc (2019) and Altekin and Bukchin (2021).

5. CONCLUSIONS

In this study, we formulate the nesting-scheduling problem
in unrelated parallel AM machines where the parts have
alternative build orientations. To minimize the total tardi-

ness, two MILP models considering different fidelity levels
of the bin-packing problem are proposed.

Under the same settings, optimizing the total tardiness
is more difficult than the makespan. Moreover, there
exists a compromise between the makespan and total
tardiness objectives, which originates from the dilemma of
“packing more parts to benefit from the common machine
setup/recoating time” or “packing less parts to maintain
the flexibility for handling distributed duedates”. Further,
simplifying the underlying 2D-BPP into 1D-BPP increases
the solvability, but also introduces the penalty of creating
infeasible part-to-batch assignments.

Future works will consider more technical details of the
SLM machine and their impacts in modeling the nesting-
scheduling problems, e.g., the preheating and cooling re-
quriement. Also, efficient exact algorithms such as branch
and bound, branch and price will be developed to solve
the models.
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