
Pre-Scheduling of Affine Loops for HLS
Pipelining ⋆

Serena Curzel1[0000−0002−8202−1627], Sofija Jovic1[0000−0003−2061−0802], Michele
Fiorito1[0000−0001−8675−6703], Antonino Tumeo2[0000−0001−9452−120X], and

Fabrizio Ferrandi1[0000−0003−0301−4419]

1 Politecnico di Milano
2 Pacific Northwest National Laboratory

Abstract. Loop transformations are essential to improve the quality of
results of accelerators generated through High-Level Synthesis (HLS).
Loop pipelining is usually performed on a low-level intermediate repre-
sentation (IR) of the code, which includes the notion of time and has
access to information about available resources. In this paper, we intro-
duce loop pipelining as a pre-optimization outside the HLS tool, applying
scheduling and code generation to transform affine loops in a high-level
frontend based on MLIR. Working on such an abstract level simplifies
the analysis of dependencies and the implementation of code genera-
tion steps, it does not require access to low-level architectural details,
and nevertheless, it can achieve comparable accelerator performance to
state-of-practice HLS loop pipelining. The proposed approach does not
depend on a specific HLS backend, and it can be easily integrated with
existing and future high-level optimizations.

Keywords: FPGA · High-Level Synthesis · MLIR · loop pipelining.

1 Introduction

High-Level Synthesis (HLS) tools have become a critical part of the hardware de-
sign process, as they allow the automatic translation of general-purpose software
specifications, primarily written in C/C++, into an HDL description ready for
logic synthesis and implementation. Thanks to HLS, developers can describe the
kernels they want to accelerate at a high level of abstraction and obtain efficient
designs for Field Programmable Gate Arrays (FPGAs) or as application-specific
integrated circuits (ASICs) without being experts in low-level circuit design. Be-
cause of the mismatch between the requirements of hardware abstractions and
the characteristics of general-purpose programming languages used to write in-
put specifications, HLS tools often require users to augment their input code
through pragma annotations (i.e., compiler directives) that guide the synthesis

⋆ This research was partially supported by the Spoke 1 - FutureHPC & BigData of the
Italian Research Center on High-Performance Computing, Big Data and Quantum
Computing (ICSC) funded by MUR Mission 4 - Next Generation EU.

2 S.Curzel et al.

process, for example, towards a specific performance-area trade-off. Pragmas can
trigger loop optimizations, which are essential to improve the quality of results
(QoR) of accelerators generated through HLS. Loop pipelining aims at overlap-
ping the execution of different iterations by issuing a new iteration before the
previous one has finished executing; this requires a transformation including an
analysis of dependencies and a scheduling process. The ideal target is obtaining
a loop with an Initiation Interval (II) of one, meaning that a new iteration can
start executing every clock cycle, which may be possible if there are enough
available computational resources and if dependencies between operations are
respected.

In this paper, we present an implementation of loop pipelining for HLS that
exploits the Multi-Level Intermediate Representation (MLIR) framework [6].
MLIR is a recent contribution to the LLVM project that enables the implementa-
tion of reusable compiler infrastructures; its key feature is providing mechanisms
to define new abstraction levels (“dialects") that solve compiler transformation
and optimization problems through specialized representations. Lowering passes
provide methods to move between dialects; the last step in the lowering process
is the LLVM dialect, which can be directly translated into an LLVM IR. MLIR
was conceived initially to be applied within machine learning (ML) frameworks
and to build compilers for design-specific languages (DSL), and several ML and
high-level software frameworks provide an interface to MLIR dialects. Previous
works that applied MLIR to HLS and hardware design either heavily relied on
the optimization capabilities of a specific HLS tool in the backend [17], or im-
plemented a new HLS tool from scratch [16]. Our approach is different, and, in a
way, it tries to combine the best of both worlds: we intend to apply meaningful
transformations exploiting specialized MLIR representations and benefit at the
same time from mature HLS tools backed by decades of research. Implement-
ing loop pipelining (and other optimizations) as a high-level pre-processing step
does not require in-depth knowledge about the allocation, scheduling, and bind-
ing steps within the HLS tool, simplifying the introduction and exploration of
new techniques. Finally, the proposed approach does not involve pragma anno-
tations or code patterns inherently tied to a single backend HLS tool, resulting
in portable pre-optimized code.

In summary, this paper presents the following contributions:

– we show how a dedicated high-level abstraction facilitates scheduling and
code generation for loop pipelining;

– we apply MLIR-based loop pipelining to HLS, obtaining comparable results
to standard approaches despite abstracting most of the architectural details;

– we demonstrate performance portability across different HLS backends and
the benefits of coupling loop pipelining with other high-level optimizations.

2 Proposed Approach

Loop pipelining aims at overlapping the execution of multiple iterations, and
it is a suitable transformation when there are not enough hardware resources

Pre-Scheduling of Affine Loops for HLS Pipelining 3

High-Level Synthesis
tool

Code
generation

Scheduler

Software
Programming

framework

e.g.

DFG
extraction

Lower to affine
dialect

Translate to
MLIR IR

sequential
loops

DFG and resource info

HatSchet

Schedule CSV

Translate to
LLVM IR

pipelined
loops

Bambu/
Vitis HLS

External tool MLIR framework

Alternative paths to add optimization passes

Fig. 1. Overview of the proposed design flow.

to accommodate an unrolled loop. The technique has been successfully used in
compiler infrastructures for decades [5], and it generally consists of two steps:
loop scheduling and code generation. Scheduling uses information about depen-
dencies and available hardware resources to find a new instruction execution
order; code generation creates a pipelined loop according to the result of the
scheduling phase (completing partial iterations before and after the new loop
with a prologue and an epilogue). Depending on the available computation and
memory resources, their latency, and if inter-iteration dependencies allow it, a
pipelined loop can issue the execution of a new iteration at every clock cycle.

Our approach follows the steps illustrated in Figure 1. The input code may
originate from any high-level programming framework with a translation into
MLIR (e.g., TensorFlow, ONNX-MLIR, or C through Polygeist [10]). After low-
ering it to the affine dialect, the code contains one or more sequential for loops,
which are analyzed by a pass we implemented to extract data flow graphs (DFGs)
representing the operations in each loop body as nodes and their dependencies as
edges. Each DFG is passed to a scheduler to obtain a loop iteration schedule; re-
source constraints may be set iteratively to achieve a specific trade-off between
performance and area consumption. Achieving an optimal or close to optimal
schedule (i.e., a list of operations assigned to a clock cycle and to a resource)
is an NP-complete problem; to solve it we use the HatSchet [14] scheduling li-
brary, an open-source scheduling tool for HLS that offers various algorithms and
heuristics for the construction of pipelined schedules. We then implemented a
code generation pass which rewrites loops in the input code using each sched-
ule generated by HatSchet to produce a pipelined loop. Additional optimization
passes can be introduced along the way, before or after pipelining the loop; fi-
nally, the MLIR IR is translated into an LLVM IR and passed to the HLS tool
to generate an accelerator description in Verilog/VHDL.

The HLS tool processes the LLVM IR without any knowledge of the high-
level transformations it went through; it considers the dependencies between

4 S.Curzel et al.

operations in the new loop body and, because they have been constructed to
be independent, it is free to schedule them in parallel if enough functional units
are available. The II corresponds to the latency of one iteration in the new loop,
as each of them starts a new iteration of the original loop and advances the
execution of the ones that were previously started.

The proposed solution represents an alternative to delegating the schedul-
ing and code generation steps to a later stage within the HLS tool itself. Im-
plementing a transformation such as loop pipelining outside the HLS tool has
several advantages: it increases modularity, as it can be easily enabled, disabled,
or combined with other compilation passes, it increases portability across HLS
backends, and it requires less time than implementing the same transformation
within the HLS tool (when this is possible, as most HLS tools are closed-source).
A fundamental difference is the level of abstraction of the IR that needs to be
modified: a for loop described in MLIR is a concise representation that encodes
all necessary information in a few lines of code; the same loop, when lowered to
an LLVM IR in the frontend of an HLS tool, becomes a list of basic blocks with a
much larger number of instructions in static single-assignment (SSA) form. The
number of instructions has a significant impact on the scheduling complexity;
moreover, the pre-scheduling process in MLIR only has to reorder instructions in
the loop body so that they can all be executed in parallel in the new loop, while
the HLS tool has to assign each instruction to a precise clock cycle in order to
build the FSM controller. Because of this, the pre-scheduling process does not
need as much information about the availability and latency of functional units;
a simplified resource model is enough to obtain a correct schedule.

3 Implementation

The core of the proposed implementation is composed of the MLIR passes that
extract DFGs and generate code for the pipelined loops, while scheduling is per-
formed through the external HatSchet tool. Additional passes were implemented
to handle non-trivial cases (i.e., loops that need to propagate values across mul-
tiple iterations, loops with variable bounds, and loops containing if-else blocks).

DFG Extraction - Starting from an affine loop such as the one in Figure
2a, the DFG extraction pass extracts precedence and data dependencies between
operations and encodes them in the HatSchet input format. A precedence de-
pendency refers to an operation using the result of another operation in the
same loop iteration; data dependencies exist between two memory operations
accessing the same memory location, and they have an attribute to express the
distance between the loop iterations that contain the two operations. Informa-
tion about available resources is also encoded in this phase in a separate file.
Extracting precedence dependencies from MLIR code requires visiting all oper-
ations in the loop; data dependency analysis is less trivial, but it can be solved
through an existing MLIR affine method that analyzes a pair of memory opera-
tions and decides if a dependency exists (the distance can also be deduced from

Pre-Scheduling of Affine Loops for HLS Pipelining 5

func @example(%arg0: memref<1000xi32>) {
affine.for %arg1 = 0 to 1000 {

%0 = affine.load %arg0[%arg1]
%1 = arith.muli %0, %0
affine.store %1, %arg0[%arg1]

}
return

}

(a) Original loop in MLIR (affine and
arith dialect).

II 1
vertex; cycle; functional_unit
affine.load_1; 0; load0
arith.muli_2; 1; mul0
affine.store_3; 2; store0

(b) HatSchet schedule.

#map = affine_map<(d0) -> (d0 - 2)>
func @example(%arg0: memref<1000xi32>,

%arg1: memref<1000xi32>) {
%c0 = arith.constant 0 : index
%0 = affine.load %arg0[%c0] : memref<1000xi32>
%c1 = arith.constant 1 : index
%1 = affine.load %arg0[%c1] : memref<1000xi32>
%2 = arith.muli %0, %0 : i32
%3:2 = affine.for %arg2 = 2 to 1000

iter_args(%arg3 = %1, %arg4 = %2) -> (i32, i32) {
%5 = affine.load %arg0[%arg2] : memref<1000xi32>
%6 = arith.muli %arg3, %arg3 : i32
%7 = affine.apply #map(%arg2)
affine.store %arg4, %arg1[%7] : memref<1000xi32>
affine.yield %5, %6 : i32, i32

}
%4 = arith.muli %3#0, %3#0 : i32
%c998 = arith.constant 998 : index
affine.store %3#1, %arg1[%c998] : memref<1000xi32>
%c999 = arith.constant 999 : index
affine.store %4, %arg1[%c999] : memref<1000xi32>
return

}

(c) Scheduled loop in MLIR (affine and
arith dialect), colors highlight different

original iterations.
Fig. 2. Code generation for high-level loop pipelining in MLIR.

its output). This is a clear example of how existing MLIR constructs simplify the
implementation of new optimizations through specialized levels of abstraction.

Code Generation - The code generation pass loads the HatSchet schedule
from its textual format (Figure 2b) into a suitable data structure and uses it to
generate code for the pipelined loop. HatSchet provides only the new loop itera-
tion schedule, so the MLIR pass needs to generate also the code for prologue and
epilogue. The final result is the loop in Figure 2c, where the first two iterations of
the original loop are started in the prologue, the new loop contains independent
operations that can be executed in parallel, and the epilogue completes the two
original loop iterations started in the last iteration of the new loop.

Results Forwarding - When loop pipelining is implemented during the
low-level hardware generation process, dedicated registers can be instantiated to
pass results from one loop iteration to the next one. If the lifetime of variables
spans across multiple iterations, architectural support is available to implement
rotating register files. In our implementation, instead, forwarding of results is
solved by adding MLIR iteration arguments and affine yield operations: at the
end of each iteration, operands are yielded and they become available as ar-
guments for the next iteration. If a value has to cross multiple iterations, we
introduce additional arguments to shift values at the end of each iteration until
they are used.

Conditional Pipelining - The generated loop produces correct results if
all iterations started in the prologue, and at least one iteration of the new loop,
are always executed (with the epilogue taking care of finalizing incomplete it-
erations). If one of the loop bounds is a variable, it is not possible to assess at
compile time whether enough iterations will be executed to cover the prologue
and new loop iterations. To allow loop pipelining in such a situation, we intro-
duce a check at runtime to assess whether there are enough new loop iterations

6 S.Curzel et al.

to safely execute the pipelined loop, falling back on the original loop if this is not
the case. This is a simple and effective solution that can be easily implemented
in MLIR with affine if operations and affine sets; versioning the loop in this way
results in having both the original and the pipelined loop in the code, causing
additional area consumption in the generated accelerator but no degradation in
performance.

If-conversion - An if-conversion pass was implemented following [15], which
allows pipelining loops containing if and else blocks through speculative exe-
cution. The pass is run as a preprocessing step before DFG extraction. In the
generated code if and else constructs are removed, and all operations are ex-
tracted out of them; the if condition is used in a select operation that decides
which result to keep. This transformation was designed for software, but with
our MLIR-based approach it can be seamlessly applied in isolation or together
with loop pipelining.

4 Experimental Results

In this section, we present experiments that validate the effectiveness of our
approach. We chose to focus our experiments on kernels from the PolyBench
benchmark suite3, in two versions: double-precision floating-point operations on
the ‘mini’ dataset, and integer (32 bit) operations on the ‘medium’ dataset.
(Kernels in the ‘solvers’ category are only available in floating-point.) Simulation
times and resource consumption of floating-point units are considerably higher
than their integer counterparts, so we selected a smaller dataset (i.e., smaller
loop bounds) for the double precision experiments.

We use the MLIR version of PolyBench kernels provided by Polygeist [10],
and the standard C version for comparison. Concerning scheduling options, dif-
ferent HatSchet configurations were tested to conclude that, on PolyBench, the
ILP-based modulo scheduling algorithm [11] produces the best result in an ac-
ceptable amount of time. Similarly, we verified that a model with infinite re-
sources allows reaching the highest performance, as PolyBench loop bodies con-
tain few instructions (in the range of 5-10 each) that never risk depleting the
available FPGA resources; the target is a Xilinx Zynq-7000 FPGA at 100 MHz
frequency, and we assume that inputs and outputs are stored in on-chip BRAMs.
All accelerator performance and resource utilization results are reported post
simulation and post place-and-route, respectively.

4.1 Effectiveness of Loop Pipelining

We show here the performance increase achieved by our implementation of loop
pipelining, applying it to the open-source HLS tool Bambu [4] which does not
support loop pipelining. We translate the PolyBench MLIR kernels into LLVM
IR and synthesize them with Bambu, first without any optimization and then

3 https://web.cs.ucla.edu/~pouchet/software/polybench/

Pre-Scheduling of Affine Loops for HLS Pipelining 7

(a) Double precision floating-point, mini dataset.

(b) Integer, medium dataset.

Fig. 3. Execution times in clock cycles of PolyBench kernels synthesized with Bambu
(loops pipelined at the MLIR level) and Vitis HLS (C code, pipelined in the HLS
backend).

8 S.Curzel et al.

Fig. 4. Resource consumption overheads and performance improvements introduced in
Bambu by loop pipelining. Labeled points present the most relevant area overheads.

applying our affine loop pipelining passes before the translation. To compare our
approach with low-level loop pipelining applied during the HLS process, we also
synthesize the standard C version of PolyBench kernels with Vitis HLS 2021.1,
adding specific directives that control loop optimizations to obtain baseline and
pipelined accelerators.

Figure 3 shows the execution time of the generated accelerators: loop pipelin-
ing provides a significant reduction in clock cycles, as expected, and this is ver-
ified both when pipelining is applied within the HLS tool and when it is imple-
mented as a high-level MLIR optimization. In the ‘double’ experiments, Bambu
usually performs better than Vitis HLS, because the floating-point functional
units in Bambu take fewer clock cycles to execute and neither tool pipelines the
functional units execution. For the integer experiments, loop pipelining reduces
the number of clock cycles with both backends, but Vitis HLS produces better
results because it pipelines the execution of load operations during scheduling.

Loop pipelining increases FPGA resources consumption because it requires
extra states in the controller for prologue/epilogue and larger multiplexers in
front of each functional unit; however, if we compare the achieved speedup with
the area overhead, in most cases the price to pay in terms of area is adequately
compensated by the reduction in the number of clock cycles. Figure 4 visu-
alizes this trend by plotting the ratio between performance increase and the
overhead in slices utilization for the experiments with Bambu and MLIR-based
loop pipelining; while most benchmarks are clustered in the bottom left of the
plot, some kernels show a disproportionate area overhead. The innermost loops
in syrk and syr2k have an upper bound depending on the induction variable of
the outermost loop, which requires introducing conditional pipelining. Gemver,

Pre-Scheduling of Affine Loops for HLS Pipelining 9

instead, is the only kernel that contains four independent loops to be pipelined,
and so it incurs four times the area overhead for the introduction of prologue
and epilogue.

Kernel Version Tool Cycles DSPs LUTs Slices Registers Frequency Speedup Slices overhead
gemm double, mini Bambu 157 122 10 1678 723 1397 101.82MHz baseline baseline
gemm double, mini Bambu 82 362 20 3024 1303 3576 101.48 MHz 1.91x 1.80x
gemm double, mini Vitis HLS 266 800 14 981 531 1409 120.38 MHz baseline baseline
gemm double, mini Vitis HLS 206 821 28 2504 1119 3580 118.37 MHz 1.29x 2.54x
gemm int, medium Bambu 42 512 202 9 585 248 429 134.64 MHz baseline baseline
gemm int, medium Bambu 21 160 402 27 1355 506 949 105.93 MHz 2.01x 2.21x
gemm int, medium Vitis HLS 74 328 230 9 199 95 348 175.69 MHz baseline baseline
gemm int, medium Vitis HLS 31 764 201 21 649 322 1001 173.25 MHz 2.34x 3.39x
syr2k double, mini Bambu 218 387 20 2240 906 2363 98.64 MHz baseline baseline
syr2k double, mini Bambu 64 249 40 6841 2826 6463 97.58 MHz 3.40x 3.19x
syr2k double, mini Vitis HLS 294 171 25 1211 640 1900 116.90 MHz baseline baseline
syr2k double, mini Vitis HLS 137 463 50 4095 1736 5399 104.54 MHz 2.14x 2.71x
syr2k int, medium Bambu 40 700 162 12 595 255 553 144.97 MHz baseline baseline
syr2k int, medium Bambu 17 285 566 78 2579 1030 1988 104.52 MHz 2.35x 4.10x
syr2k int, medium Vitis HLS 46 479 441 12 253 137 427 175.68 MHz baseline baseline
syr2k int, medium Vitis HLS 28 691 013 70 1491 794 2109 119.23 MHz 1.62x 5.79x

Table 1. Accelerators generated through different HLS backends from the same LLVM
IR (baseline or pipelined).

Optimizations Cycles DSPs LUTs Slices Registers Frequency Speedup Slices overhead
none 157 122 10 1678 724 1397 102.27 MHz baseline baseline
loop pipelining 82 362 20 3024 1303 3576 101.48 MHz 1.91x 1.80x
loop permutation + pipelining 81 182 20 3006 1306 3413 100.94 MHz 1.93x 1.80x
loop unrolling + pipelining 17 642 100 21 380 8075 18 671 90.39 MHz 8.91x 11.15x

Table 2. Effect of affine optimizations on gemm (double, mini) synthesized by Bambu.

4.2 Portability

An advantage of implementing loop pipelining as an MLIR transformation is
that it does not require to introduce annotations for a specific backend HLS
tool: after applying our passes, the code contains a new loop in the MLIR affine
dialect, and after lowering and translation it only contains standard LLVM code.
We can thus synthesize the generated LLVM IRs also with Vitis HLS, setting
up a compilation flow that bypasses the C/C++ frontend to feed LLVM IRs
directly to the backend. Table 1 reports results for kernels pipelined through our
implementation and then synthesized by Bambu and by Vitis HLS (only two
kernels are shown for the sake of conciseness, one with constant and one with
variable loop bounds). Speedups and overheads are calculated with respect to a

10 S.Curzel et al.

baseline LLVM IR translated from MLIR without loop pipelining, and they prove
that the introduction of loop pipelining as an MLIR high-level optimization has
a positive effect on accelerator performance also through the Vitis HLS backend.

4.3 Design Space Exploration

The modularity and flexibility provided by MLIR allow us to introduce new op-
timizations and to experiment with existing ones to generate optimized IRs for
HLS. The affine dialect provides a growing set of loop-oriented transformations;
even if some of them are also available as backend HLS optimizations triggered
by pragmas, applying them at the MLIR level allows decoupling loop optimiza-
tions (which do not necessarily require hardware-related considerations) from
the backend HLS tool, and thus enhance portability. Loop pipelining can pro-
vide performance benefits on its own, but it can also be coupled with different
optimizations to explore different design points with different performance/area
trade-offs. We explored a few different options on the gemm kernel with the
Bambu backend: Table 2 shows that it can be beneficial to increase the num-
ber of iterations in the pipelined loop through loop permutation, which reduces
the number of cycles with a minimal increase in resource utilization. If we in-
crease the size of the loop body through unrolling, instead, we obtain an even
faster design at the cost of significant area consumption. The same exploration
of design points would require manual modifications on the code when done at
the C/C++ level; for typical HLS optimizations such as loop unrolling, this can
be as simple as adding a pragma, but it can require significant code rewriting
for other transformations (including loop permutation). In an MLIR-based de-
sign flow, instead, optimizations can be exposed as compiler passes and compiler
options that are easier to enable/disable in a design space exploration phase.

5 Related Work

Loop transformations in general, and loop pipelining in particular, are key opti-
mizations to improve HLS quality of results, and thus they have been explored
from several different perspectives. A non-exhaustive list of related work in-
cludes approaches that leverage the polyhedral model [20, 13, 19, 18]; most of
these works run C/C++ inputs through polyhedral optimizers and write back
restructured C/C++ annotated with HLS directives, so even if they improve
the performance of generated accelerators, they are hard to combine with other
optimizations, and the code they generate is not portable across HLS tools.
POLSCA [18] proposed to exploit MLIR and the Vitis HLS LLVM frontend to
improve the interaction between polyhedral tools and HLS. Our approach lever-
ages a high-level abstraction designed for polyhedral optimizations (the MLIR
affine dialect) to implement loop pipelining, and it works independently of the
backend HLS tool.

Multiple previous efforts aimed at improving the loop pipelining technique
itself, both for software and for HLS. For example, [3] tackles nested loop opti-
mizations and proposes to merge epilogue and prologue of adjacent iterations;

Pre-Scheduling of Affine Loops for HLS Pipelining 11

works HatSchet itself [14] focus on improving scheduling time and quality. Ir-
regular loops with variable bounds and complex dependencies are especially
challenging and require dedicated solutions: for example, [2] applies speculative
loop pipelining for HLS, [7] supports loops with non-constant dependencies, [9]
exploits polyhedral frameworks to implement dynamic loop pipelining.

Finally, it is worth mentioning that several other tools have been proposed
to couple the use of MLIR and HLS tools [1, 17, 12, 16, 8]. Thanks to the mod-
ular nature of MLIR, our implementation of high-level loop pipelining can be
integrated into any of them, regardless of the capabilities of the chosen HLS tool.

6 Conclusion

The dedicated abstraction provided by the MLIR affine dialect facilitates de-
pendency analysis and code generation for loop pipelining, and when MLIR
high-level transformations are applied to HLS they can improve quality of re-
sults of the generated accelerators even if architectural details are not visible at
the MLIR level. Implementing loop optimizations as compiler transformations
in a preliminary step before HLS, as opposed to implementing them inside the
tool, also increases developer productivity and decouples the optimizations from
a specific backend tool. To support these claims, we implemented a set of com-
piler passes supporting affine loop pipelining and applied them to different HLS
backends. We obtained similar or better results than state-of-practice solutions
for HLS of C code; we then demonstrated performance portability by synthe-
sizing the same optimized code with both Bambu and Vitis HLS. Finally, we
showed how custom and existing MLIR passes can work together, providing a
convenient way of exploring different design choices without manually modifying
the input code. Our approach opens the way to further research into high-level
optimization techniques for HLS, which can also be successfully integrated into
modular MLIR-based hardware design flows.

References

1. Bohm Agostini, N., Curzel, S., Zhang, J.J., Limaye, A., Tan, C., Amatya, V., et al.:
Bridging Python to Silicon: The SODA Toolchain. IEEE Micro 42(5), 78–88 (2022)

2. Derrien, S., Marty, T., Rokicki, S., Yuki, T.: Toward Speculative Loop Pipelin-
ing for High-Level Synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39(11), 4229–4239 (2020)

3. Fellahi, M., Cohen, A.: Software pipelining in nested loops with prolog-epilog merg-
ing. In: International Conference on High-Performance Embedded Architectures
and Compilers. pp. 80–94. Springer (2009)

4. Ferrandi, F., Castellana, V.G., Curzel, S., Fezzardi, P., Fiorito, M., Lattuada, M.,
et al.: Bambu: an Open-Source Research Framework for the High-Level Synthesis
of Complex Applications. In: DAC 2021: 58th ACM/IEEE Design Automation
Conference (2021)

5. Lam, M.S.: Software pipelining. In: A Systolic Array Optimizing Compiler, pp.
83–124. Springer (1989)

12 S.Curzel et al.

6. Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., et al.:
MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. In: CGO
2021: IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. pp. 2–14. IEEE (2021)

7. Li, P., Pouchet, L.N., Cong, J.: Throughput optimization for high-level synthesis
using resource constraints. In: IMPACT ’14: International Workshop on Polyhedral
Compilation Techniques (2014)

8. Liang, G.M., Yuan, C.Y., Yuan, M.S., Chen, T.L., Chen, K.H., Lee, J.K.: The
Support of MLIR HLS Adaptor for LLVM IR. In: Workshop Proceedings of the
51st International Conference on Parallel Processing (2023)

9. Liu, J., Wickerson, J., Bayliss, S., Constantinides, G.A.: Polyhedral-based dynamic
loop pipelining for high-level synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37(9), 1802–1815 (2017)

10. Moses, W.S., Chelini, L., Zhao, R., Zinenko, O.: Polygeist: Raising c to polyhedral
mlir. In: PACT 2021: 30th International Conference on Parallel Architectures and
Compilation Techniques. pp. 45–59 (2021)

11. Oppermann, J., Koch, A., Reuter-Oppermann, M., Sinnen, O.: ILP-based Modulo
Scheduling for High-Level Synthesis. In: Proceedings of the International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems (CASES).
pp. 1–10 (2016)

12. Pilato, C., Böhm, S., Brocheton, F., Castrillón, J., Cevasco, R., Cima, V., et al.:
EVEREST: A design environment for extreme-scale big data analytics on hetero-
geneous platforms. In: Design, Automation & Test in Europe Conference & Exhi-
bition, DATE 2021, Grenoble, France, February 1-5, 2021. pp. 1320–1325. IEEE
(2021)

13. Pouchet, L.N., Zhang, P., Sadayappan, P., Cong, J.: Polyhedral-Based Data Reuse
Optimization for Configurable Computing. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA). pp. 29–
38 (2013)

14. Sittel, P., Oppermann, J., Kumm, M., Koch, A., Zipf, P.: HatScheT: A Contri-
bution to Agile HLS. In: FSP Workshop 2018; Fifth International Workshop on
FPGAs for Software Programmers. pp. 1–8. VDE (2018)

15. Stoutchinin, A., Gao, G.: If-conversion in ssa form. In: European Conference on
Parallel Processing. pp. 336–345. Springer (2004)

16. Urbach, M., Petersen, M.B.: HLS from PyTorch to System Verilog with MLIR and
CIRCT (2022), 2nd Workshop on Languages, Tools, and Techniques for Accelerator
Design (LATTE)

17. Ye, H., Hao, C., Cheng, J., Jeong, H., Huang, J., Neuendorffer, S., Chen, D.:
ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level In-
termediate Representation. In: 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). pp. 741–755. IEEE (2022)

18. Zhao, R., Cheng, J., Luk, W., Constantinides, G.A.: POLSCA: Polyhedral High-
Level Synthesis with Compiler Transformations. In: International Conference on
Field-Programmable Logic and Applications (FPL) (2022)

19. Zuo, W., Li, P., Chen, D., Pouchet, L.N., Zhong, S., Cong, J.: Improving polyhe-
dral code generation for high-level synthesis. In: CODES+ISSS 2013: International
Conference on Hardware/Software Codesign and System Synthesis. pp. 1–10 (2013)

20. Zuo, W., Liang, Y., Li, P., Rupnow, K., Chen, D., Cong, J.: Improving high
level synthesis optimization opportunity through polyhedral transformations. In:
FPGA ’13: Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. p. 9–18 (2013)

