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a b s t r a c t

In this paper we propose a novel Augmented Lagrangian Tracking distributed optimization algorithm
for solving multi-agent optimization problems where each agent has its own decision variables, cost
function and constraint set, and the goal is to minimize the sum of the agents’ cost functions subject
to local constraints plus some additional coupling constraint involving the decision variables of all
the agents. In contrast to alternative approaches available in the literature, the proposed algorithm
jointly features a constant penalty parameter, the ability to cope with unbounded local constraint
sets, and the ability to handle both affine equality and nonlinear inequality coupling constraints, while
requiring convexity only. The effectiveness of the approach is shown first on an artificial example with
complexity features that make other state-of-the-art algorithms not applicable and then on a realistic
example involving the optimization of the charging schedule of a fleet of electric vehicles.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last decade, distributed optimization has proven to be
successful technique to optimize the behavior of large-scale
ulti-agent systems. Key to its success is the ability to split an
ptimization problem involving the whole system into smaller
nes to be solved locally by the agents while exchanging infor-
ation on their tentative solutions with their neighbors, so as to

ointly converge to an optimal solution.
In this paper we consider those optimization problems in

hich each agent has its own decision variables, cost function and
onstraint set, and the goal is to minimize the sum of the agents’
ost functions subject to some coupling constraint involving the
ecision variables of all the agents (Constraint-Coupled Problem –

CCP). The presence of the coupling element makes the problem
solution challenging, especially in a distributed framework where
no central authority is available to coordinate the agents and each
agent has no knowledge of the local information of the others.
CCPs typically model situations in which each agent has its own
control action subject to its own actuation constraint, but, in
order to perform these actions, consumes some resources, which
are in a finite amount and are shared by all agents. Even though
CCPs arise naturally in practical applications, most of the early
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literature on distributed optimization focuses on optimization
problems where the agents are coupled because they have to
agree on a common decision vector (Decision-Coupled Problems –
DCPs) and only recently the interest shifted from DCPs to CCPs.

The earliest distributed solutions to DPCs are algorithms based
on a combination of standard (sub)gradient methods for the
optimization of the agents local cost functions subject to the
local constraints and consensus schemes to drive the agents to-
wards a common optimal decision, see, e.g., Nedić and Ozdaglar
(2009), Nedić, Ozdaglar, and Parrilo (2010). Other works are based
on consensus schemes mixed with primal–dual methods, see,
e.g., Zhu and Martínez (2012), or mixed with proximal minimiza-
tion, see Margellos, Falsone, Garatti, and Prandini (2018), for the
optimization of the agents local cost functions.

Note that distributed algorithms developed for DCPs can, in
principle, be applied to CCPs by interpreting the collection of the
decision variables of all the agents as the common decision vector
to agree upon. However, this entails that each agent would have
to store, update, and communicate the tentative solutions of all
other agents and have access to the whole coupling constraint
rather than the portion affected by its decision variables only,
thus increasing communication and computational burden for the
entire network and ultimately hampering the applicability of such
strategies.

Approaches directly aiming at CCPs typically leverage La-
grangian duality to deal with the coupling constraint. Indeed,
if the coupling constraint can be expressed as a sum of agents
contributions, then the Lagrangian has a separable structure in

the primal decision variables and the dual problem has the same
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tructure of a DCP with a common vector of Lagrange multipliers
s decision vector. Works based on primal–dual algorithms, like,
.g., Chang, Nedić, and Scaglione (2014), seek to find the saddle
oint of said Lagrangian. Methods leveraging dual decomposition
xploit the fact that the dual of a CCP is a DCP to build upon
he techniques developed for DCPs, for example combining con-
ensus schemes together with either dual subgradient methods,
ee, e.g., Falsone, Margellos, Garatti, and Prandini (2017) and
otarnicola and Notarstefano (2020), or dual proximal minimiza-
ion approaches, see Falsone and Prandini (2020). However, they
ypically require an additional procedure to recover the optimal
rimal solution of the CCP.
All the approaches mentioned so far require a vanishing step-

ize for the gradient update or an increasing penalty for the
roximal operator, which ultimately leads to a slow conver-
ence rate of the corresponding algorithm. The effort of the
ommunity thus shifted to designing distributed algorithms with
faster convergence rate, primarily by employing a fixed step-
ize, but not only, see, e.g., Romao, Margellos, Notarstefano, and
apachristodoulou (2021).
A first attempt in this direction for DCPs is presented in Mota,

avier, Aguiar, and Püschel (2013), where a consensus scheme
s used together with the Alternating Direction Method Multi-
liers (ADMM, see Bertsekas & Tsitsiklis, 1989) with a constant
enalty parameter, in place of the (sub)gradient method. Lin-
ar convergence rate for distributed algorithms solving DCPs
as been recently achieved by the so-called gradient-tracking
chemes (see, e.g., Nedić, Olshevsky, & Shi, 2017; Qu & Li, 2018),
here the gradient method for handling the local optimization

s used together with the so-called dynamic average consensus
firstly proposed in Zhu & Martínez, 2010 and further elaborated
n Kia et al., 2019) in place of the original consensus scheme.
n these methods, the faster convergence is achieved thanks
o a more reactive consensus mechanism together with a con-
tant step-size, but at the expense of strict requirements on the
gents local cost functions like strong convexity and smooth-
ess/Lipschitz continuity of the gradient and the inability to cope
ith local constraints. In the recent work Falsone and Prandini
2022), the dynamic average consensus scheme is used within a
roximal minimization framework to achieve convergence with a
onstant penalty parameter and with local constraints under just
onvexity assumptions on the cost and constraints. Even though
rate is not provided in Falsone and Prandini (2022), numerical
xperiments show that convergence is faster then algorithms
ith a time varying penalty.
Similarly to DCPs, latest distributed algorithms for solving

CPs are aiming at improving the convergence rate via a constant
tep-size. A primal–dual algorithm with constant step-size is pro-
osed in Liang, Wang, and Yin (2020), but requires smoothness
f the local cost functions. In the recent paper Su, Wang, and
un (2021) another primal–dual algorithm has been proposed,
hich does not require any smoothness assumption, but requires
ompactness of the local constraints sets and deals with equality
oupling constraints only. An approach based on ADMM and con-
ensus is derived in Chang (2016), but deals with affine coupling
onstraints only, and a strategy combining ADMM and dynamic
verage consensus with faster convergence is presented in Fal-
one, Notarnicola, Notarstefano, and Prandini (2020), dealing
ith equality constraints only. A proximal-minimization based
lgorithm has been also very recently proposed in Wang and
u (2022), but it deals with equality constraints only and such
oupling constraints must also comply with the communication
opology of the agents.

The contribution of this paper is to propose a novel Aug-
ented Lagrangian Tracking distributed algorithm for solving

CPs in a distributed way. Similarly to other approaches designed

2

for CCPs (see, e.g., Falsone & Prandini, 2020), we leverage duality
theory and build upon a recently proposed algorithm for DCPs to
develop the proposed algorithm for CCPs. However, in contrast
to all approaches for CCPs in the literature, the devised algorithm
jointly exhibits the following features:

• a constant penalty parameter is adopted, which is only
required to be positive;
• coupling constraints can be a mix of affine equalities and

nonlinear inequalities;
• cost functions and coupling constraint nonlinear functions

are not required to be Lipschitz continuous, smooth, or
strongly convex, but only convex;
• local constraints set are not required to be bounded.

The rest of the paper is organized as follows. In Section 2 we
resent the set-up of constraint-coupled optimization problems.
n Section 3 we introduce the distributed computation frame-
ork, gradually derive the proposed distributed algorithm, state

ts convergence properties, and also highlight some interesting
onnections between the proposed algorithm and other ones in
he literature. In Section 4 we apply our algorithm to an artifi-
ial example with complexity features that make state-of-the-art
istributed algorithms not applicable, and then we extensively
nalyze its performance on a realistic example regarding the op-
imal charging schedule for a fleet of electric vehicles. In Section 5
e draw some conclusions. Finally, proofs of the main results are
eported in the Appendix to streamline the presentation.

otation. We denote with N the set of non-negative integers,
ith R the set of real numbers, and with R+ the set of non-
egative reals. For an extended real-valued function f : Rn

→

∪ {+∞}, dom(f ) = {x : f (x) < +∞} is the domain of
, we denote by ∂ f (x) ⊂ Rn the subdifferential (i.e., the set
f all subgradients) of f at x. If f is differentiable at x, then
f (x) = {∇f (x)} and ∇f (x) ∈ Rn is the gradient of f at x.
X (x) is the indicator function of the set X , which is equal to

zero if x ∈ X and +∞ if x ̸∈ X . The Minkowski sum between
sets is denoted by ⊕, the Cartesian product is denoted as ×,
nd relint(·) denotes the relative interior of its argument. The
ector in Rn containing all ones is denoted by 1n (for brevity,
ubscript will be omitted when clear from the context). For a
atrix S we write S⊤ to denote its transpose. For a vector v,
v∥ is the Euclidean norm of v and [v]s is its sth component.

Given a collection of vectors {v1, . . . , vm}, we use (v1, . . . , vm) as a
horthand for [v⊤1 · · · v⊤m]

⊤, and we denote by min{v1, . . . , vm} or
max{v1, . . . , vm} their component-wise minimum and maximum,
respectively.

2. Constraint-coupled optimization

We consider a multi-agent system composed of N agents that
are willing to cooperate to solve a decision making problem
involving the whole system. Specifically, all agents shall set their
local decision variables xi ∈ Rni , i = 1, . . . ,N , so as to find
an optimal solution to the following constrained optimization
program

inf
x1,...,xN

N∑
i=1

fi(xi) (P)

subject to:
N∑
i=1

Aixi = b,
N∑
i=1

hi(xi) ≤ 0

xi ∈ Xi i = 1, . . . ,N,

where Ai ∈ Rp×ni and b ∈ Rp, with p ∈ N, characterize the
ni q
equality coupling constraint, hi : R → R ∪ {+∞}, with q ∈ N,
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haracterize the inequality coupling constraints, fi : Rni → R
denotes the local cost function, and Xi ⊂ Rni is the local constraint
set of agent i, i = 1, . . . ,N . We impose the following assumption:

Assumption 1 (Convexity). For all i = 1, . . . ,N , the functions fi
nd hi and the set Xi are convex and closed, and
q
s=1 relint(dom([hi]s)) ̸= ∅. □

Note that, differently from other approaches in the literature,
e do not require the local constraint sets Xi to be compact,

unctions fi and gi to be smooth, differentiable, or strictly/strongly
onvex. Moreover, if, for some s, [hi]s is a polyhedral function,
hen relint(dom([hi]s)) can be substituted with dom([hi]s).

To deal with problems in the form of P , a common practice is
esorting to duality theory to handle the coupling constraint. Let
= (x1, . . . , xN ), consider a vector λ ∈ Rp and a vector µ ∈ Rq

+

f Lagrange multipliers and let

(x, λ, µ) =
N∑
i=1

fi(xi)+ λ⊤
N∑
i=1

(Aixi − b)+ µ⊤
N∑
i=1

hi(xi)

=

N∑
i=1

fi(xi)+ λ⊤(Aixi − bi)+ µ⊤hi(xi), (1)

ith b1, . . . , bN such that
∑N

i=1 bi = b, be the Lagrangian function
btained by dualizing the coupling constraints

∑N
i=1 Aixi = b and

N
i=1 hi(xi) ≤ 0. The dual of P is then given by

max
λ∈Rp
µ∈Rq
+

inf
x∈X

L(x, λ, µ) = max
λ∈Rp
µ∈Rq
+

N∑
i=1

ϕi(λ, µ), (D)

here X = X1 × · · · × XN , and the ith contribution ϕi of the dual
objective function is defined as

ϕi(λ, µ) = inf
xi∈Xi

fi(xi)+ λ⊤(Aixi − bi)+ µ⊤hi(xi). (2)

Note that ϕi(λ, µ) may assume the value −∞ for some (λ, µ) ∈
Rp
× Rq

+. The next assumption ensures that P and D are well-
posed and that the domains of the local dual functions overlap
sufficiently and not just on the boundary.

Assumption 2 (Well-posedness). The optimal value f ⋆ of P is
finite, D admits an optimal solution (λ⋆, µ⋆), and strong duality
holds. Moreover, (Rp

× Rq
+) ∩ (∩N

i=1 relint(dom(−ϕi))) ̸= ∅. □

Note that compactness of Xi is a sufficient (but not necessary!)
condition for the second part of Assumption 2 to be verified.
Moreover, similarly to the discussion after Assumption 1, if, for
some i, ϕi is polyhedral, then relint(dom(−ϕi)) can be replaced
with dom(−ϕi) in the second part of Assumption 2. Therefore,
in the particular case of a linear program, the second part of As-
sumption 2 translates to all ϕi’s having at least a point in common,
which is trivially true if an optimal dual solution (λ⋆, µ⋆) exists.

3. Augmented Lagrangian Tracking algorithm

In optimization, the application of an algorithm to solve the
dual of some primal problem often gives rise to a novel algorithm
to solve the primal problem itself. This is indeed the case for
the augmented Lagrangian method presented in Bertsekas (2015,
Chapter 5), which results from the application of a proximal
minimization algorithm to the dual of a constrained optimization
problem. Here, we are able to extend this strategy to a distributed
framework involving multiple agents that are coupled by some
constraints.

We start by introducing the distributed computational frame-
work of interest in Section 3.1, we then exploit the Proximal-
 s

3

Tracking algorithm recently devised in Falsone and Prandini (2022
for DCPs and apply it to the dual D of P to then develop a
novel algorithm for solving directly CCPs in the form of P , in a
distributed way.

Since a direct application of the Proximal-Tracking algorithm
to solve D in a distributed way does not lead to a readily im-
plementable procedure (see Section 3.2), our first contribution is
to introduce an equivalent algorithm which can instead be im-
plemented in practice (Section 3.3). Proving such an equivalence,
automatically shows convergence of the proposed algorithm to
the dual optimal solution. In contrast with the case when the
Proximal-Tracking algorithm is directly applied to D, the pro-
posed algorithm generates tentative primal solutions. Our second
contribution is then to show that, in the limit, the generated
primal iterates are feasible and achieve the optimal cost.

Finally, in Section 3.4 we point out some interesting con-
nections between the proposed distributed resolution scheme
for P , augmented Lagrangian methods and the Tracking-ADMM
approach proposed in Falsone et al. (2020).

3.1. Distributed computation framework

In the considered distributed set-up, the cost function fi, con-
straint set Xi, and contributions Ai and hi of agent i to the coupling
onstraints have to be regarded as private information, not to be
isclosed to other agents, whereas the value of b is known to
very agent.
To cooperatively solve P , the agents must repeatedly exchange

nformation through the communication network. In this work,
ommunications among the agents are modeled as a graph G =
V, E), where the vertex set V = {1, . . . ,N} represents the agents,
nd the edge set E ⊆ V × V represents the communication
inks between the agents. If (i, j) ∈ E , then, at each iteration k,
gent i receives information from agent j. We denote by Ni =

j ∈ V : (i, j) ∈ E} the set of neighbors of agent i. We impose
he following assumption of G, which is common in distributed
ptimization and ensures that information can flow from any
gent to any other agent.

ssumption 3 (Connectivity). The graph G is undirected and
onnected, i.e., (i, j) ∈ E if and only if (j, i) ∈ E and for every pair
f vertices in V there exists a path of edges in E that connects
hem. □

.2. Proximal-Tracking

We start by noticing that D is a DCP and it could be solved in
distributed way by applying the Proximal-Tracking algorithm
roposed in Falsone and Prandini (2022).
Accordingly, at each iteration, agent i should perform the

ollowing steps1[
ℓki
mk

i

]
=

∑
j∈Ni

wij

[
λk
j

µk
j

]
(3a)

[
δki
γ k
i

]
=

∑
j∈Ni

wij

[
dkj
gk
j

]
(3b)

1 To ease the comparison, we packed together with square brackets those
equences that maps into a single sequence of Falsone and Prandini (2022,
lgorithm 1). This way (3a)–(3e) have a one-to-one correspondence with those
teps that Falsone and Prandini (2022, Algorithm 1) performs at each iteration.
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[
λk+1
i

µk+1
i

]
= argmin

λi∈Rp

µi∈R
q
+

−ϕi(λi, µi)+
[
δki − uk

i
γ k
i − vk

i

]⊤ [
λi
µi

]

+
1
2c

[
λi − ℓki
µi −mk

i

]2

(3c)[
uk+1
i

vk+1
i

]
=

1
c

[
ℓki − λk+1

i
mk

i − µk+1
i

]
+

[
uk
i − δki

vk
i − γ k

i

]
(3d)[

dk+1i
gk+1
i

]
=

[
δki
γ k
i

]
+

[
uk+1
i

vk+1
i

]
−

[
uk
i

vk
i

]
(3e)

here (λk
i , µ

k
i ) are local estimates of the optimal solution of D,

> 0 is a penalty coefficient, and wij is a link weight, modeling
ow much agent i values the information received by agent j. For
hose (i, j) /∈ E , wij = 0, meaning that agent i does not receive
ny information from agent j.
Let W ∈ RN×N be the matrix whose (i, j)-th entry is wij, also

nown as the consensus matrix. In order for the Proximal-Tracking
lgorithm in (3) to work, we need to impose the following as-
umption on W .

ssumption 4 (Consensus Weights). MatrixW is symmetric (W =
⊤), doubly stochastic (W1 = W⊤1 = 1), and positive semi-

efinite. □

Following the interpretation provided in Falsone and Prandini
2022), the sequence (uk

i , v
k
i ) represents a subgradient of the local

bjective function −ϕi(λi, µi) of agent i, while (dki , g
k
i ) acts as a

locally available to agent i) estimate of the global subgradient
1
N

∑N
i=1(u

k
i , v

k
i ).

In (3a), agent i constructs a weighted average (ℓki ,m
k
i ) of

its own estimate (λk
i , µ

k
i ) of the dual optimal solution and the

estimates of its neighboring agents. Similarly, in (3b) agent i
constructs a weighted average (δki , γ

k
i ) of its own estimate (dki , g

k
i )

of the network average subgradient and the estimates of its
neighboring agents. Then, in (3c), it updates its local estimate by
solving a local minimization problem where the local cost func-
tion −ϕi(·) is augmented by a quadratic term that penalizes the
distance of the new estimate from the average (ℓki ,m

k
i ) computed

in (3a) and by a linear term, which steers the minimization away
from the direction given by the local subgradient and towards
the direction of the global subgradient, estimated by (dki , g

k
i ). It

then computes the new subgradient in (3d) and it finally updates
the global subgradient estimate (dki , g

k
i ) in (3e) using a dynamic

consensus mechanism, see Kia et al. (2019).
According to Falsone and Prandini (2022), the iterative scheme

in (3) must be initialized as (λ0
i , µ

0
i ) ∈ Rp

×Rq, (u0
i , v

0
i ) ∈ Rp

×Rq

and (d0i , g
0
i ) = (u0

i , v
0
i ).

Unfortunately, step (3c) involves minimizing a function−ϕi(·),
defined only implicitly via the minimization in (2), which (de-
spite being convex) is not easy in practice. Moreover, no primal
sequence {xki }k≥0 is generated by (3). In the next section, we
introduce a different formulation of (3) that can be actually im-
plemented by means of available solvers and show that it is
indeed equivalent to (3). Notably, the proposed algorithm directly
provides also primal iterates that are shown to be, in the limit,
an optimal solution to the primal problem P . Note that this is
not always the case for dual algorithms, since they typically re-
quire additional recovery procedures/sequences to ensure primal
optimality (see, e.g., Falsone et al., 2017; Falsone & Prandini,
2020).

3.3. Proposed algorithm

In the proposed Algorithm 1, in Steps 6–9 agent i constructs

a weighted average of its own estimate and those from the

4

Algorithm 1 Augmented Lagrangian Tracking (ALT)
1: Initialization

2: x0i ∈ Rni , σ 0
i ∈ Rq

+

3: λ0
i ∈ Rp, d0i = −(Aix0i − bi)

4: µ0
i ∈ Rq, g0

i = −(hi(x0i )+ σ 0
i )

5: Repeat until convergence

6: ℓki =
∑

j∈Ni
wij λ

k
j

7: mk
i =

∑
j∈Ni

wij µ
k
j

8: δki =
∑

j∈Ni
wij dkj

9: γ k
i =

∑
j∈Ni

wij gk
j

10: xk+1i ∈ argmin
xi∈Xi

{
fi(xi)+ ℓki

⊤Aixi + c
2∥Aixi − Aixki − δki ∥

2

+
1
2c ∥max{mk

i + c (hi(xi)− hi(xki )− σ k
i − γ k

i ), 0}∥
2
}

11: σ k+1
i = max{γ k

i − hi(xk+1i )+ hi(xki )+ σ k
i −

1
c m

k
i , 0}

12: dk+1i = δki − Aixk+1i + Aixki
13: gk+1

i = γ k
i − (hi(xk+1i )+ σ k+1

i )+ (hi(xki )+ σ k
i )

14: λk+1
i = ℓki − c dk+1i

15: µk+1
i = mk

i − c gk+1
i

16: k← k+ 1

neighbors of the dual tentative solutions (λk
i , µ

k
i ) (cf. Steps 6–

7) and the quantities (dki , g
k
i ) (cf. Steps 8–9), as in (3a) and (3b)

of (3). It then performs a local minimization step involving its
local cost function fi, plus a linear and a quadratic terms related
to the equality coupling constraints, and another quadratic term
involving the inequality coupling constraints (cf. Step 10). This
local minimization step provides an estimate of the optimal local
solution xk+1i to the primal problem P , which is then used for
updating the quantities (dki , g

k
i ) (cf. Steps 12–13) according to a

dynamic average consensus scheme (see Kia et al., 2019), mean-
ing that (dki , g

k
i ) serves as a local estimate of the global quantity

−
1
N

∑N
i=1(Aixki − bi, hi(xki ) + σ k

i ), which is the opposite of the
violation of the coupling constraint. The local estimate (dki , g

k
i ) of

uch a violation is then used in the local multiplier updates (cf.
tep 14–15). The non-negative quantity σ k

i acts as a slack variable
nd takes into account the fact that the hi’s contributes to an
nequality constraint when updating the sequence gk

i .
Clearly, in absence of equality constraints (i.e., p = 0), one can

kip Steps 3, 6, 8, 12, and 14, and can remove all terms involving
k
i , Ai, and δki from the cost function of Step 10. Similarly, in
bsence of inequality constraints (i.e., q = 0) one can skip Steps 4,
, 9, 11, 13, and 15, and can remove the 1

2c ∥max{·, 0}∥ term from
the cost function of Step 10.

The following result formalizes the non-trivial relationship
between Algorithm 1 and the iterative scheme in (3).

Theorem 1 (Equivalence). Under Assumptions 1 and 2, for any
c > 0, Algorithm 1 and the iterative scheme in (3) are equivalent:
they generate the same sequences {(λk

i , µ
k
i )}k≥0 and {(dki , g

k
i )}k≥0,

and sequence {(uk
i , v

k
i )}k≥0 by (3) is equal to sequence

{−(Aixki − bi, hi(xki )+ σ k
i )}k≥0 by Algorithm 1. □

Owing to the equivalence granted by Theorem 1 and the con-
vergence guarantees of the Proximal-Tracking algorithm provided
in Falsone and Prandini (2022), we have the following corollary.
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orollary 1 (Dual Optimality). Under Assumptions 1–4, for any c >
, the sequence {(λk

i , µ
k
i )}k≥0 generated by Algorithm 1 converges

o the same optimal solution (λ⋆, µ⋆) of D and, for each i, the
equence {−(Aixki − bi, hi(xki )+ σ k

i )}k≥0 converges to one element of
(−ϕi + IRp×Rq

+
)(λ⋆, µ⋆). □

Unfortunately, Corollary 1 provides guarantees that the agents
re converging to the same optimal solution of D, but we are
ctually interested in solving P . The following result guarantees
hat we are able to retrieve an optimal solution of P .

heorem 2 (Primal Optimality). Under Assumptions 1–4, for any
> 0, the sequence {(xk1, . . . , x

k
N )}k≥0 generated by Algorithm 1

atisfies

• limk→∞
∑N

i=1 fi(x
k
i ) = f ⋆,

• limk→∞
∑N

i=1 Aixki = b,
• lim supk→∞

∑N
i=1 hi(xki ) ≤ 0,

eaning that (xk1, . . . , x
k
N ) is, in the limit, feasible for P and achieves

ts optimal cost. □

While the proof of Corollary 1 is immediate as a consequence
f Theorem 1, the results stated by Theorems 1 and 2 are non-
rivial and their proofs are deferred to the Appendix.

Note that an optimal solution x⋆
= (x⋆

1, . . . , x
⋆
N ) to P need not

exist and, consequently, (xk1, . . . , x
k
N ) need not converge. Nonethe-

less, Algorithm 1 still works, as (xk1, . . . , x
k
N ) can only escape

along feasible directions and its cost approaches the optimal
one. To the best of our knowledge, this is the most general
result among those available in the literature, which typically
requires the existence of a primal optimal solution. Furthermore,
with a mild additional assumption on P , we can show that
{(xk1, . . . , x

k
N )}k≥0 does not diverge and all its limit points are

optimal primal solutions.

Corollary 2 (Primal Limit Points). Consider Assumptions 1–4 and
suppose that c > 0. If P admits a non-empty and bounded set of
optimal solutions, then the sequence {(xk1, . . . , x

k
N )}k≥0 generated by

Algorithm 1 is bounded and all its limit points are optimal primal
solutions. Furthermore, if the optimal solution x⋆ is unique, then
{(xk1, . . . , x

k
N )}k≥0 converges to x⋆. □

Note that the additional assumption requiring the optimal
solution set of P to be bounded is equivalent to assume that
the overall primal objective function is coercive (i.e., grows un-
bounded) along those directions in which the feasible set of P is
unbounded. Compactness of the Xi’s sets is a sufficient but not
necessary condition for this to hold.

3.4. Connections with existing algorithms

The first connection to highlight is the parallelism between the
centralized algorithms and their distributed counterpart, which
actually guided the developments in the previous subsection.
In Falsone and Prandini (2022) it has been shown that Proximal-
Tracking is the distributed counterpart of the proximal minimiza-
tion algorithm. According to Bertsekas (2015), when a (central-
ized) proximal minimization algorithm is applied to a dual of a
constrained optimization problem, the resulting dual proximal
minimization algorithm gives rise to an augmented Lagrangian
method, see Bertsekas (2015, Section 5.2.1). The proposed Aug-
mented Lagrangian Tracking can thus be seen as the distributed
counterpart of the augmented Lagrangian method, where each
agent i minimizes an augmented Lagrangian in which the in-
formation regarding the contribution of the other agents on the
coupling constraints has been replaced by local estimates via a

dynamic average consensus (a.k.a. tracking) mechanism, hence

5

the name of the proposed algorithm. The difference in sign of
the dual updates with respect to the centralized augmented La-
grangian method is due to (dki , g

k
i ) being a local estimate of the

opposite of the violation of the coupling constraint.
Another interesting connection is given by the relationship

between Augmented Lagrangian Tracking and Tracking-ADMM
in Falsone et al. (2020). Indeed, if we assume to have no inequality
constraint (q = 0), then Augmented Lagrangian Tracking col-
lapses (apart from the sign of dki and δki ) into Tracking-ADMM,
which is thus a special case of the proposed approach. This con-
nection forces us to observe that, while in the centralized case the
augmented Lagrangian method and ADMM are different (despite
similar) algorithms, their distributed counterparts studied in this
paper and in Falsone et al. (2020) respectively, are the same.
The development of this connection is certainly worth further
investigations and constitutes an interesting direction of future
research.

4. Numerical simulations

We first showcase the more general applicability of the pro-
posed Augmented Lagrangian Tracking algorithm by considering
an artificial example with various complexity features. We then
consider a realistic example, which does not have all complex-
ity features, but allows us to make a comparative analysis of
Augmented Lagrangian Tracking versus a competing algorithm.

4.1. Artificial example

We consider a set of N agents, each one handling a non-
negative decision variable zi ∈ R+ and a cost function given
by the maximum between two parabolas. The agents have to
coordinate to minimize the sum of their cost functions subject
to a budget constraint on the cumulative Euclidean norm of their
decision variables and an equality constraint on their cumulative
1-norm. Formally, the problem can be posed as

min
z1,...,zN

N∑
i=1

max{(zi − νi,1)2, (zi − νi,2)2} (4)

subject to: ∥(z1, . . . , zN )∥1 = ∥(s1, . . . , sN )∥1
∥(z1, . . . , zN )∥ ≤ ∥(r1, . . . , rN )∥
zi ≥ 0 i = 1, . . . ,N,

which, owing to the fact that

∥(z1, . . . , zN )∥ ≤ ∥(r1, . . . , rN )∥

⇐⇒ ∥(z1, . . . , zN )∥2 ≤ ∥(r1, . . . , rN )∥2,

and

zi ≥ 0 ∀i H⇒ ∥(z1, . . . , zN )∥1 =
N∑
i=1

zi,

can be cast as an instance of P setting xi = zi, fi(xi) = max{(xi −
νi,1)2, (xi − νi,2)2}, Xi = R+, Ai = 1, bi = |si|, b =

∑N
i=1 bi, and

hi(xi) = x2i − r2i .
As it is clear by the previous equivalences, the resulting opti-

mization problem has non-smooth non Lipschitz continuous local
objective functions, nonlinear non Lipschitz continuous inequality
coupling constraint function, unbounded local constraint sets, and
has both equality and inequality coupling constraints. The reader
should also note that if νi,1, νi,2 > 0, then the unconstrained mini-
mum is achieved at xi = ν̃i =

1
2 (νi,1+νi,2) > 0 for all i = 1, . . . ,N ,

so that it is sufficient to set si < ν̃i to ensure that the equality
coupling constraints is not trivially satisfied. Then starting from
the optimal solution, say (x′1, . . . , x

′

N ), with the equality coupling
constraint only, we can set (r , . . . , r ) < (x′ , . . . , x′ ) to ensure
1 N 1 N
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Fig. 1. Relative optimality gap (upper plot) and relative coupling constraint violation
lower plot) of (xk1, . . . , x

k
N ) across iterations of Augmented Lagrangian Tracking

applied to (4), for different values of the penalty parameter c .

that also the inequality coupling constraint is active. Moreover,
due to non-smoothness of the cost functions, if N ≫ 1 and the
coupling constrains perturb the solution only slightly, than the
constrained minimizer (x⋆

1, . . . , x
⋆
N ) may (depending on the values

of νi,1 and νi,2) satisfy x⋆
i = ν̃i for some i ∈ {1, . . . ,N}, so that

the cost function is non-differentiable precisely at the optimal
solution.

In our tests we set N = 10, νi,1 and νi,2 are independently
extracted at random from a uniform probability distribution over
the intervals [0.5, 1.5] and [2.5, 3.5], respectively, for all i =
1, . . . ,N , and si = ri = 0.95 ν̃i. Given the realizations of νi,1 and
νi,2, it turns out that x⋆

i = ν̃i for four agents.
In order to satisfy Assumption 3 we generate a communication

network as follows. For each possible agent pair, the correspond-
ing edge is included in the graph based on the outcome of the
extraction from a Bernoulli probability distribution with success
probability 0.15. If the resulting graph is not connected, then it is
discarded and the procedure is restarted. To satisfy also Assump-
tion 4, a tentative consensus matrix W is constructed using the
procedure in Sinkhorn and Knopp (1967). If the resulting matrix
is not positive semi-definite, then the graph and the consensus
matrix are both discarded and the procedure is repeated.

We run Algorithm 1 for 104 iterations, for different values of
the penalty parameter c ∈ {10−1.5, 10−1, 1, 10, 101.5, 102

} so as
to cover a wide range of penalty parameters (three and a half
orders of magnitude). In Fig. 1 we report, on a semi-logarithmic
chart, the behavior across iterations of the relative optimality gap

|
∑N

i=1 fi(x
k
i )− f ⋆

|

|f ⋆|
,

where f ⋆ is the optimal cost computed by a centralized solver,
and the normalized maximum violation of the coupling con-
straints

max{|
∑N

i=1 Aixki − bi|,
∑N

i=1 hi(xki )}
max{∥(s1, . . . , sN )∥1, ∥(r1, . . . , rN )∥2}

.

s can be observed from the picture, the proposed algorithm
onverges to an optimal solution of P for all values of c.

.2. Realistic example

We now consider the plug-in electric vehicles optimal charg-
ng schedule problem described in Vujanic, Esfahani, Goulart,
ariéthoz, and Morari (2016).
6

The goal is to find a minimum-cost overnight charging strategy
or a fleet of N electric vehicles. The charging profile of each vehi-
le must cope with upper and lower limits for the energy stored
n the battery and must satisfy a desired target state of charge
or the next morning. Moreover, all vehicles use the same point
f connection to draw energy from the grid, which impose an
dditional constraint on the maximum amount of energy that the
leet can exchange with the grid. For simplicity we consider the
‘only charging’’ case, in which vehicles only draw energy without
njecting any. Finally, differently from the problem considered
n Vujanic et al. (2016), at each time-slot, we allow each vehicle to
ptimize the charging rate, instead of deciding whether to charge
r not the internal battery at the nominal rate.
The resulting optimization program is given by

min
π1,...,πN

N∑
i=1

ρ⊤i πi (5)

ubject to:
N∑
i=1

πi ≤ π̄

πi ∈ Πi i = 1, . . . ,N,

here, for each vehicle i, vector πi is its charging power profile,
i encodes its local constraints such as power limits, battery
torage limits, and desired final state of charge, ρi its cost of
uying one unit of power for an entire time-slot, and π̄ is the
aximum power that the grid can provide at each time-slot. For
precise formulation of Πi, we refer the reader to Vujanic et al.

2016).
It is easy to see how (5) fits the structure of P . Indeed it is

ufficient to take xi = πi, fi(xi) = ρ⊤i πi, Xi = Πi, and hi(xi) =
i −

π̄
N . Since we do not have any equality coupling constraint,

we set p = 0 and we do not define A1, . . . , AN , and b.
In our simulation we considered a fleet of N = 50 vehicles.

ach vehicle i has ni = 24 decision variables representing the
charging rate over the 24 20-minute time-slots making up the
8 hour charging horizon. The local constraint set Πi is defined by
95 inequalities and the number of inequality coupling constraints,
and thus the size of the Lagrange multiplier vector µ, is q = 24.

As for Assumptions 3 and 4, we adopt the same procedure of
the previous example for building the communication graph and
the consensus matrix. We then run Algorithm 1 for 104 iterations,
with the penalty parameter c taking values in {10−3.5, 10−4,
0−4.5, 10−5, 10−5.5, 10−6}, which are those values (spanning two

and a half orders of magnitude) that give the best performance
among those that we explored.

Note that, since there are no equality coupling constraints
in (5), we can skip Steps 3, 6, 8, 12, and 14, and in Step 10 we can
remove the terms involving ℓki , Ai, and δki from the cost function.

In Fig. 2 we report, on a semi-logarithmic chart, the behav-
ior across iterations of the relative optimality gap (upper plot),
between the value of the cost function achieved by the primal
tentative solution xki and the optimal cost f ⋆ computed by a
centralized solver (as in the previous example), and the relative
maximum constraint violation (lower plot)

∥max{
∑N

i=1 hi(xki ), 0}∥∞
∥π̄∥∞

of the inequality coupling constraints (lower plot). As can be
observed from the picture, the proposed algorithm converges
to an optimal solution of P for all values of c . Furthermore,
it is interesting to mention that, differently from the previous
example, despite the value of c affects the transient behavior, for
this problem convergence is eventually exponential in all cases,
with a rate (cf. the slopes of the lines in Fig. 2) not affected by c.
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Fig. 2. Relative optimality gap (upper plot) and relative coupling constraint
violation (lower plot) of (xk1, . . . , x

k
N ) across iterations of Augmented Lagrangian

racking applied to (5), for different values of the penalty parameter c.

It is worth noticing that the results in Fig. 2 are similar to those
eported in Falsone et al. (2020), where the Tracking-ADMM
lgorithm is applied to a reformulation of the same problem
imed at converting the linear inequality coupling constraints
n (5) into linear equality coupling constraints that Tracking-
DMM can handle. The fact that the rate of convergence is similar
s not surprising given the intimate relation between the two
lgorithms described in Section 3.4.
For comparison purposes we solve the same problem us-

ng Chang (2016, Algorithm 1), which can be applied since the
nequality coupling constraints are affine. In Fig. 3 we report the
elative optimality gap (upper plot) and the relative violation
f the joint constraint (lower plot) associated to the sequences
enerated by Chang (2016, Algorithm 1) for different values of its
enalty parameter, here denoted as c ′. For a fair comparison we
how the runs of Chang (2016, Algorithm 1) associated to those
alues of the penalty parameter that achieve the best perfor-
ance: c ′ ∈ {102, 102.5, 103, 103.5, 104

}. By comparing Figs. 2 and
, we can see how the proposed algorithm outperforms the one
n Chang (2016) in terms of convergence rate both for optimality
nd feasibility. This is testified by the slopes of the curves in
ig. 2, which are steeper than those in Fig. 3, irrespective of the
alue of the penalty coefficient. To ease the comparison, we also
eport in Fig. 3 the best run of Augmented Lagrangian Tracking
c = 10−4.5).

Since Augmented Lagrangian Tracking requires the resolution
f an optimization problem at each iteration (cf. Step 10), it is
orth assessing its robustness in case an approximate minimiza-
ion is carried out. To this purpose, we run Algorithm 1 for 104

terations on the same problem, for different values of the solver
CPLEX 12.10) tolerance ε ∈ {10−2, 10−3, 10−4, 10−5, 10−6,
0−7}. As can be seen from Fig. 4, the solver tolerance does have
n impact on the overall performance. However, the accuracy of
he solution retrieved by Augmented Lagrangian Tracking never
xceeds the tolerance used by the solver, which shows that Aug-
ented Lagrangian Tracking is robust against numerical errors in

he minimization of Step 10. The fact that Augmented Lagrangian
racking behaves the same for any tolerance ε ≤ 10−5 is probably
ue to (5) being a linear program. Indeed, for linear programs,
t least one optimal solution is on a vertex of the feasible set
nd, if the cost of any other (non-optimal) vertex exceeds the
ptimal cost by an amount greater than 10−5, when ε ≤ 10−5
suboptimal vertex cannot be selected as optimal by the solver

n place of an optimal one.
7

Fig. 3. Relative optimality gap (upper plot) and relative coupling constraint vio-
lation (lower plot) of (xk1, . . . , x

k
N ) across iterations of Chang (2016, Algorithm 1)

applied to (5), for different values of the corresponding penalty parameter
c ′ (solid lines). For comparison purposes, we also report the behavior of our
Augmented Lagrangian Tracking with c = 10−4.5 (ALT, dotted line).

Fig. 4. Relative optimality gap (upper plot) and relative coupling constraint
violation (lower plot) of (xk1, . . . , x

k
N ) across iterations of Augmented Lagrangian

Tracking applied to (5), for different solver tolerances ε.

Fig. 5. Histogram of the relative optimality gap (upper plot) and relative
coupling constraint violation (lower plot) of (xk1, . . . , x

k
N ) across iterations of

Augmented Lagrangian Tracking with c = 10−4.5 applied to 100 instances of (5).
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Finally, we also report a Monte Carlo analysis of the perfor-
mance of Augmented Lagrangian Tracking on 100 instances of (5),
with c = 10−4.5. Results are shown in Fig. 5 by means of 2D
histograms. The iteration vs. accuracy plane is discretized into
cells of 250 iterations width and 1 order of magnitude height.
A color is assigned to each cell based on how many runs fall
within that cell. Since a run may have an accuracy within the
cell accuracy range for a number of iterations smaller than 250,
each run is weighted proportionally to howmany iterations out of
250 the run stays within the cell. This way if one run falls within
a cell for one iteration only, its weight is set to 1/250, whereas
if it stays within the cell for all the 250 iterations, its weight is
set to 1. From the histograms we can see that the instance used
for the previous analysis is actually an average instance, as there
are other instances for which Augmented Lagrangian Tracking
converges as fast as 3 · 103 iterations and others for which its
convergence is slower. Note that, on most instances, we achieve
an acceptable accuracy (≤ 10−6) within 5 · 103 iterations.

5. Conclusions

In this paper we proposed a novel distributed optimization
algorithm to solve almost-separable multi-agent optimization
problems coupled by affine equality and nonlinear inequality
constraints. In contrast with the approaches available in the
literature, the proposed algorithm works under very mild as-
sumptions and proved to be effective both on an artificial ex-
ample with complexity features that make other state-of-the-art
algorithms not applicable, and on a realistic application involving
the charging schedule of a fleet of electric vehicles. As a future
research direction we plan to provide a convergence rate for the
proposed algorithm and investigate more deeply the connections
with other centralized/distributed algorithms in the literature.

Appendix. Proofs

In this appendix we provide the proofs of the theoretical
results presented in Section 3.3. We start by introducing an
auxiliary result, which is an optimality condition for the sum
of two extended-real convex functions that is used for proving
Theorem 1. Then, in the proof of Theorem 1, we build upon
the optimality conditions of (3c) and show how they can be
manipulated, together with (3d) and (3e), to solve (3c) explicitly
with respect to λk+1

i and µk+1
i and thus turn (3) into Algorithm 1.

Then in the proof of Theorem 2 we show how the convergence of
Algorithm 1 to the dual optimal solution implies first feasibility
of the primal iterates and then, owing to Step 10, also cost-
optimality. We conclude with the proof of Corollary 2, which
shows that boundedness of the optimal solutions set together
with boundedness of the cost and constraint violation sequences
implies boundedness of the {(xk1, . . . , x

k
N )}k≥0 sequence and hence

optimality of all its limit points.

Auxiliary result

Let J be a function, recall that dom(J) denotes the domain of J
and relint(·) the relative interior of its argument. The following re-
sult is an extension of Bertsekas and Tsitsiklis (1989, Lemma 4.1,
p. 257).

Lemma 1. Let J1, J2 : Rn
→ R ∪ {+∞} be two extended real-

valued proper convex functions (cf. Rockafellar, 1970, p. 24) such that
relint(dom(J1)) ∩ relint(dom(J2)) ̸= ∅. Then,

z⋆
∈ argmin

z
J1(z)+ J2(z)

if and only if there exists η2 ∈ ∂ J2(z⋆) such that

z⋆
∈ argmin J1(z)+ η⊤2z.
z

8

Proof. By Rockafellar (1970, Theorem 23.2), z⋆
∈ argminz J1(z)+

2(z) if and only if

∈ ∂(J1 + J2)(z⋆) = ∂ J1(z⋆)⊕ ∂ J2(z⋆),

here the equality is due to Rockafellar (1970, Theorem 23.8).
y definition of Minkowski sum, the previous inclusion holds if
nd only if there exist η1 ∈ ∂ J1(z⋆) and η2 ∈ ∂ J2(z⋆) such that
= η1 + η2. This is true if and only if −η2 ∈ ∂ J1(z⋆), which,

y Rockafellar (1970, Theorem 23.5), holds if and only if
⋆
∈ argmin

z
J1(z)− (−η2)⊤z = argmin

z
J1(z)+ η⊤2z,

hus concluding the proof. □

roof of Theorem 1 (Equivalence)

Under Assumption 1 all fi and hi are closed proper convex
unctions. We start by noticing that, under Assumption 1, −ϕi is
closed proper convex function, according to Rockafellar (1970,
heorem 9.4). Under Assumption 2, −

∑N
i=1 ϕi is also closed

roper convex by Rockafellar (1970, Theorem 9.3). This makes D
it the structure of Falsone and Prandini (2022, P , see discussion
fter Assumption 2).
Given the minimization in (3c), for (λk+1

i , µk+1
i ) to be the

ptimal solution, by Rockafellar (1970, Theorem 23.2), it must
old that

∈ ∂

(
− ϕi(λi, µi)+ IRq

+
(µi)+ (δki − uk

i )
⊤λi +

1
2c ∥λi − ℓki ∥

2 (6)

+ (γ k
i − vk

i )
⊤µi +

1
2c ∥µi −mk

i ∥
2

)
(λk+1

i , µk+1
i ),

where the objective function has been augmented with the indi-
cator function IRq

+
(µi) to account for the non-negativity

constraints on µi. Under Assumption 2, (Rp
× Rq

+) ∩
relint(dom(−ϕi)) ̸= ∅ and, by Rockafellar (1970, Theorem 23.8),
(6) is equivalent to

0 ∈ ∂(−ϕi)(λk+1
i , µk+1

i )⊕ ∂IRp×Rq
+
(λk+1

i , µk+1
i )

⊕ ∂

(
(δki − uk

i )
⊤λi +

1
2c ∥λi − ℓki ∥

2

+ (γ k
i − vk

i )
⊤µi +

1
2c ∥µi −mk

i ∥
2
)
(λk+1

i , µk+1
i )

(a)
= ∂(−ϕi)(λk+1

i , µk+1
i )⊕ ∂IRp×Rq

+
(λk+1

i , µk+1
i )

⊕

{[
(δki − uk

i )+
1
c (λ

k+1
i − ℓki )

(γ k
i − vk

i )+
1
c (µ

k+1
i −mk

i )

]}
,

(3d)
= ∂(−ϕi)(λk+1

i , µk+1
i )⊕ ∂IRp×Rq

+
(λk+1

i , µk+1
i )

⊕

{[
−uk+1

i
−vk+1

i

]}
, (7)

where (a) is due to the linear and quadratic terms being differen-
tiable. According to Rockafellar (1970, p. 226),

∂IRp×Rq
+
(λ, µ) =

{
(0p,−σ ) : σ ∈ Rq

+ ∧ σ⊤µ = 0
}

(8)

hile, according to Danskin’s theorem (see Bertsekas, 1999, Propo-
ition B.25),

(−ϕi)(λ, µ) =
{
−(Aix′i − bi, hi(x′i)) :

x′i ∈ argmin
xi∈Xi

fi(xi)+ λ⊤Aixi + µ⊤hi(xi)
}
. (9)

Therefore, to satisfy (7) given (8) and (9) together, there must
xist xk+1i ∈ Rni and σ k+1

i ∈ Rq
+ such that

k+1
i ∈ argmin fi(xi)+ λk+1

i
⊤
Aixi + µk+1

i
⊤
hi(xi) (10a)
xi∈Xi
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k+1
i = −(Aixk+1i − bi) (10b)
k+1
i = −hi(xk+1i )− σ k+1

i (10c)
k+1
i
⊤
µk+1

i = 0. (10d)

elations (10b) and (10c) can be used in (3e) to get
k+1
i = δki − Aixk+1i + Aixki (11a)
k+1
i = γ k

i − hi(xk+1i )− σ k+1
i + hi(xki )+ σ k

i , (11b)

while (3d) can be made explicit in λk+1
i and µk+1

i as

λk+1
i = ℓki + c (Aixk+1i − Aixki − δki ) (12a)

(11a)
= ℓki − c dk+1i (12b)

µk+1
i = mk

i + c σ k+1
i + c (hi(xk+1i )− hi(xki )− σ k

i − γ k
i ) (12c)

(11b)
= mk

i − c gk+1
i . (12d)

Up to now, we have shown that (10)–(12) are equivalent to (3c)–
(3e), but, unfortunately, xk+1i and σ k+1

i are defined only implicitly.
Indeed, substituting (12a) and (12c) in (10a) reveals that the
cost function of (10a) depends on xk+1i , which is the outcome of
the optimization in (10a). Similarly, substituting (12c) in (10d)
reveals that σ k+1

i must satisfy a quadratic equation. In the re-
maining part of the proof we will show that xk+1i and σ k+1

i can
actually be computed explicitly using information available at
iteration k only.

The quantity σ k+1
i is related to the non-negativity constraints

that µk+1
i must comply with. Therefore, given (12c), it is intuitive

to set

σ k+1
i = max

{
γ k
i − hi(xk+1i )+ hi(xki )+ σ k

i −
1
c m

k
i , 0

}
(13)

o that
k+1
i

(12c)
= c σ k+1

i +mk
i + c (hi(xk+1i )− hi(xki )− σ k

i − γ k
i )

(13)
= c max

{
γ k
i − hi(xk+1i )+ hi(xki )+ σ k

i −
1
c m

k
i , 0

}
+mk

i + c (hi(xk+1i )− hi(xki )− σ k
i − γ k

i )

= max
{
mk

i + c (hi(xk+1i )− hi(xki )− σ k
i − γ k

i ), 0
}

(14)

and (10d) is trivially satisfied.
Now, the only quantity left to be determined is xk+1i .

Given (10a), by Lemma 1 setting z = xi, J1(xi) = fi(xi)+IXi (xi), and
J2(xi) = λk+1

i
⊤
Aixi + µk+1

i
⊤
hi(xi), there must exist ηk+1

i ∈ ∂ J2(xk+1i )
such that

xk+1i ∈ argmin
xi∈Xi

fi(xi)+ ηk+1
i
⊤
xi. (15)

Moreover,

∂ J2
(a)
= ∂(λk+1

i
⊤
Aixi)⊕ ∂(µk+1

i
⊤
hi(xi))

(b)
= {A⊤i λ

k+1
i } ⊕ ∂(µk+1

i
⊤
hi(xi))

(a)
= {A⊤i λ

k+1
i } ⊕

q⨁
s=1

∂([µk+1
i ]s[hi(xi)]s)

(c)
= {A⊤i λ

k+1
i } ⊕

q⨁
s=1

[µk+1
i ]s∂([hi(xi)]s),

where (a) are both due to Rockafellar (1970, Theorem 23.8) under
Assumption 1, (b) is given by differentiability of the function
inside the first term, and (c) trivially follows from the definition
of subgradient together with each [µk+1

i ]s being a non-negative
scalar. By definition of Minkowski sum, there must exist ℏk+1i,s ∈

∂([hi(xi)]s)(xk+1i ), for all s = 1, . . . , q, such that

ηk+1
= A⊤λk+1

+ Hk+1µk+1, (16)
i i i i i t

9

with Hk+1
i = [ℏk+1i,1 · · · ℏ

k+1
i,q ]. Let us now consider the function

J̃2(xi) = ℓki
⊤
Aixi + c

2∥Aixi − Aixki − δki ∥
2

+
1
2c ∥max{mk

i + c (hi(xi)− hi(xki )− σ k
i − γ k

i ), 0}∥
2,

and show that ηk+1
i ∈ ∂ J̃2(xk+1i ). First, let us rewrite J̃2(xi) as

J̃2(xi) = J3(xi) + J4(J5(xi)) with J3 : Rni → R, J4 : Rq
→ R,

and J5 : Rni → Rq defined as

J3(xi) = ℓki
⊤
Aixi + c

2∥Aixi − Aixki − δki ∥
2

J4(y) = 1
2c ∥max{y, 0}∥2

J5(xi) = mk
i + c (hi(xi)− hi(xki )− σ k

i − γ k
i ).

y convexity and differentiability of J3(xi), we have

3(xi)− J3(xk+1i ) ≥ ∇J3(xk+1i )⊤(xi − xk+1i )

= (A⊤i ℓ
k
i + c A⊤i (Aixk+1i − Aixki − δki ))

⊤(xi − xk+1i )
(12a)
= (A⊤i λ

k+1
i )⊤(xi − xk+1i ). (17)

imilarly, by convexity and differentiability of J4(y), we have

4(y) ≥ J4(ȳ)+∇J4(ȳ)⊤(y− ȳ)

= J4(ȳ)+ 1
c max{ȳ, 0}⊤(y− ȳ), (18)

nd, lastly, by convexity of [hi(xi)]s together with ℏk+1i,s ∈

([hi(xi)]s)(xk+1i ), we have

hi(xi)]s ≥ [hi(xk+1i )]s + ℏk+1i,s
⊤
(xi − xk+1i ), (19)

or all s = 1, . . . , q. Considering (19) in its vector form, multiply-
ng by c , and adding mk

i − c (hi(xki ) + σ k
i + γ k

i ) on both sides we
btain

5(xi) ≥ J5(xk+1i )+ c Hk+1
i
⊤
(xi − xk+1i ). (20)

wing to (20) together with the fact that y1 ≥ y2 implies J4(y1) ≥
4(y2), we have

4(J5(xi)) ≥ J4(J5(xk+1i )+ c Hk+1
i
⊤
(xi − xk+1i ))

(a)
≥ J4(J5(xk+1i ))+max{J5(xk+1i ), 0}⊤Hk+1

i
⊤
(xi − xk+1i )

(14)
= J4(J5(xk+1i ))+ µk+1

i
⊤
Hk+1

i
⊤
(xi − xk+1i ) (21)

here (a) is due to (18) setting y = J5(xk+1i )+ c Hk+1
i
⊤
(xi − xk+1i )

nd ȳ = J5(xk+1i ). Summing (17) and (21) and recalling the
efinition of J̃2 we obtain

˜2(xi) ≥ J̃2(xk+1i )+ (A⊤i λ
k+1
i + Hiµ

k+1
i )⊤(xi − xk+1i )

(16)
= J̃2(xk+1i )+ ηk+1

i
⊤
(xi − xk+1i ),

hich proves that ηk+1
i ∈ ∂ J̃2(xk+1i ). Recalling (15), by Lemma 1

etting z = xi, J1(xi) = fi(xi)+ IXi (xi), and J2(xi) = J̃2(xi), xk+1i must
also satisfy

xk+1i ∈ argmin
xi∈Xi

fi(xi)+ J̃2(xi), (22)

hich is a convex minimization problem, whose cost function
epends on quantities that are available at iteration k.
Therefore, updates (3c)–(3e) can be equivalently implemented

sing (22), (13), (11), and (12), which are equal to Steps 10–
5 in Algorithm 1. The consensus updates (3a)–(3b) are trivially
quivalent to Steps 6–9.
Lastly, we need to make sure that the initialization of Al-

orithm 1 matches that of the Proximal-Tracking in Falsone
nd Prandini (2022). As for the dual variables, the initialization
λ0
i , µ

0
i ) ∈ Rp

×Rq is the same (cf. Steps 3 and 4). Then, according
0 0
o Falsone and Prandini (2022), (ui , vi ) can be chosen arbitrarily
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i
n Rp
× Rq while (d0i , g

0
i ) = (u0

i , v
0
i ). Since by (10b) and (10c)

uk
i = −(Aixki − bi) and vk

i = hi(xki ) − σ k
i , we then select x0i ∈ Rni

and σ 0
i ∈ Rq arbitrarily (cf. Step 2), so that u0

i = −(Aix0i − bi) and
v0
i = −hi(x0i ) − σ 0

i are arbitrary vectors, and then set (d0i , g
0
i ) =

(−(Aix0i − bi),−hi(x0i )− σ 0
i ) = (u0

i , v
0
i ) (cf. Steps 3 and 4).

This shows that Algorithm 1 is equivalent to the iterative
scheme in (3), thus concluding the proof. □

Proof of Theorem 2 (Primal Optimality)

Under Assumptions 1–4, owing to Corollary 1,

lim
k→∞

(λk
i , µ

k
i ) = (λ⋆, µ⋆), (23)

for all i = 1, . . . ,N . By Steps 14 and 15 together with Steps 6
and 7,

(λk+1
i , µk+1

i ) = (ℓki ,m
k
i )− c (dk+1i , gk+1

i )

=

∑
j∈Ni

wij(λk
j , µ

k
j )− c (dk+1i , gk+1

i )

=

N∑
j=1

wij(λk
j , µ

k
j )− c (dk+1i , gk+1

i ),

where the last equality is due to wij = 0 if (i, j) /∈ E . Summing
the previous relation over i = 1, . . . ,N ,
N∑
i=1

(λk+1
i , µk+1

i ) =
N∑
i=1

N∑
j=1

wij(λk
j , µ

k
j )− c

N∑
i=1

(dk+1i , gk+1
i )

(a)
=

N∑
j=1

N∑
i=1

wij(λk
j , µ

k
j )− c

N∑
i=1

(dk+1i , gk+1
i )

(b)
=

N∑
j=1

(λk
j , µ

k
j )− c

N∑
i=1

(dk+1i , gk+1
i )

(c)
=

N∑
j=1

(λk
j , µ

k
j )− c

N∑
i=1

(uk+1
i , vk+1

i ),

where in (a) we exchanged the two summations, in (b) we used
the property

∑N
i=1 wij = 1 granted by Assumption 4, and in (c)

we used the tracking property in Falsone and Prandini (2022,
Lemma 3), which states that, under Assumption 4,

∑N
i=1(d

k
i , g

k
i ) =∑N

i=1(u
k
i , v

k
i ) for all k ≥ 0. Taking the limit on both sides of the

previous relation and recalling (23), yields

lim
k→∞

N∑
i=1

(uk
i , v

k
i ) = 0. (24)

Summing (10b) and (10c) in the proof of Theorem 1 over i =
1, . . . ,N , gives

−

N∑
i=1

uk
i =

N∑
i=1

Aixki − bi (25a)

−

N∑
i=1

vk
i =

N∑
i=1

hi(xki )+ σ k
i

(a)
≥

N∑
i=1

hi(xki ), (25b)

where (a) is due to σ k
i ≥ 0 for all i = 1, . . . ,N and for all k ≥ 0

(cf. Step 11). Given (24) and (25), we have

lim
k→∞

N∑
Aixki = b, (26a)
i=1

10
lim
k→∞

N∑
i=1

hi(xki )+ σ k
i = 0, (26b)

lim sup
k→∞

N∑
i=1

hi(xki ) ≤ 0, (26c)

which, together with xki ∈ Xi for all i = 1, . . . ,N and for all
k ≥ 0, implies that the sequence {(xk1, . . . , x

k
N )}k≥0 is, in the limit,

approaching the feasible set of P .
By (10a) in the proof of Theorem 1 and by (2),

ϕi(λk
i , µ

k
i ) = fi(xki )+ λk

i
⊤
(Aixki − bi)+ µk

i
⊤
hi(xki )

(a)
= fi(xki )+ λk

i
⊤
(Aixki − bi)+ µk

i
⊤
(hi(xki )+ σ k

i ),

where in (a) we added µk
i
⊤
σ k
i

(10d)
= 0 on the right hand side.

Summing the previous relation over i = 1, . . . ,N , yields
N∑
i=1

ϕi(λk
i , µ

k
i ) =

N∑
i=1

fi(xki )+
N∑
i=1

λk
i
⊤
(Aixki − bi)

+

N∑
i=1

µk
i
⊤
(hi(xki )+ σ k

i ). (27)

Since, by Corollary 1, sequences {Aixki − bi}k≥0 and {hi(xki )+ σ k
i }k≥0

are convergent and thus bounded for all i = 1, . . . ,N , then,
by (23), (26a) and (26b), we have

lim
k→∞

N∑
i=1

λk
i
⊤
(Aixki − bi) = 0, (28a)

lim
k→∞

N∑
i=1

µk
i
⊤
(hi(xki )+ σ k

i ) = 0. (28b)

By taking the lim sup on both sides of (27) and using (28), we
obtain

lim sup
k→∞

N∑
i=1

fi(xki ) = lim sup
k→∞

N∑
i=1

ϕi(λk
i , µ

k
i )

(a)
=

N∑
i=1

ϕi(λ⋆, µ⋆)

(b)
= f ⋆, (29)

where (a) is due to lower semi-continuity of −ϕi for all i =
1, . . . ,N granted by closedness (see Rockafellar, 1970, p. 52) and
(b) is due to strong duality, granted by Assumption 2. On the other
hand, by strong duality and (2),

f ⋆
=

N∑
i=1

ϕi(λ⋆, µ⋆)

≤

N∑
i=1

fi(xki )+ λ⋆⊤(Aixki − bi)+ µ⋆⊤hi(xki ),

from which, taking the lim inf on both sides and using (26)
together with µ⋆

≥ 0, we get

f ⋆
≤ lim inf

k→∞

N∑
i=1

fi(xki ). (30)

From (29) and (30), we have limk→∞
∑N

i=1 fi(x
k
i ) = f ⋆.

This shows that the sequence {(xk1, . . . , x
k
N )}k≥0 is, in the limit,

approaching both the feasible set and the optimal value of P , thus
concluding the proof. □
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P

{

roof of Corollary 2 (Primal Limit Points)

Recall that X = X1 × · · · × XN and define the set Cα
=

(x1, . . . , xN ) : ς (x1, . . . , xN ) ≤ α}, where

ς (x1, . . . , xN ) = max
{

max
s=1,...,q

N∑
i=1

[hi(xi)]s,

max
s=1,...,p

⏐⏐⏐⏐⏐
N∑
i=1

[Aixi]s − [b]s

⏐⏐⏐⏐⏐ ,
N∑
i=1

fi(xi)− f ⋆

}
.

Since under Assumption 1 ς (x1, . . . , xN ) is convex, closed and
proper, then, the set Cα is convex and closed for any α ≥ 0.

Furthermore, Cα
⊇ C0 is also non-empty for any α ≥ 0, since

the set of optimal solutions to P can be expressed as

X⋆
= X ∩ C0 (31)

and, under the additional assumption of Corollary 2, it is non-
empty.

Let rec(·) denote the recession cone of its argument (see Rock-
afellar, 1970, p. 61). By the closedness of X and C0 we have that
X⋆ in (31) is closed and the following chain of equalities holds for
every α ≥ 0:

{0} (a)
= rec(X⋆) (b)

= rec(X) ∩ rec(C0) (c)
= rec(X) ∩ rec(Cα) (32)

where (a) is due to the boundedness assumption on X⋆ and Rock-
afellar (1970, Theorem 8.4), (b) is due to Rockafellar (1970, Corol-
lary 8.3.3), and (c) holds since rec(Cα) = rec(C0) for all α ≥ 0
by Rockafellar (1970, Theorem 8.7). Invoking again Rockafellar
(1970, Theorem 8.4) shows that Xα

= X ∩ Cα is bounded for any
α ≥ 0.

Under Assumptions 1–4 and c > 0, by Theorem 2 we have
that limk→∞

∑N
i=1 fi(x

k
i ) = f ⋆, limk→∞

∑N
i=1 Aixki = b, and

lim supk→∞
∑N

i=1 hi(xki ) ≤ 0, meaning that there exist ᾱ ≥ 0 such
that

∑N
i=1 fi(x

k
i )− f ⋆

≤ ᾱ, |
∑N

i=1[Ai(xki )]s − [b]s| ≤ ᾱ, s = 1, . . . , p,
and

∑N
i=1[hi(xki )]s ≤ ᾱ, s = 1, . . . , q, for all k ≥ 0, which implies

that ς (xk1, . . . , x
k
N ) ≤ ᾱ and, hence, (xk1, . . . , x

k
N ) ∈ X ᾱ for all k ≥ 0.

Since, by (32), Xα is bounded for all α ≥ 0, then X ᾱ is
bounded and {(xk1, . . . , x

k
N )}k≥0 is a bounded sequence. The se-

quence {(xk1, . . . , x
k
N )}k≥0 then admits a convergent subsequence

with the corresponding limit point. However, by Theorem 2, any
limit point is feasible for P and achieves the optimal cost and is,
therefore, an optimal solution of P , thus proving the first part of
the statement.

Since the set of limit points is a subset of X⋆, if X⋆
= {x⋆

} is a
singleton, then we have only one limit point and {(xk1, . . . , x

k
N )}k≥0

converges to it. This observation proves the second statement of
the corollary and thus concludes the proof. □
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