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ABSTRACT

Coronary computed tomography angiography (CCTA) allows detailed assessment of early markers associated with coronary artery disease
(CAD), such as coronary artery calcium (CAC) and tortuosity (CorT). However, their analysis can be time-demanding and biased. We present
a fully automated pipeline that performs (i) coronary artery segmentation and (ii) CAC and CorT objective analysis. Our method exploits super-
vised learning for the segmentation of the lumen, and then, CAC and CorT are automatically quantified. 281 manually annotated CCTA images
were used to train a two-stage U-Net-based architecture. The first stage employed a 2.5D U-Net trained on axial, coronal, and sagittal slices for
preliminary segmentation, while the second stage utilized a multichannel 3D U-Net for refinement. Then, a geometric post-processing was
implemented: vessel centerlines were extracted, and tortuosity score was quantified as the count of branches with three or more bends with
change in direction forming an angle >45�. CAC scoring relied on image attenuation. CAC was detected by setting a patient specific threshold,
then a region growing algorithm was applied for refinement. The application of the complete pipeline required <5min per patient. The model
trained for coronary segmentation yielded a Dice score of 0.896 and a mean surface distance of 1.027mm compared to the reference ground
truth. Tracts that presented stenosis were correctly segmented. The vessel tortuosity significantly increased locally, moving from proximal, to
distal regions (p< 0.001). Calcium volume score exhibited an opposite trend (p< 0.001), with larger plaques in the proximal regions. Volume
score was lower in patients with a higher tortuosity score (p< 0.001). Our results suggest a linked negative correlation between tortuosity and
calcific plaque formation. We implemented a fast and objective tool, suitable for population studies, that can help clinician in the quantification
of CAC and various coronary morphological parameters, which is helpful for CAD risk assessment.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0181281

I. INTRODUCTION

Coronary artery disease (CAD) is the most frequent cardiovascu-
lar disease and the leading cause of death worldwide.1 CAD results
from the buildup of fibro-lipidic and calcific plaques in the coronary
arteries, leading to stenosis and reduced blood flow, potentially causing
myocardial ischemia.2

Coronary computed tomography angiography (CCTA) has
emerged as the primary imaging technique for the assessment of coro-
nary arteries, providing high resolution images that allow a thorough
analysis of the vessel lumen.3 With respect to other imaging techniques,

such as invasive coronary angiography and intravascular ultrasound,
CCTA enables a less invasive assessment of the whole coronary circula-
tion, with a single volumetric acquisition. The analysis of CCTA is the
basis for the identification of early markers and the understanding of
factors associated with CAD progression, to achieve effective risk stratifi-
cation and preventive intervention.

Coronary artery calcium (CAC) is an indicator of atherosclerosis,
and it has been proven in different studies4–6 that high levels of CAC
are associated with an increased risk of adverse cardiovascular events.
In clinical practice, CAC is quantified from a specific CT acquisition,
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namely, the calcium scoring CT (CSCT), by identifying groups of con-
nected voxels with attenuation above 130 Hounsfield units (HU).7

Pavitt et al.8 and Mylonas et al.9 were the first to show excellent agree-
ment between CAC scoring obtained from CSCT and CCTA, using
patient-specific attenuation thresholds to detect calcium. Indeed, in
CCTA, calcium attenuation takes higher values, and defining a unique
threshold is not possible due to variations in lumen attenuation caused
by the acquisition protocol or the contrast agent. Thus, the identifica-
tion of calcific lesions still relies on an expert manual analysis for the
setting of the correct threshold. In clinical practice, the standard scor-
ing metrics of CAC are the volume score (VS) and the percentage of
plaque volume (PPV) with respect to the volume of the coronary
artery.10,11 CAC scoring is generally performed by semi-automatic
tools.

Beyond CAC itself, the morphological features of coronary arter-
ies also play a critical role in assessing the risk associated with CAD
progression. Han et al.6 studied the association between the vessel geo-
metric features in the regions where CAC forms and future adverse
cardiovascular events, showing that, other than VS and PPV, adverse
geometric characteristics such as short distance from the coronary
ostium, proximity to bifurcations, and tortuosity of the vessel are sig-
nificantly more exhibited by subjects that develop future adverse con-
ditions. In particular, coronary tortuosity (CorT) is frequently
observed in CCTA analysis, yet its etiology and clinical relevance are
still unclear.12–15 CorT is quantified through the tortuosity score (TS),
which is the number of main coronary branches that present three or
more bends, with each bend entailing a change in the vessel direction
greater than 45�. A TS¼ 0 indicates no CorT, while TS� 4 indicates
severe CorT. CorT is manually measured directly on medical images,
and thus, findings from different studies may be subject to operator
bias. Furthermore, CorT is measured on coronary angiography images
or curved planar reformatted CCTA, each of which is a 2D representa-
tion of the vessel.

A prerequisite for the quantification of any marker associated
with CAD progression is an accurate segmentation of the coronary
lumen. Manual segmentation is typically performed by experts; how-
ever, this process may require up to 1h and produce incomplete seg-
mentations of subtle tracts that may be overlooked.

Recently, deep learning techniques have emerged as a compelling
alternative to conventional image segmentation algorithms demon-
strating comparable accuracy while consistently offering significant
time saving. Once trained, generally complete it in less than 1min.
Convolutional neural networks (CNNs) are currently the most widely
adopted tool for the segmentation of volumetric images. As compared
to other organs, coronary arteries are particularly challenging to seg-
ment automatically, mainly due to their highly variable complex anat-
omy that presents many branches and an irregular course. Several
CNN architectures for the automatic segmentation of coronary arter-
ies, mostly based on the U-Net model,16 have been proposed. The
nnU-Net17 and a 2.5D U-Net net were the models that yielded the best
results in terms of precision, recall, and Dice similarity coefficient
(DSC).18 To circumvent the large heterogeneity of medical data, due to
anatomical variability, different authors have proposed to use addi-
tional information in input, such as the centerline,19 the vesselness
image,20 or a rough segmentation,21 that allows to encode the position
of coronary arteries, to improve the performance of the models.

In the present work, we developed a fully automated pipeline for
the segmentation and characterization of coronary arteries in terms of
CAC and CorT, which fed on CCTA images outputs the reconstructed
vessel lumen and the analysis of CAC and CorT. The proposed
method exploits, to the best of our knowledge, the largest dataset that
has been used to train and test a CNN for the automatic reconstruction
of coronary arteries, including patients with CAD resulting from vari-
ous etiologies. Our pipeline is suitable for unbiased quantification and
analysis of calcium and tortuosity features in populations studies, as it
requires only medical images as input and no further interaction with
the operator.

II. RESULTS

In this section, we present the outcomes obtained through the
implemented pipeline, covering the following aspects: (i) evaluating
the CNN architecture’s performance on the test set; (ii) extracting and
validating features related to CorT and CAC; (iii) examining the rela-
tionship between CorT, CAC, and CAD risk factors; (iv) investigating
the relation between CorT, CAC, and their location along the coronary
centerline; and (v) exploring the interplay between CorT and CAC.

We emphasize that all statistical analyses pertaining to CorT and
CAC relied solely on manual segmentations of the coronary arteries.
Inference was run on the test stet cases to assess the CNN perfor-
mance. The automated pipeline for CorT and CAC features extraction
was then applied to the entire dataset, consisting of 281 manual anno-
tations, to ensure statistical relevance of the subsequent analysis.

A. Test set results

Once the cascaded-CNN was trained, inference was run on the
43 cases of the test set. Inference took�45 s to run on a 16GB GeForce
RTX3060 GPU and �4min to run on a 16 cores AMD Ryzen
3955WX CPU. A qualitative comparison vs the manual annotation of
both S1 and S2 predictions is shown for five representative cases of the
test set in Fig. 1: S2 segmentation resulted more accurate than S1 one
for all the subject in the test set. It is notable that in patient P1, who
presented a severe stenosis in the left circumflex artery, our model cor-
rectly segmented the stenotic region. To assess the impact of using a
cascaded model, the output of the solely multi-view 2.5D model
trained in S1 was compared to the output of the 3D cascaded model
trained in the S2. Each performance metric was computed both for the
first and second stage predictions, yielding an average DSCS1 equal to
0.791 [0.60; 0.88] and a DSCS2 equal to 0.895 [0.75; 0.92] (D¼þ13%);
a MSDS1 of 1.801 [0.52; 3.33] mm and a MSDS2 of 0.470 [0.16; 0.86]
mm (D¼�73%). The average precision was 0.8926 0.053 and
0.9356 0.044 (D¼þ5%), while recall was 0.8616 0.041 and
0.8916 0.061 (D¼þ3.5%) for S1 and S2, respectively.

B. Coronary tortuosity and calcium features extraction

Coronary centerlines, tortuosity features, and calcific plaque fea-
tures were successfully extracted for each patient using the automated
pipeline described in Sec. IID. The comprehensive analysis of CAC
and CorT was achieved in �5min per patient. Figure 2 illustrates the
results obtained from the morphological analysis.

The output of the CAC detection algorithm is illustrated in Fig. 3
empathizing with different colors the under-segmentation produced by
a simple thresholding algorithm with respect to our region growing-
based approach. The Pearson correlation coefficient between CAC
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volume computed from CSCT and CCTA yielded a value of r¼ 0.96
(p< 0.001). CAC volume was generally lower in CCTA than in CSCT.
From Bland–Altman analysis, the mean difference between scores (i.e.,
the bias) was�92.3mm3 (95% limit of agreement�359.3 to 182.8).

C. Relation between CAC and coronary artery disease
risk factors

CAC features were compared between groups of patients based
on the presence of CAD risk factors, in different anatomical segments

FIG. 1. Comparison of results obtained with the stage 1 (S1) model and the stage 2 (S2) cascaded model on five test cases. From left to right: manual annotation and reference
ground truth (in green), S1 prediction (in red), and S2 prediction. For the latter two, the Dice similarity coefficient (DSC) and mean surface distance (MSD) computed against
the ground truth are reported in the lower left corner. For P1, a zoom-in on a stenotic region of the circumflex artery is provided, displaying the ground truth with transparency.
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of the coronary artery. For each anatomical portion, the average vol-
ume score and PPV are summarized in Table I. Calcium VS and PPV
were significantly higher in old (p¼ 0.008, p¼ 0.021), hypertensive
(p¼ 0.015, p¼ 0.049), and diabetic (p¼ 0.015, p¼ 0.019) patients.
Old subjects exhibited a significant increase in calcium volume in the
proximal and medial regions, while hypertensive and diabetic patients
in the proximal region. Smoking patients presented a significant incre-
ment of calcium volume in the medial (p¼ 0.021) and distal regions
(p¼ 0.027). The extent of the detected calcific lesions is reported in
Table II. Old, smoking, and hypertensive patients exhibited plaques
with significantly larger extent in the proximal, medial, and distal por-
tion of the coronary vessels, respectively. The shortest and longest dis-
tance from the ostium of CAC is reported in Table III. Old patients
exhibited higher shortest distance (D¼þ37%, p< 0.001), whereas
smoking patients demonstrated a significantly higher longest distance
(D¼þ5%, p¼ 0.038). These findings suggest a tendency for plaques
to form in deeper regions of the coronary vessels among the examined
groups.

D. Relation between CorT and coronary artery disease
risk factors

CorT relation with CAD risk factors was then investigated. The
CorT of the proximal tract resulted significantly higher both in hyper-
tensive (p¼ 0.035) and obese (p¼ 0.024) patients (Table IV). The aver-
age tortuosity of the medial and distal tract was significantly higher in
nonsmoking subjects (p< 0.05). The maximum local tortuosity and
angle of tortuosity, defined as their 95th percentile to mitigate the impact
of outliers, did not show any relevant difference between patients with
or without any of the clinical condition considered. The incidence of
patients with TS� 1 (i.e., exhibiting CorT) was significantly lower (odd
ratio¼ 0.53, p¼ 0.012) in smoking patients, while no relevant difference
was assessed for the other conditions examined (Table V). Despite being
not statistically relevant, a higher incidence of CorT was observed in
patients with hypertension (odd ratio ¼1.59, p¼ 0.323) and patient
with BMI< 30 (odd ratio¼ 0.5, p¼ 0.169).

E. Calcium and tortuosity features along vessel
centerline

To explore the relationship between the positioning along the
vessel centerline of CAC and tortuous regions an ANOVA was
achieved comparing proximal, medial, and distal segments. The results
of the one-way ANOVA performed on the parameters computed for
calcific plaque and vessel tortuosity are summarized in Table VI and
Fig. 4. All the considered features showed a significant difference
(p< 0.001) among the anatomical portions defined. Calcium extent
was significantly (p< 0.001) lower in the distal region, while calcium
volume presented a significant (p< 0.001) decreasing trend, moving
from proximal to distal region. The shape index of plaques showed a
decreasing (p< 0.001) trend moving toward distal region, indicating
that irregular plaques tend to form in the proximal coronary arteries.
The average tortuosity of the proximal tract was found to be signifi-
cantly higher (p< 0.001) with respect to the medial and distal tract,
while the maximum local tortuosity increased significantly (p< 0.01)

FIG. 2. (a) Centerlines automatically extracted with the recursive approach described in Sec. II D. (b) Definition of proximal, medial, and distal segments of coronary arteries
based on normalized geodesic distances. (c) Local tortuosity map showing in the dark red region with high tortuosity (i.e., sharp change in direction of the vessel), where the
tortuosity angle is indicated.

FIG. 3. Example of coronary calcium detection: (a) CCTA of a patient presenting
visible calcific plaques (indicated by arrows) in the left coronary artery and (b) seg-
mentation of calcium before (yellow) and after the application of the region growing
algorithm.
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from proximal to distal region. The maximum tortuosity angle showed
a significant (p< 0.01) decrease in the medial tract.

F. Relationship between coronary calcium
and tortuosity

To determine whether any correlation subsist between coronary
calcium and tortuosity, the dataset was split based on four TS thresh-
olds (1–4) corresponding to progressively more severe coronary tortu-
osity (mild to severe tortuosity). For each couple of groups, the results
of the statistical comparison between the features of calcium plaques
are summarized in Table VII. The extent of the lesion was significantly

lower in patients with a TS at least >2 (p¼ 0.014–p¼ 0.007), while
the volume of the plaque was significantly lower in subject with any
grading of coronary tortuosity (p¼ 0.004–p< 0.001). Indicating with
D¼ calcium feature in patients with TS< threshold—calcium feature
in patients with TS � threshold, respectively, for each threshold value,
we observed that both Dext and Dvol increased as a higher TS threshold
value was considered.

III. DISCUSSION

In this study, we presented a fully automated pipeline for the
segmentation of coronary arteries from 3D CCTA and their

TABLE I. Volume of the calcific plaque in the proximal, medial, and distal portion of coronary arteries. PPV¼Percentage of (total) plaque volume, with respect to vessel volume.
Statistically relevant p-values (i.e., <0.05) are highlighted in bold font.

Condition Proximal Medial Distal Total VS PPV (%)

Volume score (mm3)
Age (�60) (n¼ 197) 19.20 [0.0; 108.1] 10.62 [0.0; 175.7] 1.33 [0.0; 57.0] 62.3 [0.0; 557.9] 1.81 [0.0; 14.2]
Age (<60) (n¼ 84) 11.86 [0.0; 101.6] 4.77 [0.0; 178.63] 0.38 [0.0; 7.98] 34.0 [0.0; 362.6] 1.16 [0.0; 12.8]
p-value 0.0124 0.0238 0.1871 0.0082 0.0207
Obesity (n¼ 142) 18.55 [0.0; 108.1] 10.99 [0.0; 175.7] 1.56 [0.0; 57.0] 62.2 [0.0; 557.9] 1.74 [0.0; 14.2]
No obesity (n¼ 139) 14.73 [0.0; 101.6] 7.26 [0.0; 178.63] 0.45 [0.0; 8.41] 44.9 [0.0; 403.0] 1.50 [0.0; 12.8]
p-value 0.2592 0.2580 0.4169 0.2958 0.5917
Smoking (n¼ 124) 17.49 [0.0; 108.1] 10.23 [0.0; 175.7] 1.20 [0.0; 27.5] 57.9 [0.0; 557.9] 1.71 [0.0; 14.2]
Nonsmoking (n¼ 157) 16.65 [0.0; 101.6] 7.87 [0.0; 178.63] 0.93 [0.0; 57.0] 50.9 [0.0; 462.2] 1.55 [0.0; 12.8]
p-value 0.8140 0.0205 0.0268 0.3305 0.3918
Hypertension (n¼ 183) 18.60 [0.0; 108.1] 9.60 [0.0; 175.71] 1.40 [0.0; 57.0] 59.2 [0.0; 557.9] 1.74 [0.0; 14.2]
No hypertension (n¼ 92) 13.86 [0.0; 105.9] 7.43 [0.0; 178.63] 0.36 [0.0; 9.82] 43.3 [0.0; 362.6] 1.39 [0.0; 12.8]
p-value 0.0151 0.1188 0.1642 0.0154 0.0488
Diabetes (n¼ 61) 20.62 [0.0; 86.36] 17.06 [0.0; 175.7] 2.09 [0.0; 27.53] 79.5 [0.0; 557.9] 2.26 [0.0; 14.2]
No diabetes (n¼ 220) 16.12 [0.0; 108.1] 6.87 [0.0; 178.63] 0.79 [0.0; 57.02] 47.5 [0.0; 402.9] 1.46 [0.0; 12.8]
p-value 0.0223 0.2525 0.3250 0.0151 0.0188

TABLE II. Extent of the calcific plaque in the proximal, medial, and distal portion of coronary arteries. Statistically relevant p-values (i.e., <0.05) are highlighted in bold font.

Condition Proximal Medial Distal

Lesion extent (mm)
Age (�60) (n¼ 197) 3.06 [0.0; 9.03] 3.21 [0.0; 12.58] 2.24 [0.0; 8.01]
Age (<60) (n¼ 84) 2.64 [0.0; 12.71] 2.93 [0.0; 10.27] 2.10 [0.0; 7.32]
p-value 0.0097 0.3615 0.9555
Obesity (n¼ 142) 3.04 [0.0; 12.71] 3.43 [0.0; 12.58] 2.46 [0.0; 13.26]
No obesity (n¼ 139) 2.77 [0.0; 8.02] 2.87 [0.0; 10.27] 1.72 [0.0; 5.67]
p-value 0.5488 0.1989 0.1656
Smoking (n¼ 124) 2.93 [0.0; 8.71] 3.38 [0.0; 10.77] 2.43 [0.0; 7.87]
Nonsmoking (n¼ 157) 2.93 [0.0; 12.71] 2.94 [0.0; 12.58] 2.03 [0.0; 13.24]
p-value 0.9405 0.0492 0.1051
Hypertension (n¼ 183) 3.09 [0.0; 12.71] 3.23 [0.0; 12.58] 2.47 [0.0; 13.24]
No hypertension (n¼ 92) 2.63 [0.0; 8.02] 2.92 [0.0; 10.43] 1.62 [0.0; 9.01]
p-value 0.1110 0.3796 0.0077
Diabetes (n¼ 61) 3.16 [0.0; 8.27] 3.45 [0.0; 12.58] 2.48 [0.0; 7.87]
No diabetes (n¼ 220) 2.87 [0.0; 12.71] 3.07 [0.0; 10.99] 2.11 [0.0; 13.24]
p-value 0.2172 0.6379 0.5128
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characterization in terms of tortuosity and coronary calcium. We
applied our pipeline to a cohort of 281 patients who underwent CCTA
due to symptoms associated with CAD progression and achieved an
analysis of CAC and CorT features. In general, the key innovative
aspects of our study lays in (i) the robustness of the method for the auto-
matic segmentation of coronary arteries, exploiting a large cohort of
both healthy and diseased cases; (ii) the achievement of an objective
method for the quantification of CorT from CCTA, accounting for

vessel course three-dimensionality; (iii) the CorT and CAC characteriza-
tion in different anatomical portion of the arteries and their the correla-
tion; and (iv) the CorT and CAC characterization in different patient
profiles.

Our approch exploits state-of-the-art deep learning techniques to
perform coronary segmentation. The adopted CNN architecture pro-
vides end-to-end segmentation of the vessels without requiring any
additional input other than the CCTA image and, thus, eliminating
the bias introduced by the operator. For the coronary arteries, we
obtained an average DSC, MSD, precision, and recall equal to 0.895,
0.470mm, 0.935, and 0.861, respectively. The accuracy obtained with
the yielded results is higher than that reported in previous works
focused on coronary artery segmentation: Gharleghi et al.18 reported
for their best model a DSC of 0.88, a precision of 0.95, and a recall of
0.82, while Gu et al.21 obtained a DSC of 0.862, a MSD of 0.61, and a
precision of 0.84. Only Pan et al.22 reported a higher mean DSC equal
to 0.969, which is—to the best of the authors knowledge—the best
result described in the literature; the success of their approach can be
attributed to the large dataset used for training (i.e., 474 CCTA) and to
the fact that only healthy patients were included in their study; thus,

TABLE III. Nearest and furthest location, measured from the ostium, where coronary
artery calcium formed in patients. Statistically relevant p-values (i.e., <0.05) are
highlighted in bold font.

Condition Shortest Longest

Distance from ostium (mm)
Age (�60) (n¼ 197) 17.5 [0.0; 41.1] 67.0 [31.7; 127]
Age (<60) (n¼ 84) 12.7 [0.0; 35.2] 66.5 [33.8; 135]
p-value <0.001 0.9583
Obesity (n¼ 142) 16.1 [0.0; 39.6] 45.9 [25.2; 72.9]
No obesity (n¼ 139) 16.3 [0.0; 41.1] 48.6 [29.6; 77.2]
p-value 0.8206 0.2957
Smoking (n¼ 124) 16.8 [0.0; 39.6] 68.6 [33.7; 127]
Nonsmoking (n¼ 157) 15.5 [0.0; 41.1] 65.3 [31.7; 135]
p-value 0.3064 0.0383
Hypertension (n¼ 183) 16.6 [0.0; 36.9] 68.5 [31.7; 135]
No hypertension (n¼ 92) 14.8 [0.0; 41.1] 62.7 [33.8; 114]
p-value 0.1175 0.4192
Diabetes (n¼ 61) 17.5 [0.0; 36.9] 72.5 [31.7; 120]
No diabetes (n¼ 220) 15.6 [0.0; 41.1] 64.9 [33.8; 135]
p-value 0.1678 0.2075

TABLE IV. Tortuosity of the proximal, medial, and distal tract of the coronary arteries, between patients presenting and non-presenting a specific condition. Statistically relevant
p-values (i.e., <0.05) are highlighted in bold font.

Condition Proximal Medial Distal

Tortuosity (-)
Age (�60) (n¼ 197) 1.24 [1.09; 1.69] 1.18 [1.06; 1.58] 1.20 [1.05; 1.79]
Age (<60) (n¼ 84) 1.23 [1.09; 1.43] 1.17 [1.07; 1.59] 1.18 [1.05; 1.66]
p-value 0.4159 0.3827 0.2612
Obesity (n¼ 142) 1.26 [1.09; 1.70] 1.16 [1.07; 1.58] 1.18 [1.05; 1.67]
No obesity (n¼ 139) 1.21 [1.09; 1.79] 1.19 [1.07; 1.48] 1.19 [1.07; 1.78]
p-value 0.0243 0.6659 0.1519
Smoking (n¼ 124) 1.23 [1.09; 1.69] 1.17 [1.07; 1.58] 1.18 [1.05; 1.66]
Nonsmoking (n¼ 157) 1.25 [1.10; 1.53] 1.19 [1.06; 1.59] 1.20 [1.07; 1.79]
p-value 0.8097 0.0148 0.0076
Hypertension (n¼ 183) 1.25 [1.09; 1.69] 1.19 [1.06; 1.60] 1.19 [1.05; 1.79]
No hypertension (n¼ 92) 1.21 [1.10; 1.54] 1.17 [1.08; 1.58] 1.18 [1.05; 1.75]
p-value 0.0353 0.1065 0.7113
Diabetes (n¼ 61) 1.23 [1.12; 1.48] 1.20 [1.07; 1.60] 1.16 [1.07; 1.79]
No diabetes (n¼ 220) 1.24 [1.09; 1.69] 1.18 [1.07; 1.60] 1.19 [1.05; 1.75]
p-value 0.8038 0.5221 0.3864

TABLE V. Tortuosity incidence. n indicates the number of patients with each comor-
bidity that exhibits CorT (meaning a TS� 1), or not. OR¼ odd ratio resulted from
Pearson’s v2 test. Statistically relevant p-values (i.e., <0.05) are highlighted in bold
font.

Condition CorT (n) Non-CorT (n) OR p-value

Age (�60) 114 (69%) 76 (71%) 0.88 0.685
Obesity 78 (52%) 62 (61%) 0.58 0.169
Smoking 60 (36%) 55 (52%) 0.53 0.012
Hypertension 112 (68%) 68 (59%) 1.59 0.323
Diabetes 32 (20%) 22 (21%) 0.93 0.876
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lesions due to plaque depot and stenosis, which introduce additional
variability in coronary morphology, were not considered and no test of
their model on patients with CAD is reported in their work.

Our methods perform coronary artery segmentation, compute the
vessel centerline, and automatically extract anatomical of interest that
are clinically relevant in the planning of percutaneous coronary inter-
ventions, such as CAC burden and location, and vessel tortuosity.23 The
analysis of such parameters generally requires specific commercial soft-
ware and is performed by expert radiologists, potentially introducing
inter-operator variability in the measures. Our framework does not
require any input from the operator and is thus objective and repeatable
in all its steps. Furthermore, by leveraging deep-learning techniques, our
approach significantly accelerates the quantification of these parameters
compared to the current standard evaluation routine achieved by expert
radiologists, using semi-automatic tools. Indeed, our pipeline excels in
efficiency, completing the automatic segmentation and quantification of

CAC and CorT within about 5min. In contrast, a comprehensive analy-
sis conducted by an expert may demand approximately 1h for comple-
tion, making out solution particularly suited for large population studies.
The excellent results obtained in terms of DSC, MSD, precision, and
recall indicates that such approach could guarantee robust and objective
assessment of geometric features of the coronary arteries that are of par-
amount importance for clinical evaluation such as relative the position
of calcification and stenosis along the vessel and tortuous regions.

The quantification of CorT features was based on a fully auto-
mated algorithm that exploits coronary centerlines information. To
the best of the authors knowledge, this is the first study to describe an
approach for CorT quantification from CCTA, accounting for the
three-dimensionality of the vessels. In clinical practice, CorT is gener-
ally measured from invasive coronary angiography (i.e., a 2D image),
introducing an error that, in general, leads to an underestimation of
CorT.24 By leveraging the accuracy guaranteed by the deep learning-

TABLE VI. Results of one-way ANOVA of the features computed in proximal, medial, and distal coronary arteries. Parameters values are reported as mean and [min; max].
Statistically relevant p-values (i.e., <0.05) are highlighted in bold font.

Parameter Proximal Medial Distal p-value

Calcium features
Lesion extent (mm) 2.93 [0.0; 12.71] 3.14 [0.0; 12.58] 2.20 [0.0; 13.24] <0.001
Volume score (mm3) 17.0 [0.0; 108.1] 8.87 [0.0; 178.6] 1.05 [0.0; 57.02] <0.001
Tortuosity features
Tract tortuosity 1.25 [1.09; 1.69] 1.19 [1.07; 1.60] 1.22 [1.05; 1.79] <0.001
Local tortuosity (95th) 1.16 [1.03; 1.55] 1.17 [1.03; 1.61] 1.21 [1.03; 1.97] <0.001
Angle of tortuosity (95th) (�) 79.6 [47.2; 118.3] 75.4 [38.4; 126.2] 80.2 [42.4; 136.6] 0.0037

FIG. 4. Bar plots showing calcium and vessel features in different zones of the coronary arteries. (i) First row (from left to right): model showing the three anatomical portions in
exam; extent of the calcific lesion; and volume of calcific plaque. (ii) Second row (from left to right): average tortuosity of the tract; 95th percentile of local tortuosity, and 95th
percentile of the angle of tortuosity. The “�” denotes the p-value of the U-test performed to compare each couple of data. �¼ 0.05, ��¼ 0.01, ���¼ 0.001, ���� < 0.001.
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based segmentation, our approach excels in extracting the vessel cen-
terline and identifying points that exhibit a sharp change in direction.
Given that CorT is solely contingent on the vessel’s morphology,
ensuring accurate segmentation is paramount, and our deep learning
approach excels in this task. Identifying CorT is beneficial for percuta-
neous intervention planning as moderate and severe CorT are known
to be the cause of unsuccessful intervention and recognition of marked
tortuosity before the procedure can avoid coronary vascular complica-
tions.23 We found a significantly higher tortuosity of the proximal
tracts in hypertensive, while medial and distal tracts tortuosity was
lower in smoking patients. Considering the overall TS, we observed
lower incidence of CorT in smoking and obese patients, and higher
incidence in hypertensive (Table V), despite the difference was not sta-
tistically relevant for obese and hypertensive subjects. Our findings
agree with what is reported in different studies,12–15 which suggest a
positive correlation between hypertension and CorT and found a nega-
tive correlation of CorT in smoking and obese patients. A main draw-
back of the present study, when performing statistical analysis, is the
relatively limited number of cases, compared to other clinical studies
in the literature, which exploited cohorts of >1000 subjects.12,15 With
respect to such datasets, for which partial information was available,
ours included CCTA for which manual expert annotation and com-
prehensive cardiologist analysis were both available. Still, it is worth
noting that our fully automated pipeline can be potentially used for
population studies on many more cases, thus overcoming the reliabil-
ity issue of using a limited cohort.

In our work, the quantification of CAC was based on the method
described by Pavitt et al.8 and exploits an attenuation threshold to
detect calcium. Our method depends on the segmentation of the coro-
nary vessels and the aorta. Wolterink et al.25 proposed a method for
CAC segmentation based on a CNN that does not require vessel seg-
mentations. However, the training of a CNN for CAC segmentation
requires accurate manual annotation of calcification and careful inter-
operator variability assessment. Moreover, by using coronary artery
segmentation, it is possible to extract other CAC-related indexes of

clinical interest, such as the PPV and the distance of the plaque from
the ostium, that cannot be estimated by using CAC segmentation only.
In our analysis, we characterized CAC based on the volume, the extent
of the lesion, and the distance from the ostium. A validation of our
method was conducted through both Pearson and Bland–Altman
analyses, comparing volume scores obtained using our approach from
CCTA with those measured from CSCT in a subset of patients. The
Pearson correlation analysis demonstrated excellent agreement
(r¼ 0.96) between the scores, and the results from the Bland–Altman
analysis were consistent with previous studies that compared calcium
scoring from CSCT and CCTA.25–28

Calcium volume and location are associated with adverse
events;6,29,30 furthermore, CAC represents one of the most unfavorable
factors limiting the success of percutaneous intervention, both due to
the volume of the calcification and its extent.23 Our results indicate
that age, hypertension, smoking, and diabetes are associated with
higher CAC volume scores and PPV. This is in line with what reported
in different works.31–34 Interestingly, the anatomical portion of the cor-
onary arteries in which we observed significant increments of CAC
was different for each factor, suggesting that specific conditions may
be associated with increase in calcification in specific regions. Such
results provide a new insight to further investigate in future studies. To
the best of our knowledge, this is the first work to study CAC relation
with different patient conditions, accounting for the position of cal-
cium along the vessel.

The presented analysis of CAC and CorT confirmed the relation-
ship between these markers and related comorbidities12–15,31–34 and a
possible negative correlation between the two, previously suggested by
other authors.12,14 We further provided a characterization of CAC and
CorT based on their location along the vessel with respect to coronary
ostium. Comparing CorT and CAC features in the proximal, medial,
and distal coronary arteries, we found that different portions exhibit
significantly different features. CAC volume and extent exhibit a
decreasing pattern moving toward distal regions, while CorT tends to
increase. These trends, which are coherent with what is commonly
observed in medical images, suggest a negative correlation between
CorT and CAC, as reported by Li et al.12,14 We further investigated the
relationship between CorT and CAC by splitting our cohort based on
four different TS thresholds. CAC volume and extent were signifi-
cantly lower for higher values of TS, and the relative difference
increased between groups as higher values of threshold were used, con-
firming previous results and a possible negative correlation between
CAC and CorT. Our findings are not in line with those of Li et al.,15

who found no correlation between Agatston score and CorT, and
Thelawi et al.,13 who reported a positive correlation. However, Thelawi
et al. used limited dataset consisting of 83 patients, while Li et al. com-
pared CorT with a different CAC score. This represents a novelty of
the present work, as no tool for such type of analysis has been
described in previous studies. Since it is known that the location of
adverse geometric features (e.g., tortuosity, stenosis induced by calcifi-
cations) may impact of the outcome of the therapy,23 our solution has
the potential to further elucidate the role of coronary geometric fea-
tures on patient outcome.

IV. LIMITATIONS

In this study, we employed a deep learning-based automated
pipeline to explore the correlation between coronary artery anatomical
features and cardiovascular risk indicators. Limited availability of

TABLE VII. Comparison of calcium features in patient with different grading of coro-
nary tortuosity. For each subgroup, the number of patients with a tortuosity score
(TS) below and above the threshold is reported as n¼absolute value (percentage of
the dataset). Calcium extent is expressed in mm, and calcium volume in mm3.
Statistically relevant p-values (i.e., <0.05) are highlighted in bold font.

TS < threshold TS � threshold p-value

Threshold¼ 1 n¼ 106 (39.1 %) n¼ 165 (60.9 %)
Calcium extent 3.04 [0.0; 8.74] 3.03 [0.0; 13.2] 0.9701
Calcium volume 10.8 [0.0; 155.2] 7.81 [0.0; 105.9] 0.0369
Threshold¼ 2 n¼ 163 (60.1%) n¼ 108 (39.9 %)
Calcium extent 3.34 [0.0; 13.2] 2.42 [0.0; 12.6] 0.0138
Calcium volume 10.9 [0.0; 178.6] 6.02 [0.0; 175.7] <0.001
Threshold¼ 3 n¼ 209 (77.1%) n¼ 62 (22.9 %)
Calcium extent 3.23 [0.0; 13.2] 1.91 [0.0; 12.6] 0.0117
Calcium volume 10.5 [0.0; 178.6] 3.99 [0.0; 75.3] <0.001
Threshold¼ 4 n¼ 239 (88.2%) n¼ 32 (11.8%)
Calcium extent 3.12 [0.0; 13.2] 1.65 [0.0; 12.6] 0.007
Calcium volume 9.82 [0.0; 178.6] 2.65 [0.0; 24.8] <0.001
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family history data for CAD, a recognized risk factor, restricted our
ability to investigate correlations with the extracted parameters. All
CCTA scans used for training were collected from the same center,
acquired on CAD patients with the same machine, posing a limitation:
training on images from diverse sources, ideally including scans from
healthy volunteers, would enhance the model’s generalizability.
Despite this limitation, our two-stage cascaded model demonstrated
successful training and promising results on our dataset, serving as a
proof-of-concept for the proposed architecture’s feasibility and gener-
alization capability. While our dataset is relatively large for deep learn-
ing in coronary artery segmentation, it remains smaller than those
used in population studies on CAC and CorT (exceeding 1000
patients). Because the test set was small, CorT and CAC analysis relied
on manual annotation to ensure statistical significance. Nevertheless,
the favorable outcomes in terms of DSC, MSD, precision, and recall
suggest that applying the complete pipeline to a larger test set would
yield comparable conclusions, given that CoT and CAC feature extrac-
tion is contingent solely on vessel geometry and image intensity.
Although limited in size compared to such studies, our method offers
potential for cohort expansion and analysis, moving toward more
comprehensive patient numbers.

V. CONCLUSION

In the present work, we have developed a novel tool for perform-
ing an objective and quantitative analysis of coronary artery anatomi-
cal features, such as tortuosity and calcifications, relevant in the
definition of the best therapy for a patient and for the planning of
interventions. Our cascaded CNN performed an accurate segmenta-
tion of the coronary arteries of all the test set patients, successfully seg-
menting stenotic regions. Our systematic analysis of CAC and CorT
confirmed some relations with clinical conditions that are reported in
the literature. Of note our method also provide an analysis of CAC
and CorT, accounting for their location along the vessel course, thus
providing a further insight in the characterization of coronary arteries
anatomy that revealed specific trends for CAC and CorT features. Our
tool is fully automated, quick, and reliable, and can be an innovative
solution to provide clinicians with useful information to aid the
decision-making process in the assessment of coronary arteries.

VI. METHODS
A. Dataset

In this study, 281 3D CCTA scans were retrospectively collected
from Centro Cardiologico Monzino (Milano, Italy). All the subjects
included underwent coronary CT due to chest pain, electrocardiogram
(ECG) abnormalities, or previous cardiovascular events. The baseline
characteristics of the patient cohort are summarized in Table VIII,
including pre-existing comorbidities associated with cardiovascular
risk and stenosis severity. The population consists of 68 females (24%)
and 213 males (76%), reflecting a realistic ratio of male to female prev-
alence of CAD [ref.]. Images were acquired with a GE Revolution CT
machine (GE Healthcare, Milwaukee, Wisconsin) with 100 kVp tube
voltage and 475 mAs tube current, with ECG-triggering and contrast
enhancement. For all the acquired images, dimension was
512� 512� 256; pixel spacing ranged from 0.365� 0.365 to
0.4� 0.4mm2, and slice thickness ranged from 0.4 to 0.65mm. The
present study was performed in accordance with recommendations of
the local Ethics Committee (R1771/22 CCM-1890), with written

informed consent from all subjects, in accordance with the Declaration
of Helsinki.

1. Manual annotation

Each CCTA scans was manually annotated using 3D Slicer35 by
two bioengineering experts, possessing 4 and 7 years of experience in
medical imaging analysis, respectively, under cardiology experts’
supervision. The segmentation was performed using a gold-standard
segmentation method, by applying a thresholding filter with a thresh-
old value chosen by the operator, to isolate the coronary arteries
lumen, followed by manual correction of the contour of the vessels
where over- and under-segmented.18 Each annotation included the
main coronary branches reported in Fig. 5, other branches were con-
sidered only whether their caliber was >1.5mm. Segmentation was
interrupted when the caliber of the vessel was <1.5mm, as branches
smaller than 1.5mm are not clinically relevant.36

B. Neural network training

The dataset was split into a training and a test sets: 238 (85%)
randomly chosen cases were used to train the CNN, while the 43
remaining cases (15%) were used for testing (demographics are avail-
able in the supplementary material). In the present work, we adopted a
two-stage cascaded approach (Fig. 6), based on the nnU-Net frame-
work, that combines a multi-view 2.5D network (i.e., a network trained
on 2D images used to reconstruct 3D volumes by exploiting the spatial
positioning of the 2D slices),37 capable of managing images with large
dimensions, and a 3D network that accounts for the connectivity
between the slices. In the first stage, each CCTA image was sliced along
the three orthogonal acquisition directions, namely, the sagittal, coro-
nal, and axial directions, resulting in three independent 2D datasets.
Three models were trained, then the resulting posterior probabilities

TABLE VIII. Study population baseline characteristics and coronary artery disease
risk factors.

Number of patients (n) 281

Male/female (n) 213/68 (76%/24%)
Age (years) 65.36 9.6
Height (cm) 169.26 9.6
Weight (kg) 77.16 14.5
BMI (kg/m2) 26.36 3.0
Mean aortic pressure (mmHg) 104.46 9.7
CAD risk factors
Smoking (n) 124 (44%)
Hypertension (n) 183 (65%)
Diabetic (n) 61 (22%)
Hypercholesterolemia (n) 188 (67%)

LDL (mmol/l) 4.186 0.40
HDL (mmol/l) 1.366 0.93

Stenosis grading
Mild (n) 118 (42%)
Moderate (n) 205 (73%)
Severe (n) 63 (23%)
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tensors were combined and converted to a binary segmentation. In the
second stage, a 3D model was trained using as input the original CCTA
image concatenated to the segmentation obtained in first stage. The
model was implemented in Pytorch, using MONAI framework utilities.

1. Stage 1 (S1)

In the first stage, a multi-view 2.5D model was implemented.
Three 2D models were trained using images sliced along orthogonal
directions (i.e., sagittal, coronal, and axial directions). The trained
models were based on the 2D-Unet architecture: the downsampling
path consisted of five 3� 3 convolutional layers, consisting in a convo-
lution, an instance normalization, and PreLU activation; the upsam-
pling path consisted of five upsampling layer concatenated to the
corresponding feature map of the downsampling path and followed by
a convolutional layer. To increase the variability of each of the three
datasets, a data augmentation routine was implemented. Image inten-
sity was scaled in the interval [�30, 800] HU and normalized to zero
mean, then Gaussian smoothing and affine transformation were
applied with random probability. Due to the large class imbalance

between coronary and background voxels, a weighted combination of
the Dice and Focal Loss (DFL) was used to train each model.

DFL y; ŷð Þ ¼ kF �a 1� ŷ ið Þcyi log ŷ i � 1� að Þŷci 1� yið Þlog 1� ŷ ið Þ� �
þ kD 1�

2
X

i
yiŷ iX

i
yi þ

X
i
ŷ i

2
4

3
5;

where yi is the probability of the ground truth and ŷ i is the posterior
probability of the i-th voxel to belong to the segmented class. To mit-
igate class imbalance a ¼ 0:6 and c ¼ 2 were used, as in the work
by Pan et al.22 The weights were set to kF ¼ 1:1; kD ¼ 0:4. The
training of each model was performed processing groups of 32 (i.e.,
batch size) slices separately, for 600 training epochs, on 2 20GB
NVIDIA A100 graphic processing units (GPUs). Once each model
was trained, the posterior probability tensors resulting from inference
on the input image were combined by taking the element-wise maxi-
mum of the foreground class and finally converted to a one-hot
binary label map, producing a rough preliminary segmentation of
the coronary arteries.

FIG. 5. Example of manual annotation on
CCTA, reporting the branches included
the segmentations. AMB¼ acute marginal
branch; DgB¼ diagonal branch;
LAD¼ anterior descending artery;
LCX¼ circumflex artery; LM¼ left main
trunk; MgB¼marginal branch;
PLB¼ posterolateral branch; and
RPDA¼ right posterior descending artery.

FIG. 6. General framework of our cascaded CNN. yax, ycor, and ysag denote the posterior probabilities produced by the models trained on axial, coronal, and sagittal images,
respectively. In stage 1, three 2D U-Nets receive as input the 2D CCTA slices from different directions. The combined prediction is concatenated to the original CCTA and used
to train, in stage 2, a multichannel 3D U-Net.
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2. Stage 2 (S2)

In the second stage, the rough segmentation obtained in S1 was
concatenated to the original volumetric image and used as input to
train a 3D model, based on the 3D U-Net architecture. The network
architecture was analogous to the 2D models implemented in S1.
Differently from such models, this network performs convolutions of
the processed tensors with 3D filters. Convolutional kernel size was set
to 5� 5� 5, and batch normalization was adopted. In addition to the
transformations described in data augmentation routine for S1, image
orientation was set to LPS for all the images, and random 64� 64� 6
image patches were cropped and passed to the model, as the entire vol-
umetric image could not fit into GPU memory. The 3D model was
trained with a batch-based approach, setting the batch size to 8. The
DFL was used as loss function, with weights kF ¼ 0:5; kD ¼ 1.

C. Performance evaluation

To assess the performance of the model, the DSC, the mean sur-
face distance (MSD), precision and recall were evaluated using the test
set data. These metrics are commonly used in segmentation problems
and are defined as follows:

DSC ¼ 2 � TP
2 � TP þ FP þ FN

;

where TP, FP, and FN are the number of true positive, false positive,
and false negative, respectively. DSC measure the overlap between the
segmentation and the ground truth reference,

MSD ¼ 1
nS þ nS0

XnS
i¼1

d pi; S
0� �þXnS0

i¼1

d p0i; S
� � !

;

where p and p0 denote the points of surface S and S0 respectively, and
d p; S0ð Þ ¼ minp02S0 kp� p0k. MSD evaluate, averagely, how close
points on the segmentation and the ground truth are, measuring the
accuracy at the boundary of the coronary arteries.

Precision ¼ TP
TP þ FP

;

Recall ¼ TP
TP þ FN

:

Precision and recall quantify the rate of relevant elements (i.e., voxel)
segmented, with respect to all the retrieved elements and all the rele-
vant elements, respectively.

D. Pipeline implementation

To achieve anatomical characterization of the coronary arteries, a
fully automated pipeline was implemented, embedding the cascaded-
CNN described. After the automatic segmentation of the coronary
arteries from CCTA, the following steps are sequentially performed: (i)
detection of vessel centerlines; (ii) analysis of coronary artery tortuos-
ity; (iii) detection of calcific lesion; and (iv) CAC quantification.

1. Extraction of vessel centerlines

To perform a comprehensive analysis of CorT and CAC, the cen-
terlines of the vessels were extracted. First, triangulated surface meshes
were reconstructed from the binary segmentation, using a marching

cubes algorithm. Centerlines were computed using the Vascular
Modeling Toolkit (VMTK) library. To extract the centerline of a vessel,
seeds and target points must be provided. For each coronary artery
tree, the seed point corresponding to the ostium was identified as the
closest point to the aorta [Fig. 7(a)], segmented automatically by our
previously trained model.38 Target points were identified using a recur-
sive thresholding procedure similar to the one described by Saitta
et al.39 Briefly, for each point in the vessel tree surface, the geodesic dis-
tance to the ostium (g) was computed and normalized between 0 and
1. Then, the surface points where g is higher than 1-d are selected
through thresholding. For each connected region in the thresholding
output, the point with highest g is selected as a centerline end point.
By gradually increasing d, more regions fall below the selected thresh-
old until all unique vessel tree end points are identified [Fig. 7(b)].
Once the centerline extraction was completed, based on the value of g,
three anatomical portions of the coronary arteries were defined: the
proximal zone (g 	 0.33), the medial zone (0.33 < g 	 0.66), and the
distal zone (g > 0.66).

2. Analysis of coronary artery tortuosity

After centerline extraction, an analysis of the CorT was achieved.
Tortuosity was defined as the ratio of actual path length (L0) to the
straight distance (L) between the ends of the path. The local tortuosity
(LT) was defined pointwise along the centerlines, considering reference
arcs of length 1 cm, centered in the point where tortuosity was being
computed [Fig. 8(a)]. Tortuosity angle (TA) was also evaluated point-
wise by computing the arccosine of the dot product of the vectors
defined by the straight lines that fitted the upstream (v̂Up) and down-
stream (v̂Dw) arc [Fig. 8(b)] in a least-square sense

TA ¼ cos�1 v̂Up � v̂Dw
� �

:

Finally, the tortuosity score was computed for each subject. TS was
defined as the number of branches that presented at least three bends
along their course with TA� 45�.

FIG. 7. Representation of the framework adopted for the automated extraction of
centerlines. (a) Maps of the implicit distance from the aorta. Seeds points (yellow
dots) are defined as the point on each coronary artery that minimize implicit dis-
tance. (b) Recursive detection of target points and extraction of centerlines.
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3. Analysis of calcific lesions

To automatically detect calcific lesions from CCTA, a patient-
specific attenuation threshold hHU for calcium was determined as hHU
¼ l AoHUð Þ þ 2:5r AoHUð Þ;8,25 where l AoHUð Þ and r AoHUð Þ indicate
the mean and the standard deviation of the attenuation range in the
aorta, respectively. CAC was identified by thresholding the original image
to hHU , within the coronary artery volume. Then, a region growing algo-
rithm was applied to each detected lesion, making the calcium plaques
expand in the neighboring pixels, if their attenuation is above the 98th
percentile of the attenuation range in the coronary arteries. To exclude
image artifacts, lesions of dimension below 1mm2 were removed.40,41

CAC was characterized in terms of volume, extent of the plaque
and distance from the coronary ostium. To compute the position of
each lesion along the vessel, CAC was projected onto the coronary cen-
terlines. The distance of each lesion from the coronary ostium was
defined as the minimum abscissa value of the centerline on which the
plaque was projected. The extent of the lesion was defined as the differ-
ence between the maximum and minimum abscissa value.

E. Statistical analysis

Statistical analyses were performed using the Python SciPy 1.9.1
statistics library. The Shapiro-Wilk test was performed to assess data
normality. Normally distributed data are reported as mean 6 standard
deviation; non-normally distributed data are reported as median [min;
max]. CorT and CAC features were compared in subgroups of patients,
defined based on the existence of the cardiovascular risk factors listed in
Table VIII. Specifically, the cohort was split based on old age (i.e., >60),
obesity (i.e., body mass index> 30), smoking habit, hypertension, and
diabetes (any type). Comparison of continuous variables between each
couple of groups was performed using the Mann–Whitney U test.
Categorical variables (i.e., the TS) were compared using Pearson’s v2

test. CorT and CAC features were then compared among the proximal,
medial, and distal portion of the coronary arteries, by performing a one-
way ANOVA. Finally, CAC features were compared in relation to CorT:
the dataset was split into subgroups based on a TS threshold that varied
between 1 (mild tortuosity) and 4 (severe tortuosity) and, for each sub-
group, the comparison between calcium features in each subgroup was

achieved with Mann–Whitney U test. For all the tests, a p value below
0.05 was considered statistically significant.

1. Validation of calcific lesion analysis

To validate the implemented CAC analysis, a subset of 13 patients
with both CSCT and CCTA data available was selected. Calcific lesions
were manually annotated by an expert on CSCT by identifying con-
nected pixels with intensity above 130 HU7 and the VS was computed.
The agreement between the two sets of scores was assessed through a
Pearson correlation analysis and a Bland–Altman analysis.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of (i) training and test
set baseline demographic characteristics, (ii) the CLAIM form42 filled
in, and (iii) the GDPR protocol for the approval of this study.
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FIG. 8. Coronary tortuosity analysis workflow. (a) Pointwise evaluation of local tortu-
osity, defined as arc length (L0)/minimum distance (L) ratio, using a reference arc of
length 1 cm. (b) Pointwise evaluation of the tortuosity angle, based on the best fit-
ting vectors of the halves of the reference arc upstream and downstream the point.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 016103 (2024); doi: 10.1063/5.0181281 8, 016103-12

VC Author(s) 2024

pubs.aip.org/aip/apb


REFERENCES
1World Health Organization, see https://www.who.int/health-topics/cardiovas-
cular-diseases/#tab=tab_1
2P. Libby and P. Theroux, “Pathophysiology of coronary artery disease,”
Circulation 111(25), 3481–3488 (2005).

3A. Coenen, M. M. Lubbers, A. Kurata, A. Kono, A. Dedic, R. G. Chelu et al.,
“Fractional flow reserve computed from noninvasive CT angiography data:
Diagnostic performance of an on-site clinician-operated computational fluid
dynamics algorithm,” Radiology 274(3), 674–683 (2015).

4J. Yeboah, R. L. McClelland, T. S. Polonsky, G. L. Burke, C. T. Sibley, D. O’Leary
et al., “Comparison of novel risk markers for improvement in cardiovascular risk
assessment in intermediate-risk individuals,” JAMA 308(8), 788–795 (2012).

5J. D. Mitchell, R. Paisley, P. Moon, E. Novak, and T. C. Villines, “Coronary
artery calcium and long-term risk of death, myocardial infarction, and stroke:
The Walter Reed cohort study,” JACC 11(12), 1799–1806 (2018).

6D. Han, A. Lin, K. Kuronuma, E. Tzolos, A. C. Kwan, E. Klein et al.,
“Association of plaque location and vessel geometry determined by coronary
computed tomographic angiography with future acute coronary syndrome-
causing culprit lesions,” JAMA Cardiol. 7(3), 309–319 (2022).

7A. S. Agatston, W. R. Janowitz, F. J. Hildner, N. R. Zusmer, M. Viamonte, and
R. Detrano, “Quantification of coronary artery calcium using ultrafast com-
puted tomography,” J. Am. Coll. Cardiol. 15(4), 827–832 (1990).

8C. W. Pavitt, K. Harron, A. C. Lindsay, R. Ray, S. Zielke, D. Gordon et al.,
“Deriving coronary artery calcium scores from CT coronary angiography: A
proposed algorithm for evaluating stable chest pain,” Int. J. Cardiovasc.
Imaging 30(6), 1135–1143 (2014).

9I. Mylonas, M. Alam, N. Amily, G. Small, L. Chen, Y. Yam et al., “Quantifying
coronary artery calcification from a contrast-enhanced cardiac computed
tomography angiography study,” Eur. Heart J. 15(2), 210–215 (2014).

10K. Alluri, P. H. Joshi, T. S. Henry, R. S. Blumenthal, K. Nasir, and M. J. Blaha,
“Scoring of coronary artery calcium scans: History, assumptions, current limita-
tions, and future directions,” Atherosclerosis 239(1), 109–117 (2015).

11A. R. van Rosendael, F. Y. Lin, X. Ma, I. J. van den Hoogen, U. Gianni, O. Al
Hussein et al., “Percent atheroma volume: Optimal variable to report whole-
heart atherosclerotic plaque burden with coronary CTA, the PARADIGM
study,” J. Cardiovasc. Comput. Tomogr. 14(5), 400–406 (2020).

12Y. Li, C. Shen, Y. Ji, Y. Feng, G. Ma, and N. Liu, “Clinical implication of coronary
tortuosity in patients with coronary artery disease,” PLoS One 6(8), e24232 (2011).

13M. El Tahlawi, A. Sakrana, A. Elmurr, M. Gouda, and M. Tharwat, “The relation
between coronary tortuosity and calcium score in patients with chronic stable angina
and normal coronaries by CT angiography,” Atherosclerosis 246, 334–337 (2016).

14Y. Li, Y. Feng, G. Ma, C. Shen, and N. Liu, “Coronary tortuosity is negatively corre-
lated with coronary atherosclerosis,” J. Int. Med. Res. 46(12), 5205–5209 (2018).

15M. Li, Z. W.Wang, L. J. Fang, S. Q. Cheng, X. Wang, and N. F. Liu, “Correlation anal-
ysis of coronary artery tortuosity and calcification score,” BMC Surg. 22(1), 66 (2022).

16€O. Cicek, A. Abdulkabdir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D
U-Net: Learning dense volumetric segmentation from sparse annotation,” in
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016)
(Springer, 2016), pp. 424–432.

17F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F. Jaeger, S. Kohl et al., “nnU-
Net: Self-adapting framework for U-Net-based medical image segmentation,”
Nat Methods 18, 203–211 (2021).

18R. Gharleghi, D. Adikari, K. Ellenberger, S. Y. Ooi, C. Ellis, C. M. Chen et al.,
“Automated segmentation of normal and diseased coronary arteries—The
ASOCA challenge,” Comput. Med. Imaging Graphics 97, 102049 (2022).

19W. Huang, L. Huang, Z. Lin, S. Huang, Y. Chi, J. Zhou et al., “Coronary artery
segmentation by deep learning neural networks on computed tomographic cor-
onary angiographic images,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
(IEEE, Piscataway, NJ, 2018), pp. 608–611.

20Y. C. Chen, Y. C. Lin, C. P. Wang, C. Y. Lee, W. J. Lee, T. D. Wang et al.,
“Coronary artery segmentation in cardiac CT angiography using 3D multi-
channel U-net,” arXiv:1907.12246 (2019).

21L. Gu and X. C. Cai, “Fusing 2D and 3D convolutional neural networks for the
segmentation of aorta and coronary arteries from CT images,” Artif. Intell.
Med. 121, 102189 (2021).

22L. S. Pan, C. W. Li, S. F. Su, S. Y. Tay, Q. V. Tran, and W. P. Chan, “Coronary
artery segmentation under class imbalance using a U-Net based architecture on
computed tomography angiography images,” Sci. Rep. 11(1), 14493 (2021).

23G. Tzimas, G. S. Gulsin, H. Takagi, N. Mileva, J. Sonck, O. Muller et al.,
“Coronary CT angiography to guide percutaneous coronary intervention,”
Radiol. Cardiothorac. Imaging 4(1), e210171 (2022).

24M. P. Opolski, “Cardiac computed tomography for planning revascularization
procedures,” J. Thoracic Img. 33(1), 35–54 (2018).

25J. M. Wolterink, T. Leiner, B. D. de Vos, R. W. van Hamersvelt, M. A. Viergever, and
I. I�sgum, “Automatic coronary artery calcium scoring in cardiac CT angiography
using paired convolutional neural networks,”Med. Image Anal. 34, 123–136 (2016).

26M. Temann, F. Vega-Higuera, B. Bischoff, J. Hausleiter, and G. Greiner,
“Automatic detection and quantification of coronary calcium on 3D CT angi-
ography data,” Comput. Sci.-Res. Develop. 26(1–2), 117–124 (2011).

27D. Eilot and R. Goldenberg, “Fully automatic model-based calcium segmenta-
tion and scoring in coronary CT angiography,” Int. J. Comput. Assisted Radiol.
Surg. 9(4), 595–608 (2014).

28W. Ahmed, M. A. de Graaf, A. Broersen, P. H. Kitslaar, E. Oost, J. Dijkstra
et al., “Automatic detection and quantification of the Agatston coronary artery
calcium score on contrast computed tomography angiography,” Int. J.
Cardiovasc. Imaging 31(1), 151–161 (2015).

29I. C. Thomas, B. Shiau, J. O. Denenberg, R. L. McClelland, P. Greenland, I. H.
De Boer et al., “Association of cardiovascular disease risk factors with coronary
artery calcium volume versus density,” Heart 104(2), 135–141 (2018).

30R. J. H. Miller, D. Han, A. Singh, K. Pieszko, P. J. Slomka, H. Gransar et al.,
“Relationship between ischaemia, coronary artery calcium scores, and major
adverse cardiovascular events,” Eur. Heart J. 23(11), 1423–1433 (2022).

31R. L. McClelland, H. Chung, R. Detrano, W. Post, and R. A. Kronmal, “Distribution
of coronary artery calcium by race, gender, and age: Results from the Multi-Ethnic
Study of Atherosclerosis (MESA),” Circulation 113(1), 30–37 (2006).

32N. Hirooka, T. Kadowaki, A. Sekikawa, H. Ueshima, J. Choo, K. Miura et al.,
“Influence of cigarette smoking on coronary artery and aortic calcium among
random samples from populations of middle-aged Japanese and Korean men,”
J. Epidemiol. Community Health 67(2), 119–124 (2013).

33J. L. Megnien, A. Simon, M. Lemariey, M. C. Plainfoss�e, and J. Levenson,
“Hypertension promotes coronary calcium deposit in asymptomatic men,”
Hypertension 27(4), 949–954 (1996).

34P. Raggi, L. J. Shaw, D. S. Berman, and T. Q. Callister, “Prognostic value of cor-
onary artery calcium screening in subjects with and without diabetes,” J. Am.
Coll. Cardiol. 43(9), 1663–1669 (2004).

35R. Kikinis, S. D. Pieper, and K. G. Vosburgh, “3D slicer: A platform for Subject-
Specific image analysis, visualization, and clinical support,” in Intraoperative
Imaging and Image-Guided Therapy, edited by F. A. Jolesz (Springer, New
York, NY, 2014), pp. 277–89.

36N. P. R. Sand, K. T. Veien, S. S. Nielsen, B. L. Nørgaard, P. Larsen, A. Johansen
et al., “Prospective comparison of FFR derived from coronary CT angiography
with SPECT perfusion imaging in stable coronary artery disease: The
ReASSESS study,” JACC 11(11), 1640–1650 (2018).

37A. Mortazi, R. Karim, K. Rhode, J. Burt, and U. Bagci, “CardiacNET: Segmentation
of left atrium and proximal pulmonary veins from MRI using multi-view CNN,” in
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017),
edited by M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, S.
Duchesne (Springer International Publishing, Cham, 2017), pp. 377–85.

38S. Saitta, F. Sturla, R. Gorla, O. A. Oliva, E. Votta, F. Bedogni et al., “A CT-
based deep learning system for automatic assessment of aortic root morphology
for TAVI planning,” Comput. Biol. Med. 163, 107147 (2023).

39S. Saitta, F. Sturla, A. Caimi, A. Riva, M. C. Palumbo, G. Nano et al., “A deep
learning-based and fully automated pipeline for thoracic aorta geometric analy-
sis and planning for endovascular repair from computed tomography,”
J. Digital Imaging 35(2), 226–239 (2022).

40A. A. Shabestari, “Coronary artery calcium score: A review,” Iran Red Crescent
Med. J. 15(12), e16616 (2013).
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