
17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.  

Copyright 2023 by University of Ottawa, Ottawa, Canada, Università di Milano, Toulouse School of Economics, CLC Space GmbH, 
EUMETSAT, Politecnico di Milano. Published by the Mohammed Bin Rashid Space Centre (MBRSC) on behalf of 

SpaceOps, with permission and released to the MBRSC to publish in all forms. 

 

SpaceOps-2023, ID # 220      Page 1 of 11 

SpaceOps-2023, ID # 220 

 

Online Learning for Spacecraft Memory Dump Optimization 
T. Cesaria,b,c*, J. Pergolid,e*, M. Maestrinie, P. Di Liziae 

 
a University of Ottawa, Ottawa, Canada 
b Università degli Studi di Milano, Milan, Italy 
c Toulouse School of Economics, Toulouse, France 
d CLC Space GmbH, Alsbach-Hähnlein, Germany 
e Politecnico di Milano, Milan, Italy 

* Corresponding Authors 

 

Abstract 

In this paper, we present a real-world application of online learning with expert advice to the field of Space 

Operations, testing our theory on real-life data coming from the Copernicus Sentinel-6 satellite.  

We show that in Spacecraft Memory Dump Optimization, a Follow-The-Leader algorithm leads to an increase in 

performance of over 60% when compared to traditional techniques. 

Keywords: Online Learning, Mission Planning, Spacecraft Operations. 

 

 

Acronyms/Abbreviations 

AOS Acquisition Of Signal 

CCSDS Consultive Committee for Space Data Systems  

EO Earth Observation 

ESA European Space Agency 

FTL Follow The Leader 

LEO Low Earth Orbit 

LEOP Launch and Early Orbit Phase 

LOS Loss Of Signal 

MCC Mission Control Center 

MCS Mission Control System 

MPS Mission Planning System 

MRC Multi Repeat Cycle 

MTL Mission Time Line 

NRT Near Real Time 

NTC Not Time Critical 

STC Short Time Critical 

SRC Single Repeat Cycle 

  

 

 

1. Introduction 

With the fast-growing number of satellites orbiting Earth, the Space Operations field has become a prominent and 

thriving sector. Consequently, the complexity of planning satellite operations is constantly increasing: Ground Stations 

must handle communication with multiple satellites simultaneously while frequently engaged in Launch and Early 

Orbit Phase (LEOP) activities; Satellite Operators need to perform routine tasks and promptly react to contingencies 

while checking the status of the incoming and disseminated satellite's products. These actions are costly, require time, 

and are remarkably prone to human errors. Despite this, Satellite Operators still carry out many of these duties by 

relying on their technical expertise rather than leveraging modern machine learning tools. 

On the other hand, computers, hardware, and flight software are becoming more sophisticated with each passing 

day. At the same time, machine learning is blooming, and optimal algorithms are constantly being designed for a 

variety of heterogeneous problems spanning from foundational [1, 2], optimization [3, 4], cooperation [5, 6, 7], or even 

economics [8, 9, 10, 11]. Exploiting this growing technology means enhancing the reliability and efficiency of space 

operations while simultaneously avoiding human error as well as decreasing the workload on Engineers and Operators.  
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From an operational point of view, this entails transferring Ground Segment capabilities to the Space Segment. As 

outlined by [12], onboard autonomy implies: 

 

1. Intelligent sensing: the capability to infer the system's state from environmental sensor data 

2. Mission Planning and execution: the process of decomposing high-level goals into tasks that satisfy temporal 

and resource constraints and dispatching these tasks while monitoring and being able to react to a contingency 

3. Fault management: the ability to deal with anomalies that occurred inside the system 

4. Distributed decision making: effective cooperation among independent autonomous spacecraft to achieve 

common goals 

 

The focal point of our paper is to identify a solution to have autonomous mission planning software onboard that 

can make decisions, reacting to the external environment, and dealing with anomalies while keeping operability from 

ground. Mission planning aims to allocate several tasks considering high-level goals, constraints, and resources. In 

recent years, researchers started studying this topic from different angles: using fuzzy neural networks to respond to 

uncertainty and proposing rescheduling [13], exploiting symmetric neural networks to improve heuristic search [14], 

using tabular search algorithms [15]. All these methods fall into the category of Static Scheduling because of the time 

they require to gather all the tasks. To tackle this time issue, Dynamic Scheduling builds a mathematical model 

considering five basic objects: tasks, resources, available opportunities, constraints, and objectives. In this framework, 

scientists have been using novel heuristic algorithms to get close-to-optimal results [16]; reinforcement learning based 

on neural network and transfer learning to solve decentralized Markov decision processes [17]; casting the problem as 

a stochastic dynamic Knapsack problem, and using deep reinforcement learning techniques to address it [18]. A 

downside of these approaches is that they require a large training dataset to output a robust decision-maker. Moreover, 

they often need frequent maintenance activities to be kept in line with the dynamic operational environment of a 

satellite.  

Other proposed solutions consist of hybrid procedures, mixing autonomous onboard capabilities and ground 

operations. A concrete example of these kinds of systems is the FireBird mission whose scheduler exploits very simple 

algorithms maintaining operability from ground [19]; another one is The MER's scheduler that uses the concept of 

‘onboard execution of goal-oriented mission operations’ in addition to minor support from a ground process [20].  

For an Earth Observation (EO) Satellite, all the spacecraft activities are scheduled by the Mission-Planning 

Engineer weekly. Then, the tasks are uploaded to the satellite as commands during ground visibility. To improve 

satellite automation in modern spacecraft, the concept of position-based scheduling is exploited [21]. Hence satellites 

can accept three types of commands: 

 

 Multi Repeat Cycle (MRC) commands, which are executed at the same orbit positions over the cycles 

 Single Repeat Cycle (SRC) commands, which are executed at a specific orbit position for only one cycle 

 Mission Time Line (MTL) commands, which fire at a specific time 

 

In this paper, we present an algorithm capable of deciding when the most suitable time is to schedule the specific 

request to dump data from the onboard memory of a satellite (during visibility) over a ground station while keeping 

the system as simple as possible and with no help from the ground. We do this by casting our online decision-making 

problem into a prediction with expert advice setting [22, Section 2] for which we implement a Follow-The-Leader 

strategy [24] targeting MRC commands. 

 

The paper is organized as follows. In Sec. 2,we give a high-level presentation of the specifics of the problem and 

provide a formal mathematical model for it. In Sec. 3, we introduce the Follow-The-Leader (FTL) strategy and discuss 

the theoretical motivations of this choice. In Sec. 4, we present the results of our experiments on real-life data, showing 

that implementing a simple FTL algorithm increases the performances of the satellites by more than 60%. 
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2. The problem of optimizing Acquisition and Loss of Signal offsets for spacecraft memory dump 

EO Satellites are designed to perform remote sensing. Most of them operate at Low Earth Orbit (LEO) with a 

period of approximately 120 minutes. Depending on the swath of the onboard primary mission instrument, which is 

the device's areas imaged on the surface, the satellite will complete a full Earth's coverage after a certain number of 

orbits. This means the spacecraft completed a cycle. Each separate orbit of a cycle is referred to as Relative Orbit and 

is repeated through different cycles. Motivation-wise, EO satellites play a fundamental role in weather forecast and 

natural disaster response scenarios, to name a couple. Spacecraft Operations Centres oversee distributing information 

to the users by commanding the satellites to perform activities over specific portions of the globe. This is done through 

the Mission Control Centre (MCC), which can receive telemetry and sending commands via the Mission Control 

System (MCS) software. Customers define the requirements and, or constraints that drive the operations performed 

during the lifetime of a mission. Data timeliness is a crucial parameter for the users' community: it is defined as the 

difference between the beginning of the sensing time of an instrument and the reception time of the same data on 

ground. 

Depending on the quality level of the products, data timeliness is categorized with different labels. For Earth 

Observation satellites we can divide the delivered data into three main macro-categories: 

 

 Near Real Time (NRT), whose timeliness is lower than, or equal to the orbit period 

 Short Time Critical (STC), whose timeliness can be hours 

 Non Time Critical (NTC), whose timeliness can be days even weeks 

 

In this work, we focus on NRT data. To respect its requirements, NRT data must be dumped at every orbit without 

losing telemetry frames. Failing to do so results in critical data corruption, requiring another dump on the following 

orbit, therefore exceeding the timeliness. To protect against data corruption, a Mission Planning Engineer uploads to 

the onboard computer software two commands sequences for each orbit: start and stop the memory dump during 

visibility time. The timing of the two sequences relies on Flight Dynamic prediction of the passes over an antenna that 

defines the predicted Acquisition of Signal (AOS) and Loss of Signal (LOS). There are three notable categories for 

these pairs of events: AOS0 (resp., LOS0) is when the event occurs at the horizon, with an elevation of 0 degrees; 

AOSM (resp., LOSM) denotes the event taking into account the masking of other objects, such as mountains, trees, or 

other antennas, therefore happening after AOS0 (resp., before LOS0); AOS5 (resp., LOS5) is when the event takes 

place 5 degrees above the horizon, therefore it can happen before or after the masking event, depending on the specific 

conditions. 

In Spacecraft operations, the start of the dump is always shifted by a fixed amount of time, or offset, with respect 

to the latest event between AOS5 and AOSM. The same happens for the end of the dump which is anticipated with 

Figure 1: Sentinel-6 satellite. Copernicus program 
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respect to the earliest between LOS5 and LOSM. This is done to guarantee the desired level of robustness against 

failures as in Figure 2.  

 

 
Figure 2: Pass' events timeline: AOS (resp., LOS) represents the highest events between AOS5 and AOSM 

(resp., LOS5 and LOSM); At and Lt represent the start and the stop of the dump which could be (and usually are) 

asymmetric with respect to the overall visibility. 

 

These offsets are typically set manually and can be changed for each orbit or cycle. Usually, they are initialized 

with default values that consider the size of the dump and possible errors in the orbit determination and are then kept 

fixed, but during the early phase of a mission, things can diverge from the preparation phase, and offsets often need to 

be updated. In case of issues on the ground side (late acquisition and, or early loss of signal), data will be corrupted 

either because the satellite started dumping before locking over the antenna's signal or because the onboard computer 

was still downloading data while suddenly connection was cut off. The only way to prevent loss of data is to modify 

the offsets ad-hoc for each pass. This operation is not currently carried on online automatically. Therefore, to recover 

after an issue of this type, engineers need to manually send a request through the MCS at the next visibility opportunity. 

Changing these values to avoid failure is an error-prone task that puts unneeded pressure on engineers. There is no 

benefit in making these predictions manually. On the contrary, the nature of this problem makes it a perfect candidate 

for installing machine learning algorithms on onboard computers so that they can automatically learn from experience 

and predict online how to optimally set these offsets in order to optimize the data exchange with ground stations. 

In this paper, we propose an algorithm that selects the best AOL/LOS offsets at each cycle for every orbit. 

Moreover, we show that implementing this approach would not only avoid the need for operators to intervene 

manually, but it would save a vastly larger amount of the passes when compared to the currently employed ad-hoc 

techniques. 

 

 

2.1 Formal Mathematical Setting 

In this section we give a brief formal introduction to the online machine learning protocol that we will use to model 

our offset optimization problem. 

We cast our repeated interactions with the environment in the prediction with expert advice framework. 

In this formulation, each problem instance is characterized by: 

 

1. A finite set of nonnegative times  𝓞𝑨𝑶𝑺 – the offsets from the times of Acquisition of Signal 

2. A finite set of nonnegative times  𝓞𝐿𝑶𝑺 – the offsets from the times of Loss of Signal 

3. A family (𝑝𝑎,𝑙)𝑎 ∈ 𝒪𝐴𝑂𝑆, 𝑙 ∈ 𝒪𝐿𝑂𝑆
of numbers in [0,1] – the probabilities of a successful dump when some 

AOS and LOS offsets are selected 

 

Only the action set 𝓞𝑨𝑶𝑺 × 𝓞𝑳𝑶𝑺 is known to the learner and the best 𝑝𝑎,𝑙 must be learned through data-collection. 

The online protocol proceeds as in Online Protocol 1 
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Online Protocol 1 

For ∀ 𝒕 = 𝟏, 𝟐, … do 

The learner selects a pair of offsets 

The environment draws samples 𝑩𝒕(𝒂, 𝒍) ∈ {𝟎, 𝟏} according to Bernoulli distributions with biases 𝒑𝒂,𝒍, 

independently of each other and the history so far, for each pair of offsets (𝒂, 𝒍) ∈ 𝓞𝑨𝑶𝑺 × 𝓞𝑳𝑶𝑺 

The learner gains the reward 𝑩𝒕(𝑨𝒕, 𝑳𝒕) ∈ {𝟎, 𝟏} 

The learner observes as feedback the samples 𝑩𝒕(𝒂, 𝒍), ∀ (𝒂, 𝒍) ∈  𝓞𝑨𝑶𝑺 × 𝓞𝑳𝑶𝑺 

End for 

Online Protocol 1 

 

The objective of the learner is to collect as much reward as possible in any given time horizon T. 

More precisely, denoting by α the algorithm that generates the sequence of actions (𝐴1, 𝐿1), … , (𝐴𝑇 , 𝐿𝑇), the goal 

is to minimize the regret 

𝑅𝑇(α)  ≔ max
(𝑎,𝑙)∈ 𝒪𝐴𝑂𝑆×𝒪𝐿𝑂𝑆

𝔼 [∑ 𝐵𝑡(𝑎, 𝑙)

𝑇

𝑡=1

− ∑ 𝐵𝑡(𝐴𝑡, 𝐿𝑡)

𝑇

𝑡=1

] 

= 𝑇 max
(𝑎,𝑙)∈ 𝒪𝐴𝑂𝑆×𝒪𝐿𝑂𝑆

𝑝𝑎,𝑙 − 𝔼 [∑ 𝐵𝑡(𝐴𝑡, 𝐿𝑡)

𝑇

𝑡=1

] 

 
In words, we want the total reward accumulated by the learner to be as close as possible to that of an agent with 

full knowledge of the family of probabilities (𝑝𝑎,𝑙)𝑎 ∈ 𝒪𝐴𝑂𝑆, 𝑙 ∈ 𝒪𝐿𝑂𝑆
 that operates optimally by always choosing an action 

(𝑎⋆, 𝑙⋆) that maximizes its expected reward 𝑝𝑎⋆,𝑙⋆. 

 

3. Follow the Leader  

In this section, we present the Follow the Leader paradigm Algorithm 1.Our choice of applying this strategy to the 

offset-optimization problem was initially motivated by compelling theoretical considerations (see Sec. 3.1).We then 

confirmed these theoretical findings empirically, showing that an implementation of a Follow the Leader algorithm 

does lead to dramatic performance improvements when applied to real-life scenarios (see Sec. 4). 

 

Algorithm 1 

Input: action set 𝓞𝑨𝑶𝑺 × 𝓞𝑳𝑶𝑺, tie-breaking rule τ 

For ∀ 𝒕 = 𝟏, 𝟐, … do 

Select action 

(𝑨𝒕, 𝑳𝒕) ∶= 𝐚𝐫𝐠𝐦𝐚𝐱
(𝒂,𝒍)∈ 𝓞𝑨𝑶𝑺×𝓞𝑳𝑶𝑺

∑ 𝑩𝒔(𝒂, 𝒍)

𝒕−𝟏

𝒔=𝟏

 

breaking ties according to τ 

(With the convention that ∑ 𝑩𝒔(𝒂, 𝒍)𝟎
𝒔=𝟏 ∶= 𝟎, for all (𝒂, 𝒍) ∈  𝓞𝑨𝑶𝑺 × 𝓞𝑳𝑶𝑺, on time step 𝒕 = 𝟏) 

The learner observes as feedback the samples 𝑩𝒕(𝒂, 𝒍),  for all (𝒂, 𝒍) ∈  𝓞𝑨𝑶𝑺 × 𝓞𝑳𝑶𝑺 

End for 

Algorithm 1 

 

A Follow the Leader strategy maintains, during time steps t, an integer ∑ 𝐵𝑠(𝑎, 𝑙)𝑡−1
𝑠=1  for each action (𝑎, 𝑙), 

representing how well the pair of offsets (𝑎, 𝑙) performed so far. It then simply selects an action with the best past 

performance, breaking ties according to the rule τ that is passed to the algorithm as an input. We highlight the role 

of the tie-breaking rule τ for two main reasons that are unfortunately often neglected. Firstly, from a theoretical 

standpoint, ties must be broken in a measurable way.* Secondly, depending on the application, some types of tie-

                                                           
* Although we will not insist excessively on the mathematical formalism, it is important to know that unexpected 

pathologies may occur if measurability is not guaranteed. In fact, the regret might not even be well-defined without it! 

For more on this topic, see, e.g., [23, Section 2.4]. 
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breaking rules are typically preferred to others. For example, in theoretical results, ties are typically broken 

uniformly at random (for mathematical convenience) but in practice, this is often unacceptable (because no 

practitioner would change a strategy that is currently working if no changes in the system are detected). We will 

elaborate more on this key point in Sec. 4. 

 

3.1 Theoretical motivation 

In this section, we give a concise summary of the theoretical results that motivated our choice of adopting a 

Follow the Leader strategy for the offset optimization problem. 

A recent paper by [24, Corollary 4] shows that such a policy is optimal in the following strong sense. 

 

Theorem 1. For any time horizon T and any other online learning algorithm α, the FTL algorithm with ties 

broken uniformly at random satisfies: 

 

sup
𝑝

𝑅𝑇 (FTL) ≤ sup
𝑝

𝑅𝑇 (α) 

 

where the supremum is over all possible choices of probabilities 𝑝𝑎,𝑙 ∈ [0,1], for (𝑎, 𝑙) ∈  𝒪𝐴𝑂𝑆 × 𝒪𝐿𝑂𝑆. 

 

The previous result states that no algorithm can achieve better performances than FTL in general. [24, Corollary 4] 

goes even further, showing that in addition to the regret, the same optimality holds for expected redundancy and excess 

risk. 

Quantitatively, it is immediate to show that FTL enjoys a finite regret, even when the time horizon T approaches 

infinity, assuming that there is at least an action (𝑎, 𝑙) with  𝑝𝑎,𝑙 = 1. Indeed, in this case, for any T, 

 

𝑅𝑇(𝐹𝑇𝐿) ≤ 1 + |{(𝑎, 𝑙) ∈ 𝒪𝐴𝑂𝑆 × 𝒪𝐿𝑂𝑆 ∶ 𝑝𝑎,𝑙 ∈ (0,1)}| 
 

The expression on the right-hand side counts the total number of mistakes that FTL could make: on round 1, it 

could accidentally select an action (𝑎, 𝑙) with expected reward zero, i.e., a pair of offsets for which it is impossible to 

dump successfully. All these ‘bad’ actions will be automatically excluded in all future rounds by definition of FTL. 

Then, the only way the algorithm could pay some regret on a round 𝑡 ≥  2 is if it selected an arm (𝐴𝑡 , 𝐿𝑡) with 

expected reward 𝑝𝐴𝑡,𝐿𝑡
< 1 which happened to have given reward 1 in all previous rounds but returned 0 on the current 

one. Again, by definition of FTL, the cost of such an action could only ever be paid once and by the nature of the 

problem, the probability of this happening decreases exponentially with time. 

These considerations give a strong theoretical foundation to the credence that FTL strategies outperform all other 

algorithms designed for this problem. In the following section, we will show on real data that this is indeed the case. 

 

4. Implementation and Experimental Results 
The algorithm has been evaluated by comparing the results of a schedule produced with the autonomous choice 

of the offsets against a real operating schedule and the real telemetry data gathered from satellites. 

 

4.1 System Configuration 

The Mission Planning (MP) software is a Commercial-Off-The-Shelf (COTS) written in C/C++ and it produces 

the schedule according to the schedule format from CSSDS standards [25]. The software for autonomous selection of 

dump sequences has been written with Python v3.7. We chose Python for the numerous support packages and 

modules which allow every user to personalize the tool with their own widgets, depending on their unique needs. It is 

also simpler than the commonly used C++ and Java, and its lower code complexity makes it easy for beginners to 

approach it. Simulations have been performed on a Windows 10 Pro x64 machine, processor i5-8250U 1.60 GHz, 

8.00 GHz of RAM.  

The real telemetry data is provided by using SCOS-2000, a generic MCS software developed by the European 

Space Agency (ESA). It provides the means for satellite operators to monitor and control one or more satellites. The 

MCS is connected to the Antenna that the satellite is downloading over, and as soon as the spacecraft and antenna 

signals get on lock, live telemetry is received and SCOS displays the first timestamp of the first telemetry frame 

received, doing the same when the pass is over and the last frame's timestamp is displayed. These two pieces of 
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information are then saved in a csv file together with the relative orbit number and the cycle and passed to MP 

software. This task has been performed by Spacecraft Controllers who were recording the time of the first and last 

TM frame ---but not regularly, leading to a partially filled set of data that required some pre-processing. All the test 

data set: telemetry, flight dynamic events, and schedule, are kind courtesy of EUMETSAT. These data recordings 

begin at cycle 6 of the mission because in the first cycles the satellite was not on the reference orbit, thus revolutions 

were not cyclic.  

Regarding the flight dynamic data, these are generated by a COTS software that takes telemetry data as input and 

generates a file, according to CCSDS standards [26], which contains the propagation of the orbit of the satellite and 

its events (e.g. when the spacecraft is flying over a certain place at a certain time it save it as an event). The file is 

then passed to the Mission Planning software as well. After receiving all these files, the Mission Planning engineer 

can generate a schedule which is an xml file that is then sent back to MCS to generate the commands. 

 

4.2 Scenario Configuration 

The satellite considered for our tests is Copernicus Sentinel-6 and belongs to the European Earth Monitoring 

program. It works in an LEO orbit with an altitude of 1336 km, inclination i of 66 deg, and 127 orbits per cycle [27]. 

Each cycle lasts about 9.9 days. The average data dump is of 14 minutes. A default pair of values of offsets for both 

AOS and LOS is evaluated according to the memory dump size; in this case, we started with 𝐴1 = 30𝑠 and 𝐿1 = 10𝑠. 

 

4.2.1 Tie-breaking rule 

We break ties among leading AOS/LOS offsets by optimizing for both robustness and maximal usage of Station 

visibility. To do so, we first compute the smallest possible AOS and LOS offsets that could guarantee a successful 

dump given the historic data. Instead of selecting these offsets directly —this could be prone to failures in early 

rounds— we then compute a safe pair of offsets, that would guarantee a successful dump that starts and ends at a 

maximal distance from the smallest possible AOS and LOS offsets computed above. 

 

4.3 Baselines 

The FTL algorithm has been compared against data coming from real telemetry: an initial schedule has been 

generated with offsets set as per an operational scenario, then the schedule has been uploaded to the satellite. All the 

issues that occurred during the mission have been recorded together with the start and stop time of the real telemetry. 

This information has been compared against our FTL software. 

 

4.4 Performance 

The algorithm was run for 6 cycles of 127 orbits each. During the first 6 life cycles of the baseline mission, a total 

of 762 passes occurred, and 67 of them contained corrupted data due to late/early AOS/LOS. When this happens, 

passes need to be re-dumped the next orbit, losing timeliness. With our FTL algorithm, we were able to save more 

than 62% of the corrupted passes, leading to a dramatic improvement in timeliness. This was done without the need 

for any manual intervention. The few passes that were still lost occurred at the very early stages of the process, 

where the choices of any decision-maker are doomed by the variance. For a pictorial example of the behaviour of 

FTL, see Figure 3: 
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Figure 3: The LOS offset for orbit 125, initialized as 10s, is updated to 13s after time step 1, and again to 16s 

after time step 4. Overall, only 1 pass was lost after the initialization step. During cycle 3 no data were recorded, 

hence the algorithm did not run. As a reference, all 5 recorded passes 

 

During RON 125, we received TM with gaps due to a GS masking issue. With the traditional method, after 

experiencing the first gap a series of investigations were starting to establish the root cause, but by the time we had to 

start the weekly scheduling process for the following cycle, they were not completed yet leading to another corrupted 

pass. Thus, this loop where we were chasing the problem rather than solving it was starting. We spent few weeks in 

keeping on updating these offsets values to avoid data loss. The FTL algorithm, as shown in Figure 3, would have 

allowed us to automatically update the offsets without manual intervention giving the engineers the required time to 

investigate the problem without the pressure of thinking about the best pair of values to apply at AOS/LOS. The same 

issue happened also during RON 101, as shown in Figure 4: 

 
Figure 4: We initialized the LOS offset of RON to 10s, but immediately after the first cycle we experienced 

issues with the antenna forcing the algorithm to set the value to 64s. 

 

What happened during the orbit number 101, highlighted also the limit of the method: the LOS offset was initially 

10s, after the first cycle the algorithm set to 64s and kept following this value; in reality the offset could have also been 

60s, but the algorithm stuck with the ‘leader’. 
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Monitoring the actual AOS and LOS is also useful in terms of anomaly detection: a value constantly changing 

could hide a potential issue even before exceeding the threshold. Figure 5 explains how FTL method would fit together 

with the already existing workflow: 

 
Figure 5: The data coming from the MCS and the offset values already configures in the MPS, are ingested by 

the algorithm after each orbit cycle. If the real TM values are below the one in MPS schedule, nothing will change; 

otherwise, the schedule will be updated with the new offsets. 

 

Moreover, the algorithm would not change the value of those offset whose real telemetry is below the value set in 

the MPS configuration, leaving unchanged what is working nominally. In this way, we limit also the impact on the 

S/C on board software: using the position-based scheduling service, updating the command sequence to start/stop the 

dump requires every time a deletion request to remove the old command and an addition request for the new one, 

overwhelming the FCT with a lot of unnecessary sequence to check. Thus, is not convenient to insert deletion/ addition 

requests even if the system gets the full dump for specific orbits. From an operational perspective it’s easier to keep 

track of only what is changing. 

 

4.5 Future Works 

Besides evaluating the mission performance, we also bear in mind that the software performance itself is very 

important: Python is an interpreted language, which is necessarily slower than a compiled one, this means that we can 

also speed the computation time up by using language like C++, Java or even the newest one Rust. Nevertheless, we 

are also already working on an upgrade of the algorithm that can reduce the calculation time of two order of magnitude. 

Another small limitation of FTL is that is not capable of reducing the values of the offset once it sets the leaders, i.e., 

it won’t relax the conditions over a GS for a specific RON if the situation recovers. This means that if the operators 

want to restore the offsets values before an anomaly they must intervene manually. The modified FTL is smart enough 

to evaluate each single situation orbit by orbit, in case the operator wants to exploit a bigger visibility window over the 

stations. Therefore, the modified FTL is able of adapting through the different orbit cycles. 

 

5. Conclusions 
We presented a lightweight algorithm capable of updating the spacecraft command sequences online, 

autonomously, and considerably improving user requirements for data timeliness. More precisely, we manage to 

reach two competing goalposts simultaneously. First, simplicity: the Python implementation we provide consists of a 

relatively minute number of instructions, and intrinsically simple routines are quick to explain to engineers used to 
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different system practices while requiring effectively no maintenance. Second, high performances: our algorithm 

vastly outperforms the existing ad hoc methods, as our testing showed that switching to our FTL routine would save 

an enormous amount of otherwise lost data. 
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