2201.11631v1 [cs.SE] 26 Jan 2022

arxXiv

Towards Greener Applications: Enabling

Sustainable Cloud Native Applications Design
preprint - submitted to CAiSE 2022 @)

Monica Vitalil [0000—0002—5258—1893]

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
monica.vitali@polimi.it

Abstract. Data centers energy demand is increasing. While a great deal
of effort has been made to reduce the amount of CO2 generated by large
cloud providers, too little has been done from the application perspec-
tive. We claim that application developers can impact the environmental
footprint by enhancing the application design with additional features.
Following the proposed Sustainable Application Design Process (SADP),
the application design is enriched with information that can be lever-
aged by cloud providers to manage application execution in an energy-
aware manner. This exploratory work aims to emphasize the awareness
on the sustainability of applications by proposing a methodology for its
evaluation. To this end, we first suggest possible actions to enrich the
application design towards sustainability, and finally describe how this
additional information can be leveraged in the application workflow. We
discuss the feasibility of our methodology by referring to existing tools
and technologies capable of supporting the design features proposed in
a production environment.
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1 Introduction

The last 10 years have seen an exponential growth in data centers energy de-
mand. Recent studies have demonstrated that data centers are responsible for
the 3% of the global electricity supply and the 2% of total greenhouse gas emis-
sionsﬂ Efforts have been made, and are still ongoing, by leading cloud providers
and I'T companies, such as Facebook, Google, and Apple, towards environmental
sustainabilitylﬂ To improve the efficiency and effectiveness of data centers, two
complementary approaches can be adopted: (i) design efficient facilities [29] and
(ii) improve server utilization [28]. The first can be pursued by building data
center facilities in cold locations, taking advantage of local renewable resources
to power up the data center. The second strategy adopts server consolidation

1 http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-
times-as-much-energy-in-next-decade-experts-warn-a6830086.html

2 https://cloudscene.com/news/2016/12/going-green/
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exploiting virtualization techniques. To date, most of the efforts have been ad-
dressed to the optimization of the Power Usage Effectiveness (PUE), a metric
comparing the amount of energy consumed in a data center by the IT facili-
ties and the overall energy consumed to power the whole data center (including
cooling and uninterruptible power supply units). PUE gives hints about the
energy efficiency of a data center but fails in expressing how efficiently IT re-
sources are employed for running the applications [39]. Even if big companies
have adopted both strategies, the overall carbon footprint of data centers has
not changed significantly. While data centers are more efficient, the demand for
data center services is increasingﬁ[%]. Computational demanding applications,
including AI, machine learning, and Big Data analytics, consume a significant
amount of energy, increased 300’000 times over the past 10 years [2][23]. There-
fore, the improvement in the efficiency of the infrastructure is followed by an
increase in demand, making current efforts towards energy efficiency less rele-
vant. At the same time, the architectural style of the applications is shifting
from monolith to cloud native applications, designed to take advantage of the
characteristics of cloud computing [19] [I2]. Cloud native applications are imple-
mented through microservices: a large set of simple, single-function, and loosely
coupled components interacting to provide the overall service. From the cloud
provider perspective, these components are black boxes whose internal logic is
neither declared nor modifiable, and whose interaction is mainly hidden.

The main goal of the methodology proposed in this exploratory paper is
to engage application designers in the path towards IT and IS sustainability.
This paper focus the attention on the active role of applications in the energy
footprint of IT and aims at increasing the awareness of application providers on
the environmental footprint of their applications. The main contributions are:

— a Sustainable Application Design Process (SADP), defining steps the design-
ers need to perform to increase the sustainability of applications;

— a set of best-practices, guiding the application designers in improving the
sustainability level of applications;

— insights on how SADP can be exploited in the application workflow.

The paper is organised as follows. Sect. |2 describes existing work. Sect. [3] mo-
tivates the proposed approach with a running example. Sect. [d introduces SADP
in more details. Sect. [5] describes the employment of SADP at run-time. Sect. [0]
validates the methodology mapping its steps to existing tools and technologies,
while Sect. [7] summarizes the approach and outlines future developments.

2 State of the Art

The energy consumption in data centers has been taken into consideration for
several years. Research has focused on the energy efficiency of data centers,
with approaches related to the employment of renewable energy [15] and the

3 http://fortune.com/2016/06/27/data-center-energy-report/
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improvement of cooling efficiency [20]. The focus on cooling has been driven
by adopting the Power Usage Efficiency (PUE) metric to measure data centers’
energy efficiency, computed as the ratio of the amount of energy consumed for
IT operations and the overall amount of energy. PUE has several limitations as
it does not account for the type of energy used (brown or renewable) and the
efficiency of IT operations [I3]. Some approaches have focused on IT resource
management in data centers. In [36], approaches to green IT have been classified
into three main categories: assessment, measurement, and improvement. Most
of the approaches in improving energy efficiency are related to the infrastruc-
ture, exploiting the intermittent availability of renewable energy [33][18]. These
involve operations such as server consolidation [28][14]. When enacting consol-
idation, shut down policies must be taken into account to ensure a trade-off
between energy efficiency and performance [6]. To express non-functional re-
quirements of applications, a Goal-Oriented Requirement Engineering approach
can be used [I7]. Other approaches have considered several improvement actions,
including consolidation, migration, CPU frequency and voltage scaling, and vir-
tual machine resources vertical scaling [38] [37][32]. Some best practices have been
suggested over the years to promote data center efficiency improvement, as the
EU Code of Conduct [3] and the Data Center Maturity Model [31]. From an IT
perspective, plenty of work have been investigating how to make data centers
greener, while some limited attempts have been made to include sustainability
in the application design of Green Information Systems [26][10][7][21]. These
approaches propose general principles and lacks from practical solutions. Some
proposal aimed to estimate energy efficiency of specific applications in embed-
ded systems [I1], but cannot be applied in complex cloud infrastructures. From
a design perspective, in [30] more specific guidelines are provided focusing only
on data mining. Current research mainly focuses on dynamic resource alloca-
tion and scheduling according to energy efficiency optimization [4][35]. All these
techniques are not exploiting the differences between microservices and their in-
teraction. Some efforts have been made to estimate the environmental footprint
of applications. The CodeCarbon initiative [22] provides a tool for estimating
CO2 emissions the geographical location and the energy mix of the country in
which the application is deployed. Power is also one of the metrics considered
in [9], providing black-box monitoring for multi-component applications. This is
a first step for enabling energy-awareness in microservice-oriented applications
but the workflow enhancement perspective is still missing.

Cloud native applications empower organizations to design and execute scal-
able, loosely coupled, resilient, manageable, and observable applications [12].
Cloud native adoption is increasing, thus we need to refer to this kind of model
for future developments in cloud computing application management. These ap-
plications generate complex workflows due to the adoption of the microservice ar-
chitectural style. A standard way to model the interaction between microservices
is missing, even though this information is crucial to enhance their management.
In [34], microservice choreography is represented through BPMN fragments, thus
exploiting a well-known process modeling notation for representing microservice
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interactions. However, the dynamicity of this interaction cannot be mapped in
such an approach. To introduce dynamicity in microservice coordination, it is
possible to enrich the model using the DMN specification [I]], expressing business
rules to define under which condition a task should be executed. An integration
between BPMN and DMN is proposed in [16][25], implementing the separation
of concern between the process and decision model.

This work focuses on enriching the design of cloud native applications and
of their workflow in order to enable the sustainability of applications.

3 DMotivating Scenario

In this section, we describe the main motivations driving this work and how the
proposed approach is mapped in the current cloud scenario.

Our main goal is to raise attention towards sustainability of applications, and
not only of the infrastructure in which they are deployed. In order to do so, we
need to know the current state of the art in terms of cloud applications. For this
reason, in this work we refer to cloud native applications, which are the current
best practise for cloud applications. In fact, more and more developers are shift-
ing towards the cloud native paradigm which requires to implement applications
as a set of composite microservices, uncoupled and independent, interacting with
each others through synchronous and asynchronous messages. A typical applica-
tion is composed of dozens to hundreds of independent microservices, all implic-
itly cooperating to reach the overall goal of the organization implementing the
application. However, not all the components have the same relevance,
being some of them necessary for reaching the goal, while other just enriching
the application with additional accessory functionalities that might increase the
overall Quality of Experience (QoE) of the customer or the income of the ser-
vice provider. Moreover, each microservice has different requirements in
terms of computational resources and different constraints in terms of Quality
of Service (QoS). From this perspective, microservice based architectures are
really effective since they allow the scale-out of the single components that are
experiencing performance issues. Microservices can be sensitive to the context
in which they are executed. Each microservice provides a specific functionality,
however, the way in which this functionality is carried out might depend on the
context of execution, and slightly different alternative implementations of
the same functionality can be provided, i.e., with fail-over mechanisms.

To make the discussion more practical, let’s introduce an example of appli-
cation presenting the features we have just introduced. Let’s consider a Flight
Booking service allowing customers to check for specific itineraries and compare
prices of several airlines. This service consists of several microservices (Fig. [1]):

— Flight Search: it collects the itinerary request of the customers and returns
a list of solutions obtained by querying the information systems of all the
airlines. The solutions are ranked according to specific policies (e.g., price,
duration, number of stops). This service can be provided with some varia-
tions according to the specific context of execution:
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Fig. 1. Microservices of a Flight Booking application

e variation 1: the information collected profiling the customer can be used
to suggest routes or rank the results. This variation requires a recom-
mendation engine to run in the background increasing the computational
cost of the service while providing a better QoE to the customers;

e variation 2: results of recent searches by the same or other users can
be reused. The actual query is executed only if the solution is selected.
This might generate out of date results (e.g., not updated the cost of
tickets for an airline) while reducing the computation time and cost.

— Weather Information: the search service can be complemented with infor-
mation useful to the customers in selecting their itinerary. A weather service
shows forecasts and statistics of temperatures and precipitations for the se-
lected destination and dates that can be valuable for the customer.

— Flight Booking: it is executed when a customer selects a solution after the
search microservice. It includes all the activities related to the booking, in-
cluding configurations (e.g., seat selection, baggage options) and the inter-
action with the airline’s information system.

— Rental Car Booking: additional services are proposed to the customer as the
rental car booking. This service is provided by a partner but generates an
income for the organization in case the customer books a vehicle.

— Payment: the payment service manages all the activities related to the pay-
ment of the selected flight solution.

Even in this very simple example, it is possible to see how some components
of the application are mandatory (i.e., necessary to reach the goal of the appli-
cation) while others are optional (i.e., contributing to the QoE but not affecting
the overall goal). Examples of optional microservices are the Weather Informa-
tion and the Rental Car Booking microservices. Moreover, the same functionality
can be provided with some variations that might affect the QoS, the QoE, or
the resource demand of the application, as demonstrated for the Flight Search
microservice. Finally, each microservice has different resources and QoS require-
ments. For instance, the Flight Search might require some time to be executed
(especially when querying all the airlines’ systems) but results should be provided
to the customers in a limited time to avoid that they turn to a competitor. On
the contrary, a delay in showing the weather forecasts provided by the Weather
Information microservice is not problematic, although it is not desirable.
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STEP3
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Fig. 2. Steps of the SADP

Most of these features, enclosing the complexity and dynamicity of cloud na-
tive applications, are hidden in configurations set by the application developer.
These configurations are usually decided a priori and rarely adapt with the con-
text of execution. The cloud provider, who is the one in charge of managing most
of the deployment aspects of the application, has no access to this information.
Giving the provider the faculty of managing these configurations might severely
improve the QoS of the application as well as its sustainability. Thus, it is im-
portant that the two stakeholders share relevant information for the effective
management of the application. The goal of this paper is to define which are
the key features in the application design that can be exploited to improve the
sustainability of the application. Secondly, it suggests how these features can
be made explicit in the design of an application, and finally it discusses how to
exploit them for improving the sustainability of the application workflow.

4 Sustainable Application Design Process

The proposed Sustainable Application Design Process (SADP) aims at support-
ing designers in the achievement of sustainable microservice based applications.
SADP focuses on an application perspective by providing goals and directions
for designing sustainable applications. The steps in Fig. [2| have been identified.
Step 0 The application designer is not putting effort in designing sustainable
applications. Level 0 is the current state of the art. An application can be de-
scribed as a graph A = {M, E} where M is the set of microservices composing
the application and F is the set of edges connecting the microservices.

Step 1 is a first step towards sustainable applications. It consists in adding basic
sustainability-aware information to the application design. The goal is to enrich
the application model with additional information that can drive the deploy-
ment decisions of the cloud provider when the single components are deployed.
This information is not only related to the energy aspect, but also to functional
and QoS requirements. The set R contains the specification of all the require-
ments that can be expressed for an application as R = {F,Q, S} where: F' is
the set of functional requirements regarding the amount of required resources
(e.g., the size of the VM required for deploying that component); @ is the set of
quality related non-functional requirements (e.g., response time or throughput
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constraints), and S is the set of sustainability related non-functional require-
ments (e.g., the estimated power consumption for executing the microservice).
Estimating power consumption of a microservice is not trivial, since providing
such information is not straightforward. However, from a simple profiling activ-
ity it is possible to estimate the computational power required by a specific VM
or container configuration. Models available in the state of the art, transforming
computational power in energy consumption, can then be exploited [8]. For each
microservice m; € M, a set of requirements R; C R can be expressed. A score
can be assigned to the application measuring the extent to which the application
design implements SADP’s Step 1 best practices. Given the set R of expressible
requirements, the score is assigned according to the coverage of the annotation:

A.score; = 2 |Ril/|r||M|  A.score; € [0,1] (1)

where |R;| is the number of requirements expressed for a microservice m; € M,
and |R||M| is the total amount of requirements that can be expressed for A.

Step 2 The application designer provides information on which components of
the application are mandatory and which are optional: My; U Mo C M where
My is the set of mandatory microservices and My is the set of optional mi-
croservices. Considering the flight reservation application example in Fig. [1} the
rental car service can provide additional value for the customer and additional
revenue for the application owner, but it is not a key component of the main
application. If information about the relevance of each component is provided
at design time, this information can be exploited to decide when to execute or
when to skip a component according to the execution context. This information
is relevant not only for the sustainability of the application (e.g., skip an optional
component when renewable power source is not available), but also for QoS (e.g.,
avoid optional components when the application is experiencing response time
or latency issues). Two possible approaches can be used to implement Step 2: i)
all components require annotations stating if they are necessary or not for the
overall workflow, ii) only optional components are annotated, while mandatory
components are not explicitly identified. In the first case, a score can be assigned
according to the amount of components explicitly annotated in the workflow:

A.scoreq = (IMol+IMu)/|v| A.scores € [0,1] (2)

However, this approach is more time consuming. In the second approach, instead,
a refined score cannot be associated, since it is not possible to differentiate be-
tween not annotated and implicitly annotated components. Thus, for the second
approach, the score can only be 0 if no annotation is provided, and 1 if at least
one component has been annotated as optional:

0 if Mo UMy =0

1 otherwise

A.scores = { (3)
Step 3 It consists in the enrichment of the microservices composing the applica-
tion through the definition of different modalities of execution for each compo-
nent. Alternative execution modalities can be defined for a single microservice



8 M. Vitali

and the one to enact might depend on the current context. Here, three different
execution modalities (or versions) are proposed: V = {N, HP, LP}.

— Normal (N): this is the basic execution modality of the microservice;

— High-Performance (HP): the performance of the microservice is stressed so
that the QoS and/or QoE of the customer is maximized at the cost of a
higher computational resource demand and power comsumption;

— Low-Power (LP): it is a simplified version of the microservice aiming at re-
ducing the amount of energy consumed. To guarantee the performance level,
some sub-activities are skipped or executed differently. As an example, in
the flight reservation application, the “Search flight” component might take
into account the previous activities of the customer in ranking the results to
provide a better QoE. However, this has an additional computational cost
that can be reduced by ignoring specific user information.

For each microservice, both optional and mandatory, it is possible to define
several versions: m;.V = {m;.v} |m; € M , v € V , |m;.V| <|V]; where m, is a
microservice of the application, m;.V is the set or modalities defined for m;, and
m;.v is a specific modality of the microservice (Normal, Low-Power, or High-
Performance). A score can be assigned according to the number of alternative
versions provided compared to the overall amount of required versions:

A.scoreg = ZilmiVI/im|v| A.scores € [0,1] (4)

Different modalities correspond to different power consumption, QoS, and QoE,
thus a trade-off is to be considered when selecting the proper modality. The
overall SADP approach and the suggested best practices are summarized in
Fig. The four steps are incremental refinements. At each step, additional
information is provided by the application designer and, at the same time, the
complexity in the management of the application increases together with the
degree of freedom of how to execute the application. The process is incremental:
at each loop, the designer can focus on a single component or on a subset of
components, enriching the model step by step.

5 Sustainable Workflow Design with SADP

SADP provides a methodology for improving and evaluating the sustainability
in the design of a cloud-native application, enriching each component with addi-
tional details and metadata. This section describes how it is possible to exploit
these features designing sustainable workflows.

Designing a sustainable workflow requires to select the best configuration
for all the components of the application according to the context, aiming at
improving energy efficiency, cost, and QoS. The composition of the application
will dynamically change selecting a different pool of microservices according to
the context of execution. Exploiting all the features added in the process design
described in Sect. [] the workflow can be executed in different modalities:
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Normal execution is the typical behaviour of an application; all the mi-
croservices composing the application are executed when a request arrives.
— Basic execution only a subset of the tasks composing the application are
executed. Not mandatory tasks are skipped to reduce the energy consump-
tion or to improve the QoS. It is supported by the Step 2 of the SADP.
Low-power execution tasks composing the application are executed using
a low power modality if available (e.g., using editorial content instead of
computing personalized content);

— High-performance execution tasks composing the application are exe-
cuted using a performance enhanced modality if available (e.g., providing
additional personalizations and functionalities to improve the QoE).

In order to enable the Low-power execution and the High-performance
execution, all the microservices, or part of them, have to be designed according
to the Step 3 of the SADP: different interfaces to execute the microservice are
provided for each supported modality. These workflow execution modalities are
not exclusive, in fact they can be combined together. As an example, if a Low-
power execution is activated together with a Basic execution, all the optional
tasks are skipped, while regular tasks are executed using their low-power version
if available. Two different approaches can be applied for the enactment of the
workflow modalities just described:

— All in: the execution modality is globally selected for all the components of
the application. With the Low-power execution, all the microservices pro-
viding this behaviour are executed in this modality without any distinction.
Similarly, with the Basic execution, all the optional tasks are skipped.

— Optimized selection: the decision about which modality to activate is
performed at the microservice level. The execution is optimized by selecting
the best combination for reaching the overall desired performance.

While the second approach enables a fine grained optimisation, it increases
the complexity of the workflow design and management, which makes necessary
the introduction off a complex decision process at run-time. Thus, the workflow
design has to be enriched with decision points that are able to provide the logic
for deciding the execution modality according to the actual context of execution.

6 Validation

This section demonstrates the feasibility of the proposed methodology given the
current technological stack and the cloud native landscape.

6.1 Designing Sustainable Applications

In Sect. [f] we introduced SADP, identifying the features to obtain sustainability-
aware applications. This section proposes some solutions for designing sustain-
able applications based on microservices. Here we propose to represent the ap-
plication and its components using the BPMN notation [27], a standard used
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Fig. 3. BPMN representation of the Flight Booking application redesigned with SADP

to represent both internal processes of an organization as well as collaborations
and orchestrations between different organizations. In this work, applications
are a workflow of operations performed by different microservices, that might
belong to different organizations. Following the representation adopted in [34],
the application can be represented as a set of microservices orchestrated by a
general process defining their order of execution. In this way, we can model the
interaction between different microservices through message events generated
during the execution of a microservice or at its end, triggering the execution
of another microservice or influencing its activities. As an example, the BPMN
model of the Flight Booking application is represented in Fig. 3] The details of
the logic of the single microservices are hidden since they are not relevant for the
discussion. The interaction is made explicit through the orchestrator process.

Following the steps presented in Sect. [d] the process model can be enriched
with metadata regarding the functional and non functional requirements of each
microservice. In order to do so, it is possible to use annotations. Annotations are
already defined in BPMN and they are used to add additional information on
the task execution. Here, annotations are used to add details on the microser-
vice functional and non functional requirements (e.g., required computational
resources, QoS constraints), execution cost, power consumption, and eventual
reward associated to the microservice execution. These meta-data are useful to
predict which will be the outcome of executing a specific microservice in the
process workflow. The outcome of Step 1 applied to the flight booking appli-
cation is shown in Fig. [3} Metadata are modeled with the annotation artifact
of BPMN using a semi-structured notation. In order to obtain a consistent an-
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notation, each aspect is represented as an attribute-value pair and the set of
allowed attributes and values is predefined. The score is assigned according to
the coverage of the current annotation. As an example, assuming that only 4
attributes can be expressed, the process in Fig. [3] has a Step 1 score of 100%
since all the attributes are defined for all the components. The Step 2 process
representation is enriched with the information about the optional tasks. This
can be implemented enriching the BPMN notation with an additional type of
task represented with an internal dashed border, indicating that a component
is optional for the execution. For instance, in the flight booking application, the
Weather Information and the Rental Car Booking microservices are indicated
as optional, as shown in Fig.[3] This is because they don’t affect the reach of the
final goal of the process (booking a flight) even if their execution improves the
QoE providing the customer with additional information and functionalities. In
case these functionalities are provided by third parties, skipping their execution
might reduce the income for the organization. As an example, the flight booking
service might have an agreement with the rental car company consisting in a
percentage gain of the overall rental contracts stipulated through the booking
service. Skipping this tasks results in the lost of the possible revenue originated
by a car rental. This step is not associated with a refined score, since it is not
possible for anyone to know which are the necessary steps of the process but
for the owner of the process. At Step 3, the process is enriched with alternative
execution modalities. It is represented enriching the BPMN notation with a type
identifier for the task representing the call to the component in the orchestrator.
As an example, in Fig. [3| the Flight Search microservice is identified as a com-
ponent with alternative execution modes. In the example, five microservices are
involved but only one has been refined with the alternative versions (both low
power and performance enhanced). Thus, the score will be 20%.

6.2 Designing Sustainable Workflows

In order to exploit the features provided by SADP and enable the different
execution modalities introduced in Sec. [5} the process model is enriched with
business rules. Business rules enable to express conditions on the execution of
an activity in a business process. They hide the complexity of the logic preventing
the model to become too complex. In this case, business rules are included to
define the execution modality of each task according to the values of a set of
contextual variables collected by the monitoring system of the application and
each of its microservices. Each business rule is linked to a DMN model [I],
which makes explicit the involved variables and the decision tables containing
the business rules used in the process. A decision table contains rules in the form
if-then, where the condition is based on the value of the contextual variables. An
example for the Flight Booking application is shown in Fig. [d Each component
is preceded by a business rule, linked to a DMN model, defining the modality of
execution for the following microservice. Examples of business rules are:

— Rental Car Booking: if response_time > 1000 ms then skip;
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— Flight Search: if power > 5 kW then low-power execution.

These are very simple rules, but a general rule can combine different variables
and more complex reasoning. However, this paper demonstrated that the logic
behind the execution modality can be included in the application design.

Business rules will depend on the workflow modality enactment approach. In
the case of the All in approach, an execution modality is selected at the process
level, thus a single DMN model is referred by the business rules for establishing if
the normal, basic, low-power, or high-performance execution should be enacted.
For instance, in case of poor energy efficiency, the low power execution and the
basic execution modalities can be selected, resulting in the execution of the Flight
Search microservice in low power mode and in the skipping of both the Weather
Information and the Rental Car Booking microservices. On the contrary, in the
case of Optimized execution a custom modality will be selected for each
microservice, thus requiring more complex DMN models.

6.3 Feasibility and open challenges

In the previous sections, the proposed approach has been validated by demon-
strating that modeling tools are available to capture all the features introduced
in the proposed methodology. We will now look at how these features can be
supported in the cloud native ecosystem. The outcome of the design step will
be an annotated and enriched BPMN model containing all the relevant infor-
mation for the management of sustainability-aware applications. BPMN models
can be translated in machine-readable formats like XML or JSON, including
annotations and task types that will enrich the description of each task. It is
thus possible to translate the model into a set of features that can be exploited
by an orchestrator. As an example, a BPMN-driven microservice coordination
approach is provided by some existing tools in the state of the art. For instance,
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CamundeE| and Zeebeeﬂ are workflow engines supporting BPMN and DMN for
designing workflow orchestrations. The other aspect is related to the manage-
ment of dynamic execution modalities for microservices. The concept of alterna-
tive execution paths for microservices, activated according to the current context
is supported by the state of the art technological stack. When a microservice of
the pipeline experiences performance issues it can be replaced by a different one
until the problem is not solved (fail-over management). Even if these approaches
are traditionally related to the QoS management [5], their mechanism can be
easily adapted to other goals such as sustainability.

SADP is based on the assumption that monitoring the energy consumption
(and even better the COy emissions) of each single component of an application
is possible. At the moment this information is not provided by any cloud provider
natively. However, several initiatives are proposing solutions for estimating both
energy and emissions at the application lcveﬂ This shows a growing interest in
the topic that is expected to result in additional improvement of existing third
party tools and in the involvement of cloud providers in the process. Another
critical aspect is the increased complexity in the application design, requiring
to define several versions for each microservice. From a design perspective, the
proposed approach is incremental, leaving the application owner the right to
decide to what extent to refine the existing application model. The initial effort
can be limited on the most affecting components and extended only in future
steps to other components. From a management perspective, costs will probably
increase. Thus, the problem is how to motivate application providers to invest in
sustainable applications. Existing studies have demonstrated how sustainability
can become a strategic value for both organizations and their customers thanks
to a proper awareness of the impact on the environment [30].

7 Conclusion

This paper introduced the SADP methodology to support the design of sus-
tainable applications. SADP proposes an incremental process, defining levels of
sustainability for application design and several enrichment that can be exploited
to improve the application energy-efficiency while maintaining the QoS. The pa-
per demonstrates how the proposed solution can be supported by existing tools
and technologies. The SADP methodology is a first step towards energy-aware
application management and aims at engaging application owners in the path
towards sustainable IT. However, there are still several challenges to motivate
application developers’ effort to make their applications more sustainable, but
we believe these benefits can compensate the additional costs and efforts in the
long term. In future work we will provide a framework supporting SADP and

4 Camunda: Microservices and BPMN: https://bit.ly /3pxYPbS

5 Zebee: A Workflow Engine for Microservices Orchestration: https://zeebe.io

5 Cloud Jewels: https://codeascraft.com/2020/04/23/cloud-jewels-estimating-kwh-in-the-cloud/
Cloud Carbon Footprint: https://www.cloudcarbonfootprint.org/
CodeCarbon: https://mlco2.github.io/codecarbon/visualize.html
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implement a prototype exploiting all the introduced features for sustainable ap-
plications design and execution. We will also consider an additional step: how
to optimize the deployment of microservices in a heterogeneous fog environment
to minimize the energy footprint of applications at run-time.
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