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Abstract

In this contribution the funicular analysis of symmetric masonry arches is performed
by accounting for stereotomy, as well as for the presence of Coulomb’s friction at
the interfaces between the voussoirs. The classical thrust network analysis approach
is then enhanced by removing the hypothesis that the friction coefficient is infinite.
The procedure presented here handles networks with any topology, fixed plane pro-
jection and loads applied at the nodes, whose equilibrium conditions are managed
by exploiting the force density method. At each joint, a set of local constraints is
enforced to restrain the shear-to-normal component ratio of the force between two
adjacent voussoirs. The minimization/maximization of the horizontal thrusts, formu-
lated in terms of applicate of the restrained nodes, is achieved by solving the cor-
responding multi-constrained minimization/maximization problem through sequen-
tial convex programming. The results obtained via this funicular method are vali-
dated by means of a graphical procedure based on the lower bound theorem of limit
analysis, known as Durand-Claye method, by considering a masonry arch with non-
conventional stereotomy.

Keywords: limit analysis, stereotomy, masonry arches, Coulomb’s friction, mathe-
matical programming
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1 Introduction

The Thrust Network (TN) analysis method was originally proposed by Block and
coworkers [1, 2] as a new methodology for generating surfaces and networks subjected
only to compressive forces. The procedure proposed here consists in a constrained
force density method for the funicular analysis of vaulted masonry structures, within
the theoretical framework of limit analysis. Starting from the algorithm proposed in
[3], it aims at enriching the TN approach by removing the simplifying hypothesis
of infinite friction coefficient proposed by Heyman [4]. Since friction is assumed to
be finite of nil, the funicular analysis is achieved by considering the influence of the
real stereotomy of the voussoirs on the stability of masonry vaults. As recalled by
Aita [5], the effect of stereotomy on sliding equilibrium has been considered since the
pre-elastic research on the mechanical behaviour of masonry arches. Indeed, as far
as the XVIII century, Coulomb [6] studied the effect of the joint inclination on the
equilibrium of a masonry arch with prescribed intrados and extrados. He provided the
explicit solution in the case of a flat arch: if the straight lines on which the joints lie
meet at a common point, sliding between the voussoirs cannot occur. Recently, this
classical problem has been revisited by some scholars in order to find analytical or
numerical solutions for triangular arches [7, 8, 9] and arches of different shapes [5].

Under Heyman’s hypothesis of infinite friction [4], stereotomy was taken into ac-
count in [10] and [11]. These contributions aimed at studying the collapse conditions
of semicircular and elliptical arches and showed that stereotomy affects the shape of
the thrust line as well as the value of the limit minimum thickness, i.e., the thickness
corresponding to the formation of a rotational mechanism.

Conversely, in [12] sliding is allowed, and the minimum thickness analysis of cir-
cular and elliptical masonry arches is conducted by re-interpreting the effect of finite
friction as a geometric constraint on stereotomy. Finally, the research reported in
[13, 14] aims at refining the three-dimensional thrust network analysis by considering
not only the equilibrium conditions at the nodes, but also strength criteria at the joints
that take friction into account. From the studies quoted above, the effect of stereotomy
on the stability of arches turns out to be significant when friction is assumed to be fi-
nite, and mixed or sliding collapse modes can occur.

Due to the finite friction, however, a subtle issue arises from the mechanical point
of view: the material is characterized by non-standard plastic behaviour, and the ensu-
ing non-associated flow rule invalidates Heyman’s safe theorem [4] for assessing the
stability of the structure. A survey of the scientific literature on this subject is beyond
the scope of the current paper. Without claiming completeness, it is remarked that
it possible to identify some classes of problems for which the static theorem of limit
analysis can be exploited to determine safe stress states [15]. Symmetric arches with
non-conventional stereotomy belong to this class of problems: they are dealt with in
this paper by means of the funicular method, and the results are validated through a
modern re-visitation [16] of Durand-Claye’s method [17, 18].
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2 Funicular polygons of min/max thrust using the force
density method and mathematical programming

2.1 Force density method

The “force density method” [19] is used to handle the equilibrium of funicular poly-
gons. A polygon is made of m branches, which undergo axial forces only, and
ns = n+nf nodes. The horizontal and vertical axes of the Cartesian reference system
with origin O are denoted by x and z, respectively. The arrays xs and zs collect the
coordinates of the ns nodes: xf and zf collect those of the nf restrained nodes, where
reactions arise, whereas x and z refer to the n unrestrained nodes, i.e. those subject
to external loads. Let Cs be the matrix that defines the connectivity of the grid: it
can be split into a submatrix Cf , referring to the restrained nodes, and another, C,
addressing the unrestrained nodes. Denoting by u and w the arrays that gather the
difference in the coordinates of the nodes at the ends of each branch along the axis x
and z, respectively, one has:

u = Csxs, w = Cszs. (1)

The force density vector q = L−1s collects the force-to-length ratio for each branch of
the funicular polygon, being s the array that collects the forces in them branches. The
lengths of the branches, li =

√
u2i + w2

i , are stored in an array l, while L = diag(l). In
this study, only gravity loads are considered. Vertical point forces are prescribed at the
unrestrained nodes through vector pz. Because of the introduction of the force density
vector, the equilibrium of the unrestrained nodes can be expressed by means of linear
equations that are uncoupled in the two considered directions. As reported in [2, 20,
21], in funicular polygons and networks with fixed plane projection an independent set
of force densities can be identified. Indeed, the horizontal equilibrium of the loaded
nodes of the funicular polygon reads:

Csxs0 q = 0, (2)

where xs0 collects the fixed x coordinate of the nodes. Eqn. (2) implies that m − r
independent force densities q can be retrieved, being r the rank of the coefficient
matrix. The r dependent force densities q̃ can be expressed as:

q̃ = Bq+ d, (3)

where B and d are matrices whose constant entries can be derived by applying Gauss-
Jordan elimination to Eqn. (2), see [22]. Upon introduction of Q = diag(q), the
equilibrium along the z axis reads:

CTQCz+CTQCfzf = pz. (4)

The above equation is solved to compute the vertical coordinates of the unrestrained
nodes of the funicular polygon. It is finally remarked that, due to symmetry, only one
independent force density exists in the investigated problems, denoted by q hereafter.
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2.2 Forces and eccentricities at the joints

Consider the i-th joint between any two adjacent voussoirs: let Ci be the centroid of
the rectangular section and Pi the point where the line of action of the funicular force
Fi crosses the joint (or “center of pressure”). Also, let ξi and ηi be the principal axes
of inertia of the section, with ηi lying in the (x, z)-plane. The normal to the joint is
denoted by ni. The section has size li,ξ × li,η.

Denoting by ex and ez the unit vectors aligned with x and z, respectively, one has:

Fi = si

(
ui
li
ex +

wi

li
ez

)
= qi (ui ex + wi ez) . (5)

Denoting by Ni the normal component of Fi, its magnitude may be straightforwardly
found as Ni = Fi · ni. Its eccentricity with respect to ξi can be computed by evalu-
ating the moment of Ni about the same axis, Mi,ξ, scaled by Ni. Recalling that the
shear component of the force Fi does not provide any contribution to Mi,ξ, one may
conveniently compute:

ei,ξ = abs
(
Mi,ξ

Ni

)
,with

Mi,ξ

Ni

=
ξi · (ri × Fi)

Ni

, (6)

where abs(·) stands for the absolute value of the scalar argument, and ri is the vector
drawn from Ci to any point belonging to the line of action of Fi (in particular, any of
the vertices of the funicular polygon lying in the two adjacent voussoirs).

The magnitude of the shear component Vi can be found as the modulus of the vector
difference Fi −Ni, i.e. Vi = Fi −Nini.

2.3 Optimization problem

Within the framework of limit analysis, it is useful to investigate the range of admissi-
ble solutions, looking for both the minimum and maximum thrust in the arch. Hence,
the following problem is addressed:

min
q≤0

zmin
f ≤zf≤zmax

f

f = ±Rh

s.t. q̃ = Bq + d,

CTQCz+CTQCfzf = pz,(
Ni

σc (li,η − 2ei,ξ) li,ξ

)2

≤ 1 for i = 1...m,(
Vi

Ni tanψ

)2

≤ 1 for i = 1...m.

(7a)

(7b)

(7c)

(7d)

(7e)

In the objective function 7a, Rh is the magnitude of the horizontal reaction (along x)
at any of the two restrained nodes of the arch. The minimization unknowns are the
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independent force density q and the applicates of the restrained nodes zf . The depen-
dent force densities q̃ are computed from the independent one by means of Eqn. (7b),
whereas Eqn. (7c) enforces the equilibrium of the unrestrained nodes in the vertical
direction. The occurrence of any positive independent force density is prevented by
the side constraint on q. Side constraints on zf prescribe lower and upper bounds to
the vertical coordinates of the nf restrained nodes, denoted by zmin

f and zmax
f , respec-

tively. Denoting by σc ≤ 0 the compressive strength, Eqn. (7d) is used to prevent
crushing at the i-th no-tension joint. A uniform distribution of compressive stresses is
assumed to occur at a limited portion of the section of each joint, i.e. the area of size
(li,η − 2ei,ξ) × li,ξ, see in particular [13] and [23]. Upon introduction of the friction
angle ψ, the set of local enforcements in Eqn. (7e) imposes that the ratio Vi toNi must
obey the Coulomb’s law [6]. Setting σc → −∞ in Eqn. (7d) and neglecting Eqn.
(7e), the formulation in Eqn. (7) searches for networks of minimum/maximum thrust
according to Heyman’s assumptions.

As shown in [3], the problem in Eqn. (7) can be effectively solved by adopting
techniques of sequential convex programming that were originally conceived to handle
size optimization problems. In this contribution the gradient-based Method of Moving
Asymptotes (MMA) [24] is adopted.

3 The stability area method

In order to validate the funicular approach described in Section 2, a historical method,
based on the static theorem of limit analysis, is adopted [17, 18], by referring to the
modern re-visitation proposed by Aita, Barsotti and Bennati [16, 23]. For symmet-
ric, symmetrically loaded arches, the procedure allows one to visualize the domain of
the admissible solutions by drawing the so-called area of stability in the (f, e0) plane
(Figure 1a), where f is the horizontal thrust acting at the ideal vertical crown section,
while e0 identifies the position of the centre of pressure at the crown, i.e., the eccen-
tricity of f with respect to the cross section’s centroid. The equilibrium of the portion
of arch comprised between the ideal vertical crown section and any joint i (Figure 1b)
can be formally written by taking into account the internal reactions at i. Thus, the
normal force, Ni, and the bending moment, Mi,ξ, can be expressed as Mi,ξ(f, e0, θi),
Ni = Ni(f, θi), where θi is the inclination of the i-th joint with respect to the z axis.
Under the hypotheses of infinite compressive strength and nil tensile strength, the limit
bending moment, M lim

i,ξ , is given by M lim
i,ξ = abs(Ni li,η/2).

With reference to Figure 1a, the inequalities −M lim
i,ξ ≤ Mi,ξ ≤ +M lim

i,ξ implicitly
define the region Arot

i in the (f, e0) plane, corresponding to the rotational domain
related to the i-th joint (see the grey region). The procedure must be repeated for all
the joints i; the intersection between all the areas Arot

i provides the rotational domain
related to the entire arch, Arot, that is the yellow region in Figure 1a. If friction is
assumed to be finite, the limit values of the crown thrust as regards sliding, f sl

i,min

and f sl
i,max, can be determined. The translational equilibrium of the considered arch

portion can be enforced graphically (Figure 1b). Let Wi be the weight of this portion:
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Figure 1: (a) stability area; (b) graphical construction to determine f sl
i,min and f sl

i,max;
(c) thrust lines corresponding to the limit friction coefficient, tanψ =
0.0004915.

at each joint i, by starting from any point a belonging to the joint, a vertical segment
ab representing the magnitude of Wi is drawn to the same scale as that adopted in
Figure 1a for the horizontal crown thrust, f . Then, the straight lines ac, ae, are traced
so that they form an angle ψ with the straight-line ad perpendicular to joint i. The
minimum and maximum values of the crown thrusts, f sl

i,min, f sl
i,max, are represented

by segments bc, be. At these values of the crown thrust, the direction of the internal
reaction at joint i is defined by the straight lines ac, ae, tangent to the friction cone.
The graphical construction corresponds to the following analytical relations:

f sl
i,min = Wi tan (π/2− θi − ψ) , f sl

i,max = Wi tan (π/2− θi + ψ) . (8)

For each joint i, the inequalities f sl
i,min ≤ f ≤ f sl

i,max identify the corresponding
sliding domain Asl

i in the (f, e0) plane, comprised between two vertical straight lines
(parallel to the e0-axis). By intersecting all the regions Asl

i , the sliding domain Asl

is obtained for the entire arch. In turn, the intersection between the rotational and
sliding domains, Arot and Asl, provides the stability A. When the stability area related
to the entire arch is reduced to a single point or a single segment, the limit condition is
attained, and the corresponding collapse mechanism is identified. In Figure 1a, a limit
condition is shown: the sliding domainAsl corresponds to the cyan straight-line, while
the stability area A shrinks to the green segment B3B4, which defines an infinite set
of limit solutions (f, e0). These solutions identify a unique value of the crown thrust,
and a range of values for e0. The admissible thrust lines are then comprised within the
green region in Figure 1c, delimited by the thrust lines corresponding to pointsB3 and
B4 of the stability area. For each of these solutions, an incipient collapse condition by
pure sliding is identified: the arch portion above the blue joint slides inwards, while
that comprised between the blue and red joint slides outwards (see Figure 1c).

6



Figure 2: geometry and stereotomy of an arch.

4 A benchmark case study

A circular arch is addressed under self-weight, see Figure 2. The intrados lies along
a circle with center at Cin = (0, 0, 0.5)m and radius rin = 3.5m. The extrados lies
along a circle having center at Cex = (0, 0, 0)m and radius rex = 4.5 . One half of
the angle of embrace is α = 24.88◦. A material with unit weight γm = 15 kN/m3 is
considered. The arch is made of thirteen voussoirs, whose stereotomy is defined by
radial lines originating from the point Cst = (0, 0,−2)m. The out-of-plane thickness
is 0.5m.

In Figure 3, the funicular networks of minimum and maximum thrust found for an
infinite value of the compressive strength (for numerical purposes, σc was set equal
to −1000 MPa) and infinite friction are shown, along with the forces in the branches
of the network (in kN). The symbols ◦ and + identify joints whose crossing branches
activate a constraint related to the limit bending moment, see Eqn. (7d). The former
symbol is used when the branch intersects the cross-section of the joint below the
centroid; the latter, otherwise. In Figure 4, the funicular networks of minimum and
maximum thrust found for the same value of σc, along with tanψ = 0.0004915,
are represented. The symbol × refers to any joint whose crossing branch activates a
friction constraint, see Eqn. (7e). Note that, in both pictures of figure 4, the shape of
the funicular polygon and the relevant horizontal reaction Rh are the same, both for
the maximum and the minimum thrust solution.

The results found with the funicular method are in full agreement with those ob-
tained by means of Durand-Claye’s method. In Figure 1a, the stability area is plot-
ted for the considered arch. By assuming an infinite friction coefficient, the ex-
treme values of the crown thrust are identified by the abscissas of points B1 and
B2, fmin = 7.789 kN, fmax = 40.886 kN (Figure 1a). The arch is stable, since
the stability area is a non-vanishing region of the (f, e0)−plane. Giving the fric-
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(a) (b)

Figure 3: σc = −1000MPa and infinite friction: (a) min thrust solution (Rh =
7.795 kN); (b) max thrust solution (Rh = 41.006 kN).

(a) (b)

Figure 4: σc = −1000MPa and tanψ = 0.0004915: (a) min thrust solution (Rh =
23.429 kN); (b) max thrust solution (Rh = 23.429 kN).

tion coefficient a finite value, the limit condition is attained at tanψ = 0.0004915.
In this case, the stability area shrinks to the green segment B3B4, corresponding to
fmin = fmax = 23.427 kN, −0.0006m ≤ e0 ≤ 0.2523m.

5 Concluding remarks

A numerical procedure based on the constrained force density method is implemented
in order to perform the funicular analysis of masonry arches, by taking into account
the stereotomy of the voussoirs, as well as a finite value of the friction coefficient. The
method is validated by considering a symmetric masonry arch with non-conventional
stereotomy. The results obtained through the funicular method are in excellent agree-
ment with those obtained via a modern re-visitation of a classical graphical procedure
known as Durand-Claye’s method [17, 18], see [16]. A number of analyses have
been performed on arches with the same intrados and extrados profiles and different
stereotomy, by changing the position of the point from which the joints originate, Cst.
Such analyses, which will be illustrated more accurately in a forthcoming paper, show
that the limit friction coefficient strongly affects the equilibrium of the arch. As a
further development of the research, the effects of non-standard behaviour will be ex-
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amined, in order to examine more complex typologies of masonry structures, such as
non-symmetric masonry arches, vaults and domes.
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