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ABSTRACT

Since 2019 researchers in the field of deep learning have been exploring the possibilities of Physics Informed
Neural Networks (PINN). The training of regular neural networks (NNs) involved an optimization where the
loss function depends exclusively on the dataset available. In PINN this loss function takes into account also the
physics of the problem, if it is known and the governing equations are given. This paper explores the advantages
of the use of PINNs with respect to regular NNs, in the privileged case where a multibody model is available.
However, there is still uncertainty around how much weight should be associated with each of the two losses
(data-driven loss and physics loss). Therefore, different weights for the two losses are considered and their effect
on the performance of the model is evaluated. The research focuses on the synthesis of a four-bar mechanism
for trajectory planning of a point belonging to the connecting rod. The objective is to generate a tool that
synthesizes the mechanism topology given the desired trajectory. This preliminary study shows how PINN are
suitable to automatize the synthesis of mechanisms, where regular NN would generally fail. Numerical analyses
also demonstrate that a PINN learns relations from a physical numerical model in a more efficient way than a
traditional NN.

Keywords: Physics informed neural networks, Synthesis of mechanism, Four-bar mechanism, Trajectory gen-
eration, Generative networks

1. INTRODUCTION

Among the synthesis of mechanisms problems, the trajectory generation involves the choice of a mechanical
system to be used, such as cams or linkage mechanisms, and the definition of its geometrical parameters to
achieve a desired motion law. In the past, the mechanisms synthesis for trajectory generation was obtained by
using atlases, namely books recording the trajectory generated by many combinations of mechanical systems in
different arrangements and geometries.1 This procedure is regarded as a ”graphical method”, since the engineer
needed to find the best arrangement by visual similarity among motion laws.
Another method involves the definition of certain precision points that must belong to the generated motion
law to solve the problem in closed form. However, by doing so, only a limited number of precision points can
be defined.2 The computational power made available by modern calculators allows for generating and testing
motion laws iteratively so that the mechanisms’ synthesis can be addressed as an optimization problem.3 All the
methods just described requires the engineer to have a certain familiarity with the mechanisms and optimization
problems. However, having assessed the outstanding performance achieved by artificial intelligence (AI) in the
field of image, sound and text generation,4–6 it seems worth exploring the possible use cases of such models for
the generation of mechanisms. The aim of this paper is consequently the definition of a model which takes in
input a desired motion law, and yields as output the geometrical properties of the mechanism to realize it. The
main advantage offered by this solution would be having a fast and flexible tool, that can help designers in the
synthesis of mechanisms. This study must be seen as a first step in that direction.
Moreover, to generate such a model, the well-known property of feed-forward neural networks to be universal
approximators is exploited.7 To enhance the performance of the neural network, the training procedure will
account for the physics of the process, obtaining a form of “Physics-informed neural network”.8 At every
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training iteration, the output of the network is used to run a simulation on multi-body software. This procedure
yields a neural network able to approximate the behaviour of the multi-body simulation tool.

The paper is arranged in the following way: in section 2, the problem of trajectory generation is formally
defined. In section 3, the multibody model is introduced, which is used for the generation of the training set and
to physic-inform the network. In section 4, the physics-informed training is defined and explained. In section
5, the results are compared and discussed for networks trained with different logics. Finally, in section 6, some
conclusions are drawn and future research scenarios are suggested.

2. FOUR-BAR MECHANISMS

Linkage mechanisms are systems composed of rigid bodies connected by rotational and prismatic pairs only.
When the axes of the rotational pairs are all parallel to each other and orthogonal to the prismatic pairs
axes, the linkage mechanism is said to be planar .9 Among the planar linkage mechanisms, great effort has
been historically dedicated to the study and characterization of the four-bar mechanism. In fact, most planar
mechanisms commonly adopted can be tracked back to four-bar. For instance, the slider-crank or the swinging
glyph are both regarded as special cases of four-bar. This is why the synthesis of four-bar mechanisms gained so
much relevance in the past.
The kinematic chain of the four-bar mechanism is usually represented by four links connected by means of hinges
(figure 1). The link O1O2 is grounded and takes the name of frame. The opposite link AB is usually named
connecting rod. The links contiguous with the frame, O1A and O2B, are called cranks if they can perform a
complete rotation, or rockers if they can only span a partial rotation. According to the relative lengths of the
four links, a four-bar system can feature two cranks, two rockers or either one crank and one rocker. Specific
details about four-bar mechanism types and classifications fall beyond the scope of the paper, and it is suggested
to refer to dedicated literature for more information. It is worth noting that is commonly preferable to work with
four-bar systems that have at least one crank. In this way, the system can be driven by a motor or a rotating
shaft directly connected to the crank, whereas acting on a rocker is evidently more complicated.
The motion of the connecting rod plays a significant role in studying four-bar mechanisms, which corresponds
to the rototranslation of a rigid body with two points bounded to circular paths. Of particular interest are the
trajectories traced by the coupling rod’s points (figure 2), which are 6th degree curves and might substantially
vary for different links arrangements.

2.1 Synthesis of mechanisms for trajectory generation

The synthesis of mechanisms is formally defined as follows: given a desired motion law y = f(α), where α refers
to the master angle, the objective is the generation of a curve y′ = g(α), which approximates the function f .
Evidently, the two curves cannot be perfectly equal, and so this is achieved by imposing that the structural error

Figure 1. Four-bar mechanism. Figure 2. Example of Arc of trajectory traced by point E,
belonging to the connecting rod.
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e(α) = f(α)− g(α) remains below a certain value.
The procedures for the synthesis of mechanisms are usually classified as direct or indirect methods, depending
on the number of iterations required to solve the synthesis problem. If an algorithm defines the mechanism
in one passage, the method is direct. The precision points method is the most famous direct method.10 The
procedure involves the nullification of the structural error in correspondence of certain points only, which take
consequently the name of precision points (figure 3). However, this method requires a manual check of the
outcome, since the procedure does not account for the behaviour of the curve g(α) in points different from the
precision ones. Moreover, the problem can be solved in closed form for a limited number of precision points only,
which corresponds to the number of degrees of freedom of the design problem.

Given a desired trajectory, synthesising a four-bar mechanism whose coupling rod follows the desired curve is
called trajectory generation. The other common problems related to the synthesis of mechanisms are the function
generation and the planar motion generator ,11 which are not treated here for simplicity. In the case of four-bar
mechanisms, the problem involves 9 unknowns, that is, the position of O1 and O2 with respect to the reference
frame, and then the length of the links O1A, O2B, AB, AE and BE (Figure 2). This means that a maximum
of 9 conditions can be defined. One can therefore introduce 9 precision points or fewer precision points and the
tangent condition is some of them, so that the overall number of conditions imposed is 9.
Under the assumption that the O1A rotates with constant angular velocity, the problem involves 10 unknowns
(the 9 just introduced and the initial angle of O1A), but only 5 conditions can be introduced. In fact, each
condition counts twice (the position of point E for a given value of the angle O1A). The conditions can involve
precision points, velocity vectors or acceleration vectors, but the overall number of conditions cannot be greater
than 5.9

In the case of indirect methods, the optimal design of mechanisms is achieved by successive evaluations of the
system. The synthesis of the four-bar mechanism can consequently be addressed as an optimization problem.12

Once a objective function is introduced to quantify the distance between the current trajectory with respect to
the desired one, the 9 (or 10) parameters of the mechanism are progressively tuned and the objective function is
evaluated at every iteration. Eventually, an optimal solution (global or local) is achieved.

The success of generative networks in recent years for the generation of images, texts and sounds, is driving
researchers to train and test models able to artificially produce objects in the most diverse fields. This motivated
us to evaluate the construction of a generative model also in the context of the synthesis of mechanisms, and in
particular for the trajectory generation problem.

Figure 3. The precision points methods imposes the nullification of
the structural error e(α) in correspondence of the precision points.

Figure 4. A multibody software generates the tra-
jectories for different four-bars arrangements. A
data-driven model can be train to do the oppo-
site.
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3. TRAINING SET AND MULTIBODY MODEL

Multibody softwares are extremely versatile tools that assist engineers in systems design. In the context of the
synthesis of mechanisms, they allow fast prototyping by computing the required physical variables in the desired
time span. If the problem considered is the trajectory generation of a four-bar, whose link is driven by a constant
angular velocity, the multibody tool takes as input the geometrical parameters of the four-bar, and it yields in
output the trajectory generated by the point E of the connecting rod. This means that the software applies the
function g(α) so that:

xE(α), yE(α) = g(a1, a2, · · · , a10, α) (1)

Where a, b, · · · , a10 are the 10 parameters introduced in section 2.1 and α the master angle of the driver
link. However, the synthesis involves the definition of the four-bar parameters given the desired function
xE(α), yE(α) = f(α), which means that the function in 1 must be inverted, so that to obtain the mechanism
topology:

a1, a2, · · · , a10, α = g−1(xE(α), yE(α)) (2)

But the function g is not invertible. The objective of this research is consequently the inversion of the function
g.

3.1 Data-driven modelling

One possible approach for the definition of the function g−1(α) might require the use of a parametric model
fitted onto a dataset containing many possible trajectories and the corresponding parameters of the four-bar
that generated them. In the past, this collection of curves took the name of atlases. Atlases were used for the
synthesis of mechanisms by visual similarity between the desired curve and the ones reported in the atlas. Today,
the help of calculators allows for generating many possible combinations of four-bars by varying the parameters
iteratively. The dataset collected in this way might then be used to train a data-driven model, which takes
in input the curves and estimates the parameters of the four-bars to generate them (figure 4). To do so, the
properties of neural networks as universal approximators are exploited,13 whereas a multibody dynamics software
(MSC ADAMS) is used for the collection of the training set.

3.2 Multi-body model

The model considered to simulate the behaviour of the four-bar mechanism is the one in figure 5, implemented
in the software MSC ADAMS (figure 6). A constant angular velocity is imposed onto the link O1A so that
the number of parameters to define the system is 10. However, to avoid the problem known as the curse of
dimensionality, the number of parameters to be defined has been reduced. Briefly, the curse of dimensionality
states that the volumetric density of data points rapidly reduces as the number of dimensions of the space
increases.14 The immediate consequence is that the dataset collected becomes sparse and not representative

Figure 5. Model of the four-bar mechanism used for the collection
of the training set.

Figure 6. Four-bar mechanism in ADAMS view.
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XA YA XB YB XO2
YO2

Initial value [mm] 0 50 200 50 200 0
End value [mm] 140 190 340 190 340 90

N°points evaluated 15 15 15 15 15 10

Table 1. Candia Bridge - Correlation between Inclinometers

anymore of the phenomenon under study.
The hinge O1 is centred in the origin of the reference frame, while the point of the coupling rod E is located
in the middle of O1A. This reduced the number of parameters of the system by 4. The number of remaining
parameters is then 6, which are the coordinates of O2, A and B (or equivalently, the coordinates of O2, the
length of O1A, AB, O2B and the initial angle of O1A).
Every single variable is set to vary in the ranges indicated in table 1, with a pace of 10 mm, whereas all the other
five parameters are kept constant. The master angle α of the link O1A performs a rotation of 30 degrees for 500
integration steps. Eventually, by multiplying the number of points evalauted (last row of table 1) one gets the
number of data points “explored”: 155 × 10 = 7, 593, 750.
The training set collected should count therefore 7,593,750 observations. However, all the simulations that ended
up in singularity points have been ignored, so the number of observations in the training set is lower. Every
observation is characterized by the six parameters of the four-bar and the correspondent trajectory generated by
point E of the connecting rod, namely an array of size 2× 500 (the value of x and y for every alpha).

One might argue that the in case of four-bar mechanisms, the use of a multibody tool is not strictly necessary,
since the equations of the curve defined by the point E as a function of all the four-bar parameters can be ex-
plicitly defined. However, to propose a method as general as possible, it has been decided to adopt a multibody
software to generate the training set. In this way, the same approach can be easily extended to other sets of
problems that involve multibodies, and not necessarily for the trajectory generation only.

3.3 Neural network structure

Once the training set has been generated, the data-driven model must be defined. As anticipated, the model
chosen is a neural network. The package adopted is TensorFlow, and the network is assembled with Keras API.
The model counts five layers:

1. A Separable Convolutional 1D layer. This layer takes in input a tensor of size (2, 500), namely the
trajectories, and it applies 1D-convolutional windows separate on every channel. Then, it mixes the channel
by a point-wise multiplication

2. A Maxpooling layer, to reduce the space of the convolutional map.

3. Two Gated Recurrent Unit layers are applied in succession. The first counts 64 cells, the second 16 cells.
The application of convolutional plus recurrent layers is proved to be particularly efficient in the analysis
of time series.15

4. The last is a six-neuron Dense layer. Every neuron contains the coordinates of points O2, A and B. These
are the targets of the training, namely the variables that the network must estimate.

The training of the model can finally be carried out. However, in this way, the model is fully data-driven,
which means that only the objects belonging to the training set “drive” the gradient descend.16 Nevertheless,
to generate the training set, a physical model has been used, which means that we have access to the physics of
the problem. It has been proven that it is possible to inform the network of the physical law during training,
improving in such a way the performance of the trained model.
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4. PHYSICS INFORMED TRAINING

The definition Physics Informed Neural Networks (PINN) have been first introduced by Raissi et al.8 to refer to
neural networks obtained by implementing the system partial differential equations in training, taking then the
derivatives with respect to the input coordinates. This approach seemed to introduce a regularization mechanism
into the backpropagation algorithm, allowing the training of neural networks even with small datasets.

In this paper the training process of the neural network is carried out by backpropagating two losses: the
data-driven loss, which directly derives from the dataset collected (section 3.2) and the physics-based loss. The
latter is obtained at every batch by evaluating the input trajectories with respect to the ones generated by the
parameters estimated by the neural network in training:

(âi1, · · · , âi6) = hθ(xi1, · · · , xi500, yi1, · · · , yi500) (3)

Ldata =
1

N

N∑
i=1

 6∑
j=1

(aij − âij)
2

 (4)

(x̂i1, · · · , x̂i500, ŷi1, · · · , ŷi500) = g(âi1, · · · , âi6) (5)

Lphysics =
1

N

N∑
i=1

(
500∑
k=1

(xik − x̂ik)
2 + (yik − ŷik)

2

)
(6)

Finally, the overall loss is:

L(θ) = (1− λ)Ldata + λLphysics (7)

In equation 3, hθ refers to the function applied by the neural network characterized by the vector of weights θ.
The network takes in input the trajectory (defined by the coordinates x and y for every timestep considered)
and estimates the six parameters of the four-bar mechanism: âi1, · · · , âi6. The subscript i indicated the ith

observation of the batch.
In equation 4 the data-driven loss is obtained as the mean square error of the estimated parameters âij with
respect to the correct ones aij . N is the number of elements in a batch.
In equation 5 the function g refers to the kinematic laws applied by the multibody analysis: the values estimated
by the neural networks âi1, · · · , âi6 are used to run a simulation, so to obtained the correspondent estimated
trajectories x̂i1, · · · , x̂i500, ŷi1, · · · , ŷi500.
Equation 6 indicates that the physics loss is calculated as the euclidean distance between the points of the
estimated trajectory and the correct one.
In conclusion, equation 7 shows that the overall loss is computed as a weighted sum of the data-driven loss and
the physics-based loss. λ is a value that spans between 0 and 1, which establishes how much weight is attributed
to the physics-based loss. The procedure for the computation of the loss for one batch of data is summarised in
figure 7. In figure 8 the overall procedure to physics inform the neural network: the creation of the training set,
computation of the data-driven and physics-based losses and the action of the optimizer in updating the weights.

Many variations to the formulations and definitions of PINN have been introduced in the last years,17 but
for consistency, we decided to use the name “physics informed” for the methodology proposed in this paper,
although some details must be discussed:

• In the form originally proposed, NN were “physics informed” by implementing partial differential equation
(PDE) without solving them.17 In this paper instead, the physics-based loss is computed by solving the
kinematic relationships for given four-bar parameters.

• The methodology proposed in this research is substantially mesh-free, which is a property peculiar to
PINNs as proposed in the literature.

• Eventually, both approaches are partially data-driven and partially based on physical laws.
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Figure 7. Summary on the computation of physics-
based loss and data-driven loss for training. Focus on
one element of a batch.

Figure 8. Training set generation, training procedure of the
physics-informed neural network, computation of the overall
loss and weights update.

For all these considerations, it looked suitable to use the terminology “physics informed” also for the neural
network under study, although it is essential remarking that in literature the terminology mainly refers to partial
differential equations.

5. PHYSICS INFORMED VS REGULAR NEURAL NETWORKS

There are a few hyper-parameters that regulate the training process: the number and type of layers in the
network, the nature and learning rate of the optimizer chosen, etc. However, particular attention should be
given to the regularization term λ, which assesses how much the physics-informed loss must be accounted for in
equation 7. Therefore, the training procedure described in section 4 is applied for the training of three generative
neural networks:

• The first neural network is trained with λ = 0. This forces the network to use only the data-driven loss so
that the training follows the traditional scheme.

• A second neural network is trained with λ = 0.3. In this way, much of the gradient descent is driven by
the data loss, whereas the effect of the physics injection is minor.

Figure 9. Example of trajectories generated by the three
neural networks.

Figure 10. Another example of trajectories generated by the
three neural networks.

Proc. of SPIE Vol. 12489  124890L-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 May 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



• A third neural network is trained by accounting for λ = 0.9. The resulting network massively depends on
the physics contribution.

To compare the three approaches, the following method is adopted.

1. A random combination of the four-bar parameters, among the ranges introduced in table 1 is selected, and
the true trajectory plotted by the multibody software.

2. The true trajectory are fed into the three neural networks to obtain the six estimated parameters for each
of them.

3. The estimated parameters are passed to the multibody software to obtain the three estimated trajectories.

This procedure is applied 100 times. In figure 9 and 10 two results that are representative of case history. The
original (true) trajectory is depicted in red. In blue, the trajectory generated by the neural network fully data-
driven (λ = 0). In orange, the trajectory generated by the network trained with λ = 0.3 Finally, the trajectory
generated by the network mostly physics-informed (λ = 0.9) is coloured in green.
From the study, some considerations can already be drawn, even though it is not feasible to derive generally
valid conclusions in this phase of the research. It seems evident that for this specific case study, the “traditional”
neural network is incapable of estimating the mechanism’s parameters. Then, it is not able to invert the function
g as defined in section 3.
Nevertheless, the two physics informed networks seem able to approximate the function g−1. In detail, the
network with a minor physics contribution (λ = 0.3) yields consistently better results, suggesting that the
contribution of the data-driven loss is still crucial for the proper training of the network.
It is crucial to underline that this training procedure requires running simulations at every data batch evaluated
in training, which means that, in this case, the training time increases by a factor of 5 circa.

6. CONCLUSION

This paper proposes a possible approach for the automatic synthesis of mechanisms, based on a generative
physics-informed network applied to the trajectory generation problem. Although not strictly necessary for the
scope, a multibody software has been exploited, so that the same methodology can be extended to other similar
cases (which goes beyond the simple kinematic relationships among rigid bodies).
The results show how the implementation of the physics-informed loss greatly improves the final performance of
the generative network. Moreover, it seems that a lower contribution of the physics loss with respect to the data
loss yields better performances. Nevertheless, it is still not clear if there exists an optimal value for the weight
attributed to the physical loss.
It is worth mentioning also that this improvement in performance comes at a higher training time.
The next steps on the topic of automatic mechanism synthesis must involve the generalization of this approach
to include more four-bar parameters, so as to increase the plethora of possible trajectories that can be generated.
This might be achieved by increasing the range of the parameters already considered, by adding AE and BE
among the variables and by varying the span of the angle α. The performance of a generative adversarial network
(GAN) should be accounted for in future works as well.
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