
Simultaneously Updating All Persistence Values in Reinforcement Learning

Luca Sabbioni1, Luca Al Daire1, Lorenzo Bisi2, Alberto Maria Metelli1, Marcello Restelli1

1Politecnico di Milano, Milan, Italy
2ML cube, Milan, Italy
luca.sabbioni@polimi.it

Abstract

In reinforcement learning, the performance of learning agents
is highly sensitive to the choice of time discretization. Agents
acting at high frequencies have the best control opportunities,
along with some drawbacks, such as possible inefficient explo-
ration and vanishing of the action advantages. The repetition
of the actions, i.e., action persistence, comes into help, as
it allows the agent to visit wider regions of the state space
and improve the estimation of the action effects. In this work,
we derive a novel All-Persistence Bellman Operator, which
allows an effective use of both the low-persistence experience,
by decomposition into sub-transition, and the high-persistence
experience, thanks to the introduction of a suitable bootstrap
procedure. In this way, we employ transitions collected at any
time scale to update simultaneously the action values of the
considered persistence set. We prove the contraction prop-
erty of the All-Persistence Bellman Operator and, based on
it, we extend classic Q-learning and DQN. After providing a
study on the effects of persistence, we experimentally evaluate
our approach in both tabular contexts and more challenging
frameworks, including some Atari games.

Introduction
In recent years, Reinforcement Learning (RL, Sutton and
Barto 2018) methods have proven to be successful in a wide
variety of applications, including robotics (Kober and Pe-
ters 2014; Gu et al. 2017; Haarnoja et al. 2019; Kilinc, Hu,
and Montana 2019), autonomous driving (Kiran et al. 2021)
and continuous control (Lillicrap et al. 2016; Schulman et al.
2017). These sequential decision-making problems are typi-
cally modelled as a Markov Decision Process (MDP, Puter-
man 2014), a formalism that addresses the agent-environment
interactions through discrete-time transitions. Continuous-
time control problems, instead, are usually addressed by
means of time discretization, which induces a specific con-
trol frequency f , or, equivalently, a time step δ = 1

f (Park,
Kim, and Kim 2021). This represents an environment hyper-
parameter, which may have dramatic effects on the process of
learning the optimal policy (Metelli et al. 2020; Kalyanakrish-
nan et al. 2021). Indeed, higher frequencies allow for greater
control opportunities, but they have significant drawbacks.
The most relevant one is related to the toned down effect of

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the selected actions. In the limit for time discretization δ → 0,
the advantage of each action collapses to zero, preventing the
agent from finding the best action (Baird 1994; Tallec, Blier,
and Ollivier 2019). Even policy gradient methods are shown
to fail in this (near-)continuous-time setting, and the reason
is related to the divergent variance of the gradient (Park, Kim,
and Kim 2021). The consequences of each action might be
detected if the dynamics of the environment has the time to
evolve, hence with an agent acting with higher frequencies
lead to higher sample complexity.

Another consequence of the use of high frequencies is re-
lated to the difficulty of exploration. A random uniform policy
played at high frequency may not be adequate, as in some
classes of environments, including the majority of real-world
control problems, it tends to visit only a local neighborhood
of the initial state (Amin et al. 2021; Park, Kim, and Kim
2021; Yu, Xu, and Zhang 2021). This is problematic, espe-
cially in goal-based or sparse rewards environments, where
the most informative states may never be visited. On the other
hand, large time discretizations benefit from a higher proba-
bility of reaching far states, but they also deeply modify the
transition process, hence a possibly large subspace of states
may not be reachable.

One of the solutions to achieve the advantages related to
exploration and sample complexity, while keeping the control
opportunity loss bounded, consists in action persistence or
action repetition (Schoknecht and Riedmiller 2003; Braylan
et al. 2015; Lakshminarayanan, Sharma, and Ravindran 2017;
Metelli et al. 2020), which is equivalent to acting at lower fre-
quencies. Thus, the agent can achieve, in some environments,
a more effective exploration, better capture the consequences
of each action, and fasten convergence to the optimal policy.

In this work, we propose a value-based approach in which
the agent does not only choose the action, but also its per-
sistence, with the goal of making the most effective use of
samples collected at different persistences. The main con-
tribution of this paper is a general approach in which infor-
mation collected from the interaction with the environment
at one persistence is used to improve the action value func-
tion estimates of all the considered possible persistences. On
one hand, the κ-step transitions can be decomposed in many
sub-transitions of reduced length and used to update lower
persistence k ≤ κ value functions. On the other hand, they
represent partial information for the estimation of the effects

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9668

of higher persistence k > κ actions. Indeed, they can be
employed to update the estimates by using a suitable boot-
strapping procedure of the missing information. Thus, all
value function estimates are updated simultaneously for each
of the available persistences k ∈ K. We formalize this pro-
cedure by introducing the All-persistence Bellman Operator.
We prove that such an operator enjoys a contraction property
analogous to that of the traditional optimal Bellman operator.
Consequently, we embed the All-persistence Bellman opera-
tor into the classic Q-learning algorithm, obtaining Persistent
Q-learning (PerQ-learning). This novel algorithm, through
an effective use of the transitions sampled at different per-
sistences, displays two main advantages. First, since each
individual transition is employed to update the value function
estimates at different persistences, we experience a faster con-
vergence. Second, the execution of persistent actions, given
the nature of a large class of environments, fosters explo-
ration of the state space, with a direct effect on the learning
speed. Furthermore, to deal with more complex domains,
we move to the Deep RL scenario, extending the Deep Q-
Network (DQN) algorithm to its persistent version, called
Persistent Deep Q-Network (PerDQN). Finally, we evaluate
the proposed algorithms, in comparison with state-of-the-art
approaches, on illustrative and complex domains, highlight-
ing strengths and weaknesses. The proofs and further results
are reported in Appendix.1

Related Work
The first work extending RL agents with action repetition,
go back to Schoknecht and Riedmiller 2003. In this paper,
multi-step actions (MSAs) were introduced, reducing the
number of decisions needed to reach the goal and making
the time scale coarser. Action persistence has acquired practi-
cal relevance since the introduction of Deep RL (Mnih et al.
2013), by leveraging the frame skip parameter (Bellemare
et al. 2013). Several works (Braylan et al. 2015; Khan et al.
2019; Metelli et al. 2020) had shown the importance of per-
sistence for helping exploration and policy learning. Among
these works, Dabney, Ostrovski, and Barreto 2020 introduced
an ϵz−greedy exploration, with a random exploratory vari-
able deciding the duration of each action. As explained in
Metelli et al. 2020, changing frequency deeply modifies the
underlying MDP, as a special instance of a configurable MDP
(Metelli, Mutti, and Restelli 2018), where environmental pa-
rameters can be tuned to improve the performance. Indeed, in
Grigsby, Yoo, and Qi 2021 the authors proposed an algorithm
to automatically tune the control frequency, along with other
learning hyperparameters. Mann, Mannor, and Precup 2015
illustrates that approximate value iteration techniques can
converge faster with action persistence (seen as options with
longer duration).

Action repetition has many advantages, but it may reduce
the control opportunities. Consequently, researchers have
been trying to include the possibility to dynamically change
the control frequency during learning: in Augmented-DQN
(Lakshminarayanan, Sharma, and Ravindran 2017), the ac-

1The full version of the paper, including the appendix, is avail-
able at http://arxiv.org/abs/2211.11620

tion space is duplicated to be able to choose actions with two
previously selected repetition rates.

A different approach is proposed in Sharma, Srinivas, and
Ravindran 2017, where a skip network is used to the action
persistence in a specific state, regardless of the chosen action.
One way to differentiate persistences with actions is proposed
by TempoRL (Biedenkapp et al. 2021), where the skip net-
work depends on both state and action (and the estimated
Q-value function) to evaluate the effects for different possible
frequencies. In G. Bellemare et al. 2016, persistent advan-
tage learning is proposed in which the advantage learning
is overridden by a Q-learning update with repeated actions,
when the latter promises better Q-values.

In the framework of policy-gradient methods, persistence
is introduced in Yu, Xu, and Zhang 2021, with the introduc-
tion of a secondary policy for choosing whether to repeat
the previous action or to change it according to the principal
agent. A completely different approach is presented by Park,
Kim, and Kim 2021: the authors claim that when δ → 0
policy-based methods tend to degrade. Thanks to the intro-
duction of a safe region, the agent keeps repeating an action
until the distance of the visited states overcomes a certain
threshold. This state locality can guarantee reactivity, espe-
cially in some environments where the blind repetition of an
action can be dangerous.

Preliminaries
In this section, we provide the necessary background em-
ployed in the following of the paper.

Mathematical Background Given a measurable space
(X , σX), where X is a set and σX a σ-algebra, we denote
with P(X) the set of probability measures and with B(X)
the set of the bounded measurable functions. We denote with
δx the Dirac measure centered in x ∈ X . Let f ∈ B(X), the
L∞-norm is defined as ∥f∥∞ = supx∈X f(x).

Markov Decision Processes A discrete-time Markov De-
cision Process (MDP, Puterman 2014) is defined as a tuple
M := ⟨S,A, P, r, γ⟩, where S is the state space,A the finite
action space, P : S×A →P(S) is the Markovian transition
kernel, r : S × A → R is the reward function, bounded as
∥r∥∞ ≤ Rmax < +∞, and γ ∈ [0, 1) is the discount factor.
A Markovian stationary policy π : S →P(A) maps states
to probability measures over A. We denote with Π the set
of Markovian stationary policies. The action-value function,
or Q-function, of a policy π ∈ Π is the expected discounted
sum of the rewards obtained by performing action a in state
s and following policy π thereafter:

Qπ(s, a) = E
π

[+∞∑
t=0

γtrt+1|s0 = s, a0 = a
]
,

where rt+1 = r(st, at), at ∼ π(·|st), and st+1 ∼ P (·|st, at)
for all t ∈ N. The optimalQ-function is given by:Q⋆(s, a) =
supπ∈ΠQ

π(s, a) for all (s, a) ∈ S ×A. A policy π is
greedy w.r.t. a function f ∈ B(S ×A) if it plays only greedy
actions, i.e., π(·|s) ∈P (argmaxa∈A f(s, a)). An optimal
policy π⋆ ∈ Π is any policy which acts greedily w.r.t. Q⋆.

9669

Algorithm 1: All Persistence Bellman Update

Require: Sampling persistence κt, partial history Hκt
t ,

Q-function Q.
Ensure: Updated Q-function Q

1: for j=κt,κt−1...,1 do
2: for i=j−1,j−2,...,0 do
3: k←j−i
4: Q(st+i,at,k)←(1−α)Q(st+i,at,k)+

5: αT̂ ⋆t+iQ(st+i,at,k)
6: for d=1,2,...,Kmax−k do
7: Q(st+i,at,k+d)←(1−α)Q(st+i,at,k+d)+

8: αT̂ kt+iQ(st+i,at,k+d)
9: end for

10: end for
11: end for

Q-learning We make use of the Bellman Optimal Op-
erator T ⋆ : B(S ×A) → B(S ×A), defined as
in (Bertsekas and Shreve 1996): (T ⋆f)(s, a) = r(s, a) +
γ
∫
S P (ds

′|s, a)maxa′∈A f(s
′, a′). T ⋆ is a γ-contraction

in L∞-norm and its unique fixed point is the optimal Q-
function. When P and r are known, value-iteration (Puter-
man 2014) allows computing Q⋆ via iterative application of
T ⋆. When the environment is unknown, Q-learning (Watkins
1989) collects samples with a behavioral policy (e.g., ϵ-
greedy) and then updates Q-function estimate based on the
updated rule: Q(st, at) ← (1 − α)Q(st, at) + α(rt+1 +
γmaxa′∈AQ(st+1, a

′)). where α > 0 is the learning rate.

Deep Q-Networks Deep Q-Network (DQN, Mnih et al.
2013, 2015) employs a deep neural network with weights
θ to learn an approximation Qθ of Q⋆. The transitions are
stored in the replay buffer D = {(st, at, rt+1, st+1)}nt=1
to mitigate temporal correlations. To improve stability, a
target network, whose parameters θ− are kept fixed for a
certain number of steps, is employed. The Q-Network is
trained to minimize the mean squared temporal difference
error r + γmaxa′∈AQθ−(s′, a′) − Qθ(s, a) on a batch of
tuples sampled from the replay buffer (s, a, r, s′) ∼ D.

Action Persistence The execution of actions with a per-
sistence k ∈ N can be modeled by means of the k-
persistent MDP (Metelli et al. 2020), characterized by the
k-persistent transition model Pk and reward function rk. To
formally define them, the persistent transition model is in-
troduced: P δ(·, ·|s, a) =

∫
S P (ds

′|s, a)δ(s′,a)(·, ·), which
replicates in the next state s′ the previous action a. Thus,
we have Pk(·|s, a) =

(
(P δ)k−1P

)
(·|s, a) and rk(s, a) =∑k−1

i=0 γ
i
(
(P δ)ir

)
(s, a). This framework eases the analysis

of fixed persistences, but it does not allow action repetition
for a variable number of steps.

All-Persistence Bellman Update
In this section, we introduce our approach to make effective
use of the samples collected at any persistence. We first in-
troduce the notion of persistence option and then, we present
the all-persistence Bellman operator.

Algorithm 2: Persistent Q-learning (PerQ-learning)

Require: Learning rate α, exploration coefficient ϵ,
number of episodes N

Ensure: Q-function
1: Initialize Q arbitrarily, Q(terminal, ·, ·) = 0
2: for episode = 1, . . . , N do
3: t← 0
4: while st is not terminal do
5: at, κt ∼ ψϵQ(st)
6: for τ = 1, . . . , κt do
7: Take action at, observe st+τ , rt+τ
8: end for
9: Store partial history Hκt

t
10: Update Q according to Alg.1
11: t← t+ κt
12: end while
13: end for

Persistence Options
We formalize the decision process in which the agent chooses
a primitive action a together with its persistence k. To this
purpose, we introduce the persistence option.
Definition 0.1 Let A be the space of primitive actions of an
MDP M and K := {1, . . . ,Kmax}, where Kmax ≥ 1, be
the set of persistences. A persistence option o := (a, k) is
the decision of playing primitive action a ∈ A with persis-
tence k ∈ K. We denote with O(k) := {(a, k) : a ∈ A}
the set of options with fixed persistence k ∈ K and O :=⋃
k∈KO(k) = A×K.

The decision process works as follows. At time t = 0, the
agent observes s0 ∈ S, selects a persistence option o0 =
(a0, k0) ∈ O, observes the sequence of states (s1, . . . , sk0)
generated by repeating primitive action a0 for k0 times, i.e.,
si+1 ∼ P (·|si, a0) for i ∈ {0, . . . , k0 − 1}, and the se-
quence of rewards (r1, . . . , rk0) with ri+1 = r(si, a0) for
i ∈ {0, . . . , k0 − 1}. Then, in state sk0 the agent selects
another option o1 = (a1, k1) ∈ O and the process repeats.
During the execution of the persistence option, the agent is
not allowed to change the primitive action.2

Remark 0.1 (Persistence and Options) The persistence
option (Definition 0.1) is in all regards a semi-Markov op-
tion (Precup 2001), where the initiation set is the set of all
states S , the termination condition depends on time only, and
the intra-option policy is constant. Indeed, the described pro-
cess generates a semi-Markov decision process (Puterman
2014), fully determined by the behavior ofM, as shown in
(Sutton, Precup, and Singh 1999).

Remark 0.2 (Persistence Options vs Augmented Action
Space) There is an important difference between using per-
sistence options O in the original MDP M and defining
an augmented MDPMK with new action space A×K and
properly redefined transition model and reward function (Lak-
shminarayanan, Sharma, and Ravindran 2017): when exe-
cuting a persistence option ot = (at, kt) ∈ O at time t,

2From this definition, it follows that A is isomorphic to O(1).

9670

2 4 6 8 10 12 14 16

Max Persistence

K
em

Open
Cliff

Bridge
Zigzag

Figure 1: Normalized Kemeny’s constant in tabular environ-
ments as function of Kmax. Bullets represent the minimum.

we observe the full sequence of states (st+1, . . . , st+kt) and
rewards (rt+1, . . . , rt+kt). Instead, in the augmented MDP
MK we only observe the last state skt and the cumulative
reward rkt+1 =

∑k−1
i=0 γ

irt+i+1. We will heavily exploit the
particular option structure, re-using fragments of experience
to perform intra-option learning.

We now extend the policy and state-action value func-
tion definitions to consider this particular form of options.
A Markovian stationary policy over persistence options
ψ : S → P(O) is a mapping between states and proba-
bility measures over persistence options. We denote with Ψ
the set of the policies of this nature. The state-option value
function Qψ : S × O → R following a policy over options
ψ ∈ Ψ is defined as Qψ(s, a, k) := Eψ

[∑+∞
t=0 γ

trt+1|s0 =

s, a0 = a, k0 = k
]
. In this context, the optimal action-value

function is defined as: Q⋆K(s, a, k) = supψ∈ΨQ
ψ(s, a, k).

All-Persistence Bellman Operator
Our goal is to leverage any κ-persistence transition to learn
Q⋆K(·, ·, k) for all the possible action-persistences in k ∈ K.
Suppose that κ ≥ k, then, we can exploit any sub-transition
of k steps from the κ-persistence transition to update the
value Q⋆K(·, ·, k). Thus, we extend the Bellman optimal op-
erator to persistence options T ⋆ : B(S ×O)→ B(S ×O)
with f ∈ B(S ×O):

(T ⋆f)(s,a,k)=rk(s,a)+γk

∫
S
Pk(ds

′|s,a) max
(a′,k′)∈O

f(s′,a′,k′).

If, instead, κ < k, in order to update the value Q⋆K(·, ·, k),
we partially exploit the κ-persistent transition, but then, we
need to bootstrap from a lower persistence Q-value, to com-
pensate the remaining k − κ steps. To this end, we introduce
the bootstrapping operator
Tκ : B(S ×O)→ B(S ×O) with f ∈ B(S ×O):(
Tκf

)
(s,a,k)=rκ(s,a)+γ

κ

∫
S
Pκ(ds

′|s,a)f(s′,a,k−κ).

By combining these two operators, we obtain the All-
Persistence Bellman operatorHκ : B(S×O)→ B(S×O)
defined for every f ∈ B(S × O) as: (Hκf)(s, a, k) =(
(1k≤κT

⋆ + 1k>κT
κ)f

)
(s, a, k). Thus, given a persistence

κ ∈ K,Hκ allows updating all the Q-values with k ≤ κ by

0 50 100 150 200

0

50

100

Iteration t

E
rr
or

∞

Q-learning
PerQ-learning

0 50 100 150 200

0

50

100

Iteration t

E
rr
or

∞
(k
)

1 2
3 4
5 6

Figure 2: (Left) L∞ error on 6x6 grid-world between syn-
chronous Q-learning and PerQ-learning. (Right) L∞ error of
PerQ-learning for k ∈ {1, ..., 6}. (100 runs, avg ± 95 % c.i.)

means of T ⋆, and all the ones with k > κ by means of Tκ.
The following result demonstrates its soundness.

Theorem 0.1 The all-persistence Bellman operatorHκ ful-
fills the following properties:
1. Hκ is a γ-contraction in L∞ norm;
2. Q⋆K is its unique fixed point;
3. Q⋆K is monotonic in k, i.e., for all (s, a) ∈ S ×A if
k ≤ k′ then Q⋆K(s, a, k) ≥ Q⋆K(s, a, k′).

Thus, operator Hκ contracts to the optimal action-value
function Q⋆K, which, thanks to monotonicity, has its high-
est value at the lowest possible persistence. In particular,
it is simple to show that Q⋆K(s, a, 1) = Q⋆(s, a) for all
(s, a) ∈ S ×A, i.e., by fixing the persistence to k = 1 we
retrieve the optimal Q-function in the original MDP, and con-
sequently, we can reconstruct a greedy optimal policy. This
highlights that the primitive action space leads to the same
optimal Q-function as with persistence options. Persistence,
nevertheless, is helpful for exploration and learning, but for
an optimal persistent policy ψ∗, there exists a primitive policy
π∗ with the same performance.

Persistent Q-learning
It may not be immediately clear what are the advantages of
Hκ over traditional updates. These become apparent with its
empirical counterpart Ĥκt = 1k≤κT̂

⋆
t + 1k>κT̂

κ
t , where:(

T̂ ⋆t Q
)
(st, at, k) = rkt+1 + γk max

(a′,k′)∈O
Q(st+k, a

′, k′),(
T̂κt Q

)
(st, at, k) = rκt+1 + γκQ(st+k, at, k − κ).

These empirical operators depend on the cur-
rent partial history, which we define as: Hκ

t :=
(st, at, rt+1, st+1, rt+2, . . . , st+κ), used by Algorithm
1 to update each persistence in a backward fashion, as
illustrated also in Appendix B. At timestep t, given a
sampling persistence κt, for all sub-transitions of Hκ

t ,
starting at t + i and ending in t + j, we apply Ĥj−it to
Q(st+i, at, k + d), for all d ≤ Kmax − k, where k = j − i.

With these tools, it is possible to extend Q-learning
(Watkins 1989) to obtain the Persistent Q-learning algorithm
(abbreviated as PerQ-learning), described in Algorithm 2.
The agent follows a policy ψϵQ, which is ϵ-greedy w.r.t. the
option space and the current Q-function.

9671

Algorithm 3: Multiple Replay Buffer Storing

Require: Maximum persistence Kmax, replay buffers
(Dk)Kmax

k=1 , transition tuple (st, at, κt, H
κt
t).

1: for k = 1, . . . ,Kmax do
2: for τ = 0, . . . ,max{κt − k, 0} do
3: Dk ← Dk ∪ (st+τ , at, st+τ+k, r

k
t+1+τ , k)

4: end for
5: for τ = 1, . . . ,min{κt, k − 1} do
6: Dk ← Dk ∪ (st+κt−τ , at, st+κt , r

τ
t+1+κt−τ , τ)

7: end for
8: end for

This approach extends the MSA-Q-learning (Schoknecht
and Riedmiller 2003), by bootstrapping higher persistence
action values from lower ones. More precisely, both methods
apply the update related to T̂ ⋆, but MSA-Q-learning does not
use T̂κ instead. As shown in the empirical analysis, in some
domains this difference can be crucial to speed up the conver-
gence. Similarly to MSA-Q-learning, we perform backwards
updates to allow for an even faster propagation of values. The
proposed approach also differs from TempoRL Q-learning
(Biedenkapp et al. 2021), where action-persistence is selected
using a dedicated value-function, learned separately from the
Q-function. The asymptotic convergence of Persistent Q-
learning to Q⋆K directly follows (Singh et al. 2000), beingHκ
a contraction and since their (mild) assumptions are satisfied.

Empirical Advantages of Persistence
In this section, we provide some numerical simulations to
highlight the benefits of our approach. The settings are illus-
trative, to ease the detection of the individual advantages of
persistence, before presenting more complex applications.

Exploration One of the main advantages of persistence is
related to faster exploration, especially in goal-based environ-
ments (e.g., robotics and locomotion tasks). Indeed, persist-
ing an action allows reaching faster states far from the starting
point and, consequently, propagating faster the reward. The
reason is due to the increased chances of 1-persistent policies
to get stuck in specific regions. As explained in (Amin et al.
2021), persistence helps to achieve self-avoiding trajectories,
by increasing the expected return time in previously visited
states. Hence, we study the effects of a persisted exploratory
policy on the MDP, i.e., a policy ψ ∈ Ψ over persistence
options O (details in Appendix C of the complete version of
the paper).

To this purpose, we compute the Kemeny’s constant (Catral
et al. 2010; Patel, Agharkar, and Bullo 2015), which corre-
sponds to the expected first passage time from an arbitrary
starting state s to another one s′ under the stationary distri-
bution induced by ψ. We consider four discrete tabular envi-
ronments: Open is a 10x10 grid with no obstacles, while the
others, presented in (Biedenkapp et al. 2021), are depicted in
the appendix. In Figure 1, we plot the variations of Kemeny’s
constant as a function of the maximum persistence Kmax,
while following a uniform policy ψ over O. We observe that
increasing Kmax promotes exploration, and highlights the

0 1 2 3 4 5
·105

−200

−150

−100

Step

R
et
ur
n

Mountain Car

DQN PerDQN(8)
PerDQN(16) TempoRL(8)
TempoRL(16)

Figure 3: MountainCar results. Parenthesis in the legend
denote Kmax. 20 runs (avg± 95% c.i.).

different Kmax attaining the minimum value of the constant,
due to the different complexity of the environments.

Sample Complexity The second relevant effect of persis-
tence concerns with the sample complexity. The intuition
behind persistence relies on the fact that the most relevant
information propagates faster through the state-action space,
thanks to multi-step updates. Moreover, these updates are
associated to a lower discount factor, for which it is possible
to obtain better convergence rates, as proved in (Metelli et al.
2020), in which the sample complexity in a k−persistent
MDP is reduced by a factor (1− γk)/(1− γ) > 1. In order
to evaluate the sample efficiency of PerQ-learning, separately
from its effects on exploration, we considered a synchronous
setting (Kearns and Singh 1999; Sidford et al. 2018) in a
deterministic 6x6 Gridworld. At each iteration t, the agent
has access to a set of independent samples for each state-
action pair. In standard Q-learning, for each (s, a) ∈ S ×A,
Q(s, a) is updated. In PerQ-learning, the samples are com-
bined to obtain each possible set of κ-persistent transitions,
i.e., the tuples related to each possible (s, a, k) ∈ S × O,
with Kmax = 6; finally, the persistent Q function is updated.

In Figure 2 left, we compare the L∞ error of Q-learning
estimating Q⋆(s, a), i.e., maxs,a∈S×A |Qt(s, a)−Q⋆(s, a)|,
and that of PerQ-learning estimating Q⋆K(s, a, k), i.e.,
maxs,a,k∈S×O |Qt(s, a, k) − Q⋆K(s, a, k)|, as a function of
the number of iterations t. We observe that, although esti-
mating a higher-dimensional function (as Q⋆K(s, a, k) is a
function of the persistence k too), PerQ-learning converges
faster thanQ-learning. In Figure 2 right, we plot the L∞ error
experienced by PerQ-learning for the different persistence
options O(k), i.e.,, for k ∈ K:

Error∞(k) := max
s,a∈S×A

|Qt(s, a, k)−Q⋆(s, a, k)|.

As expected, higher values of k lead to faster convergence;
consequently, the persistent Bellman operator helps improv-
ing the estimations also for the lower option sets. Indeed, we
can see that also Qt(·, ·, 1), the primitive actions Q-function,
converges faster than classic Q-learning (details in Appendix
E of the complete version of the paper).

Persistent Deep Networks
In this section, we develop the extension of PerQ-learning to
high-dimensional settings. Deep RL methods are becoming

9672

−1

0

1

R
et
ur
n

FrozenLake

−1

0

1

Cliff

−1

0

1

Bridge

−1

0

1

ZigZag

0 2,000 4,000 6,000

−1

0

1

Step

R
et
ur
n

0 200 400 600

−1

0

1

Step
0 200 400 600

−1

0

1

Step
0 200 400 600

−1

0

1

Step

Q-learning PerQ-learning(4) PerQ-learning(8) PerQ-learning(16) TempoRL(8)

Figure 4: Results on tabular environments. Top row: performances with different maximum persistences. In the legend, parenthesis
denote the selected Kmax. Bottom row: PerQ-learning and TempoRL comparison, Kmax = 8. 50 runs (avg± 95% c.i.).

of fundamental importance when learning on real systems,
as well as the research of methods to improve exploration
and learning speed. It is straightforward to exploit Deep Q-
Networks (DQN (Mnih et al. 2013, 2015)) for learning in the
options space O. Standard DQN is augmented with Kmax

distinct sets of action outputs, to represent Q-value of the
options space O = A×K, while the first layers are shared,
similarly to previous works (Arulkumaran et al. 2016; Laksh-
minarayanan, Sharma, and Ravindran 2017; Biedenkapp et al.
2021). The resulting algorithm, Persistent Deep Q-Network
(PerDQN) is obtained by exploiting the application of the
empirical all-persistence Bellman operator. The main differ-
ences between PerDQN and standard DQN consist in: (i) a
modified ϵ-greedy strategy, which is equivalent to the one
described for its tabular version; (ii) the use of multiple replay
buffers accounting for persistence.

Persistence Replay Buffers Whenever an option ot =
(at, κt) is executed, the partial history Hκt

t is decomposed in
all its sub-transitions, which are used to update Q-values at
any persistence, as shown in the previous sections. The sub-
transitions are stored in multiple replay buffers Dk, one for
each persistence k ∈ K. Specifically, Dk stores tuples in the
form (s, at, s

′, r, κ), as summarized in Algorithm 3, where
s and s′ are the first and the last state of the sub-transition,
r is the κ-persistent reward, and κ is the true length of the
sub-transition, which will then be used to suitably apply Ĥκt .

Finally, the gradient update is computed by sampling a
mini-batch of experience tuples from each replay buffer Dk,
in equal proportion. Given the current network and target
parametrizations θ and θ−, the temporal difference error of
a sample (s, a, r, s′, κ) is computed as ĤκQθ−(s, a, k) −
Qθ(s, a, k). Our approach differs from TempoRL DQN
(Biedenkapp et al. 2021), which uses a dedicated network
to learn the persistence at each state and employs a standard
replay buffer, ignoring the persistence at which samples have
been collected.

Experimental Evaluation
In this section, we show the empirical analysis of our ap-
proach on both the tabular setting (PerQ-learning) and the
function approximation one (PerDQN).

PerQ-learning We present the results on the experiments
in tabular environments, particularly suited for testing PerQ-
learning because of the sparsity of rewards. We start with the
deterministic 6x10 grid-worlds introduced by Biedenkapp
et al. 2021. In these environments, the episode ends if either
the goal or a hole is reached, with +1 or −1 points respec-
tively. In all the other cases, the reward is 0, and the episode
continues (details in Appendix F.1). Moreover, we experi-
ment the 16x16 FrozenLake, from OpenAI Gym benchmark
(Brockman et al. 2016), with rewards and transition process
analogous to the previous case, but with randomly generated
holes at the beginning of the episode.

The results are shown in Figure 4. In the top row, we
compare the results on the performance when applying PerQ-
learning with different Kmax ∈ {4, 8, 16}. We can detect a
faster convergence when passing from Kmax = 4 to 8. How-
ever, the largest value of Kmax is not always the best one:
while Bridge and Cliff show a slight improvement, perfor-
mances in ZigZag and FrozenLake degrade. This is proba-
bly due to the nature of the environment. When there are
many obstacles, high persistences might be inefficient, as the
agent can get stuck or reach holes more easily. In the bottom
plots of Figure 4 we selected the results with Kmax = 8,
and compared them with TempoRL (with the same maxi-
mum skip-length J = 8) and classic Q-learning. In all cases,
PerQ-learning outperforms the other methods, especially Q-
learning, whose convergence is significantly slower. explo-
ration is very small. With this maximum persistence value
PerQ-learning outperforms TempoRL. Further experiments
with different values of Kmax have been reported in Ap-
pendix G.1. In general, PerQ-learning shows faster rates of
improvements than TempoRL, especially in the first learning
iterations. However, this advantage may not be consistent for

9673

0 0.2 0.4 0.6 0.8 1
·106

0

10

20

30
R
et
ur
n

Freeway

0 1 2

·106
0

200

400

600

800

1,000
Qbert

0 1 2

·106
0

500

1,000

MsPacman

0 1 2

·106
0

100

200

300

400

Step

R
et
ur
n

Enduro

0 1 2

·106
0

500

1,000

Step

Kangaroo

0 1 2

·106
0

100

200

300

Step

Seaquest

PerDQN(4)

MSA-DQN(4)

DQN

TempoRL(4)

Figure 5: Atari games results. Parenthesis in the legend denote the maximum persistence Kmax. 5 runs (avg± 95% c.i.).

every value of Kmax, and every environment, as also shown
in Appendix G.1.

PerDQN Our implementation of PerDQN is based on Ope-
nAI Gym (Brockman et al. 2016) and Baselines (Dhariwal
et al. 2017) Python toolkits. We start with MountainCar
(Moore 1991), as it is perhaps the most suited to evaluate
the performance of persistence options. As shown in (Metelli
et al. 2020), 1-step explorative policies usually fail to reach
the goal. Figure 3 shows that TempoRL and DQN cannot con-
verge to the optimal policy, as already noticed in (Biedenkapp
et al. 2021), while PerDQN attains the optimal solution, that
reaches the top of the mountain with the minimum loss.

The algorithm is then tested in the challenging framework
of Atari 2600 games, where we want to validate that action
persistence is beneficial to speed up the initial phases of
learning also in large environments.

The same architecture from (Mnih et al. 2013), suitably
modified as in the previous section, is used for all environ-
ments. For a fair comparison with TempoRL and standard
DQN, persistence is implemented on top of the frame skip.
Thus, a one-step transition corresponds to 4 frame skips. In
Figure 5 we compare PerDQN with TempoRL and classic
DQN. In five games out of six, our PerDQN displays a faster
learning curve thanks to its ability of reusing experience,
although in some cases (e.g. Kangaroo) PerDQN seems to
inherit the same instability issues of DQN, we conjecture
due to the overestimation bias (van Hasselt, Guez, and Silver
2016). In order to better understand which beneficial effects
are provided by action persistence alone and which ones de-
rive from the use of bootstrap operator, we run an ablation
experiment on the same tasks removing the latter one. The
resulting algorithm is then similar to the Deep RL version of
MSA-Q-learning (Schoknecht and Riedmiller 2003), which
we called MSA-DQN. The results show that PerDQN always
dominates over its counterpart without bootstrap. The crucial
importance of the bootstrap operator is confirmed also in the

MountainCar setting where removing this feature causes a
performance decrease, making its score comparable to Tem-
poRL (see Appendix G.2). Finally, we notice that in Seaquest
persistence seems to be detrimental for learning, as DQN
clearly outperforms PerDQN. In this task, agents have to
choose either to move or to shoot some moving targets. Per-
sisting the shooting action, thus, may force the agent to stay
still for a long time, hitting nothing. A possible solution could
consist in the introduction of interrupting persistence, in a
similar fashion to interrupting options (Sutton, Precup, and
Singh 1999; Mankowitz, Mann, and Mannor 2014), which is
an interesting future research direction.

Discussion and Conclusions
In this paper, we considered RL policies that implement
action persistence, modeled as persistence options, select-
ing a primitive action and its duration. We defined the all-
persistence Bellman operator, which allows for an effective
use of the experience collected at any time scale, as action-
value function estimates can be updated simultaneously on
the whole persistence set. In particular, low persistences (and
primitive actions) can be updated by splitting the samples
in their sub-transitions; high persistences can instead be im-
proved by bootstrap, i.e. by estimating the partial missing
information. After proving that the new operator is a contrac-
tion, we extended classic Q-learning and DQN to their per-
sistent version. The empirical analysis underlines the benefits
of the new operator for exploration and estimation. Further-
more, the experimental campaign on tabular and deep RL
settings demonstrated the effectiveness of our approach and
the importance of considering temporal extended actions, as
well as some limitations. Future research directions include
the introduction of persistence interruption and techniques to
overcome the overestimation bias. Furthermore, one could
investigate the us of the operator in the actor-critic framework
to cope with continuous actions.

9674

References
Amin, S.; Gomrokchi, M.; Aboutalebi, H.; Satija, H.; and
Precup, D. 2021. Locally Persistent Exploration in Contin-
uous Control Tasks with Sparse Rewards. In International
Conference on Machine Learning, 275–285. PMLR.
Arulkumaran, K.; Dilokthanakul, N.; Shanahan, M.; and
Bharath, A. A. 2016. Classifying options for deep reinforce-
ment learning. arXiv preprint arXiv:1604.08153.
Baird, L. C. 1994. Reinforcement learning in continuous
time: Advantage updating. In Proceedings of 1994 IEEE
International Conference on Neural Networks (ICNN’94),
volume 4, 2448–2453. IEEE.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253–279.
Bertsekas, D.; and Shreve, S. E. 1996. Stochastic optimal
control: the discrete-time case, volume 5. Athena Scientific.
Biedenkapp, A.; Rajan, R.; Hutter, F.; and Lindauer, M. T.
2021. TempoRL: Learning When to Act. In ICML.
Braylan, A.; Hollenbeck, M.; Meyerson, E.; and Miikku-
lainen, R. 2015. Frame skip is a powerful parameter for
learning to play atari. In Workshops at the Twenty-Ninth
AAAI Conference on Artificial Intelligence.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Catral, M.; Kirkland, S. J.; Neumann, M.; and Sze, N.-S.
2010. The Kemeny constant for finite homogeneous ergodic
Markov chains. Journal of Scientific Computing, 45(1): 151–
166.
Dabney, W.; Ostrovski, G.; and Barreto, A. 2020. Temporally-
Extended ϵ-Greedy Exploration. In International Conference
on Learning Representations (ICLR).
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert, M.;
Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and Zhokhov, P.
2017. Openai baselines. https://github.com/openai/baselines.
G. Bellemare, M.; Ostrovski, G.; Guez, A.; Thomas, P.; and
Munos, R. 2016. Increasing the Action Gap: New Opera-
tors for Reinforcement Learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 30(1).
Grigsby, J.; Yoo, J. Y.; and Qi, Y. 2021. Towards Automatic
Actor-Critic Solutions to Continuous Control. In Deep RL
Workshop NeurIPS 2021.
Gu, S.; Holly, E.; Lillicrap, T.; and Levine, S. 2017. Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), 3389–3396.
IEEE.
Haarnoja, T.; Ha, S.; Zhou, A.; Tan, J.; Tucker, G.; and Levine,
S. 2019. Learning to Walk Via Deep Reinforcement Learn-
ing. In Bicchi, A.; Kress-Gazit, H.; and Hutchinson, S., eds.,
Robotics: Science and Systems XV.
Kalyanakrishnan, S.; Aravindan, S.; Bagdawat, V.; Bhatt,
V.; Goka, H.; Gupta, A.; Krishna, K.; and Piratla, V. 2021.

An Analysis of Frame-skipping in Reinforcement Learning.
arXiv preprint arXiv:2102.03718.
Kearns, M.; and Singh, S. 1999. Finite-sample convergence
rates for Q-learning and indirect algorithms. Advances in
Neural Information Processing Systems (NIPS), 996–1002.
Khan, A.; Feng, J.; Liu, S.; and Asghar, M. Z. 2019. Optimal
skipping rates: training agents with fine-grained control using
deep reinforcement learning. Journal of Robotics, 2019.
Kilinc, O.; Hu, Y.; and Montana, G. 2019. Reinforcement
Learning for Robotic Manipulation using Simulated Loco-
motion Demonstrations. CoRR, abs/1910.07294.
Kiran, B. R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab,
A. A.; Yogamani, S.; and Pérez, P. 2021. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transac-
tions on Intelligent Transportation Systems.
Kober, J.; and Peters, J. 2014. Learning Motor Skills - From
Algorithms to Robot Experiments, volume 97 of Springer
Tracts in Advanced Robotics. Springer. ISBN 978-3-319-
03193-4.
Lakshminarayanan, A. S.; Sharma, S.; and Ravindran, B.
2017. Dynamic Action Repetition for Deep Reinforcement
Learning. In Singh, S. P.; and Markovitch, S., eds., Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI), 2133–2139. AAAI Press.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In Bengio, Y.; and
LeCun, Y., eds., 4th International Conference on Learning
Representations (ICLR).
Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2014. Time
regularized interrupting options. In Internation Conference
on Machine Learning (ICML).
Mann, T. A.; Mannor, S.; and Precup, D. 2015. Approximate
Value Iteration with Temporally Extended Actions. J. Artif.
Intell. Res., 53: 375–438.
Metelli, A. M.; Mazzolini, F.; Bisi, L.; Sabbioni, L.; and
Restelli, M. 2020. Control frequency adaptation via ac-
tion persistence in batch reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), 6862–6873.
PMLR.
Metelli, A. M.; Mutti, M.; and Restelli, M. 2018. Config-
urable Markov Decision Processes. In Dy, J. G.; and Krause,
A., eds., Proceedings of the 35th International Conference
on Machine Learning (ICML), volume 80 of Proceedings of
Machine Learning Research, 3488–3497. PMLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. nature, 518(7540): 529–533.
Moore, A. W. 1991. Efficient memory based learning for
robot control. PhD Thesis, Computer Laboratory, University
of Cambridge.

9675

Park, S.; Kim, J.; and Kim, G. 2021. Time Discretization-
Invariant Safe Action Repetition for Policy Gradient Meth-
ods. Advances in Neural Information Processing Systems
(NeurIPS), 34.
Patel, R.; Agharkar, P.; and Bullo, F. 2015. Robotic surveil-
lance and Markov chains with minimal weighted Kemeny
constant. IEEE Transactions on Automatic Control, 60(12):
3156–3167.
Precup, D. 2001. Temporal abstraction in reinforcement
learning. Ph.D. thesis, University of Massachusetts Amherst.
Puterman, M. L. 2014. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons.
Schoknecht, R.; and Riedmiller, M. 2003. Reinforcement
learning on explicitly specified time scales. Neural Comput-
ing & Applications, 12(2): 61–80.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Sharma, S.; Srinivas, A.; and Ravindran, B. 2017. Learning to
repeat: Fine grained action repetition for deep reinforcement
learning. arXiv preprint arXiv:1702.06054.
Sidford, A.; Wang, M.; Wu, X.; Yang, L. F.; and Ye, Y.
2018. Near-optimal time and sample complexities for solv-
ing Markov decision processes with a generative model. In
Proceedings of the 32nd International Conference on Neural
Information Processing Systems, 5192–5202.
Singh, S.; Jaakkola, T.; Littman, M. L.; and Szepesvári,
C. 2000. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine learning, 38(3):
287–308.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artif. Intell., 112(1-2):
181–211.
Tallec, C.; Blier, L.; and Ollivier, Y. 2019. Making Deep
Q-learning methods robust to time discretization. In Chaud-
huri, K.; and Salakhutdinov, R., eds., Proceedings of the
36th International Conference on Machine Learning (ICML),
volume 97 of Proceedings of Machine Learning Research,
6096–6104. PMLR.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep Rein-
forcement Learning with Double Q-Learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 30(1).
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Ph.D. thesis, King’s College, University of Cambridge.
Yu, H.; Xu, W.; and Zhang, H. 2021. TAAC: Temporally
Abstract Actor-Critic for Continuous Control. Advances in
Neural Information Processing Systems (NeurIPS), 34.

9676

