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Abstract 

Laser powder bed fusion (LPBF) as one of the widely used technologies of additive manufacturing (AM), 
has a high capability to produce complex geometries such as notched parts in a layer-by-layer manner. 
LPBF parts in their as built state have inhomogeneous and anisotropic microstructure and poor surface 
quality. Post-treatments can play a key role in modulating these imperfections. In this study, the effects of 
four different post-treatments including heat treatment, shot peening and electro-chemical polishing as 
well as their combination as hybrid treatment were investigated on microstructure, surface and 
mechanical properties and finally fatigue behaviour of the LPBF V-notched AlSi10Mg samples. 
Afterward, a deep learning based approach was employed for modelling the fatigue behaviour via 
artificial neural network. Surface roughness, surface modification factor, hardness, residual stress and 
porosities were considered as inputs and fatigue life was considered as the output. Model function of the 
network was generated and the relevant parametric and sensitivity analyses were performed. The results 
indicated the importance of surface related properties and the notable effect of the surface post-treatments 
in enhancing the fatigue performance of the LPBF material. 
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1. Introduction  
       Laser powder bed fusion (LPBF) as one the widely use additive manufacturing (AM) technologies 
has gained considerable attention to fabricate verities of components with complex geometries in different 
industries such as aviation, automotive, medical, etc. in an economical fashion compared to conventional 
subtractive manufacturing methods as reported by (DebRoy et al., 2018; Gardan, 2016). Due to the layer-
by-layer nature of LPBF and the relevant complex physical phenomena occurring during the deposition of 
the feed-stock materials, these parts inherently have a wide range of internal and surface defects as 
described by (Erfan Maleki et al., 2021; Yadroitsev and Smurov, 2011). Generally, metallic LPBF 
materials have anisotropic microstructure (Herzog et al., 2016) and they are specified with different 
internal defects such as trapped voids, and lack of fusion (Ferro et al., 2020), residual stresses (Mfusi et 
al., 2019; Mukherjee et al., 2017), and very poor surface qualities (Hamidi Nasab et al., 2018). These 
defects have detrimental effects on the mechanical and fatigue behavior of these materials as mentioned 
by (Balachandramurthi et al., 2018; Lewandowski and Seifi, 2016; E. Maleki et al., 2021b). Dealing with 
poor surface quality of AM materials, very rough surfaces with extremely irregular morphologies caused 
by partially melted feed-stock, spatters and balling effects can be characterized on the as-built state of the 
fabricated AM parts especially in the ones built by LPBF (Hamidi Nasab et al., 2018; Li et al., 2012; 
Sames et al., 2016; Zhang et al., 2018). These surface defects are affected by different factors of feed-
stock (powder) material specifications, design and geometry of part and also the considered process 
parameters of the LPBF (E. Maleki et al., 2021a). Considering these surface imperfections and their 
detrimental effects, applying surface post-treatments such as chemical and mechanical surface treatments 
and can play a key role in modulating this issue (AlMangour and Yang, 2016; E. Maleki et al., 2021c). 
On the other hand, alternative approaches based on artificial intelligence (AI) such as neural networks 
(NN) has revealed considerable capabilities in prediction, optimization and analyzing of different 
complex phenomena in various fields of science and engineering (Maleki and Farrahi, 2018; Maleki and 
Unal, 2019; Maleki et al., 2017). NNs have been also used in the field of AM, in particular for fatigue 
behavior prediction and analyses (Chen and Liu, 2021; Qi et al., 2019; Zhan and Li, 2021).  Generally, a 
NN has three main layers of input, hidden and output (Maleki and Unal, 2020a). Shallow neural network 
(SNN), as the primary generation of artificial neural networks  have 1 or 2 hidden layers, which are 
mostly trained by back-propagation (BP) algorithm (Maleki et al., 2018; Maleki and Maleki, 2015). In 
order to develop SNN, large number of data set is required which can be quite limiting in lots of costly 
phenomena (Livingstone et al., 1997). By using deep learning methods including restricted Boltzmann 
machine (RBM) and deep belief network (DBN) presented by Hinton et al. (Hinton et al., 2006; Hinton 
and Salakhutdinov, 2006) as remarkable improvements obtained in the field of NNs, it is feasible to 
develop deep neural network (DNN) using greedy layer-wised with pre-training via a small data set. 
Other approaches for pre-training of DNN such as stacked auto-encoder (SAE) were later presented, to 
make the development of DNN possible with smaller data set with very high efficiency in accuracy of 
predicted results as reported by (Bengio et al., 2007; Feng et al., 2019; Liu et al., 2018; Wang et al., 
2017). 

Herein, we studied the effects of four different post-treatments including heat treatment (HT), shot 
peening (SP) and electro-chemical polishing (ECP) treatments as well as their combination as hybrid 
treatments, on microstructure, mechanical properties and fatigue behavior of LPBF V-notched AlSi10Mg 
samples. Comprehensive experimental tests including microstructural characterization, porosity and 
surface morphology analyses as well as mechanical characterization including hardness and residual 
stresses measurement and rotating bending fatigue tests were performed on the as-built and heat treated 
samples before and after applying SP and ECP treatments. Afterward, a deep learning based approach 
was used for modelling the fatigue behaviour via artificial neural network. Surface roughness, surface 
modification factor, surface hardness, surface residual stresses, relative density, yield strength and 
elongation were considered as inputs and fatigue life was regarded as the output of the developed 
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network. NN modelling was performed by developing different SNN, DNN and stacked auto-encoder 
assigned deep (SADNN) neural networks for analyzing and optimization of the fatigue behavior of the 
treated samples.  

 
2. Experimental procedure 

Following the authors’ previous work (Maleki et al., 2022), which studied the effects of different 
post-processing methods of  HT, SP and their combination as a hybrid treatment on fatigue strength of V-
notched LPBF AlSi10Mg samples, same material and samples were used in this study. Gas atomized 
spherical powder of AlSi10Mg with mean diameter of 46.65 μm was used for LPBF samples 
manufacturing. The samples were built via SLM 500 HL systems with Yttrium fiber lasers and process 
parameters of spot diameter of 78 μm, laser power of 350 W, and scan speed of 1150 mm /s, layer 
thickness of 50 μm and hatch distance of 170 μm were employed. The samples were built vertically with 
scanning strategy of 67° rotation between the layers and also contour remelting was considered. 
Cylindrical samples with V-shaped notches were fabricated. Fig. 1 reveals the shape and size of the 
notched fatigue samples and the fabricated sample in its as-built state. 

 
Fig.1. (a) Shape and size of the cylindrical V-notched fatigue sample with R1 notch root radius. (b) As-built state of the fabricated sample; 
adopted from (Maleki et al., 2022). 
 

Different post-treatments were performed on the samples. Firstly, HT was applied aimed at 
modifying the microstructural and residual stresses. However, the other two including SP and ECP were 
applied to modify the surface imperfections. T6 thermal treatment was carried out to half of the produced 
samples according to the time and temperature intervals reported by (Bagherifard et al., 2018). SP 
treatment was applied using air blast shot peening equipment with steel impacting media. Table 1 
represents the details of considered SP process which applied on both as-built and heat treated samples. 
Almen intensity was obtained based on the SAE J443 standard (SAE International, 2010).  

 
Table 1. Details of the applied SP treatment on LPBF AlSi10Mg samples 

SP treatment Shot material 
Shot 

hardness 
(HRC) 

Shot standard 
category 

Shot diameter 
(mm) 

Almen intensity         
(A 0.001 inch) 

Surface coverage 
(%) 

SP1 Steel 50 S 170 0.43 10 100 
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In addition, ECP was carried out using bath of 400 mL solution with 94% Acetic acid 
(CH3COOH)+6% Perchloric (HClO4) acid at voltage of 15 V and duration time  of 240 s, on  as-built, 
heat treated and shot peened series.  

Considering the as-built (AB) sample and applied treatments, eight sets of samples including AB, 
AB+HT, AB+SP, AB+ECP, AB+HT+SP, AB+HT+ECP, AB+SP+ECP and AB+HT+SP+ECP were 
considered to investigate the sole influence of each post-treatment as well as their hybrid conditions. 

In order to perform microstructural characterization, firstly, samples were cut in longitudinal and 
transversal sections with respect to the build direction. Final step of polishing carried out with silica 
suspensions. The polished cross-sections were chemically etched for 20 s in Keller's reagent. The 
microstructural characterization was carried out using two methods of optical microscopy (OM) via a 
Nikon Eclipse LV150NL optical microscope and a high resolution field-emission scanning electron 
microscopy (FESEM) using Zeiss Sigma 500 VP equipped with electron backscattered diffraction 
(EBSD) and the AZtecHKL software was used to process the EBSD data. 

SEM based analyses were employed for porosity measurements on the notch area of the samples 
considering yz-plane. Three back scattered electron SEM (BSE-SEM) images were taken from random 
areas and ImageJ software (Schneider et al., 2012) was employed for analyzing the BSE-SEM 
micrographs by binerzing the images to black and white. 

Surface roughness measurements were carried out via Mahr Perthometer (PCMESS 7024357) 
equipped with MFW 250 probe with a tip diameter of 5 μm. EN ISO 4287 standard (EN ISO 4287, 1997) 
was followed for sampling and cut-off wavelengths and the filtering parameters. Three samples were 
considered for each series and three measurements were applied on random surface areas of each and 
roughness parameter of arithmetic mean (Ra) was obtained for each set. Surface morphologies of the as-
built and treated samples were investigated via a Zeiss EVO50 SEM on the notch area. 

Microhardness tests were performed on surface of the samples using a Leica WMHT30A micro 
Vickers hardness tester using load of 25 gf and dwell time of 15 s for each 5 applied indentations.  

X-ray diffraction (XRD) was used to obtain the residual stresses on the top surface of the samples in 
each set. AST X-Stress 3000 portable X-ray diffractometer with CrKα radiation, λK alpha 1 = 2.2898 Å, 
irradiated area of 4 mm diameter, and sin2(ψ) method, was used. Diffraction angle (2θ) of 139° 
corresponding to {311}-reflex was scanned with a total of 7 Chi tilts between 45° and −45° along three 
rotations of 0°, 45°and 90°. Fatigue behavior of LPBF V-notched AlSi10Mg were analyzed via rotating 
bending fatigue tests at a stress ratio of R=−1 at room temperature via a Italsigma equipment with 
rotational speed around 2500 rpm and fixed amplitude stress of 110 MPa with a run-out limit set to 
6 × 106 cycles for all sets. Three samples were tested for each set.  

 
3. Artificial neural networks 

NNs which are inspired from performance of human’s brain, are widely employed for analyzing 
complex problems and phenomena by means of functional relation. NNs have been used for modeling 
and analysis of non-linear processes which have different effective parameters as reported by (Maleki and 
Unal, 2020b). Schematic structure of a single layer NN fed with r and s number of input p and output a 
parameters respectively, with corresponded weight matrixes w, bias vectors b, linear combiner u and 
transfer function f, is presented in Fig. 2a. 

Different SNNs and DNNs were developed via trial and error approach to achieve favorable NN 
with highest performance. 80% of data set (19 samples) was considered for training and the remained 
20% (5 samples) was regarded for testing of the developed networks. In addition, a random function was 
used for selection of data for training and testing steps. Performance of the networks was determined in 
terms of the accuracy of the predicted results which assessed via correlation coefficient (R2). R2 can be 
calculated as follows (Maleki, 2015): 
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Where, n is the number of fed samples, fEXP and fANN represent the experimental and predicted values 
respectively. The values of FEXP and FANN are determined as follows: 
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𝒏𝒏 ∑ 𝒇𝒇𝑬𝑬𝑬𝑬𝑬𝑬,𝒊𝒊 𝒏𝒏

𝒊𝒊=𝟏𝟏                                                                                                                                     (2.a) 

𝑭𝑭𝑨𝑨𝑨𝑨𝑨𝑨 = 𝟏𝟏
𝒏𝒏 ∑ 𝒇𝒇𝑨𝑨𝑨𝑨𝑨𝑨,𝒊𝒊

𝒏𝒏
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 Fig. 2b and 2c reveal schematic illustration a typical SNN with two hidden layers and architecture 
of a SADDN respectively. Differences of SNN and SADNN and also the circumstance of developing 
them are mentioned in details by  (E. Maleki et al., 2021b). 

Fig. 2d indicates the considered inputs of developed networks including surface roughness, surface 
modification factor, surface hardness, surface residual stresses, relative density, yield strength and 
elongation. Also fatigue life was considered as the output of the developed networks. After obtaining 
optimum structures of NNs with highest accuracy and best performance, model function of the network 
which consists of the values of weights and biases was generated for further parametric and sensitivity 
analyses. The relevant model function in the SADNN with six layers can be generated as follows:   

a 1= f 1(w 1i+b 1)                                                                                                                                                (3.a)     

 a 2= f 2(w 2i 1+b 2)                                                                                                                                             (3.b) 

a 3= f 3(w 3i 2+b 3)                                                                                                                                              (3.c) 

a 4= f 4(w 4i 3+b 4)                                                                                                                                              (3.d) 

a 5= f 5(w 5i 4+b 5)                                                                                                                                              (3.f) 

a 6= M(m(1))= f 6(w 6i 5+b 6)= f 6(w 6f 5(w 5f 4 (w 4f 3 (w 3f 2(w 2f 1(w 1i+b 1)+ b 2) +b 3)+ b 4)+b 5)+b 6)       (4)                                                                                                                                           

Where a1, a2, a3, a4 and a5are the outputs of the first to fifth layers respectively. The function M 
assigns the values of the considered seven input parameters of to the output parameter of fatigue life m(1). 

4. Results and discussions 
Different analyses using OM and EBSD were carried out for microstructural characterization of the 

LPBF AlSi10Mg. Fig. 3a represents the OM microstructural observations of AB and AB+HT samples 
respectively in transversal (xy-plane) and longitudinal (yz-plane) cross sections.  In longitudinal section of 
AB, the melt pool morphologies and hatching lines are clear and elongated boundaries along the build 
direction can be seen. However micrographs from the transversal section of AB, exhibit the melt pool 
tracks and the inhomogeneous microstructure orientated following the 67° rotation strategy used between 
the latter layers. On the other hand, in the AB+HT samples melt pool morphologies and hatching traces 
are mostly become invisible leading to a notable homogeneity in both cross-sections. 

In addition, spherical and irregular pores which caused by gas trapping and insufficient melting 
respectively can be observed in both AB and AB+HT states. In addition, due to the microstructure 
modification after HT, as reported by (Bagherifard et al., 2018), the tensile properties of AB material with 
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tensile strength of 273 MPa and 2.5 % elongation is changed to tensile strength of 201 MPa and 
elongation of  13 % in the AB+HT sample and the ductility of the material is enhanced. 
 

Fig. 2. Schematic illustration of: (a) a NN with one hidden layer considering the weight matrixes w, bias vectors b, linear combiner u and transfer 
function f. (b) SNN with 4 layers and (c) DNN with 6 layers with the assigned SAE; adopted from (E. Maleki et al., 2021b; Erfan Maleki et al., 
2021). (d) Corresponded input and out parameters used for modeling. 
 

The porosity measurements were performed on all sets using image analysis of BSE-SEM 
observations in the notch area. Fig. 3b for instance illustrates the obtained BSE-SEM micrographs of the 
AB and AB+HT samples. The results indicated that after applying HT, porosity is slightly decreased. In 
addition sub-surface observations reveal that SP has no remarkable effects on reduction of porosities. 
Quantitative image analyses results indicate a range of 0.40-0.50 % porosity for all samples.  

The results of different analyses of crystallographic orientation (IPF-Z), grain boundaries and 
geometrically necessary dislocation densities (GND) carried out by processing of the EBSD results in the 
shot peened surface layer of AB+SP and AB+Ht+SP samples are presented in Fig. 3d. 
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Transversal cross-section (xy-plane) along the building direction was conidered EBSD analyses. 
IPF-Z maps show the random and different orientation of the grains in the surface layer after SP 
compared to the dominant (001) orientation in the core material for both AB and AB+HT states. Grain 
boundaries with orientation of 2°< and 5°< were considered for processing the EBSD data. The grain 
boundary graphs reveal higher density of grain boundaries in the top surface layer comapred to the 
interior area which confirm the presence of gradiant microstructures on both AB+SP and AB+HT+SP sets 
starting with grians with size of lower than 0.5 µm on the top gradually enhancing to reach the original 
grain size at subsurface. In addition, GND values (as a factor dislocation densities) can be used as an 
index of plastic defrmation. In both AB+SP and AB+HT+SP sets, most concentrations and highest values 
of GND are observed in the top surface layer which confirms higher densities of refined grains in the 
mentioned area.   

 
Fig. 3. (a) OM micrographs representing the microstructure of the AB and AB+HT samples in transversal and longitudinal cross-sections;  
adopted from (Maleki et al., 2022). (b) BSE-SEM observations in the notch area in the AB and AB+HT samples. (c) EBSD analyses in terms of 
IPF-Z, grain boundary and GND for AB+SP and AB+HT+SP samples. 

 
Fig. 4 depicts the SEM micrographs taken from the notch area in AB, AB+SP and AB+SP+ECP 

samples. In the notch area of AB sample very poor surface quality can be observed clearly. In this area, 
three distinct regions of upward face, notch root and downwards face can be specified with particular 
surface morphologies and features. The qualitative comparison shows the lowest surface quality for the 
downward face with a high density of surface irregularities followed by the notch root and then the 
upward face. However, in the AB+SP sample, a modified surface morphology can be seen by applying 
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the plastic deformation and removing the partially melted and unmelted powders. Whereas, in the 
AB+SP+ECP sample, higher surface morphology modification can be seen and even the dimples formed 
by SP are mostly removed and almost all of the surface imperfections existed in the as-built and shot 
peened states were eliminated. The results indicate that AB+SP+ECP sample has the highest surface 
quality followed by AB+SP and AB samples respectively. This trend is also, observed in the heat treated 
samples. 

In this study, rather than surface roughness values, new parameter of surface modification factor is 
presented as an index of effectiveness of each post-treatment on surface quality of the AM material. On 
the other hand, in implementation of ANN for modeling a phenomenon, the input data, should be 
normalized before feeding to the network. One of the standard normalizing methods is to divide the 
values of each input parameters to the highest value in the corresponding data set. In this way, all the data 
used for developing the network will place in the range of 0-1 (Maleki et al., 2020). Therefore, in order to 
develop the surface modification factor, a numeric criterion ranging from 0 to 1, was considered to 
describe the increasing of the surface quality after applying each treatments (see Fig. 4) 

 

Fig. 4. Surface morphology of the AB, AB+SP and AB+SP+ECP samples and circumstance of assigning new criterion as surface modification 
factor. 

 
After performing microstructural characterization and surface morphologies observations and also 

description of surface modification factor, other surface and mechanical properties including relative 
density, surface roughness, surface hardness and surface residual stresses were measured and obtained as 
well as the number of fatigue life cycles of each sets at fixed stress amplitude of 110 MPa. The obtained 
results for mentioned parameters are listed in Table 2. The results indicate that SP has remarkable effects 
on increasing of surface hardness and surface compressive residual stress. Considering surface properties, 
it can be seen that although the value of surface roughness parameter is slightly increased after SP, but 
modified surface morphology can be obtained. Also, it can be seen that ECP is considerably reduced the 
surface roughness.  

 



 E. Maleki  et al. / Procedia Structural Integrity 34 (2021) 141–153 149 Author name / Structural Integrity Procedia 00 (2019) 000–000  9 

Dealing with fatigue behaviour, the results indicate remarkable fatigue life improvement can be 
obtained after applying all considered post-treatments together and AB+HT+SP+ECP sample with about 
4.3×106 cycles of fatigue life has more than 340 times higher life than AB sample. Also, considering the 
sole effects of each post-treatment, SP has the highest effect on fatigue behaviour improvement thanks to 
surface layer hardening, inducing high compressive residual stresses and surface morphology 
modification followed by ECP (due to very high surface modification and reducing surface roughness) 
and HT (due to microstructural homogenization) treatments.  

 
Table 2. Obtained experimental results in terms of input and output parameters for each sets    

Sample 
No. 

Sample set Yield 
strength 
(MPa) 

Elongation 
(%) 

Relative 
density 

(%) 

Surface 
roughness, 

Ra  
(µm) 

Surface 
hardness 

(Hv) 

Surface 
residual 

stress 
(MPa) 

Surface 
modification 

factor 

Fatigue 
life 

(Cycles) 

1 AB 273 2.5 99.6 4.5 120.7 -5 0 13284 

2 273 2.5 99.6 4.5 120.7 -5 0 10600 

3 273 2.5 99.6 4.5 120.7 -5 0 14200 

4 AB+HT 201 13 99.65 4.4 78.2 -30 0 25200 

5 201 13 99.65 4.4 78.2 -30 0 22100 

6 201 13 99.65 4.4 78.2 -30 0 27030 

7 AB+SP 273 2.5 99.62 4.6 156.2 -83.5 0.5 1200200 

8 273 2.5 99.62 4.6 156.2 -83.5 0.5 1300010 

9 273 2.5 99.62 4.6 156.2 -83.5 0.5 1089200 

10 AB+HT+SP 201 13 99.64 6.6 109 -46.6 0.5 1978500 

11 201 13 99.64 6.6 109 -46.6 0.5 2142000 

12 201 13 99.64 6.6 109 -46.6 0.5 1920000 

13 AB+ECP 273 2.5 99.51 2.9 120.2 -4 1 200600 

14 273 2.5 99.51 2.9 120.2 -4 1 234400 

15 273 2.5 99.51 2.9 120.2 -4 1 210100 

16 AB+HT+ECP 201 13 99.61 2.6 78 -28.7 1 485600 

17 201 13 99.61 2.6 78 -28.7 1 509800 

18 201 13 99.61 2.6 78 -28.7 1 462800 

19 AB+SP+ECP 273 2.5 99.57 3.2 150 -79.2 1 3456000 

20 273 2.5 99.57 3.2 150 -79.2 1 3700400 

21 273 2.5 99.57 3.2 150 -79.2 1 3879010 

22 AB+HT+SP+ECP 201 13 99.63 4.1 103 -45.1 1 4210800 

23 201 13 99.63 4.1 103 -45.1 1 3978890 

24 201 13 99.63 4.1 103 -45.1 1 4430000 

 
After achieving the experimental results and arranging them according to considered input and 

output parameters, different NNs were developed for modeling of the fatigue behavior of notched 
AlSi10Mg LPBF samples. In order to obtain a NN structure with highest performance and efficiency of 
several networks with different architecture and network parameters including SNN, DNN and SADNN 
were assessed and compared.  Accuracy of the results in terms of output parameter of fatigue life were 
gathered from implemented SNNs with 1 and 2 hidden layers as a function of neurons’ number in each 
layer as shown in Fig. 5a. It can be seen that by increasing the number of neurons in each considered 
layer, the accuracy of the SNNs are enhanced as well.  

Fig. 5b compares the accuracy of the estimated fatigue life using SNNs, DNNs and SADNNs. In all 
of the developed networks, 7 and 1 neurons were respectively employed for input and output layers. In 
addition, in whole cases, learning rate of 0.185 was considered and a Logarithmic-Sigmod transfer 
function was used in both hidden and output layers. The results indicate that SADNN with a structure of 
7+(24+20+10+4)+1 exhibited the highest performance among all the developed NNs, showing accuracies 
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of 0.99 and 0.96 for training and testing processes, respectively. Also, it can be seen that by increasing the 
depth of the NNS (by enhancing the number of layers) the accuracy enhances as well and pre-training 
process using stacked auto-encoder can remarkably increase the performance of the SADNN. 

Having validated the high performance of the constructured SADNN, the relevant model function 
was generated for senesitivity and parametric analyses to evaluate the contribution of each input 
paramters on fatigue behavior of the notched AlSi10Mg LPBF samples.  

Fig. 5c depicts the results obtained from sensitivity analysis. The analysis confirms that all the 
considered input parameters for the developed SADNN, directly affect the fatigue behavior. Fatigue 
behavior was found to be more sensitive to surface modification factor as most of the fatigue failures 
initiate from surface of the materials followed by elongation as an index of ductility of the material, 
surface residual stresses, surface hardness, yield strength of the material and surface roughness as well as 
relative density respectively. 

Parametric analysis was carried out considering two most important input parameters of surface 
modification factor and elongation of the material (which obtained by sensitivity analysis) on fatigue 
behavior of the notched AlSi10Mg LPBF samples. For each parameter whole interval of experimnetal 
data was considered to achieve general case of the paramteric analysis. Fig. 5d depicts the 2D contour of 
the paramteric analysis in terms of surface modification factor and elongation of the material for 
analyzing the fatigue behavior. It can be seen that by enhacing surface modification factor by performing 
SP and especially ECP and also by applying HT to increase the elongation and therefore ductility of the 
material, the fatigue behavior of the  the notched AlSi10Mg LPBF samples are increased as well. 

 
 

 
Fig. 5. (a) The effects of number of neurons in each layer of SNNs vs. accuracy of fatigue life estimation (b) Comparison of the fatigue life 
estimation accuracy between developed NNs of different structures including SNN, DNN and SADNN. Obtained results of (c) sensitivity and (d) 
parametric analyses. 
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5. Conclusions 

In this study, firstly the effects of four different post-treatments including HT, SP and ECP 
treatments as well as their combination as hybrid treatments, on microstructure, mechanical properties 
and fatigue behavior of LPBF V-notched AlSi10Mg samples were experimentally investigated. 
Comprehensive experimental tests including microstructural characterization, porosity and surface 
morphology analyses as well as mechanical characterization including hardness and residual stresses 
measurement and rotating bending fatigue tests were performed on the as-built and heat treated samples 
before and after applying SP and ECP treatments. Then, an alternative approach using deep learning was 
employed for modelling the fatigue behaviour through artificial neural network. Surface roughness, 
surface modification factor, surface hardness, surface residual stresses, relative density, yield strength and 
elongation were considered as inputs and fatigue life was regarded as the output of the developed 
network. NN modelling was performed by developing different SNN, DNN and SADNN neural 
networks. Based on the obtained results the following conclusions can be drawn: 

 Very poor surface quality was observed in the as-built state. 
 HT considerably modified and homogenized the inhomogeneous microstructure of the 

as-built state. 
 Surface layer grain refinement leading to a gradient microstructure was obtained after 

applying SP treatments. In addition SP modified the surface morphology of the as-built and heat 
treated samples as well as surface layer hardening and inducing high compressive residual 
stresses. 

 ECP efficiently eliminated the surface imperfections of the as-built and other treated 
samples and reduced the surface roughness.  

 All applied post-treatments improved the fatigue behavior of the notched samples. 
Considering sole influence of each post-treatment, SP has the highest effect followed by ECP and 
HT on fatigue life improvement.  

 Comparing the accuracy of the obtained output of the developed networks indicated that 
pre-trained SADNN exhibited the highest performance. 

 Sensitivity analysis showed that surface modification factor followed by elongation, 
surface residual stresses, surface hardness, yield strength of the material and surface roughness as 
well as the relative density have the highest importance on fatigue life improvement, respectively. 

 Parametric analysis revealed that surface modification factor by performing SP and 
especially ECP and also by applying HT to increase ductility of the material, the fatigue behavior 
of the notched AlSi10Mg LPBF samples are increased as well. 

 AI based methods such as deep learning with pre-training methods such as stacked auto-
encoder can be used as a powerful tool for analyzing the fatigue behavior of the as-built and post-
treated additively manufactured materials.   
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