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UNIQUENESS OF VERY WEAK SOLUTIONS

FOR A FRACTIONAL FILTRATION EQUATION

GABRIELE GRILLO, MATTEO MURATORI, AND FABIO PUNZO

Abstract. We prove existence and uniqueness of distributional, bounded solutions to a fractional filtration equation
in R

d. With regards to uniqueness, it was shown even for more general equations in [22] that if two bounded solutions
u, w of (1.1) satisfy u − w ∈ L1(Rd × (0, T )), then u = w. We obtain here that this extra assumption can in fact
be removed and establish uniqueness in the class of merely bounded solutions. For nonnegative initial data, we first
show that a minimal solution exists and then that any other solution must coincide with it. A similar procedure is
carried out for sign-changing solutions. As a consequence, distributional solutions have locally-finite energy.

1. Introduction

We consider the following problem:
{

ut = −(−∆)sΦ(u) in R
d × R

+ ,

u = u0 on R
d × {0} , (1.1)

where s ∈ (0, 1) and u0 is a bounded initial datum. As concerns the nonlinearity Φ we
assume the following condition:

Φ : R → R is nondecreasing and locally Lipschitz . (H)

We stress that strict monotonicity of Φ is not required. For example, the Stefan-type non-
linearity Φ(u) = (u − 1)+ is admissible. Without further assumptions on Φ, such equation
can be referred to as fractional filtration equation, according to the terminology adopted in
[26] in the local case s = 1. A typical example is Φ(u) = u|u|m−1 with m ≥ 1; in this case
and when m > 1 equation (1.1) is usually known as the fractional porous medium equation,
the latter having been introduced and studied in [20, 21], see also the review papers [42, 43].

We recall that the s-fractional Laplacian is defined, at least on test functions ϕ ∈ C∞
c (Rd),

by the formula

(−∆)sϕ(x) := cd,s p.v.

∫

Rd

ϕ(x) − ϕ(x′)
|x− x′|d+2s

dx′ , (1.2)

where

cd,s :=
22ssΓ

(
d
2 + s

)

π
d
2Γ(1− s)

.

Well-posedness of problem (1.1) when Φ(u) = u|u|m−1 (m > 1) is satisfactorily achieved
in the case of energy solutions, see [21], namely solutions belonging to a suitable fractional
Sobolev space (we refer to [6, 11, 39] for uniqueness results in the linear case). However, this
class in general excludes solutions corresponding to data which are merely required to be
bounded. For the latter, distributional solutions should be considered instead. In this case,
well-posedness was thoroughly studied in [22], and the same authors then provided successful
numerical schemes for such equations in [24, 25]. In fact, a large class of operators and of
nonlinearities was addressed in [22] and later in [23], where distributional, energy solutions
corresponding to data in L1(Rd)∩L∞(Rd) are considered. As concerns the nonlinearities, it is
feasible to take in [22] the function Φ(u) = sign(u)|u|m in the full rangem > 0, thus including
the fractional fast diffusion equation. In particular, also non-Lipschitz nonlinearities are
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treated. One of the most important results of [22] states that two bounded solutions u,w
to (1.1) coincide up to some time T > 0 under the extra assumption

u− w ∈ L1(Rd × (0, T )) . (1.3)

This kind of condition first appeared in the local case s = 1 in [15]. On the other hand, it
should be noted that (1.3) was later proved to be inessential, see [7].

Our main goal here is to show, by using a strategy of proof which is completely different
from the one of [22] since it involves the extension method of Caffarelli-Silvestre [17], that
condition (1.3) can be dropped also in the nonlocal case, upon assuming that Φ satisfies
hypothesis (H). This yields uniqueness in the natural class of merely bounded solutions, see
Theorem 1.3. Such a result is achieved by first proving a delicate comparison principle in
Euclidean balls, which is then used to establish existence of a minimal nonnegative solution
for nonnegative initial data. Subsequently, we prove that all solution to (1.1) corresponding
to a given bounded, nonnegative initial datum coincides with the minimal one. Since the
minimal solution is shown to have locally-finite energy (see Corollary 1.4), this clearly entails
that there exist no purely distributional solutions, i.e. any distributional solution has a
locally-finite energy. Sign-changing solutions are addressed afterwards, by similar techniques
that allow us to resort to the case of nonnegative solutions.

In the pure porous-medium case, namely for Φ(u) = u|u|m−1 with m > 1, existence of
energy solutions was shown in [21] for L1 data (see [9, 10, 13, 14] for the same equation
studied on regular domains), whereas existence of distributional (energy) solutions for more
general Φ and operators more general than (−∆)s was proved in [22, 23], at least for data
in L1(Rd) ∩ L∞(Rd). After the first version of the present paper was completed, in [3] the
authors proved that uniqueness holds for problem (1.1) without requiring that Φ is locally
Lipschitz, but in the significantly smaller class of entropy solutions.

We remark that fractional, nonlinear diffusion problems of the type studied here arise
in several applied models, for example and without any claim of completeness we mention
that crossovers between fractional and local diffusions are investigated e.g. in [8, 33], that
hydrodynamic limits of particle systems with long-range dynamics lead to fractional diffusion
equations which can be either linear or nonlinear, see e.g. [30, 31], and that such kind of
equations also arise in boundary heat control [5].

1.1. Existence and uniqueness results. We start by introducing the definition of distri-
butional, or very weak, solution to problem (1.1).

Definition 1.1. Let s ∈ (0, 1), u0 ∈ L∞(Rd) and Φ satisfy (H). We say that a measurable
function u is a very weak solution to problem (1.1) if u ∈ L∞(Rd ×R

+) and for a.e. T > 0
there holds

∫ T

0

∫

Rd

uϕt dxdt =

∫ T

0

∫

Rd

Φ(u) (−∆)sϕdxdt

+

∫

Rd

u(x, T )ϕ(x, T ) dx −
∫

Rd

u0(x)ϕ(x, 0) dx

(1.4)

for every ϕ ∈ C∞
c

(
R
d × [0, T ]

)
.

From here on by “solution” to (1.1) we will implicitly mean a very weak solution in the
sense of Definition 1.1, unless otherwise specified.

Our main existence and uniqueness results are the following.
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Theorem 1.2 (Existence of bounded solutions). Let s ∈ (0, 1), u0 ∈ L∞(Rd) and Φ satisfy
(H). Then problem (1.1) admits a solution according to Definition 1.1.

Theorem 1.3 (Uniqueness of bounded solutions). Let the assumptions of Theorem 1.2 hold.
Then the solution to (1.1) is unique.

It is well known that fractional Laplacians can be represented through suitable extension
operators, see [17, 40]. Indeed, let v ∈ L∞(Rd) and consider its 2s-harmonic extension E(v)
given by

E(v)(·, y) = Ps(·, y) ∗ v ∀y > 0 ,

where

Ps(x, y) := κd,s
y2s

|(x, y)|d+2s
∀x ∈ R

d , ∀y > 0 , κd,s :=

[∫

Rd

|(x, 1)|−d−2s dx

]−1

is the Poisson kernel of (−∆)s, see [16, 17]. It will be shown that, if u is the solution
constructed in Theorem 1.2, then there holds

∇E(Φ(u)) ∈ L2
loc

(
Ω× [0,∞)

)
, (1.5)

where Ω := R
d× (0,∞), namely u turns out to be what is usually referred to as a local weak

solution (see Remark 4.3). Hence, in view of Theorem 1.3, it follows that any very weak
solution is in fact a local weak solution. More precisely, we have the following.

In the sequel, we will denote the fractional Sobolev space Ḣs(Rd) as the closure of C∞
c (Rd)

with respect to the norm ‖(−∆)s/2(·)‖L2(Rd). In particular, it is easy to see that, as a

consequence of (1.5), for any cut-off function γR as in (A.27) there holds

γR Φ(u) ∈ L2
loc([0,∞); Ḣs(Rd)) . (1.6)

Corollary 1.4. Let the assumptions of Theorem 1.2 hold and let u be a very weak solution
to problem (1.1) according to Definition 1.1. Then u is a local weak solution, in the sense
that property (1.5) holds. Hence, also (1.6) is satisfied.

We comment that a crucial step in our method of proof consists of showing the existence of
a minimal solution to problem (1.1), for nonnegative data and for Φ satisfying also Φ(0) = 0.

Proposition 1.5 (Existence of the minimal solution for nonnegative data). Let s ∈ (0, 1),
u0 ∈ L∞(Rd) with u0 ≥ 0 and let Φ satisfy (H) with Φ(0) = 0. Then problem (1.1) admits
a minimal solution, i.e. there exists a nonnegative solution u to (1.1) such that, if u is any
nonnegative solution to (1.1) according to Definition 1.1, there holds u ≤ u.

We point out that, a posteriori, as a consequence of Theorem 1.3 any nonnegative solution
in fact coincides with the minimal one. However, we preferred to state its existence in a
separate proposition since it is a key tool to our strategy.

1.2. The strategy of proof. Our uniqueness proof, which is carried out in Section 4,
is mainly inspired from an argument that crucially relies on the existence of the minimal
solution in the case of nonnegative initial data. A related approach was adopted in the local
case in [32, 38]. However, since the s-fractional Laplacian of nontrivial compactly-supported
functions is not compactly supported, in our estimates some further terms to be controlled
appear when dealing with cut-off arguments. In order to manage them, we need some refined
estimates on the behavior of the fractional Laplacian (and of a related nonlinear nonlocal
operator) of cut-off functions, see the first part of the proof of Theorem 1.3 in Subsection



4 GABRIELE GRILLO, MATTEO MURATORI, AND FABIO PUNZO

4.1. We stress that we will first deal with nonnegative solutions in Subsection 4.1 and then
extend the uniqueness result to general bounded solutions in Subsection 4.2.

The construction of the minimal solution is based on a comparison principle for distribu-
tional solutions in balls, which in the local case is proved by means of the so-called duality
method, first introduced in [4, 37] and then exploited in several frameworks, both local
and nonlocal, see e.g. [27, 28, 29]. In our setting, comparison occurs between solutions to
problems in R

d and solutions to problems involving the spectral fractional Laplacian in Eu-
clidean balls. This is in fact the most delicate point of our paper, to which we devote the
entire Section 3 and part of Section 2, where some related preliminary results are discussed
(see also Appendix A). Once existence of a (minimal) solution for nonnegative initial data is
guaranteed, still in Subsection 4.2 we briefly show how to use such a result to prove existence
for general bounded data.

Since the (spectral) fractional Laplacian operator on different domains acts differently
on fixed test functions, in order to prove the comparison principle we first have to show
a key integral inequality, which is the content of Proposition 3.5 and strongly relies on
the extension operator. Furthermore, we need to consider solutions to suitable backward
fractional parabolic problems in balls (see Proposition 3.6), that to our knowledge have not
been much studied in the literature. In particular, a key trace property of the conormal
derivative of the extension of such solutions is established, the latter having a fundamental
role (see Lemma 2.3).

2. Preliminaries: extension problems

As mentioned in the Introduction, in view of the seminal paper [17] we know that the
fractional Laplacian operator is strictly connected with a suitable extension problem defined
on the upper half space, the latter being denoted by

Ω :=
{

(x, y) ∈ R
d+1 : x ∈ R

d , y > 0
}

.

In addition, for all R > 0 we define the Euclidean balls

BR :=
{

x ∈ R
d : |x| < R

}

along with the upper “cylinders”

CR := {(x, y) ∈ Ω : |x| < R}
and the upper “half balls”

ΩR := {(x, y) ∈ Ω : |(x, y)| < R} . (2.1)

In the sequel we will mostly, but not only, deal with extensions to the half space of
bounded functions.

Definition 2.1. Let s ∈ (0, 1) and v ∈ L∞(Rd). Then its 2s-harmonic extension E(v) :
Ω → R is defined as

E(v)(·, y) = Ps(·, y) ∗ v ∀y > 0 , (2.2)

where the generalized Poisson kernel Ps is given by

Ps(x, y) := κd,s
y2s

|(x, y)|d+2s
∀(x, y) ∈ Ω . (2.3)
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It is not difficult to check that Ps is 2s-harmonic, in the sense that

div
(
y1−2s∇Ps

)
= 0 ,

and satisfies
lim
y↓0

Ps(·, y) = δ0 in D′(Rd) ,

which at least formally shows the identity E(v)(x, 0) = v(x), so that E(v) is indeed an
extension of v to the half space. In the next lemma we collect some useful properties of the
extension of bounded functions, which will be useful below and can easily be deduced from
(2.2) (we omit the simple proof).

Lemma 2.2. Let s ∈ (0, 1) and v ∈ L∞(Rd). Then E(v) is a smooth function in Ω such
that

div
(
y1−2s∇E(v)

)
= 0 in Ω

and
lim
y↓0

E(v)(·, y) = v in Lp
loc(R

d) , for every p ∈ [1,∞) .

In particular E(v) solves the problem
{

div
(
y1−2s∇E(v)

)
= 0 in Ω ,

E(v)(·, 0) = v in R
d ,

(2.4)

whence the meaning of “2s-harmonic” extension, the case s = 1/2 corresponding to the usual
notion of harmonicity. It is by now well known, see again [17], that upon setting

∂E(v)

∂y2s
:= µs lim

y↓0
y1−2s∂E(v)(·, y)

∂y
(2.5)

with

µs :=
22s−1Γ(s)

Γ(1− s)
, (2.6)

the key identity

− ∂E(v)

∂y2s
= (−∆)sv (2.7)

holds, namely the s-fractional Laplacian coincides with the so called “Dirichlet-to-Neumann”
operator of the extension problem (2.4). Clearly, in the present framework, definition (2.5)
and identity (2.7) are purely formal; nevertheless it can be shown that they hold at least in
the distributional sense. In fact here we will only use them applied to smooth test functions.

Lemma 2.3. Let s ∈ (0, 1) and ϕ ∈ C∞
c (BR) for some R > 0. Then

lim
y↓0

E(ϕ)(x, y) = ϕ(x) ∀x ∈ R
d (2.8)

and

− µs lim
y↓0

y1−2s∂E(ϕ)(x, y)

∂y
= (−∆)sϕ(x) ∀x ∈ R

d , (2.9)

both limits being uniform in x. Moreover, the following estimates hold:

|E(ϕ)(x, y)| ≤ C
y2s

|(x, y)|d+2s
∀(x, y) ∈ Ω \ ΩR , (2.10)

|∇E(ϕ)(x, y)| ≤ C
y2s−1

|(x, y)|d+2s
∀(x, y) ∈ Ω \ ΩR , (2.11)

for a suitable constant C > 0 depending only on d, s, ϕ,R.
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As concerns (2.8)–(2.9), we refer to [17, Section 3.1]. On the other hand, formulas (2.10)
and (2.11) follow easily from (2.2) and (2.3).

There are several possible definitions of s-fractional Laplacian in a Euclidean ball (or more
generally in a bounded regular domain): see [9] and references therein. To our purposes it
is more convenient to use the spectral one, which is again crucially related to a suitable
localised extension operator that we will describe below. Indeed, given R > 0 and any
ϕ ∈ C∞

c (BR), by definition the spectral s-fractional Laplacian of ϕ is the s-th power of the
operator (−∆), that is

(−∆)sR ϕ(x) :=

∞∑

k=1

λsk ϕ̂k φk(x) ∀x ∈ BR , (2.12)

where {φk}k∈N is a sequence of eigenfunctions of (−∆) completed with homogeneous Dirich-
let boundary conditions on ∂BR associated to a corresponding nondecreasing sequence of
positive eigenvalues {λk}k∈N, which form an orthonormal basis for L2(BR), and {ϕ̂k}k∈N is
the respective sequence of Fourier coefficients of ϕ. By virtue of (2.12) it comes natural to
introduce the space Hs

0(BR), namely the one formed by functions ϕ ∈ L2(BR) such that

‖ϕ‖2Hs
0
(BR) :=

∥
∥
∥(−∆)

s/2
R ϕ

∥
∥
∥

2

L2(BR)
=

∞∑

k=1

λsk ϕ̂
2
k <∞ , (2.13)

i.e. those functions in L2(BR) whose (distributional) s/2-fractional Laplacian is also in
L2(BR). Similarly, we define the domain of the s-fractional Laplacian in BR, which we
denote by Dom(−∆)sR, as the space of functions in L2(BR) such that (−∆)sR ϕ ∈ L2(BR),
which amounts to requiring

‖ϕ‖2Dom(−∆)s
R
:= ‖(−∆)sR ϕ‖2L2(BR) =

∞∑

k=1

λ2sk ϕ̂2
k <∞ . (2.14)

In particular, it is straightforward to check that if ϕ1 ∈ Hs
0(BR) and ϕ2 ∈ Dom(−∆)sR then

∫

BR

(−∆)
s/2
R ϕ1 (−∆)

s/2
R ϕ2 dx =

∫

BR

ϕ1 (−∆)sR ϕ2 dx . (2.15)

The “spectral” extension ER(ϕ) of ϕ is formally defined as the solution to the following
problem:







div
(
y1−2s∇ER(ϕ)

)
= 0 in CR ,

ER(ϕ) = 0 on ∂CR ∩ {y > 0} ,
ER(ϕ) = ϕ on BR × {0} .

(2.16)

It can be proved that there exists a unique solution to (2.16), at least for any ϕ ∈ Hs
0(BR),

belonging to the space Xs
0(CR), the latter being the closure of C∞

c (CR ∪ (BR × {y = 0}))
with respect to the norm

‖∇f‖2L2(CR;y1−2sdxdy) =

∫

CR
|∇f(x, y)|2 y1−2sdxdy ∀f ∈ C∞

c (CR ∪ (BR × {y = 0})) .

By elliptic regularity ER(ϕ) is a smooth function on CR ∩ {y > 0} (for any ϕ ∈ L2(BR)
actually). See e.g. [16], and references therein.

In the sequel, for our strategy to work it is crucial to be able to apply the analogues of
(2.8)–(2.9) (in balls) when ϕ and (−∆)sR ϕ merely belong to L2(BR). They are ensured by
the following technical lemma, whose proof is deferred to Appendix A.1.
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Lemma 2.4. Let s ∈ (0, 1), R > 0, ϕ ∈ L2(BR) and ER(ϕ) be the solution to (2.16),
defined by (A.1). Then

lim
y↓0

ER(ϕ)(·, y) = ϕ in L2(BR) (2.17)

and the estimates

‖ER(ϕ)(·, y)‖L2(BR) ≤ Cθ e
−θ

√
λ1y ‖ϕ‖L2(BR) ∀y > 0 , ∀θ ∈ (0, 1) , (2.18)

‖∇ER(ϕ)(·, y)‖L2(BR) ≤ Cθ e
−θ

√
λ1y ‖ϕ‖L2(BR) ∀y ≥ 1 , ∀θ ∈ (0, 1) , (2.19)

hold, where Cθ > 0 depends only on θ, λ1, s. If in addition ϕ ∈ Hs
0(BR), then

√
µs ‖∇ER(ϕ)‖L2(CR;y1−2sdxdy) = ‖ϕ‖Hs

0
(BR) . (2.20)

Furthermore, if ϕ ∈ Dom(−∆)sR there holds

− µs lim
y↓0

y1−2s∂ER(ϕ)(·, y)
∂y

= (−∆)sR ϕ in L2(BR) . (2.21)

3. Comparison principles in balls

In order to construct a minimal solution to (1.1) when u0 ≥ 0, namely to prove Proposition
1.5, first of all it is essential to be able to suitably approximate the latter by analogous
problems posed in balls, with homogeneous Dirichlet boundary conditions. In the sequel,
we will make the additional assumption Φ(0) = 0, since it is important for the following
strategy that u ≥ 0 implies Φ(u) ≥ 0. We will then explain in the proofs of our main results
how this extra requirement can be dropped.

Definition 3.1. Let s ∈ (0, 1), R ≥ 1, u0 ∈ L∞(BR) with u0 ≥ 0 and Φ satisfy (H) with
Φ(0) = 0. We say that a measurable function uR is a solution to problem







(uR)t = −(−∆)sR Φ(uR) in BR × R
+ ,

Φ(uR) = 0 on ∂BR × R
+ ,

uR = u0 on BR × {0} ,
(3.1)

if uR ∈ L∞(BR × R
+), uR ≥ 0 and for a.e. T > 0 there holds

∫ T

0

∫

BR

uR ψt dxdt =

∫ T

0

∫

BR

Φ(uR) (−∆)sR ψ dxdt

+

∫

BR

uR(x, T )ψ(x, T ) dx −
∫

BR

u0(x)ψ(x, 0) dx

(3.2)

for every ψ ∈ C1
(
[0, T ];L2(BR)

)
∩ L2((0, T );Dom(−∆)sR).

We comment that problem (3.1), on bounded domains, was studied previously in [9,
Definition 3.1], by using a different concept of solution.

The main “local comparison” result we aim at establishing in this section, which will be
crucial to the proof of Proposition 1.5, is the following.

Proposition 3.2. Let s ∈ (0, 1), R ≥ 1, u0 ∈ L∞(BR) with u0 ≥ 0 and Φ satisfy (H) with
Φ(0) = 0. Let u be a nonnegative very weak solution to (1.1) in the sense of Definition 1.1
and uR be a solution to (3.1) in the sense of Definition 3.1. Then u ≥ uR a.e. in BR ×R

+.

In order to prove Proposition 3.2 we first need to show some technical facts concerning
the “extended” versions of problems (1.1) and (3.1). This will be the content of the next
subsection. Then the proof of Proposition 3.2 itself will be carried out in Subsection 3.2.
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3.1. Auxiliary results. We start by establishing an important consequence of local energy
estimates, the latter being true for a suitable class of functions.

Lemma 3.3. Let R ≥ 1 and v ∈ L∞(Rd) with

∇E(v) ∈ L2
(

CR; e−
√
λ1yy1−2sdxdy

)

∩ L2
loc

(
Ω; y1−2sdxdy

)
,

where λ1 > 0 is the first eigenvalue of (−∆)sR. Then the identity
∫

Rd

v (−∆)sϕdx = µs

∫

CR
〈∇E(v),∇ER(ϕ)〉 y1−2sdxdy (3.3)

holds for every ϕ ∈ C∞
c (BR).

Lemma 3.4. Let v ∈ L∞(Rd) with (−∆)sv ∈ L∞(Rd), in the distributional sense. Let
α > 0 and r ≥ 1. Then the following energy estimate holds:
∫

Cr
|∇E(v)|2 ρα(y) y1−2s dxdy ≤ 2

µs

∫

B2r

v (−∆)sv dx+ 4C2 ‖v‖2∞ |B2r|
∫ ∞

0
ρα(y) y

1−2s dy ,

(3.4)
where ρα(y) is any regular positive function on [0,∞) satisfying

∣
∣ρ′α(y)

∣
∣ ≤ C ρα(y) ∀y ≥ 0 (3.5)

and

ρα(y) = 1 ∀y ∈ [0, 1] , c e−αy ≤ ρα(y) ≤ C e−αy ∀y ≥ 1 , (3.6)

for suitable positive constants c, C, with C large enough.

The proofs of Lemmas 3.3 and 3.4 will be given in Appendix A.2 and A.3, respectively.
The aim of the next result is to show that a nonnegative solution to (1.1) is in fact a
supersolution to problem (3.1).

Proposition 3.5. Let Φ satisfy (H) with Φ(0) = 0. Let u be a nonnegative very weak
solution to problem (1.1), in the sense of Definition 1.1. Then, for a.e. T > 0 and every
R ≥ 1, there holds

∫ T

0

∫

BR

uψt dxdt ≤
∫ T

0

∫

BR

Φ(u) (−∆)sR ψ dxdt

+

∫

BR

u(x, T )ψ(x, T ) dx −
∫

BR

u0(x)ψ(x, 0) dx

(3.7)

for any nonnegative ψ ∈ C1
(
[0, T ];L2(BR)

)
∩ L2((0, T );Dom(−∆)sR).

Proof. To begin with, without loss of generality, we assume that

∇E(Φ(u)) ∈ L2
(

CR × [0, T ]; e−
√
λ1yy1−2sdxdydt

)

∩ L2
loc

(
Ω× [0, T ]; y1−2sdxdydt

)
. (3.8)

We will explain at the end of the proof how it is possible to get rid of such hypothesis.
Hence, by virtue of Lemma 3.3 with v ≡ Φ(u)(·, t), for a.e. t > 0 we obtain the identity
∫

Rd

Φ(u)(x, t) (−∆)sϕ(x, t) dx = µs

∫

CR
〈∇E(Φ(u))(x, y, t),∇ER(ϕ)(x, y, t)〉 y1−2sdxdy ,

(3.9)
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valid for every ϕ ∈ C∞
c (BR × [0, T ]). A time integration of (3.9) that takes advantage of

(1.4) yields

∫ T

0

∫

BR

uϕt dxdt =µs

∫ T

0

∫

CR
〈∇E(Φ(u)),∇ER(ϕ)〉 y1−2sdxdydt

+

∫

BR

u(x, T )ϕ(x, T ) dx −
∫

BR

u0(x)ϕ(x, 0) dx .

(3.10)

Given any ψ as in (3.7), one can find a sequence {ϕn}n∈N ⊂ C∞
c (BR × [0, T ]) such that

ϕn −−−→
n→∞

ψ in L2([0, T ];Hs
0(BR)) and (ϕn)t −−−→n→∞

ψt in L2
(
[0, T ];L2(BR)

)
.

This can be achieved, for instance, by combining a time convolution of ψ and the density of
C∞
c (BR) in Hs

0(BR) (we omit details). As a consequence, upon applying (3.10) to ϕ ≡ ϕn,
letting n → ∞ and exploiting (2.19), (2.20), (3.8), we can deduce the validity of the same
identity with ϕ = ψ.

Now we focus on the integral term in (3.10) involving gradients. Let ξ be defined as in
(A.26) and, correspondingly, for all k ∈ N put

ξk(y) := ξ
(y

k

)

∀y ≥ 0 . (3.11)

Furthermore, for every ε > 0 let us introduce the “lifted” cylinder

CR,ε := CR ∩ {y > ε} .

Note that the extended functions E(Φ(u)) and ER(ψ) are smooth in CR,ε but they need not
be in CR. In the next passages we will omit explicit time dependence, in order to lighten
notations. For a.e. t ∈ (0, T ) and every k > ε, a standard integration by parts reveals that

∫

CR,ε

〈∇E(Φ(u)),∇(ER(ψ) ξk)〉 y1−2sdxdy

=−
∫

CR,ε

E(Φ(u)) div
[
y1−2s∇(ER(ψ) ξk)

]
dxdy −

∫

BR×{ε}
E(Φ(u)) y1−2s ∂ER(ψ)

∂y
dx

+

∫

∂CR∩{y>ε}
E(Φ(u)) ξk y

1−2s ∂ER(ψ)

∂n
dS

≤−
∫

CR,ε

E(Φ(u)) div
[
y1−2s∇(ER(ψ)ξk)

]
dxdy −

∫

BR×{ε}
E(Φ(u)) y1−2s ∂ER(ψ)

∂y
dx ,

(3.12)
where n and dS stand for the outer unit normal and the d-dimensional Hausdorff measure
on ∂CR, respectively. Note that in (3.12) we have used the property

∂ER(ψ)

∂n
≤ 0 on ∂CR ,

which holds because ER(ψ) is nonnegative in CR and vanishes on ∂CR. On the other hand,
since

div
(
y1−2s∇ER(ψ)

)
= 0 in CR ,
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we deduce that
∫

CR,ε

E(Φ(u)) div
[
y1−2s∇(ER(ψ) ξk)

]
dxdy =2

∫

CR,ε

E(Φ(u)) 〈∇ER(ψ),∇ξk〉 y1−2sdxdy

+

∫

CR,ε

E(Φ(u))ER(ψ) div
(
y1−2s∇ξk

)
dxdy .

(3.13)
By virtue of (A.26) and (3.11), it is easy to check that

|∇ξk| ≤
C

y
χ[k,k+1] ,

∣
∣div

(
y1−2s∇ξk

)∣
∣ ≤ C

y1+2s
χ[k,k+1] , (3.14)

where C > 0 is a suitable constant independent of k. Hence, thanks to (3.13)–(3.14),
(2.18)–(2.19) and the uniform boundedness of E(Φ(u)), there holds

∫

CR,ε

E(Φ(u)) div
[
y1−2s∇(ER(ψ) ξk)

]
dxdy −−−→

k→∞
0 .

Besides, property (3.8) and (2.18)–(2.20) ensure that

〈∇E(Φ(u)),∇ER(ψ)〉 , ∇E(Φ(u))ER(ψ) ∈ L1
(
CR; y1−2sdxdy

)
,

whence, exploiting again (3.14), we can assert that
∫

CR,ε

〈∇E(Φ(u)),∇(ER(ψ) ξk)〉 y1−2sdxdy −−−→
k→∞

∫

CR,ε

〈∇E(Φ(u)),∇ER(ψ)〉 y1−2sdxdy .

(3.15)
Thus, from (3.12)–(3.15) we obtain the inequality

∫

CR,ε

〈∇E(Φ(u)),∇ER(ψ)〉 y1−2sdxdy ≤ −
∫

BR×{ε}
E(Φ(u)) y1−2s ∂ER(ψ)

∂y
dx . (3.16)

In view of Lemmas 2.2 and 2.4, by letting ε ↓ 0 in (3.16) we end up with

µs

∫

CR
〈∇E(Φ(u)),∇ER(ψ)〉 y1−2sdxdy ≤

∫

BR

Φ(u) (−∆)sR ψ dx . (3.17)

A time integration of (3.17) and (3.10) applied to ϕ ≡ ψ yield (3.7).
Let us finally remove the extra assumption (3.8). Given h > 0, to any f ∈ L1

loc([0,∞))
we associate its Steklov average, defined as

fh(t) :=
1

h

∫ t+h

t
f(s) ds .

It is not difficult to check that the Steklov averages of u and Φ(u), that is uh and (Φ(u))h,
satisfy the very weak formulation

∫ T

0

∫

Rd

uh ϕt dxdt =

∫ T

0

∫

Rd

(Φ(u))h (−∆)sϕdxdt

+

∫

Rd

uh(x, T )ϕ(x, T ) dx −
∫

Rd

uh(x, 0)ϕ(x, 0) dx

for a.e. T > 0, for every ϕ ∈ C∞
c (Rd × [0, T ]). Moreover, by construction, it is plain that

(Φ(u))h ∈ L∞(Rd × (0,∞)) (3.18)

and

(−∆)s(Φ(u))h(·, t) =
u(·, t)− u(·, t+ h)

h
in D′(Rd) , for a.e. t > 0 .
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Since u ∈ L∞(Rd × (0,+∞)), in view of (3.18) we are allowed to apply Lemma 3.4, which
in particular ensures that

∫

CR
|∇E((Φ(u))h)(x, y, t)|2 ρλ1

(y) y1−2s dxdy

≤ 2

µs

∫

B2R

|(Φ(u))h(x, t) (−∆)s(Φ(u))h(x, t)| dx+ 4C2 ‖Φ(u)‖2∞ |B2R|
∫ ∞

0
ρλ1

(y) y1−2s dy ,

(3.19)
for a.e. t > 0. A time integration of (3.19) then shows that (3.8) is satisfied upon replacing
Φ(u) with (Φ(u))h. Hence, by repeating the same arguments as above with uh in place of u
and (Φ(u))h in place of Φ(u), we can deduce the validity of

∫ T

0

∫

BR

uh ψt dxdt ≤
∫ T

0

∫

BR

(Φ(u))h (−∆)sR ψ dxdt

+

∫

BR

uh(x, T )ψ(x, T ) dx −
∫

BR

uh(x, 0)ψ(x, 0) dx

(3.20)

for a.e. T > 0 and any nonnegative ψ ∈ C1
(
[0, T ];L2(BR)

)
∩ L2((0, T );Dom(−∆)sR). The

thesis then follows upon letting h ↓ 0 in (3.20) and exploiting standard convergence proper-
ties of the Steklov averages. �

3.2. Proof of Proposition 3.2: the duality method. The proof is based on a well-
established technique known in the literature as duality method (see [4]). The basic idea
consists in picking special test functions in (3.2) and (3.7), which formally are solutions to
the following backward parabolic problems:







ψt = a(x, t) (−∆)sR ψ in BR × (0, T ) ,

ψ = 0 on ∂BR × (0, T ) ,

ψ = χ on BR × {T} ,
(3.21)

where χ is an arbitrary (sufficiently regular) final datum and T > 0 is a free parameter. The
coefficient a is defined by

a(x, t) :=

{
Φ(u(x,t))−Φ(w(x,t))

u(x,t)−w(x,t) if u(x, t) 6= w(x, t) ,

0 otherwise ;
(3.22)

for notational convenience, here and hereafter we set w ≡ uR. Note that u,w being bounded
and u 7→ Φ(u) being locally Lipschitz, a is also bounded; moreover, it is nonnegative Φ being
nondecreasing. However, in general the existence of a sufficiently regular solution to (3.21)
is not guaranteed, so that one has to deal with suitable approximations. Since we rely
on (parabolic) semigroup theory, in the corresponding approximating problems in place of
a(x, t) we will consider a sequence of functions which are regular, bounded away from zero,
piecewise constant in time and suitably converge to a.

First of all, we need the following standard result. In the sequel, by mild solution we will
mean a solution in the sense of semigroups, see e.g. the classical reference [36].
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Proposition 3.6. Let R ≥ 1 and β ∈ C∞(
BR

)
, with β > 0. Let χ ∈ C∞

c (BR), with
0 ≤ χ ≤ 1. Then the backward parabolic problem







ψt = β (−∆)sR ψ in BR × (0, T ) ,

ψ = 0 on ∂BR × (0, T ) ,

ψ = χ on BR × {T} ,
admits a unique mild solution. Moreover, ψ ∈ C1

(
[0, T ];L2(BR)

)
∩L2 ((0, T );Dom(−∆)sR)

and the following energy estimate holds:
∫ T

0

∫

BR

β [(−∆)sR ψ]
2 dxdt+

1

2

∫

BR

[

(−∆)
s
2

R ψ(x, 0)
]2

dx =
1

2

∫

BR

[

(−∆)
s
2

R χ
]2

dx .

We are now in position to prove Proposition 3.2.

Proof of Proposition 3.2. Since u and w ≡ uR are bounded by definition and Φ is locally
Lipschitz, it is plain that a is bounded as well; moreover, it is nonnegative because Φ is
nondecreasing. Then, as a consequence of (3.2) and (3.7), for a.e. T > 0 and any nonnegative
ψ ∈ C1

(
[0, T ];L2(BR)

)
∩ L2 ((0, T );Dom(−∆)sR) (as in Proposition 3.5) there holds

∫ T

0

∫

BR

(u− w) [−a (−∆)sR ψ + ψt] dxdt ≤
∫

BR

[u(x, T )− w(x, T )]ψ(x, T ) dx . (3.23)

Take a sequence of smooth functions {ak}k∈N in BR such that 1
k ≤ ak ≤ 1

k + ‖a‖∞ and

ak − a√
ak

−−−→
k→∞

0 in L2(BR × (0, T )) . (3.24)

It is not difficult to show that such an approximating sequence does exist, see again [4].
Now let n ∈ N and h = 0, . . . , n. Put Th := h

n T . Finally, for any fixed k, let {an,k}n∈N be
a sequence of functions which are constant in time, and smooth in x, in every subinterval
(Th, Th+1) and converge to ak as follows:

an,k −−−→
n→∞

ak pointwise a.e.,
1

2k
≤ an,k ≤ 2

k
+ ‖a‖∞ ∀k, n ∈ N . (3.25)

Take any χ ∈ C∞
c (BR) with 0 ≤ χ ≤ 1. For every n, k ∈ N and h ∈ {0, . . . , n − 1}, let ψh

be recursively defined as the (mild) solution to






ψt = an,k (−∆)sR ψ in BR × (Th, Th+1) ,

ψ = 0 on ∂BR × (Th, Th+1) ,

ψ = ψh+1 on BR × {Th+1} ,
(3.26)

where we set ψn = χ. Note that such a solution exists by virtue of Proposition 3.6.
Moreover, since the semigroup associated to the operator A := an,k (−∆)sR in the space

L2
(

BR; a
−1
n,k⌊(Th,Th+1)

)

is Markov (see [19, 36]), we can deduce that

0 ≤ ψh ≤ 1 in BR × (Th, Th+1) .

Besides, Proposition 3.6 ensures that for every h = 0, . . . , n− 1 there holds
∫ Th+1

Th

∫

BR

an,k [(−∆)sRψh]
2 dxdt+

1

2

∫

BR

[

(−∆)
s
2

R ψh(x, Th)
]2

dx

=
1

2

∫

BR

[

(−∆)
s
2

R ψh(x, Th+1)
]2

dx .

(3.27)
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Put

ψn,k(x, t) := ψh(x, t) ∀(x, t) ∈ BR × [Th, Th+1] , for every h = 0, . . . , n− 1 ;

note that ψn,k is a well-defined and continuous function in BR × [0, T ]. Summing up both
sides of (3.27) from h = 0 to h = n− 1, we end up with the identity

∫ T

0

∫

BR

an,k [(−∆)sR ψn,k]
2 dxdt+

1

2

∫

BR

[

(−∆)
s
2

R ψn,k(x, 0)
]2

dx =
1

2

∫

BR

[

(−∆)
s
2

R χ
]2

dx

︸ ︷︷ ︸

C2
R

.

(3.28)
Hence, from (3.23) with ψ = ψn,k we obtain

∫ T

0

∫

BR

(u− w)
[
−(a− an,k + an,k) (−∆)sR ψn,k + (ψn,k)t

]
dxdt

≤
∫

BR

[u(x, T ) −w(x, T )]χ(x) dx .

(3.29)

On the other hand, thanks to (3.26), from (3.29) there follows

∫ T

0

∫

BR

(u− w) (an,k − a) (−∆)sR ψn,k dxdt ≤
∫

BR

[u(x, T )− w(x, T )]χ(x) dx . (3.30)

In addition, the uniform (w.r.t. n, k) estimate (3.28), (3.24) and (3.25) yield

∫ T

0

∫

BR

|u− w| |a − an,k| |(−∆)sR ψn,k|dxdt

≤ (‖u‖∞ + ‖w‖∞)

∫ T

0

∫

BR

|an,k − a|
√
an,k

√
an,k |(−∆)sR ψn,k|dxdt

≤ (‖u‖∞ + ‖w‖∞)

∥
∥
∥
∥

a− an,k√
an,k

∥
∥
∥
∥
L2(BR×(0,T ))

CR .

(3.31)

By collecting (3.30)–(3.31), letting first n → ∞ and then k → ∞ (recalling (3.24)–(3.25)),
we finally infer that

∫

BR

[u(x, T )− w(x, T )]χ(x) dx ≥ 0 ,

whence u ≥ w a.e. in BR × R
+ in view of the arbitrariness of T and χ. �

4. Existence and uniqueness: proofs

Since it is more natural to our strategy, we will first address the case of nonnegative
solutions and Φ satisfying Φ(0) = 0 in Subsection 4.1, for which we can exploit the tools of
Section 3, and then consider general solutions and nonlinearities Φ in Subsection 4.2, upon
adapting the previous arguments.

4.1. Nonnegative bounded solutions. Prior to proving existence of the minimal solution
(Proposition 1.5), we need to ensure the well-posedness of problem (3.1) along with some
crucial comparison properties.
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Proposition 4.1. Let s ∈ (0, 1), R ≥ 1, u0 ∈ L∞(BR) with u0 ≥ 0 and Φ satisfy (H) with
Φ(0) = 0. Then there exists a solution uR to problem (3.1) in the sense of Definition 3.1.
More precisely, for a.e. T > 0 there holds

∫ T

0

∫

BR

uR ψt dxdt = −
∫ T

0

∫

BR

(−∆)
s/2
R Φ(uR) (−∆)

s/2
R ψ dxdt

+

∫

BR

uR(x, T )ψ(x, T ) dx −
∫

BR

u0(x)ψ(x, 0) dx

(4.1)

for any ψ ∈ C1
(
[0, T ];L2(BR)

)
∩ L2((0, T );Hs

0(BR)). Moreover,

Φ(uR) ∈ L2((0, T );Hs
0 (BR)) , 0 ≤ uR ≤ ‖u0‖∞ , (4.2)

and the local energy estimate

∫ T

0

∫

Ωr

|∇ER(Φ(uR))|2 y1−2sdxdydt ≤ 2

µs

∫

Ω2r

Ψ(u0) dx+ C ‖Φ(u0)‖2∞
∫

Ω2r

y1−2s dxdy

(4.3)
is valid for all r ∈ (1/4, R/2), for some C > 0 independent of r,R, where Ψ(u) :=
∫ u
0 Φ(v) dv. If in addition uR and wR are solutions to (3.1) starting from the ordered initial

data u0 ≤ w0, respectively, then uR ≤ wR. Finally, for every 1 ≤ R1 ≤ R2 there holds

uR1
≤ uR2

a.e. in BR1
× R

+ , (4.4)

where by uR1
and uR2

we denote any two solutions to (3.1), in the sense of Definition 3.1,
corresponding to the same initial datum u0 ∈ L∞(BR2

) with u0 ≥ 0. In particular, the
solution to problem (3.1) in the sense of Definition 3.1 is unique.

Proof. The most used technique in the literature to construct energy solutions to (3.1),
i.e. solutions satisfying (4.1) and (4.2), or to similar problems, relies on the celebrated
Crandall-Liggett Theorem, which goes back to [18]. The basic strategy (see [41, Chapter
10] in the local case) consists in first solving the discretized “resolvent” equation

un+1 − un
τ

= − (−∆)sΦ(un+1) in BR , ∀n ∈ N , (4.5)

where τ > 0 is a fixed time step, and then suitably letting τ ↓ 0, thus obtaining a solution to
(3.1) as a limit of the piecewise-constant interpolants (in time) of the sequences {un}n∈N. Let
us point out that, in order to solve (4.5) at each fixed τ > 0, one may further approximate
Φ with a sequence {Φk}k∈N of regular, strictly increasing and non-degenerate nonlinearities.
The order-preserving property uR ≤ wR is also a consequence of such a construction. Since
the procedure is by now rather standard, we will not give further details: we refer to [21,
Theorem 7.2] for the porous-medium case (Φ(u) = um with m > 1) and to [2, Theorem 3.7]
for diffusion-type equations governed by a wide class of operators in abstract frameworks.

Once we have at our disposal an energy solution uR, the validity of (3.2) is a simple
consequence of (4.1) along with (2.15). Besides, the local energy estimate (4.3) can formally
be proved by minor variations to the proof of Lemma 3.4 (see Appendix A.3): the idea is
to test the “extended” version of (4.1) with the function ER(Φ(uR))ηr, where the cut-off ηr
is defined as in (A.20) with the additional constraint |∇ηr|2 ≤ Cηr. However, since a priori
(Φ(uR))t may not make sense, in order to establish it rigorously one can obtain analogous
discrete estimates on (4.5), sum up in n and then let τ ↓ 0.
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To conclude the proof, we need to show (4.4). We claim that
∫ T

0

∫

BR1

uR2
ψt dxdt ≤

∫ T

0

∫

BR1

Φ(uR2
) (−∆)sR1

ψ dxdt

+

∫

BR1

uR2
(x, T )ψ(x, T ) dx −

∫

BR1

u0(x)ψ(x, 0) dx

(4.6)

for any nonnegative ψ ∈ C1
(
[0, T ];L2(BR1

)
)
∩L2

(
(0, T );Dom(−∆)sR1

)
. Indeed, the identity

∫ T

0

∫

BR2

Φ(uR2
) (−∆)sR2

ϕdxdt = µs

∫ T

0

∫

CR1

〈∇ER2
(Φ(uR2

)),∇ER1
(ϕ)〉 y1−2sdxdydt

(4.7)
holds for every ϕ ∈ C∞

c (BR1
×[0, T ]). Hence (4.6) follows similarly to the proof of Proposition

3.5, upon replacing the integral version of (3.9) with (4.7). Note that here we need not use
Steklov averages, since since both uR1

and uR2
are energy solutions. Thanks to (4.6), by

arguing as in the proof of Proposition 3.2, replacing u and w with uR2
and uR1

, respectively,
we infer (4.4). We finally mention that uniqueness follows from (4.4) with R1 = R2 = R. �

Proof of Proposition 1.5. The proof essentially relies on the existence and the comparison
principles established above. Indeed, let k ∈ N, with k ≥ 1, and put u0k := u0χBk

. It is

apparent that u0k ∈ L1(Rd) ∩ L∞(Rd). First one solves problem (3.1) on BR (let R ≥ 1),
which does have a unique (energy) solution uk,R thanks to Proposition 4.1. Then, still
in view of Proposition 4.1, the family of solutions {uk,R}R≥1 is monotone increasing with
respect to R (recall (4.4)), uniformly bounded by virtue of (4.2) and for any 1 ≤ k1 ≤ k2,
R ≥ 1, there holds uk1,R ≤ uk2,R a.e. in BR × R

+ (consequence of the first comparison
property). Hence, for any fixed k ≥ 1, we can assert that there exists uk := limR→∞ uk,R
and it satisfies 0 ≤ uk ≤ ‖u0‖∞ in R

d × R
+. Moreover, uk1 ≤ uk2 a.e. in R

d × R
+. Since

u0k ∈ L1(Rd) ∩ L∞(Rd), by arguing as in [21, Section 7.2] it is not difficult to show that uk
is a weak solution to problem (1.1) with initial datum u0k, in the sense that

∫ T

0

∫

Rd

uk ϕt dxdt =

∫ T

0

∫

Rd

(−∆)s/2Φ(uk) (−∆)s/2ϕdxdt

+

∫

Rd

uk(x, T )ϕ(x, T ) dx −
∫

Rd

u0k(x)ϕ(x, 0) dx

(4.8)

for every ϕ ∈ C∞
c (Rd× [0, T ]). Since the sequence {uk}k≥1 is monotone increasing w.r.t. k ∈

N and uniformly bounded, there exists u := limk→∞ uk and it satisfies 0 ≤ u ≤ ‖u0‖∞.
Moreover, integrating by parts and then passing to the limit as k → ∞ in (4.8) we eas-
ily obtain (1.4) (with u = u). The fact that u is indeed minimal follows straightly from
Proposition 3.2. �

We will now prove Theorem 1.3 in the case of nonnegative solutions, upon exploiting the
existence of the minimal one. In what follows, we take for granted the cut-off functions γR
defined in (A.27), since they will be used several times.

Proof of Theorem 1.3 (nonnegative solutions and Φ(0) = 0). In addition to the hypotheses
of Theorem 1.2, we also assume that u0 ≥ 0, Φ(0) = 0 and that u is any nonnegative
solution. Proposition 1.5 guarantees the existence of the minimal solution u, so that u is
necessarily larger than u. To our purposes, let us consider a regular and radially-decreasing
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function h(x) ≡ h(|x|) such that

c1
1 + |x|α ≤ h(x) ≤ c2

1 + |x|α and
∣
∣∇2h(x)

∣
∣ ≤ c2

1 + |x|α+2
∀x ∈ R

d , (4.9)

for some α ∈ (d, d+2s) and positive constants c1, c2. Under assumption (4.9) one can prove
(see e.g. [12, Lemma 2.1]) that (−∆)sh(x) is also a regular function satisfying

|(−∆)sh(x)| ≤ c′

1 + |x|d+2s
∀x ∈ R

d , (4.10)

for a suitable positive constant c′. By formula (1.2), it is easy to check that

(−∆)s(hγR) = h (−∆)sγR + (−∆)shγR + 2Q(h, γR) ,

where the quadratic form Q is defined as

Q(h, γR)(x) := cd,s

∫

Rd

[h(x)− h(y)][γR(x)− γR(y)]

|x− y|d+2s
dy ∀x ∈ R

d .

Hence, from Definition 1.1 with the choice ϕ(x, t) ≡ ϕ(x) = h(x)γR(x), we infer that for
a.e. T > 0 there holds

∫ T

0

∫

Rd

[Φ(u(x, t))− Φ(u(x, t))] (−∆)sh(x) γR(x) dxdt

+

∫

Rd

[u(x, T )− u(x, T )] h(x) γR(x) dx

=−
∫ T

0

∫

Rd

[Φ(u(x, t))− Φ(u(x, t))] [h(x) (−∆)sγR(x) + 2Q(h, γR)(x)] dxdt =: I(R) .
(4.11)

We aim at showing that

lim
R→∞

I(R) = 0 . (4.12)

Indeed, as recalled e.g. in [34, Lemmas 3.2, 3.3], the s-fractional Laplacian of cut-off functions
satisfies

|(−∆)sγR(x)| ≤
C

R2s

1

1 +
(
|x|
R

)d+2s
∀x ∈ R

d , (4.13)

where from here on C is a generic positive constant independent of R ≥ 1. Clearly (4.13) is
enough to deduce that

lim
R→∞

∫ T

0

∫

Rd

[Φ(u(x, t)) − Φ(u(x, t))] h(x) (−∆)sγR(x) dxdt = 0 , (4.14)

given the boundedness of u and u along with the fact that h ∈ L1(Rd). The second term in
the r.h.s. of (4.11) must be handled more carefully. First of all, for any p ∈ (1,∞) (and a
regular enough function f) we introduce the nonlinear operator

Tp(f)(x) :=
∫

Rd

|f(x)− f(y)|p
|x− y|d+ps

dy ∀x ∈ R
d .

Thanks to [34, Lemmas 3.2, 3.3], an estimate analogous to (4.13) holds:

Tp(γR)(x) ≤
C

Rps

1

1 +
(
|x|
R

)d+ps
∀x ∈ R

d . (4.15)
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On the other hand, by reasoning similarly to the proof of [34, Lemma 5.2], it is not difficult
to show that

Tp(h)(x) ≤
C

1 + |x|d+ps
∀x ∈ R

d . (4.16)

By combining (4.15)–(4.16) and Hölder’s inequality, we obtain (let 1/p+ 1/p′ = 1)

|Q(h, γR)(x)| ≤ cd,s T
1

p
p (h)(x)T

1

p′

p′ (γR)(x) ≤
C

Rs

1
(

1 + |x|
d
p
+s

)[

1 +
(
|x|
R

) d

p′
+s

] ∀x ∈ R
d .

(4.17)
As a consequence of estimate (4.17), an elementary computation yields

∫

Rd

|Q(h, γR)(x)| dx ≤ C

R
2s− d

p′

, (4.18)

up to a logarithmic correction in the critical case d = sp′. By virtue of (4.18), if we choose
p so small that 2s > d/p′ then upon letting R→ ∞ we deduce that

lim
R→∞

∫ T

0

∫

Rd

[Φ(u(x, t))− Φ(u(x, t))] |Q(h, γR)(x)| dxdt = 0 ,

thanks again to the boundedness of u and u. This, together with (4.14), implies that (4.12)
does hold, so that by passing to the limit in (4.11) as R→ ∞ (exploiting also the fact that
h, (−∆)sh ∈ L1(Rd)) we end up with the identity
∫

Rd

[u(x, T )− u(x, T )] h(x) dx =

∫ T

0

∫

Rd

[Φ(u(x, t)) − Φ(u(x, t))] (−∆)sh(x) dxdt , (4.19)

valid for a.e. T > 0. Since Φ is locally Lipschitz, u and u are bounded, estimates (4.9)–(4.10)
hold and α < d+ 2s, from (4.19) there follows
∫

Rd

[u(x, T )− u(x, T )] h(x) dx ≤ C

∫ T

0

∫

Rd

[u(x, t)− u(x, t)] h(x) dxdt for a.e. T > 0 ,

(4.20)
whence ∫ T

0

∫

Rd

[u(x, t)− u(x, t)] h(x) dxdt = 0 ∀T > 0

by Gronwall’s Lemma. This clearly implies u = u because u ≥ u and h is strictly positive.
�

4.2. General bounded solutions. Our purpose is now to deal with initial data (and
solutions) that may change sign and with nonlinearities Φ that are not forced to comply
with Φ(0) = 0. To this end, the idea is to resort to the theory of nonnegative solutions that
we have developed above, by means of the following simple observation: if u is a solution
to (1.1), then for any c ∈ R the function û := u− c is a solution to the same problem with
initial datum û0 := u0 − c and a slightly different nonlinearity.

Proposition 4.2. Let s ∈ (0, 1), u0 ∈ L∞(Rd) and Φ satisfy (H). Let c ∈ R. Then u is a
solution to problem (1.1), according to Definition 1.1, if and only if the function û := u− c
is a solution to the same problem with u0 replaced by the initial datum û0 := u0 − c and Φ
replaced by the nonlinearity

Φ̂(v) := Φ(v + c)−Φ(c) ∀v ∈ R ,

which still complies with (H) and in addition satisfies Φ̂(0) = 0.
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Proof. It is just a matter of replacing u with û+ c in the very weak formulation (1.4) and
integrating in time the left-hand side. The only nontrivial point consists in showing that
the constant Φ(c) can be added to the first integral term in the r.h.s. of (1.4). Nevertheless,
this is a simple consequence of the identity

∫

Rd

(−∆)sϕ(x) dx = 0 ∀ϕ ∈ C∞
c (Rd) ,

which can be shown e.g. by means of a standard cut-off argument starting from (we recall
that γR is defined in (A.27))

∫

Rd

γR(x) (−∆)sϕ(x) dx =

∫

Rd

(−∆)sγR(x)ϕ(x) dx ∀ϕ ∈ C∞
c (Rd)

and letting R→ ∞, upon exploiting (4.13). �

Proof of Theorem 1.2. Let c := ess infx∈Rd u0(x) and set û0 = u0 − c ≥ 0. By virtue of

Proposition 1.5 we know that problem (1.1) with Φ replaced by Φ̂ admits a (minimal)
solution û with initial datum û0. On the other hand, Proposition 4.2 ensures that u = û+ c
is a solution to the original problem (1.1) with initial datum u0. �

Proof of Theorem 1.3 (sign-changing solutions and general Φ). Let u1 and u2 be two possi-
bly different solutions to (1.1), starting from the same initial datum u0 ∈ L∞(Rd). Put

c :=

(

ess inf
(x,t)∈Rd×R+

u1(x, t)

)

∧
(

ess inf
(x,t)∈Rd×R+

u2(x, t)

)

,

which is finite since both u1 and u2 are bounded by assumption. If we set û1 := u1 − c and
û2 := u2 − c, still by Proposition 4.2 and by the definition of c it is apparent that both û1
and û2 are nonnegative, bounded solutions to (1.1) with Φ replaced by Φ̂ and initial datum
û0 = u0 − c ≥ 0. Hence, as a consequence of the first part of the proof of Theorem 1.3 in
the case nonnegative solutions, we can deduce that û1 = û2 and therefore u1 = u2. �

Remark 4.3. Due to Proposition 4.1, for any k ≥ 1 and R ≥ 1 the solution uk,R constructed
in the proof of Proposition 1.5 satisfies (4.3). Since such estimate is purely local, by passing
to the limit first as R→ ∞ and then as k → ∞, we infer that

∇E(Φ(u)) ∈ L2
loc

(
Ω× [0,∞); y1−2sdxdydt

)
. (4.21)

Hence, in view of Theorem 1.3, it follows that any nonnegative very weak solution to (1.1)
is in fact a local weak (energy) solution, in the sense that (4.21) holds. Recalling the proof
of Theorem 1.2 along with the fact that the (global) extension operator E is invariant with
respect to addition of constants, the same is true for sign-changing solutions. Note that
property (4.21), in particular, implies that the function Φ(u) belongs to the space Ḣs

loc(R
d),

in the sense that

γR Φ(u) ∈ L2
loc([0,∞); Ḣs(Rd))

for any cut-off function γR as in (A.27), since γRE(Φ(u)) is a finite-energy extension of
γR Φ(u). Again, the same holds for sign-changing solutions.

4.3. Final comments, open problems and generalizations. We conclude our discus-
sion by listing some technical points which are important for our methods of proof to work,
along with some related open questions and possible generalizations.
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(1) The results of the present paper have been shown for nonlinearities Φ that are locally
Lipschitz. In the model case Φ(u) = u|u|m−1 this corresponds to the constraint
m ≥ 1, hence we are not considering the fractional fast diffusion equation (where
m ∈ (0, 1)). Indeed, there are technical issues in dealing with the latter case, in
particular as concerns the following two points. First, we use in a crucial way the
boundedness of the function a given in (3.22), which fails when m < 1. Secondly,
the fact that Φ is Lipschitz is exploited in the passage from (4.19) to (4.20), in order
to end up with a closed integral inequality. The problem of proving an analogue of
Theorem 1.3 for the fractional fast diffusion equation is therefore open.

(2) The problems considered in [22] involve a more general class of integral operators
with singular kernels satisfying suitable conditions, which does include the fractional
Laplacian. Our techniques, that proved to be successful in order to remove the extra
assumption u−w ∈ L1(Rd×(0, T )), necessary for the methods of [22] to work, require
that a suitable extension operator is well defined and that properties similar to the
ones established in Sections 2 and 3 hold. It is possible, for instance, that a careful
adaptation of our strategy could allow for generalizations to nonlinear evolution
equations driven by spectral fractional powers of uniformly elliptic operators, since
for the latter certain extension results are available (see e.g. [40]).

(3) The study of inhomogeneous equations of the form

ut + (−∆)sΦ(u) = f(x, t) in R
d × R

+

is not performed here. Nevertheless, one can check that, at least under the assump-
tion

f ∈ L∞
loc([0,+∞);L∞(Rd)) ,

our arguments still work with some modifications. Indeed, the most relevant change
is due to the fact that the solutions to the analogues of the approximate prob-
lems (3.1) are not necessarily positive. In particular, the monotonicity property
(4.4) is lost, but this is not an issue since a limit solution as R → ∞ can still
be constructed by standard compactness tools of the weak∗ topology in L∞. As a
consequence, the “minimal” solution may also not be positive somewhere; however,
this does not affect the overall strategy. Finally, solutions will in general belong to
L∞
loc([0,+∞);L∞(Rd)), i.e. they will not necessarily be globally bounded in time.

Again, no relevant additional difficulties arise, since one can work on bounded time
intervals approximating R

+.

Appendix A. Proofs of technical lemmas

In order to lighten the reading of the paper, we postpone to this appendix the rigorous
proofs of some technical facts we exploit in Sections 2 and 3, which are of key importance.

A.1. Proof of Lemma 2.4. Given R > 0 and ϕ ∈ L2(BR), the following representation
formula for ER(ϕ) holds:

ER(ϕ)(x, y) =

+∞∑

k=1

ϕ̂k φk(x)ψk(y) ∀(x, y) ∈ CR , (A.1)

where for every k ∈ N

ψk(y) := cs

(√

λky
)s
Ks

(√

λky
)

∀y > 0 (A.2)
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with

cs :=
21−s

Γ(s)
(A.3)

and Ks denotes the modified Bessel function of the second kind (see e.g. [1, Chapter 9.6]),
which enjoys some key properties that we will now recall, referring to [35, Section 2.4] and
the literature quoted therein for more details. Indeed, z ∈ (0,∞) 7→ Ks(z) is positive,
smooth and satisfies

lim
z↓0

cs z
sKs(z) = 1 , (A.4)

d

dz
[zsKs(z)] = −zsK1−s(z) ∀z > 0 , (A.5)

z 7→ zmin{s, 12}ezKs(z) is a decreasing function in (0,∞) . (A.6)

Proof of Lemma 2.4. As concerns (2.18), thanks to (A.1)–(A.2) we have:

‖ER(ϕ)(·, y)‖2L2(BR) =

∞∑

k=1

ϕ̂2
k ψ

2
k(y) = c2s

∞∑

k=1

ϕ̂2
k

(√

λky
)2s

K2
s

(√

λky
)

∀y > 0 ; (A.7)

on the other hand, properties (A.4) and (A.6) ensure that for every θ ∈ (0, 1) there exists a
constant Cθ as in the statement such that

cs z
sKs(z) ≤ Cθ e

−θz ∀z > 0 ,

whence

c2s

∞∑

k=1

ϕ̂2
k

(√

λky
)2s

K2
s

(√

λky
)

≤ C2
θ

∞∑

k=1

ϕ̂2
k e

−2θ
√
λky ≤ C2

θ e
−2θ

√
λ1y

∞∑

k=1

ϕ̂2
k ∀y > 0 ,

which combined with (A.7) yields (2.18). Similarly, we have:

‖∇xER(ϕ)(·, y)‖2L2(BR) =

∞∑

k=1

λk ϕ̂
2
k ψ

2
k(y) = c2s

∞∑

k=1

λk ϕ̂
2
k

(√

λky
)2s

K2
s

(√

λky
)

≤ c2s

∞∑

k=1

λky
2 ϕ̂2

k

(√

λky
)2s

K2
s

(√

λky
)

∀y ≥ 1 .

(A.8)
Still by (A.6) we can infer that, up to relabeling Cθ, there holds

cs z
1+sKs(z) ≤ Cθ e

−θz ∀z ≥
√

λ1 , (A.9)

from which

‖∇xER(ϕ)(·, y)‖2L2(BR) ≤ C2
θ e

−2θ
√
λ1y

∞∑

k=1

ϕ̂2
k ∀y ≥ 1 . (A.10)

As for the derivative w.r.t. y, by virtue of (A.5) we obtain

‖∂yER(ϕ)(·, y)‖2L2(BR) =

∞∑

k=1

ϕ̂2
k

[
ψ′
k(y)

]2
= c2s

∞∑

k=1

λk ϕ̂
2
k

(√

λky
)2s

K2
1−s

(√

λky
)

∀y > 0 ,

(A.11)
so that the estimate

‖∂yER(ϕ)(·, y)‖2L2(BR) ≤ C2
θ e

−2θ
√
λ1y

∞∑

k=1

ϕ̂2
k ∀y ≥ 1 (A.12)
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follows by reasoning exactly as above, up to replacing Ks with K1−s in (A.9). Hence (2.19)
is a consequence of (A.10) and (A.12) (possibly relabelling Cθ). In order to prove (2.17),
first of all we write

‖ER(ϕ)(·, y) − ϕ‖2L2(BR) =
∞∑

k=1

[

1− cs

(√

λky
)s
Ks

(√

λky
)]2

ϕ̂2
k

=
N∑

k=1

[

1− cs

(√

λky
)s
Ks

(√

λky
)]2

ϕ̂2
k

+
∞∑

k=N+1

[

1− cs

(√

λky
)s
Ks

(√

λky
)]2

ϕ̂2
k

≤
N∑

k=1

[

1− cs

(√

λky
)s
Ks

(√

λky
)]2

ϕ̂2
k + (1 +M)2

∞∑

k=N+1

ϕ̂2
k

(A.13)
for any N ∈ N, where we denote by M > 0 the supremum of z 7→ cs z

sKs(z). It is then
plain that (2.17) follows by letting first y ↓ 0 (using (A.4)) and then N → ∞.

Identity (2.20) is a standard one, see e.g. [21, Section 4]. In any case, it could be proved
here upon using (2.13), integrating the identities in (A.8) and (A.11) w.r.t. y1−2sdy and
suitably taking advantage of (A.4)–(A.5).

Finally, let us establish (2.21). Formula (A.1) entails

y1−2s∂ER(ϕ)(x, y)

∂y
=

∞∑

k=1

ϕ̂k φk(x) y
1−2s ψ′

k(y) ∀(x, y) ∈ CR . (A.14)

On the other hand, thanks to (A.5), for every k ∈ N there holds

y1−2sψ′
k(y) = −cs

√

λk y
1−2s

(√

λky
)s
K1−s

(√

λky
)

. (A.15)

Let αs := min
{
1− s, 12

}
. Property (A.6) yields

K1−s(z) ≤ C z−αs e−z ∀z ≥ 1 , with C := eK1−s(1) . (A.16)

Hence from (A.15)–(A.16) we can infer that

y1−2s
∣
∣ψ′

k(y)
∣
∣ ≤ cs Cmax

z≥1

{
z1−s−αse−z

}
λsk =: C ′λsk ∀y ≥ 1√

λk
; (A.17)

similarly, recalling (A.4), we have:

y1−2s
∣
∣ψ′

k(y)
∣
∣ ≤ cs λ

s
k

(√

λky
)1−s

K1−s

(√

λky
)

≤ cs λ
s
k sup
z∈(0,1]

z1−sK1−s(z) =: C ′′λsk

∀y ≤ 1√
λk

.

(A.18)
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Let Ĉ := C ′ ∨ C ′′. Arguing as in (A.13), by virtue of (A.14)–(A.15) and (A.17)–(A.18),
recalling also (2.12), we obtain

∥
∥
∥
∥
(−∆)sR ϕ+ µs y

1−2s∂ER(ϕ)(·, y)
∂y

∥
∥
∥
∥

2

L2(BR)

≤
N∑

k=1

[

λsk − µs cs
√

λk y
1−2s

(√

λky
)s
K1−s

(√

λky
)]2

ϕ̂2
k +

(

1 + Ĉ
)2

∞∑

k=N+1

λ2sk ϕ̂2
k

for any N ∈ N, whence (2.21) can be established upon letting first y ↓ 0, using (A.4), (A.3),
(2.6), and then letting N → ∞, using (2.14). �

A.2. Proof of Lemma 3.3. To begin with, we introduce a family of cut-off functions that
are helpful to many purposes. That is, let η ∈ C∞(

Ω
)

satisfy

0 ≤ η ≤ 1 in Ω , η = 1 in Ω1 , η = 0 in Ωc
2 , y−2s∂yη ∈ L∞(Ω) , (A.19)

where for each R > 0 the set ΩR is defined in (2.1). For every k ∈ N, we then set

ηk(x, y) := η
(x

k
,
y

k

)

∀(x, y) ∈ Ω . (A.20)

Proof of Lemma 3.3. Let k ∈ N, with k > R. A straightforward computation shows that

div
[
y1−2s∇(E(v)ηk)

]
= 2y1−2s〈∇E(v),∇ηk〉+ E(v) div

(
y1−2s∇ηk

)
in Ω ,

whence by testing the above identity against E(ϕ) − ER(ϕ) and integrating by parts, with
ER(ϕ) extended to zero in Ω \ CR, we have:

∫

Ω
〈∇E(v),∇ER(ϕ) −∇E(ϕ)〉 ηk y1−2sdxdy

=2

∫

Ω
〈∇E(v),∇ηk〉 (E(ϕ)− ER(ϕ)) y

1−2sdxdy

+

∫

Ω
E(v) div

(
y1−2s∇ηk

)
(E(ϕ) −ER(ϕ)) dxdy

+

∫

Ω
E(v) 〈∇ηk,∇E(ϕ) −∇ER(ϕ)〉 y1−2sdxdy ,

(A.21)

where we have used the fact that E(ϕ) and ER(ϕ) have the same trace on ∂Ω, and implicitly
a local approximation of E(v) by regular functions. Hence, from (A.21) we deduce

∫

CR
〈∇E(v),∇ER(ϕ)〉 ηk y1−2sdxdy =2

∫

Ω
〈∇E(v),∇ηk〉 (E(ϕ) − ER(ϕ)) y

1−2sdxdy

+

∫

Ω
E(v) div

(
y1−2s∇ηk

)
(E(ϕ) − ER(ϕ)) dxdy

+

∫

Ω
E(v) 〈∇ηk,∇E(ϕ)〉 y1−2sdxdy

−
∫

CR
E(v) 〈∇ηk,∇ER(ϕ)〉 y1−2sdxdy

+

∫

Ω
〈∇E(v),∇E(ϕ)〉 ηk y1−2sdxdy .

(A.22)
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Integrating by parts the first and the last term in the r.h.s. of (A.22), along with (2.9), yields
∫

CR
〈∇E(v),∇ER(ϕ)〉 ηk y1−2sdxdy =−

∫

Ω
E(v) div

(
y1−2s∇ηk

)
E(ϕ) dxdy

+

∫

CR
E(v) div

(
y1−2s∇ηk

)
ER(ϕ) dxdy

− 2

∫

Ω
E(v) 〈∇ηk,∇E(ϕ)〉 y1−2sdxdy

+

∫

CR
E(v) 〈∇ηk,∇ER(ϕ)〉 y1−2sdxdy

+
1

µs

∫

Rd

v(x) (−∆)sϕ(x) ηk(x, 0) dx .

(A.23)

Recalling (2.10)–(2.11), (A.19)–(A.20) and the uniform boundedness of E(v), it is not diffi-
cult to obtain the following estimates:

∣
∣E(v) 〈∇ηk,∇E(ϕ)〉 y1−2s

∣
∣ ≤ C

k |(x, y)|d+2s
χΩ2k\Ωk

≤ C

|(x, y)|d+2s+1
χΩ2k\Ωk

,

∣
∣E(v) div

(
y1−2s∇ηk

)
E(ϕ)

∣
∣ ≤ C

k + y

k2 |(x, y)|d+2s
χΩ2k\Ωk

≤ C

|(x, y)|d+2s+1
χΩ2k\Ωk

,

where C > 0, here and below, is a suitable constant independent of k. Since

(x, y) 7→ 1

|(x, y)|d+2s+1
∈ L1(Ωc

1) ,

we can assert that

lim
k→∞

∣
∣
∣
∣

∫

Ω
E(v) div

(
y1−2s∇ηk

)
E(ϕ) dxdy

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Ω
E(v) 〈∇ηk,∇E(ϕ)〉 y1−2sdxdy

∣
∣
∣
∣
= 0 .

(A.24)
Thanks to the assumptions on ∇E(v), the uniform boundedness of E(v) and

ER(ϕ),∇ER(ϕ) ∈ L2
(

CR; e
√
λ1yy1−2sdxdy

)

,

which trivially follow from (2.18), (2.19), (2.20), it is apparent that

〈∇E(v),∇ER(ϕ)〉 , E(v)ER(ϕ), E(v)∇ER(ϕ) ∈ L1
(
CR; y1−2sdxdy

)
. (A.25)

Upon observing that

∣
∣E(v) div

(
y1−2s∇ηk

)
ER(ϕ)

∣
∣ ≤ C

k2
|E(v)ER(ϕ)|χ(Ω2k\Ωk)∩CR y

1−2s ,

|E(v) 〈∇ηk,∇ER(ϕ)〉| y1−2s ≤ C

k
|E(v)∇ER(ϕ)|χ(Ω2k\Ωk)∩CR y

1−2s ,

by exploiting (A.24) and (A.25) we can finally let k → ∞ in (A.23), which yields (3.3). �

A.3. Proof of Lemma 3.4. We first define another family of useful cut-off functions. Let
ξ ∈ C∞([0,∞)) satisfy

0 ≤ ξ ≤ 1 in [0,∞) , ξ = 1 in [0, 1] , ξ = 0 in [2,∞] . (A.26)

For every R ≥ 1 put

γR(x) := ξ

( |x|
R

)

∀x ∈ R
d . (A.27)
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Proof of Lemma 3.4. It is convenient to first work with {vε}ε>0, the latter being the con-
volution of v against a standard positive, compactly supported, regular kernel ηε. Since we
know that v, (−∆)sv ∈ L∞(Rd), one can show that

[(−∆)sv]ε = (−∆)s(vε) (A.28)

and

lim
R→∞

∫

Rd

(−∆)s(vεγR)ϕdx =

∫

Rd

(−∆)s(vε)ϕdx ∀ϕ ∈ C∞
c (Rd) . (A.29)

For a rigorous justification of these facts, we refer e.g. to the proofs of [34, Lemma 3.5
and Proposition 3.6]. Given any R, r ≥ 1, a simple integration by parts that exploits the
regularity of the functions involved along with (3.6) yields

∫

Ω
|∇E(vεγR)|2 (γrρα) y1−2sdxdy

= −
∫

Ω
〈∇E(vεγR) ,∇(γrρα)〉E(vεγR) y

1−2sdxdy +
1

µs

∫

Rd

(−∆)s(vεγR) vεγRγr dx .

(A.30)
With no loss of generality we can and will assume that γr complies with

|∇γr(x)|2 ≤ C γr(x) ∀x ∈ R
d , (A.31)

since C is large enough by assumption. Thanks to Young’s inequality, (3.5) and (A.31), we
obtain:

∣
∣
∣
∣

∫

Ω
〈∇E(vεγR) ,∇(γrρα)〉E(vεγR) y

1−2sdxdy

∣
∣
∣
∣

≤ 1

2

∫

Ω
|∇E(vεγR)|2 (γrρα) y1−2sdxdy +

(
κ+ C2

)
∫

C2r
|E(vεγR)|2 ρα y1−2sdxdy .

(A.32)

Hence (A.30)–(A.32) imply
∫

Cr
|∇E(vεγR)|2 ρα y1−2sdxdy

≤ 2

µs

∫

Rd

(−∆)s(vεγR) vεγRγr dx+ 2
(
κ+ C2

)
‖v‖2∞ |B2r|

∫ ∞

0
ρα(y) y

1−2s dy .

(A.33)

Finally, estimate (3.4) follows by letting first R → ∞ and then ε ↓ 0 in (A.33), upon
exploiting (A.29), (A.28), the local convergence of the convolution (e.g. in L2

loc(R
d)) and the

plain fact that the extension operator is stable under all of these passages. �
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