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A B S T R A C T   

Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing 
technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This 
is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial 
accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications 
under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This 
article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there 
are some short reviews on this topic, the major contribution of this article is to exclusively present a compre-
hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per-
spectives of measurement techniques, third-party apps developed in Android and iOS, and various application 
domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on 
smartphone sensing technology.   

1. Introduction 

Structural health monitoring (SHM) has become an emerging and 
practical technology for automatically evaluating the health and safety 
of civil engineering structures, detecting possible structural damages 
before reaching failure and collapse modes, locating damaged or 
vulnerable areas, and quantifying the level of damage severity [1,2]. A 
key and inevitable part of SHM is sensing. Depending upon the main 
objective of an SHM project, the type and size of civil structures, their 
geographical locations and accessibility, weather conditions, economic 
justification, etc., contact and non-contact sensors in conjunction with 
wired, wireless, and Internet-of-Things (IoT) systems are mainly 
considered to record multifarious structural responses and influential 
environmental and/or operational data and then transfer the recorded 
data to storage devices and cloud servers [3,4]. 

Contact sensors such as accelerometers, strain gauges, piezoelectric 
transducers, fiber optic sensors, linear variable differential transformers, 
thermocouples, and anemometers, etc., are installed directly in civil 
structures to measure some prominent structural responses (e.g., ac-
celeration, strain and displacement, etc.) or environmental factors (e.g., 
temperature, wind speed and direction, etc.) [5,6]. In contrast, non- 

contact sensors are relatively new to SHM without attaching to civil 
structures. Most of these sensors often operate remotely to record optical 
images and videos from commercial digital and high-speed cameras, 
video cameras [7], and optimal and synthetic aperture radar images 
from some satellite sensors [8]. Eventually, structural responses/fea-
tures in terms of displacements are extracted by various image/video 
processing and interferometric synthetic aperture radar techniques. 

A new, cost-efficient, and effective sensing system for SHM and other 
engineering domains can be developed by smartphone sensing tech-
nology. Smartphones have become inevitable and inseparable parts of 
our daily life with numerous useful applications. In contrast to tele-
phones and cell-phones, a smartphone is a cellular telephone with an 
integrated mini-computer and other features including an advanced 
operating system, high processing power, on-board storage, computing 
and communication capabilities, and many default and third-party apps 
(i.e., in iOS and Android platforms) with user-friendly interfaces. 
Although cell-phones and smartphones are both mobile devices, which 
can commonly be used to call and text, smartphones contain different 
sorts of extra functions, more strength operating systems, batteries, 
embedded memories, and cellular networks (e.g., 4G or 5G internet 
connection), more advanced software supported by various artificial 
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intelligence (AI) algorithms and hardware (e.g., one or more high- 
resolution digital cameras), and particularly additional tools such as 
different built-in sensors, which are not available in the cell-phones. Due 
to such benefits and facilities, the demand for smartphone sensing 
technology as a cost-free hardware and software tool has been increased 
in different fields of science and engineering [9–11]. 

Depending upon the types of smartphones and their manufacturers, 
most of them are equipped with various built-in sensors such as accel-
erometer, high-resolution cameras, microphone, ambient light, gyro-
scope, magnetometer, proximity, barometer, and global-positioning- 
system (GPS) [12,13]. Apart from the camera and microphone, the 
brief definitions of other sensors are provided here:  

▪ Ambient light: It is commonly used to mimic the response of the 
human eye to ambient light conditions and embedded in a 
smartphone to adjust its display brightness based on the 
external brightness cases.  

▪ Accelerometer: Similar to other accelerometers, a built-in 
smartphone accelerometer can record structural vibration in 
terms of accelerations, which are among commonly-used 
measured responses in health monitoring of structural sys-
tems. One of the major merits of this dynamic response is that it 
contains information about both local and global properties of a 
structure. The other merit of the acceleration data is the ability 
to measure small motions over a wide frequency band [5]. The 
traditional contact accelerometers are often categorized as 
force-balance (servo), capacitive, and piezoelectric classes. 
However, the built-in accelerometers of smartphones are based 
on capacitive micro-electro-mechanical-system (MEMS) [14]. 
Such accelerometers can measure constant (gravity), time 
varying (vibration) and quasi-static (tilt) acceleration forces 
that impact the smartphone on the horizontal (X), longitudinal 
(Y), and vertical (Z) directions in the unit of m/s2.  

▪ Barometer: It is an instrument that can measure air pressure in a 
certain environment. Recently, some modern smartphones 
have been equipped with barometers. In these devices, the 
barometer measures the pressure and it is useful for improving 
the quality of geolocation data. Moreover, this sensor is appli-
cable to forecasting weather variability and estimating altitude. 

▪ Global Positioning System (GPS): It is a space-based radio-navi-
gation system consisting of a constellation of satellites broad-
casting navigation signals and a network of ground stations and 
satellite control stations used for monitoring and control. The 
smartphone GPS is a receiver that notifies the location on the 
earth. The receiver receives signals from the satellites and uses 
the information to calculate its distance from each satellite. By 
measuring the distance from multiple satellites, the receiver 
can triangulate its position and determine its precise location. 
The other application of GPS is the feasibility of understanding 
some environmental factors such as temperature, wind speed, 
relative humidity, and climatic conditions by utilizing some 
relevant third-party apps that acquire weather data from 
nearby weather stations. It should be mentioned that smart-
phones are equipped with thermometers to monitor their bat-
tery and processor temperature. In extreme temperature 
conditions (i.e., hot or cold), these sensors shut down the 
smartphones to prevent damage. However, this does not mean 
that such sensors can directly measure air temperature similar 
to most of the contact-based temperature sensors.  

▪ Gyroscope: It provides orientation and rotation information 
suitable for recognizing a movement in three-dimensional 
space. This sensor can also be applied to complement mag-
netic compasses, which are considered as a part of internal 
guidance system. One of the main applications of the gyroscope 
is its ability to measure or track title angle (i.e., in the unit of 
radian or degree per second) in the whole structure or its some 

components caused by external loads, scours and settlements in 
bridge piers [15] and structural foundations, etc.  

▪ Magnetometer: This sensor mainly detects magnetic fields and 
uses in the compass to find the direction with respect to the 
north pole. This sensor is also applicable to detect magnetic 
metals in case of installing metal detector apps.  

▪ Proximity: This sensor intends to detect situations when the 
smartphone in near to the users’ face during a call, in which 
case it orders to turn off the smartphone screen for battery 
consumption management. 

The major advantage of the smartphone sensing technology 
compared to other sensing techniques for SHM projects relates to its free 
or low cost [16]. Smartphones are comprised of many useful devices and 
technologies for data measurement by various built-in sensors, local 
data storage via an internal memory or a secure digital (SD) card, and 
wired and wireless data transmission/communication technologies. 
These benefits make them highly efficient and appealing choices for 
SHM, especially for citizen-centered monitoring of infrastructures [13]. 
Although the main focus of the smartphone sensing system is on wireless 
data communications, it is possible to transfer measured or locally 
stored data to smartphone memories or nearby devices (e.g., a personal 
computer (PC) or laptop) by USB cables or WiFi, cellular networks, and 
Bluetooth for short-distance communications. Furthermore, it is feasible 
to leverage wireless communication services based on WiFi and 4G/5G 
cellular networks to transfer data to cloud servers for long-distance 
communications. Accordingly, one can upload measured or stored 
data to some developed websites or smartphone apps, especially in a 
crowdsourcing sensing system. The other major advantage of the 
smartphone sensing technology is its ability to implement both contact 
and non-contact sensing systems via some built sensors, particularly the 
smartphone accelerometer and cameras. On the other hand, smart-
phones are movable, in which case one can build large-scale mobile 
sensing networks. This characteristic represents the importance and 
superiority of the smartphone sensing technology over the conventional 
wireless sensor networks, which are generally based on static sensor 
deployments. The other benefit of the smartphone sensing technology is 
the possibility of taking advantage of human intelligence and human- 
powered sensing applications that allow to control the sensing process 
without requiring sophisticated hardware and software. With such 
benefits, Fig. 1 shows some commonly-used smartphone sensors and 
data transmission technologies for SHM applications. According to the 
evaluated articles in this review, the built-in accelerometer, camera, 
gyroscope, and GPS are among the most useful sensors for SHM. 

For the first time, in 2012, Yu et al. [17] put forward the idea of 
applying smartphones to SHM. They correctly believed that a smart-
phone could be a simulation of a wireless sensor node and a mini-SHM 
system. Using the gyroscope of an iPhone, a swing test was conducted to 
measure dynamic angles with a wireless inclinometer under the sam-
pling frequency of 10 Hz. The experimental results showed that dynamic 
inclination data obtained from the smartphone was in good agreement 
with wireless inclinometer. Ding et al. [18] enhanced the traditional 
visual inspection of bridges by taking advantage of the capacities of 
smartphones and developed a third-party app for this purpose. The main 
objective of their research was to address the major limitations of the 
traditional visual inspection, for which it was necessary to initially re-
cord the inspection forms and then manually input documents into a 
computer. Using the proposed smartphone system and the developed 
app, the inspector could complete the inspection report in a portable 
smartphone, add supplementary information such as site images, and 
directly upload the collected data to a server via the smartphone cellular 
network. Matarazzo et al. [19] evaluated the capacity of mobile sensor 
networks with the aid of smartphones for health monitoring of bridge 
structures. The main motivation for proposing the mobile sensor 
network was the limitation of fixed sensor networks, which could not 
provide sufficient spatial information or needed distributed sensors. In 
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contrast, mobile sensor networks were able to obtain a higher spatial 
converge (e.g., identification of high-resolution mode shapes) by 
applying fewer sensors, even one smartphone mounted on a vehicle. 
Morgenthal et al. [20] investigated a complementary application of 
smartphones to the procedures of data acquisition, visualization, and 
analysis in wireless sensor networks utilized in SHM. In that research, 
the authors proposed a hybrid method of combining hardware and 
software solutions to implement highly accurate measurements. For this 
purpose, they developed a software framework based on a smartphone 
app for cost-effective microcomputer hardware. The smartphone app 
was able to facilitate the initiation and management of the measurement 
process and allow for data processing and storage. Ozer [21] researched 
into the problem of vibration-based SHM by the smartphone sensing 
technology. In that Ph.D. dissertation, the author utilized multisensory 
smartphone features to solve citizen-induced uncertainties and devel-
oped a smartphone-based SHM technique, which enabled a cyber- 
physical system through mobile crowdsourcing. Ozer and Feng [22] 
studied the lack of control over smartphone positioning by citizens 
during measurement procedures, which caused unknown sensor orien-
tations. For this problem, they proposed a technique based on the 
smartphone built-in accelerometer, gyroscope, and magnetometer in 
order to determine the instantaneous smartphone orientation with 
respect to gravitational and magnetic north directions. Accordingly, the 
proposed technique could correct misaligned sensor signals by 
retrieving processed features such as attitude and heading. 

Apart from SHM, the idea of smartphone sensing technology has 
been explored in other applications of civil and structural engineering. 
Alavi and Buttlar [13] reviewed this technology in civil engineering 
applications concerning pavement engineering, structural engineering, 
traffic engineering, construction engineering and management, and 
earthquake engineering. Yu et al. [23] assessed the applications of 
smartphone sensing technology to pavement roughness index estimation 
and anomaly detection. They focused on some critical issues regarding 
pavement engineering including sensor selection, pre-processing tech-
niques, and assessment algorithms. In particular, some practical factors 
with the highest influences on the accuracy and robustness of 
smartphone-based methods such as data collection speed, vehicle type, 
smartphone specifications and mounting configurations were evaluated 
thoroughly. For the problem of construction, Dzeng et al. [24] took 
advantage of smartphone sensing technology to detect fall portent and 
decrease fall incidents during construction. In that research, a smart-
phone along with its accelerometer, gyroscope, wireless receiver, and 
sound and vibrating alarms was considered to detect potentially 
dangerous motions of workers, such as sudden swaying and unsteady 
footsteps. Dong et al. [25] exploited a smartphone camera for 

reconstructing the asphalt pavement macrotexture from monocular 
images. They took red-blue-green images from the smartphone camera 
and depth maps of the pavement texture acquired by a laser texture 
scanner from different asphalt mixture slab specimens constructed in a 
laboratory environment. Using such data, a convolutional neural 
network (CNN) was trained to reconstruct the pavement macrotexture. 

1.1. Motivation and contributions 

Due to increasing demand for leveraging the smartphone sensing 
technology, particularly for SHM, this article intends to present a state- 
of-the-art review to provide thorough understanding of recent research 
activities and practical SHM projects based on this sensing system. The 
main sections of this review concentrate on two fields of vibration- and 
vision-based applications. In the vibration-based SHM, the acceleration 
is the core monitoring data acquired from the smartphone MEMS 
accelerometer. The vibration-based application domains evaluated in 
this review article include vibration (response) measurement, modal 
identification, damage assessment, seismic SHM, and structural comfort 
assessment. Regarding the vision-based SHM, the images and videos 
taken by the smartphone cameras are the main monitoring data for two 
application domains containing displacement measurement and surface 
damage assessment. Fig. 2 illustrates and separates these fields, where 
each tag label indicates the number of published articles in the field of 
interest. It should be noted that we have also investigated publications 
regarding defects and damages in road pavements due to conceptual and 
methodological similarities with the same process in structural systems. 
In summary, this review article exclusively evaluates 126 research ar-
ticles related to the smartphone sensing technology for SHM, as shown 
in Fig. 2, along with some articles related to measurement techniques 
and third-party apps developed for smartphone-aided SHM between 
2012 and 2023. It needs to mention that some researchers only used the 
smartphone sensing technology in some specific parts of their studies; 
therefore, we only highlight those smartphone-related parts. 

Although Sony et al. [7], Alavi and Buttlar [13], and Malekloo et al. 
[26] concisely evaluated the smartphone sensing technology for SHM, 
the main contribution of our review article is to present a detailed re-
view of various applications of this technology to health monitoring of 
different civil structures from measurement techniques and smartphone 
third-party apps in Android and iOS operating systems. In this review 
article, we have separated all SHM projects into two sections of vibration 
and vision application domains along with several sub-sections that 
allow readers to deeper review and evaluate the research studies on 
these issues. The other contribution is related to the number of publi-
cations and investigation interval of the review process. Sony et al. [7] 

Fig. 1. The commonly-used smartphone sensors and technologies in SHM applications.  
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and Alavi and Buttlar [13] investigated 21 and 22 papers until 2018 and 
Malekloo et al. [26] assessed 22 publications until 2021. However, this 
review article considers 147 papers exclusively related to SHM until 31 
June 2023. For further clarification, Fig. 3 compares the number of 
publications per two years between 2012 and 2023 in this article and the 
aforementioned review articles. The other innovation of this article is to 
review new topics in structural engineering and SHM applications such 
as structural comfort assessment. 

The remaining parts of this review article are as follows: Section 2 
presents the main requirements for implementing a smartphone-based 
SHM. This section elaborately discusses the measurement techniques 
through smartphone sensors and also introduces some academically 
published smartphone apps for the vibration and vision applications. In 
Section 3, the published articles regarding the aforementioned appli-
cation domains (i.e., sub-sections 3.1 and 3.2) are evaluated in detail. At 
the beginning of each sub-section of Section 3, a brief introduction of 
that field is provided to aid readers to deeper realize the succeeding 

contents. Section 4 discusses the main findings of this review article. 
Section 5 highlights the remaining challenges, and suggests further 
research opportunities regarding smartphone sensing technology to 
SHM. Eventually, Section 6 presents the conclusion of this review 
article. 

2. Requirements 

The main objective of this section is to describe how to utilize a 
smartphone as a smart sensor and data acquisition system for different 
SHM tasks. For this purpose, it is only necessary to prepare some re-
quirements including one or more smartphones with specifications and 
built-in sensors described in Section 1.1, a measurement technique 
depending on the application domain, which is supposed to be imple-
mented, and some smartphone apps for data recording, storage, and 
communication. 

2.1. Measurement techniques 

Based on the vibration- and vision-based application domains and 
the key smartphone sensors for SHM (i.e., the accelerometer, gyroscope, 
camera, and GPS), the main measurement techniques of the smartphone 
sensing technology can be divided into different classes of fixed vs. 
mobile, contact vs. non-contact, and crowdsourcing vs. limited (non- 
crowdsourcing) systems. A fixed measurement technique is based on 
either attaching smartphones on a civil structure or its components (e.g., 
a bridge deck, a building floor, a cable of a cable-stayed bridge, etc.) for 
recording vibration data (e.g., acceleration) or remotely fixing them in a 
support device (e.g., a tripod) for taking images or videos. In contrast, a 
mobile measurement technique is movable so that one or more smart-
phones are mounted on one and/or several vehicles to measure vibration 
and vision data during movement. For example, Fig. 4 displays the 
graphical representations of the fixed and mobile measurement systems 
for monitoring of a bridge. Despite high applicability of the fixed mea-
surement strategy, the major advantages of the mobile system include 
providing sufficient spatial information (e.g., high-resolution mode 
shapes) with fewer sensors [19] and lacking a dense fixed sensor 
network and optimal sensor placement. In addition, the mobile sensing 
gives us an opportunity of measuring vibration data from multiple 
bridges by using the same instruments within a short period of operation 
[27]. 

Both the fixed and mobile measurement techniques can be used in 
the crowdsourcing and limited/non-crowdsourcing systems. A 

Fig. 2. The general perspectives of SHM applications based on smartphone sensing technology (i.e., Each tag label shows the number of the evaluated articles in any 
application domain). 

Fig. 3. Number of published articles per two years’ duration between 2012 and 
2023 regarding the smartphone sensing technology for SHM applications. Until 
31 June 2023. 
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crowdsourcing or crowdsensing system is an emerging technology based 
on the contribution of a large number of citizens or volunteers by using 
their smart devices (e.g., smartphones, tablets, smart watches, smart 
clothes, smart vehicles, etc.) in order to measure, collect, transmit, and 
upload a large amount of data in private and public ways [13,28,29]. In 
most cases, a crowdsourcing system consists of three main steps of 
sensing and storage, data transmitting or uploading, and application 
services including data analysis, mining, and visualization [28]. On this 
basis, the fixed crowdsourcing relies on citizens’ smartphones fixed at 
specific locations in a spatiotemporal manner [30]. Recording the vi-
bration responses of a building through a large group of residents is an 
example of the fixed crowdsourcing technique. On the other hand, the 
mobile crowdsourcing is more popular and applicable to health moni-
toring of bridge structures by employing various participants, vehicles, 
and smartphones [27,31]. In contrast, a non-crowdsourcing system is 
based on a limited or small number of participants who collaborate to 
measure, collect, and transfer specific types of data. Generally, this type 
of measurement system can be split into independent and limited-group 
procedures [28]. In the independent system, there is not collaboration 
for data measurement and transmission so that data is often measured 
and collected individually for personal use-only. For the limited-group 
system, a restricted or small group of participants with a common 
objective, interest, and expertise (e.g., an academic research team) make 
an attempt to measure and share some specific data relevant to their 
objective and expertise. Both the independent and limited-group sensing 
systems are prevalent in academic and industrial research activities and 
these may be performed privately. For example, in SHM applications, 
the dynamic monitoring of different bridge structures via a large group 
of taxi drivers with various vehicles and smartphones implies the 
crowdsourcing system [31], while the same monitoring process with a 
limited number of participants (e.g., civil engineers, university students, 
etc.) refers to the non-crowdsourcing or limited system [32,33]. For 
more details, Fig. 5 displays the graphical representations of 

crowdsourcing and non-crowdsourcing/limited systems in a mobile 
sensing strategy for bridge health monitoring. The other note about the 
crowdsourcing system is that this technology can be employed in 
controlled and uncontrolled manners. In a controlled crowdsourcing 
strategy, all requirements for sensing and measurement are determined 
priorly. These requirements include some parameters of smartphones 
such as their models, sensors, coupling conditions, orientations, and 
sampling rates. For the mobile crowdsourced system, the models, 
speeds, and routes of the vehicles are added to the aforementioned pa-
rameters [31]. In most cases, the limited system is performed in a 
controlled way, whereas the majority of the requirements for the 
crowdsourcing system in an uncontrolled framework may be unknown. 
Indeed, analysts do not have any control over the measured data and 
devices prior to data acquisition. 

The key merit of the crowdsourcing system is to address the major 
shortcomings of the limited system. In the vibration-based applications, 
the use of a limited number of smartphones may not provide sufficient 
information. In the vision-based applications (e.g., pavement crack/ 
defect detection), the limited or non-crowdsourcing system with one 
smartphone or vehicle can miss some areas outside of the camera frame. 
Accordingly, in case of employing a large number of smartphones in a 
crowdsourcing mode, it can be expected to record more vibration and 
vision data, which can enhance the performance of SHM compared to 
applying limited smartphones. Despite such benefits, the crowdsourcing 
system has its own limitations and weaknesses. The main limitation is 
that participants in a crowdsourcing program may not take part so that 
some important information is missed. Data reliability and quality are 
important challenges in the crowdsourcing system [28]. The vehicles in 
a crowdsourced mobile system may have different specifications and 
suspension systems. Furthermore, the road surfaces may contain 
different roughness conditions resulting from pavement defects such as 
potholes, cracks and rutting, etc. Under such circumstances, the system 
may collect variable, incomplete, and unreliable data. The other 

Fig. 4. Measurement techniques for monitoring a bridge structure by smartphone sensing technology: (a) the fixed system, (b) the mobile system.  
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limitation of this system is that crowdsourced data measurements are 
not often time-synchronized. This issue induces a barrier to properly 
implement some SHM objectives, which are dependent on synchronized 
measurements, such as modal identification, damage assessment, and 
model updating. In other words, as a crowdsourcing system is often 
implemented voluntarily, participants determine when, where, how 
frequent, and how long the measurements take place. Accordingly, the 
system may encounter the challenges of spatial and temporal un-
certainties in data recording. Thus, the choice of an appropriate smart-
phone sensing system depends on an operational evaluation on the 
project at hand and an initial data analysis and pre-processing after an 
initial collection. 

Once the process of data measurement is over, the measured data can 
be stored in the smartphone internal/external memories or can be 
transferred to cloud servers. Fortunately, the last versions of some 
modern smartphones have been equipped with internal memories up to 
1 TB (e.g., iPhone 13 Pro Max and later and Samsung S23 Ultra, etc.), 
which supply large internal storage space. Moreover, most of the 
smartphone manufacturers assign external memory capacities (i.e., SD 
cards) that enable users to take advantage of alternative and supple-
mentary storage space. The major benefit of such storage systems is that 
the measured data either vibration responses or images/videos are 
directly transferred to these memories without any redundant re-
quirements such as cables or internet. On the other hand, the built-in 
wireless data communication technologies via WiFi and Bluetooth in 
conjunction with some apps (e.g., Nearby Share and AirDrop in the 
android and iOS environments) and 4G/5G cellular networks enable 
users to transmit measured data to nearby devices (e.g., a PC or laptop) 
or clouds and also upload data to some developed websites or mobile 
apps. 

For the first time, Ozer et al. [34] suggested the application of 
crowdsourcing to SHM by considering citizen sensors. They examined 
their proposed method on a short-span pedestrian link bridge and vali-
dated it by a traditional contact sensing technique for modal identifi-
cation. The crowdsourcing framework in their work was based on 
changing the smartphone locations and orientations with different 
coupling conditions (i.e., adhesive taped and free to move). Matarazzo 
et al. [27,31] utilized different vehicles to implement crowdsourcing 
dynamic monitoring on full-scale bridge structures. Mei et al. [35] 
exploited the idea of crowdsourcing for monitoring transportation in-
frastructures using smartphones and smart vehicles. In their research, 
the authors investigated three applications of crowdsourcing-based 
techniques. First, the mobile crowdsensing system with a large num-
ber of vehicles equipped with smartphones was considered to measure 
acceleration responses of bridge structures and assess structural damage. 
Second, they utilized the smartphone gyroscope to monitor road in-
clinations by passing vehicles. Both applications were conducted in a 
laboratory environment by using a robotic car with different and vari-
able characteristics. Third, a smart vehicle equipped with a backup 
camera was considered to take images from pavements in order to detect 
pavement cracks via deep learning. Shirzad-Ghaleroudkhani et al. [36] 
proposed a two-step crowdsourcing method for transportation infra-
structure monitoring and management in smart cities. In the first step, 
the authors monitored road qualities in a vision manner through deep 
neural networks in an effort to address the limitation of road roughness 
in indirect dynamic monitoring. For the second step, two techniques 
based on Mel-frequency cepstral coefficients and an inverse filtering 
algorithm were proposed for vibration-based bridge monitoring and 
mitigating different uncertainties such as vehicle attributes, engine vi-
brations, suspension systems, tire vibrations, and external sources. Zhao 
et al. [29] studied the mobile crowdsensing technology for urban 
infrastructure safety. They proposed a crowdsourcing-based monitoring 
system called Urban Safety and developed its software in an Android 
platform. The fundamental principle of the proposed system was to 
gather urban infrastructure damage information through public partic-
ipants and provide monitoring and emergency assessment in the field of 
disaster prevention and mitigation. The developed software could act as 
a sensor to collect urban data including structural acceleration and 
deformation, questionnaires, and images of civil structures and then 
perform disaster emergency communications regardless of a network. 
The system architecture mainly contained three modules of sensing, 
network, and application layers. 

2.2. Smartphone third-party apps 

A smartphone is comprised of various default software or apps 
developed by its manufacturer for routine activities and usages such as 
calling, messaging, photographing, playing music and video, recording 
voices, data storing and sharing, locating, etc. However, such software 
does not allow us to exploit some hardware embedded in the smart-
phone or extract any output from them for a specific application. For this 
purpose, third-party apps that are mainly developed for some specific 
tasks can interact with some hardware and operating system features. 
These apps are responsible for acquiring and analyzing data from such 
hardware. Therefore, this section intends to introduce some academi-
cally published third-party apps suitable for SHM as listed in Table 1. It 
should be noticed that these apps are reported here based on their uses 
in research activities. Accordingly, the authors of this review article 
cannot guarantee the accuracy, performance, and safety of these apps 
for industrial and real-world projects. Furthermore, we did not scan 
them for viruses, adware, spyware or other types of malwares. 

Fig. 5. Mobile smartphone sensing measurements for bridge health moni-
toring: (a) the crowdsourcing system, (b) the non-crowdsourcing 
(limited) system. 
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3. Review on SHM application domains 

3.1. Vibration-based applications 

3.1.1. Vibration measurement 
Vibration data caused by periodic and non-periodic (random) load-

ings is of paramount importance to structural analysis, design, and 
monitoring. Due to this significance, many sensing techniques are 
exploited to measure such data under various excitation loadings. 

Acceleration is among the most important and useful vibration data for 
SHM. This is because this dynamic response contains information about 
local and global characteristics of a structural system. For this reason, 
different models of accelerometers are available in market that can be 
employed based on the type and size of the civil structure under study, 
the sensitivity range and frequency bands for measurement, and total 
costs. In this regard, the triaxial MEMS accelerometer in a modern 
smartphone gives us an inexpensive and ubiquitous tool for measuring, 
storing, processing, and transferring acceleration data. In most cases, 

Table 1 
Third-party apps for SHM applications sorted in alphabetical order.  

Apps Operation 
system 

Developer(s) Application Reference 

Logo Name Android iOS 

Accelerometer 
Analyzer 

✓ × Mobile Tools Vibration [37,38] 

App4SHM ✓ × Lusófona University (Portugal) Vibration [39] 

Asfault ✓ × Universidade de São Paulo, Universidade Federal do Amazonas, and Instituto 
Federal Sul de Minas (Brazil) 

Vibration 
(Road) 

[40,41] 

CrowdSense × ✓ Queen Mary University of London (UK) Vibration [42,43] 

CS4SHM × ✓ Columbia University (USA) Vibration [34] 

D-Viewer ✓ × Dalian University of 
Technology and Harbin Institute of Technology  
(China) 

Displacement 
measurement 

[44] 

Earthquake Network ✓ ✓ Futura Innovation SRL (Italy) Vibration 
(Seismic) 

[45] 

EDAM ✓ ✓ Politecnico di Torino (Italy), University at Buffalo (USA), and Kyung Hee 
University (South Korea) 

Vibration & Vision [46] 

iDynamics ✓ ✓ University of Kaiserslautern (Germany) Vibration [47,48] 

iShake × ✓ University of California, Berkeley (USA) Vibration 
(Seismic) 

[49] 

MATLAB Mobile ✓ ✓ MathWorks, Inc. (USA) Vibration & Vision [50,51] 

MOSAIC ✓ × Bauhaus University (Germany) Vibration 
(Cable) 

[52] 

MyShake ✓ ✓ University of California, Berkeley (USA) Vibration 
(Seismic) 

[53,54] 

Orion-CC × ✓ Dalian University of 
Technology and Harbin Institute of Technology  
(China) 

Vibration & Vision [55] 

Phyphox ✓ ✓ RWTH Aachen University (Germany) Vibration [36,56] 

Sensor Kinetics Pro ✓ × Innoventions, Inc. Vibration [57] 

VibSensor ✓ ✓ Now Instruments and Software, Inc. Vibration [58]  
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smartphone accelerometers are used in a contact manner so that high 
measurement accuracies are often achieved when smartphones are 
attached by adhesive or double-sided tapes to a structural component. 
Under such circumstances, the triaxial MEMS accelerometers of modern 
smartphones can be considered as reliable tools for recording and col-
lecting accurate acceleration responses, particularly those are below 20 
Hz, in three directions (i.e., horizontal, longitudinal, and vertical axes) 
in conjunction with some third-party apps [16]. Fig. 6 shows the main 
triaxial directions of a MEMS accelerometer and their orientations in a 
vehicle for a mobile measurement system. 

Regarding the measurement of acceleration time histories, Feng et al. 
[59] suggested to take advantage of ubiquitous smartphones to form a 
low-cost wireless citizen sensor network in order to measure structural 
acceleration responses during earthquakes for facilitating post-disaster 
structural assessment. They firstly investigated the capabilities of 
smartphone sensors (i.e., iPhone 3GS and iPhone 5) for measuring vi-
bration data in different frequencies and amplitudes by using a small- 
scale electromagnetic shaking table, where the smartphones were 
fixed on it, and high-quality piezoelectric reference accelerometers for 
validation. In the following, a large-scale shaking test on a masonry 
column was carried out to measure acceleration responses, for which a 
smartphone (i.e., iPhone 5) and reference accelerometers were installed 
on the top of the model and another smartphone (i.e., Samsung Galaxy 
S4) was installed on the top of the shaking table near the foot of the 
model. Finally, a pre-stressed reinforced concrete pedestrian bridge was 
considered to equip with smartphone and reference accelerometers, 
which were fixed by double-sided adhesive tapes in the mid span of the 
bridge deck, to record the bridge acceleration responses under ambient 
and human-induced vibrations. Fig. 7 shows the experimental models 
for validating the capability of smartphone sensing technology for vi-
bration response measurement. They concluded that the smartphone 
MEMS accelerometers were able to measured sinusoidal vibration of 0.5 
Hz through 20 Hz in the small-scale shaking test, and these sensors were 
also valid for measuring the structural responses of the large-scale ma-
sonry column and pedestrian bridge in spite of the measurement error of 
the structural response in the time domain under the low-amplitude (less 
than 0.005 g) ambient vibration. 

Gonzalez et al. [60] developed a wireless sensor network using a 
smartphone (i.e., Motorola Milestone) and its WiFi capacity to measure 
acceleration responses of a building. The authors incorporated the 
smartphones as sensor nodes in the wireless network, for which the 
sensor specification and location were two important elements of their 
proposed system. Feldbusch et al. [48] utilized the MEMS accelerome-
ters of different smartphones for measuring acceleration responses of a 
pedestrian bridge under ambient and human-induced excitations. They 
exploited the third-party app iDynamics for acceleration measurement 
and collection. To compare the applicability of the smartphone accel-
erometers, a new measurement based on a high-sensitive accelerometer 
was conducted. McGetrick et al. [61] designed a hybrid sensing tech-
nique for health monitoring of highway bridges on the basis of the 

concept of drive-by monitoring methodology, i.e., see [62], and mobile 
sensing via a vehicle. The proposed hybrid sensing technique included 
two accelerometers for vibration (acceleration) measurement and a 
global navigation satellite system (GNSS) for recording the vehicle po-
sition in the road network. They considered two types of accelerometers 
including wired accelerometers installed in the vehicle body and two 
smartphones (i.e., LG Nexus 5 and Samsung Galaxy S4) horizontally 
mounted on the tested location in that vehicle. It was demonstrated that 
the vertical acceleration responses obtained from the smartphone ac-
celerometers can provide reliable measurements for the drive-by 
monitoring system with lower costs than the wired accelerometers. 
Kong et al. [30] assessed SHM of buildings using the smartphone sensing 
technology and the third-party app MyShake [53,54]. In that research, 
25 smartphones of various brands and specifications were employed to 
measure acceleration responses of the top-level (ninth) floor of a 
building excited by a shaker, which was installed on the top of that 
building. They demonstrated the possibility of smartphone accelerom-
eters to measuring the building accelerations. Zhang et al. [63] devel-
oped an Android software system that could simply convert multiple 
smartphones of one model (i.e., Huawei P6) into a wireless monitoring 
system. In this case, one smartphone was designated as the system server 
to remotely control all other smartphones, which operated as sensors to 
measure structural vibration responses. Furthermore, they proposed an 
approach to synchronize different smartphones for simultaneously 
measuring vibration responses. Eventually, the proposed system was 
verified by a shaking table experiment on a three-story bench-scale 
structural model. Han et al. [64] exploited the smartphone sensing 
technology for response measurement and monitoring of girder hoisting 
during a construction phase. The criterion for monitoring was based on 
making sure of the girder level and preventing a drop of one of the 
girders ends. For this purpose, they used two iPhones in such a manner 
that the first iPhone was placed on the girder to measure its rotation 
angle and accelerations, while the other one controlled the monitoring 
procedure by communicating to the first smartphone. 

Apart from the measurement of acceleration data, Morgenthal and 
Höpfner [65] used the MEMS accelerometer as well as speaker and 
microphone of a smartphone for measuring transient displacements and 
tilts. The fundamental principle of the tilt (inclination) measurement via 
the built-in smartphone accelerometer relates to the influence of gravity, 
which can be identified by the accelerometer recording and decomposed 
into directional components when the smartphone or the tested system 
is inclined. Yu et al. [66] used smartphone (i.e., iPhone) and conven-
tional force-balance accelerometers for estimating cable forces. The idea 
behind the cable force estimation lies in identifying the cable natural 
frequencies from measured acceleration responses and then determining 
the force value based on the relationship between the natural fre-
quencies and the cable force. Accordingly, the authors examined the 
performances of three types of sensors (i.e., the force-balance, the inner 
sensor of iPhone, and external sensor broad) on a cable in a laboratory 
and thirteen cables of a full-scale bridge. Morgenthal et al. [52] used the 

Fig. 6. (a) The main axes of a triaxial MEMS accelerometer of a smartphone in the horizontal (X), longitudinal (Y), and vertical (Z) directions, (b) the accelerometer 
axes of the smartphone in a vehicle. 
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MEMS accelerometer of a smartphone (i.e., Sony Xperia Z5) and mass- 
market as well as credit card–sized battery-operated microcomputers 
to determine cable forces of a central tower of a long-span cable-stayed 
bridge (i.e., Queensferry Crossing Bridge) during erection. They utilized 
an Android app called MOSAIC for measuring acceleration responses 
and considering other supplementary data (e.g., photos, videos, images 
and markups created through a custom sketchbook, notes typed, and 
voice memos recorded during the construction and monitoring projects). 
They finally concluded that limitations of the sensor resolution and 
excitation type are critical factors for determining the quality and reli-
ability of the force identification process. The other applications of the 
built-in accelerometers of smartphones for cable force estimation and 
vibration monitoring can be found in [55,67–69]. 

Guzman-Acevedo et al. [38] extracted the displacement responses of 
a full-scale bridge by proposing a hybrid smart sensing approach based 
on GPS, a commercial accelerometer, and a smartphone (i.e., Samsung 
Galaxy S8-Plus). These were installed in a special steel structure devel-
oped to hold them. Morgenthal et al. [20] took advantage of the accel-
erometers of some smartphones (i.e., Sony Xperia Z5 and Nexus 4) as 
well as a tablet (i.e., Nexus 7) and a MEMS sensor connected to the 
Raspberry Pi-based measurement system in a wireless sensor network to 
measure acceleration responses at the top of the tallest pier of a box 
girder highway bridge under blast loadings due to explosive excavations 
for few months. After some filtering and detrending strategies, the 
measured acceleration responses were then integrated to compute the 
velocity time history and to determine the absolute peak velocity. 
Shrestha and Dang [70] proposed a CNN to train a deep learning model 
for classification of various bridge vibrations including ambient data, 
smartphone faulty data (i.e., spikes and drafts), a few earthquake re-
cords, and traffic-induced vibration. For this objective, multichannel 
time-domain acceleration responses acquired from built-in accelerom-
eters of six smartphones (i.e., iPhone 5S) were fed into the CNN as the 
inputs to enable it to classify the vibration labels. The experimental 
program of their research was conducted on a full-scale bridge under a 
long-term monitoring scheme, for which six locations on the bridge were 
equipped with the six smartphones. Shiferaw [71] studied the applica-
tion of smartphone sensing technology for measurements of traffic- 
induced vibrations generated by different vehicles such as a single 
cabin pickup vehicle, a truck, and a vibrating roller on asphalt paved, 
cobblestone paved, gravel road and a road section with a pothole of 100 
mm depth. The main objective of that research was to measure accel-
eration responses via the built-in MEMS accelerometer of a smartphone 
(i.e., Samsung J7 Pro) with the aid of the third-party app iDynamics. The 
author demonstrated that the sensitivity (resolution) of the smartphone 
sensor was low; therefore, the influence of inherent noise vibration can 
be considerable for low amplitudes. 

3.1.2. Modal identification 
In structural dynamics, modal properties including natural fre-

quencies, mode shapes, and damping ratios are critical for structural 
design, dynamic analysis, monitoring, and performance assessment. 

These properties are appropriate dynamic features for health monitoring 
of civil structures due to their direct relationships with the inherent 
physical characteristics of a civil structure; that is, mass, damping, and 
particularly stiffness. Hence, modal identification is a technique for 
obtaining the aforementioned modal parameters from measured vibra-
tion data under two strategies of experimental modal analysis (EMA) 
and operational modal analysis (OMA). The main difference between 
these strategies and techniques relates to the consideration of excitation 
data for identifying the modal properties. In this regard, the EMA re-
quires such data along with structural responses, while the OMA is in-
dependent of the excitation data so that the process of modal 
identification is only performed by the measured structural responses. In 
large and complex civil structures, the implementation of the EMA is not 
popular due to requiring heavy devices for generating artificial excita-
tions, which may not only be expensive but also possibly damage these 
structures. In contrast, various sources of ambient (e.g., wind) and 
human-induced (e.g., traffic) vibrations can excite civil structures and 
lead to structural vibrations, which can be sensed and recorded by high- 
sensitivity sensors. Using measured structural vibrations, one can utilize 
different OMA methods for identifying the modal parameters [72]. 

Regarding the process of modal identification using structural vi-
brations obtained from smartphone sensing technology, Feng et al. [59] 
utilized the smartphone accelerometers mounted on a pedestrian link 
bridge to initially measure acceleration time histories at six different 
locations in the vertical direction (i.e., based on the fixed crowdsourcing 
system) and then obtained the natural frequencies and mode shapes of 
the bridge under ambient vibration. On this basis, they could identify 
the first three modes; however, the sensor locations had an important 
impact on the modal identification results. Ozer and Feng [73] studied 
the major challenge in the crowdsourcing system regarding spatial and 
temporal uncertainties of vibration measurements. The authors pro-
posed a modal identification strategy by fusing spatiotemporally sparse 
vibration data collected by smartphone-based wireless sensor networks 
and the idea of fixed crowdsourcing on a pedestrian link bridge. 
Multichannel data sampled with time and space independence was 
incorporated to compose modal properties including natural frequencies 
and mode shapes. Overall, they identified the modal frequencies with a 
reasonably small error of around 3 % and mode shapes with the modal 
assurance criterion around 0.91. Ozer et al. [74] proposed a hybrid 
sensing system as a combination of built-in accelerometers and cameras 
of smartphones for modal identification. Implementing a vibration test 
on a small-scale multistory frame, displacement and acceleration re-
sponses were measured by three smartphones (i.e., iPhone 3SG, iPhone 
5, and iPhone 6). For the modal identification based on the smartphone 
accelerometers, a direct contact sensing system was considered, where 
the smartphones were installed at the frame floors. To identify modal 
data via vision-based displacement responses obtained from the smart-
phone cameras, the authors designed an indirect non-contact (fixed) 
sensing system for tracking the frame displacements. Castellanos-Toro 
et al. [75] conducted a comprehensive research study on identifying 
vertical natural frequencies and damping ratios of 451 bridge structures 

Fig. 7. The experimental programs related to the research by Feng et al. [59] for validating the capability of smartphone sensing technology to measure acceleration 
responses: (a) the small-scale shaking table, (b) the large-scale masonry column, (c) the pedestrian bridge. 
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(i.e., 285 pedestrian and 166 highway bridges) and horizontal natural 
frequencies and damping ratios of 111 bridge structures (i.e., 101 
pedestrian and 9 highway bridges as well as one railway bridge) in 
Santiago de Cali, Colombia. They utilized acceleration responses ac-
quired by 25 smartphone accelerometers of three brands (i.e., Huawei G 
Play Mini, Motorola XT1068, and LG H440) under the fixed contact- 
based sensing system. Natural excitation technique and eigen realiza-
tion algorithm (NExT-ERA) and stochastic subspace identification (SSI) 
were the main time-domain OMA methods. For validation, a sample of 
thirteen bridges were equipped with seismic sensors. It was demon-
strated the identified modal frequencies and damping ratios of the NExT- 
ERA and SSI techniques were in good agreement. Ndong et al. [76] 
identified modal frequencies of two reinforced concrete bridges by using 
conventional accelerometers and the smartphone MEMS accelerometer 
(i.e., iPhone). The bridge modal frequencies were obtained by the peak- 
picking technique and the acceleration responses of both types of 
sensing techniques. To validate the modal identification procedure, the 
enhanced frequency domain decomposition (EFDD) technique was also 
considered to identify the modal properties of the bridges using all 
conventional sensors. They found that the error between smartphones 
and professional accelerometers up to 15.8 % and 5.6 % for traffic- 
induced vibration and impact hammer tests. Elhattab et al. [77] inves-
tigated the modal identification of a highway bridge under an assump-
tion that the smartphone MEMS accelerometer cannot obtain further 
modes due to their low sensitivity and high output noise density. They 
initially demonstrated this assumption via acceleration responses 
recorded by a smartphone (i.e., iPhone 6 s) and a conventional sensor (i. 
e., Silicon Designs Model SDI-2012). Next, a method called two- 
dimensional frequency independent underdamped pinning stochastic 
resonance was proposed to address the aforementioned issue by 
amplifying weak-excited acceleration signals by background noise. 
Finally, a prestressed concrete bridge comprising three simply supported 
spans was considered to validate the proposed method under shaker and 
traffic-induced excitations and also identify the natural frequencies of 
the bridge using the peak-picking technique based on the fixed contact- 
based measurement framework. 

Ozer et al. [78] identified the natural frequencies and mode shapes of 
the Golden Gate Bridge, an iconic landmark suspension bridge in the US 
as shown in Fig. 8(a), throughout the bridge main and side spans 
without obstructing pedestrian and vehicle traffic. They exploited seven 
smartphone models of iPhone (i.e., 3-GS, 5, 6S, 6-Plus, 7, 7-Plus, and X) 
at five locations (i.e., based on the fixed contact-based measurement 
system as shown in Fig. 8(b)) under 21 tests within 30-min duration. 
Using a high-fidelity reference accelerometer dataset, it was demon-
strated that the identified modal frequencies reached roughly zero errors 
based on the comparison with the reference OMA prior retrofit work on 
the bridge. Moreover, they obtained the bridge mode shapes after 
dealing with the issues regarding the asynchronous data sampled at the 
different clocks and irregular sampling rates qualitatively correlated 
with the reference OMA results. Ozer and Feng [79] studied the effects of 
biomechanical features of pedestrians on smartphone-based modal 

identification of bridge structures. Accordingly, the authors employed 
pedestrians’ smartphone data and two pedestrian activities including 
walking and standing to estimate excitation forces and identify modal 
frequencies of a pedestrian link bridge. The main motivation for that 
research was to benefit pedestrian-induced vibration in conjunction 
with the smartphone sensing technology for modal identification by 
eliminating the human body effects and their biomechanical features. 
Duan et al. [80] investigated the service performance of small and me-
dium bridges based on the smartphone accelerometers and the predic-
tion of survival analysis. They studied the influences of some important 
issues related to bridge health monitoring including the fixed contact 
measurement system, upper load-bearing structure, upper general 
structure, bearings, deck paving, expansion joints, and frequency ratio 
on the deterioration of two bridge superstructures. It was concluded that 
the accelerometers of three smartphones (i.e., Redmi K40, Huawei P30, 
Motorola Edge X30) used in the monitoring programs could measure the 
first-order vibration frequencies of the bridges; however, the low 
sensitivity rates and high output noise levels made them inappropriate 
to directly measure the bridge higher-order vibration frequencies. 

In relation to the mobile measurement technique and drive-by 
monitoring framework for modal identification in full-scale bridge 
structures, Di Matteo et al. [33] conducted an experimental study on the 
smartphone-based bridge monitoring and modal identification via the 
concept of vehicle-bridge-interaction (VBI). A full-scale bridge (i.e., the 
Corleone Bridge in Palermo, Italy) was considered to identify natural 
frequencies by the mobile sensing system under different velocities of a 
hybrid sport utility vehicle (SUV). A comparison with the classical 
contact sensing technique containing two piezoelectric accelerometers 
was performed to validate the performance of the VBI and mobile 
sensing method. They initially executed the classical OMA via the 
piezoelectric accelerometers and the bridge natural frequencies were 
identified by the peak-picking technique. In the following, the natural 
frequencies of the hybrid SUV were estimated by passing the vehicle on a 
flat straight road and keeping a constant speed. Finally, the measured 
acceleration responses from a smartphone (i.e., iPhone 11) installed in 
the car were collected and the bridge natural frequencies based on the 
VBI method were identified. In that research, the main motivation for 
estimating the vehicle natural frequencies was to find their overlaps 
with the bridge natural frequencies. They eventually concluded that the 
VBI-based mobile sensing system with only one smartphone can obtain a 
reliable estimate of the modal frequencies, which were consistent with 
the corresponding frequencies obtained from the classical contact 
sensing technique. 

Quqa et al. [51] developed a mobile crowdsourcing method for 
modal identification of urban bridges by proposing the applications of 
stiff lights and standardized shared micro-mobility vehicles such as bi-
cycle and electric kick scooters rather than heavy vehicles (i.e., cars and 
trucks). The advantage of this method is its applicability to monitoring 
civil structures that are not accessible by cars and trucks such as foot-
bridges. Although light stiff-weight vehicles generally have low speed 
and negligible mass with respect to the monitored structures leading to 

Fig. 8. Smartphone-based modal identification by Ozer et al. [78]: (a) the monitored structure (i.e., the Golden Gate Bridge), (b) the devices of the fixed contact- 
based measurement technique. 
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no significant impacts on their dynamic behavior, the crowdsourcing 
nature of the proposed method could address these challenges. The 
process of modal identification consisted of three steps of determining 
the sensor location based on Kalman filter and principal component 
analysis using some smartphone sensors (i.e., the gyroscope and 
magnetometer), identifying the dynamic features based on a bandpass 
filter and Hilbert transform via vertical acceleration time histories 
recorded by the smartphone MEMS accelerometer, and estimating the 
average modal amplitude components. They exploited a smartphone (i. 
e., iPhone SE) fixed on a bicycle crossing a lively footbridge, both of 
which are shown in Fig. 9. Despite incorporating one vehicle and 
smartphone, the measurement process was repeated several times to 
meet the mobile crowdsourcing framework. In an laboratory environ-
ment, Shirzad-Ghaleroudkhani et al. [81] identified the modal fre-
quencies of two lab-scale bridge models with different boundary 
conditions by using the smartphone sensing technology and peak- 
picking technique. They designed a robotic car, Fig. 10(a), which was 
equipped by a smartphone (i.e., Samsung Galaxy S8) and performed the 
measurement scenario based on the mobile system and drive-by moni-
toring, as shown in Fig. 10(b). For verification, the acceleration re-
sponses were collected from the bridge using three G-Link-200 wireless 
accelerometers mounted at midspan, quarter-span, and 3/8-span of both 
bridge models. They demonstrated that it was possible to identify the 
fundamental modal frequency and possibly higher mode frequencies of a 
bridge by analyzing acceleration responses recorded by a smartphone on 
a vehicle crossing the bridge. 

In order to filter out the influences of the vehicle speeds and sus-
pension systems in the drive-by sensing system, Shirzad-Ghaleroudkhani 
and Gül [82] proposed an inverse filtering technique that enabled them 
to extract bridge modal frequencies under different vehicle attributes. 
They employed the same robotic car as shown in Fig. 10(a) under 
different speeds and springs to simulate the realistic vehicle suspension 
systems. The proposed inverse filtering technique exploited the spec-
trum of acceleration data of the vehicle when moving off the bridge so 
that the car-related frequency content can be removed. Due to positive 

effects of such methodology, Shirzad-Ghaleroudkhani and Gül [32] 
presented an improved inverse filtering method by considering vehicle 
and road features for modal frequency identification of real-world 
bridge structures (i.e., the High Level Bridge and Walterdale Bridge, 
Edmonton, Canada). In another laboratory study, Sitton et al. [83] 
presented four postprocessing approaches to estimate bridge frequencies 
from smartphone acceleration responses without any information about 
the mass or stiffness of the bridge or vehicle (i.e., a robotic car). The 
approaches were based on discrete Fourier transform and multiple 
signal classification (MUSIC) algorithms to determine the vehicle fre-
quency spectrums from which the fundamental bridge vibration fre-
quencies could be estimated. Utilizing the MUSIC algorithm within a 
mobile crowdsourcing framework, they could achieve the frequency of 
the lab-scale bridge model with 4 % error compared to simulations. 
Sadeghi Eshkevari et al. [84] surveyed bridge modal identification based 
on the drive-by monitoring framework and smartphone acceleration 
responses from six iPhone models. The main objectives of their work 
concentrated on identifying the bridge modal frequencies and also 
estimating absolute high-resolution mode shapes using asynchronous 
mobile data along with various sources of noise, vehicle dynamics, 
environmental effects, road profile, etc. A crowdsourced modal identi-
fication based on continuous wavelet method was proposed to gradually 
magnify the bridge dynamical signatures and mitigate noise. They 
concluded that the proposed method could estimate the absolute mode 
shapes and also modal frequencies; however, vehicle suspension systems 
could reduce the identifiability of higher modes. 

3.1.3. Finite element model updating 
One of the important fields of SHM is finite element model updating 

(FEMU). This methodology aims to calibrate an initial finite element 
(FE) model of a real civil structure by using measured or experimental 
data acquired from static and/or dynamic tests [85]. The importance of 
this methodology lies in the fact that the initial FE model may not always 
reflect the real structural behavior due to various modeling assumptions, 
idealization, discretization, and parametrizations. To address this limi-
tation, the FEMU should be considered to update the initial model by 
minimizing the difference between the numerical and actual structural 
behavior. Using the updated model of the real structure, it is possible to 
simulate various realistic conditions, predict the static and dynamic 
responses of the real structure under different natural and human-made 
excitation loads, diagnosis different damage patterns via model-based 
SHM techniques, and determine an optimum maintenance scheme. 

Fig. 9. Smartphone-based modal identification by Quqa et al. [51]: (a) the 
common bicycle used as the main vehicle for mobile crowdsourcing, (b) the 
monitored structure. 

Fig. 10. Smartphone-based modal frequency identification by Shirzad- 
Ghaleroudkhani et al. [81]: (a) the robotic car, (b) the mobile sensing (drive- 
by) system. 
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Apart from these opportunities, one of the great benefits of model 
updating is to reduce the necessity for implementing a large number of 
field monitoring thereby saving time and money. 

In the context of vibration-based SHM, the process of FEMU is usu-
ally performed by deterministic and stochastic methods. In summary, a 
deterministic method defines the FEMU as an optimization problem, in 
which case the minimization of the difference between the measured 
and FE-generated structural responses is an indicator for the model 
calibration [86]. In contrast, a stochastic method defines the FEMU as a 
statistical problem concentrating on uncertainty quantification. In most 
cases, this method is developed in a probabilistic manner based on some 
well-known probabilistic theories such as Bayes’ theorem [87,88]. 
Although the implementation of FEMU by conventional sensing systems 
and well-known structural responses (e.g., modal properties) is preva-
lent in SHM, recent progress in the smartphone technology and built-in 
sensors opens a new affordable and efficient sensing system for FEMU. 
For simplicity, Fig. 11 shows the graphical scheme of the vibration- 
based FEMU based on the smartphone sensing technology. Accord-
ingly, the real structure is equipped with smartphones for measuring 
vibration responses by each of the fixed or mobile measurement systems. 
The next step is to extract meaningful features for implementing the 
FEMU. In most cases, the modal properties are the useful dynamic fea-
tures. The experimental features are extracted from the measured vi-
bration responses, while the numerical features are obtainable from the 
FE model. Both types of features are applied to a model updating method 
for calibrating the initial model of the real structure. 

In relation to the applications of smartphones to the FEMU, Ozer and 
Feng [89] proposed a vibration-based methodology based on a 
smartphone-oriented cyber-physical system, which included a FEMU 
strategy for structural reliability estimation. In this regard, they firstly 
measured vibration responses a pedestrian link bridge connecting two 
adjacent buildings via smartphones in a crowdsourcing measurement. 
The measured responses were processed on a server to identify the 
bridge modal frequencies. With uncertainties in mass, stiffness, and 
boundary conditions of the bridge, a large number of FE models were 
generated to calibrate the baseline FE model by minimizing the 
discrepancy between the crowdsourced and FE-generated modal data. 
The process of FEMU was based on considering a different set of the first, 
second, and third modal frequencies related to the nodal mass, stiffness, 
and boundary conditions, which were incorporated into an objective 
function for minimization. In another study, Ozer et al. [90] developed a 
vibration-based method for reliability estimation and risk assessment of 
full-scale bridge structures. The proposed method included smartphone- 
based vibration measurement, modal identification, bridge model 
updating, reliability estimation, and risk assessment. Regarding the 
process of FEMU, the authors applied an optimization algorithm through 
an objective function characterized by the structural stiffness parameter 
based on modal frequencies and mode shapes. Dey et al. [91] performed 
an optimization-based FEMU process on undamaged and damaged 
models of a simply-supported steel beam through the Bees algorithm and 
an objective function derived from the difference between the modal 

frequencies of the numerical and real models. Three smartphones were 
attached on the beam models and a hammer was used to excite the 
beams. The vertical acceleration responses at three locations (i.e., 
coincided with the smartphone positions) were recorded and converted 
into the frequency domain using the fast Fourier transform to extract the 
main experimental modal frequencies. Khadka and Yadav [92] devel-
oped a smartphone-based system identification strategy for truss 
bridges. In their research, the authors recorded acceleration time his-
tories at a single point on the bridges subjected to traffic-induced 
ambient vibration via a smartphone (i.e., Samsung S6) in a fixed mea-
surement technique. In the following, the well-known peak picking 
technique was used to identify the bridge modal frequencies. The FE 
models of the bridges were constructed in SAP2000 to determine nu-
merical modal frequencies for model updating. 

3.1.4. Damage assessment 
Damage assessment in three levels of early warning, localization, and 

quantification is the final step of decision-making in an SHM program 
[1]. In other words, the outputs of damage assessment can assist civil 
engineers to understand the current status of any civil structure and 
make an accurate decision on the damaged elements in terms of main-
tenance or replacement. In most cases, machine learning methods based 
on unsupervised and supervised learning classes are applied to detect 
early damage [93–96], locate damaged areas [97,98], and estimate 
damage severities [99]. Having considered the smartphone sensing 
technology, vibration-based damage assessment is based on measuring 
acceleration responses via the smartphone accelerometer, extracting 
damage-sensitive features from such responses, and applying an SHM 
method between model- and data-based frameworks for decision- 
making. 

Oraczewski et al. [100] designed a mobile wireless and smartphone- 
based transducer platform to detect fatigue crack damage in aluminum 
plates using nonlinear acoustics. The proposed prototype platform 
included sensors, designed electronics, Android-based software and a 
smartphone that was employed for control, communication, data stor-
age, damage detection analysis and presentation of damage detection 
results. Xie et al. [101] conducted an experimental study on a three- 
dimensional steel frame in a laboratory environment to detect dam-
age. They utilized acceleration and displacement data of a smartphone 
obtained from its accelerometer and camera in conjunction with a laser 
pointer to track and recognize a moving spot in order to determine 
relative displacements. The acceleration and displacement responses 
were extracted from the third-party apps Orien-CC and D-Viewer. The 
damaged scenarios were simulated by removing some rigid frames in the 
lab-scale steel structure. They exploited Wavelet packet decomposition 
and relative wavelet entropy to analyze the measured acceleration data 
to detect damage by computing and comparing the energy levels of the 
decomposed acceleration signal. Mei and Gül [102] proposed a 
crowdsourcing-based damage assessment method for bridge structures 
by extracting Mel-frequency cepstral coefficients from vibration re-
sponses collected from smartphones in a vehicle crossing a lab-scale 

Fig. 11. Graphical representation of the vibration-based FEMU by smartphone sensing technology.  
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simply-supported bridge model. Moreover, they presented a distance- 
based anomaly detection algorithm based on the multivariate version 
of the Kullback-Leibler divergence for assessing artificial damage pat-
terns applied to the laboratory model. For the crowdsourcing system, a 
model vehicle, similar to Fig. 10(a), was developed to simulate different 
factors such as different speeds, suspension systems, and weight, etc. 
The artificial damaged scenarios were applied by decreasing the stiffness 
of the bridge deck at different locations. Without considering some 
influential factors in real-world damage assessment of civil structures 
such as road surface roughness and environmental and/or operational 
variability, they concluded that the proposed damage-sensitive features 
extracted from the smartphone-based sensing technology and the 
anomaly detector could effectively detect the existence of damage and 
obtain useful information about the damage severities. Moreover, they 
correctly emphasized that smartphones can serve as smart sensors for 
damage assessment in civil structures with the capacity of designing a 
wireless sensor network and thanks to a rapid connection to the internet. 

Han et al. [103] researched into structural damage detection in 
building-type structures by using acceleration responses acquired from 
smartphones. They modeled a lab-scale three-story frame mounted on a 
shaking table to induce earthquake-induced excitations for damage 
detection. A damage index called energy ratio variation difference was 
defined based on Wavelet packet analysis and acceleration signal 
decomposition. Nazar et al. [104] proposed a novel damage assessment 
methodology by taking advantage of the smartphone magnetometer 
sensor. The process of damage assessment was based on monitoring of 
the magnetic field intensity variations due to damage progression. They 
validated their work in both numerical and experimental studies and 
deduced that the magnetic field intensity increases as the damage pro-
gresses; however, the accuracy of damage detection depended on the 
distance of the smartphone to the structure, which was a steel plate. 
Figueiredo et al. [39] proposed a smartphone application (software) 
called App4SHM in the Android platform by leveraging the smartphone 
accelerometer and machine learning to develop a data-based damage 
assessment framework for bridge structures. This app intended to 
interrogate the smartphone built-in accelerometer to measure acceler-
ation responses, estimate the first three modal frequencies of the bridge 
under study via the peak-picking technique and use them as the main 
damage-sensitive features for early damage warning, and compare the 
damage-sensitive features of the current and reference conditions based 
on a distance-based anomaly detector developed from the Mahalanobis- 
squared distance. The app could also access to a server to run most of the 
computational operations. A lab-scale simply-supported beam and two 
twin post-tensioned concrete bridges were considered to evaluate the 
proposed methodology and smartphone app for SHM. The authors 
concluded that the outputs of App4SHM were reasonably consistent 
with those obtained by conventional accelerometers. 

Apart from the importance of structural damage assessment in civil 
structures, vibration data obtained from smartphones have been 
considered increasingly to detect road defects. Some pioneer studies 
about this topic can be found in [105–107]. In the other research works, 
Kaur et al. [108] proposed a crowdsourcing-based Android app to detect 
damaged roads and provide an early alarming system to vehicle drivers 
in relation to abrupt discontinuities such as manholes and bumps on the 
road by using some built-in sensors in smartphones (e.g., GPS and gy-
roscope). Singh et al. [109] proposed a vibration-based road defect 
assessment by using the smartphone motion sensors including acceler-
ometer and gyroscope to alarm the road anomalies such as pothole and 
bumps. They designed a crowdsourcing algorithm, where the crowd-
sourced data from different smartphones was collected and then 
analyzed by a server containing the noise filtering and dynamic time 
warping techniques. Li and Goldberg [43] presented a crowdsourcing 
road defect assessment approach by employing the smartphone GPS and 
accelerometer and incorporated a spatial series of the geo-referenced 
vertical accelerations of road surface in order to use in two assessment 
indices, which allowed them to determine the road quality. In their 

method, the collected road surface data was uploaded to a cloud-based 
data server, where periodically processed the road roughness informa-
tion contributed from different participants in the crowdsourcing pro-
gram and integrated the detection results. Souza et al. [41] developed a 
low-cost system to evaluate and monitor road pavement conditions in a 
real-time manner via smartphone sensors and support vector machine 
(SVM). Their proposed system comprised an Android app designed for 
performing automatic evaluations called Asfault and a web server that 
aimed at presenting the evaluation outputs. The authors exploited the 
smartphone accelerometer vertically installed on a vehicle dashboard to 
measure the vehicle vibration in all three axes during driving and also 
GPS online data per second to show directions on a map enriched with 
quality information of the pavement. 

Chuang et al. [110] proposed a crowdsourced road surface assess-
ment technique along with a smartphone-driven progressive web 
application to collect crowdsourcing spatiotemporal data including ac-
celerations, positions, time, vehicle speeds, smartphone poses, and on- 
site images. Staniek [111] developed a road condition tool to identify 
and evaluate road pavement defects by analyzing the dynamics of 
vehicle motion. On this basis, drivers and users via smartphones 
equipped with the mentioned tool were able to measure some moni-
toring data such as accelerations, speed, and vehicle location and then 
send such data to a server in an aggregated form without any inter-
vention. An index was suggested to evaluate road pavement conditions 
and characterize the road degradation degree and pavement defects. 
Sattar et al. [112] developed a near real-time road defect detection 
method by using the smartphone accelerometer and gyroscope and a 
machine learning algorithm developed from a Gaussian mixture model. 
The authors focused on addressing some challenging issues including 
dissimilar sensor properties, different smartphone placement, and also 
different vehicle mechanical attributes in vibration-based road detect 
assessment. Dong and Li [113] exploited the accelerometer and GPS of a 
smartphone (i.e., Google Pixel 2) to monitor road surface and detect 
pavement defects. The measured acceleration responses under a low 
sampling frequency equal to 16 Hz were processed by a power spectral 
density analysis, and defects (i.e., distortion, patching, pothole, and 
rutting) were identified through the well-known k-means clustering 
method under three pre-defined cluster categories (i.e., narrow spikes, 
long-spanning blocks, and no defect). 

Having considered light motorized or micro-mobility vehicles, 
Takahashi et al. [114] suggested a vibration-based road surface assess-
ment by using smartphones mounted on bicycles. Their proposed 
strategy initially collected acceleration data from smartphones worn by 
cyclists, and analyzed the collected data to investigate the road surface 
condition. In addition, the authors proposed a signal separation algo-
rithm based on independent component analysis to resolve the coupling 
effects of cyclist motion and road surface signals during data acquisition. 
On the other hand, a bump classification approach via real mother 
Wavelet was presented to address the challenge stemming from artificial 
anomalies independent to the road such as a difference between streets 
and sidewalks. Alam et al. [115] proposed a two-stage smartphone- 
based system to detect three types of changes and anomalies in roads 
including speed-breakers, potholes and broken road patches by various 
two-, three- and four-wheeler vehicles. In the first stage, they applied a 
smartphone to identify candidate signatures for road anomalies using 
robust auto-orientation and auto-tune thresholding algorithms. In the 
second stage, the process followed by a server and used a decision-tree- 
based classifier to reduce the false-negative and false-positive instances 
caused by the influence of different driving maneuvers, vehicle sus-
pensions, etc. Finally, the k-medoids clustering was incorporated to geo- 
localize detected changes from multiple trails over a map service. Cafiso 
et al. [116] studied smartphone-based road pavement monitoring for 
detection of some important defects such as cracks and potholes by bike 
and e-scooter. The authors investigated the smartphone sensors to 
collect data for assessing pavement conditions and defined key perfor-
mance indicators for bike and e-scooter users’ ride comfort and safety. 
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3.1.5. Seismic health monitoring 
Seismic SHM is a new stream in the field of health monitoring of civil 

structures subjected to earthquake-induced vibrations. This topic in-
tends to use measured structural responses caused by seismic events for 
dynamic identification, model updating, structural behavior evaluation, 
post-earthquake damage assessment, and seismic vulnerability assess-
ment [117]. One of the prominent and well-known seismic SHM pro-
grams is to update an initial model of a civil structure (e.g., a masonry or 
historical building) and simulate various seismic excitations for detect-
ing possible damage scenarios, identifying the vulnerable areas, and 
making decision for cost-effective retrofitting [118]. The basic require-
ment for implementing such tasks in seismic SHM is to equip civil 
structures with sensing devices for recording structural responses, 
especially before and after a seismic ground motion. 

The other reason for the importance of sensing in seismic SHM lies in 
this fact that damage-related instrumental records are rare so that very 
few structures have been equipped with seismic-monitoring systems. 
Although large-scale shaking-table tests can simulate seismic excitation 
patterns and record structural responses before and after a ground mo-
tion, it may be difficult to correctly interpret and analyze such patterns 
caused by seismic waves and structural uncertainties in a controlled 
experimental program. Apart from shaking-table tests, the other activity 
after any strong earthquake is to identify the causes for damages to real- 
world civil structures. Nonetheless, these analyses require real structural 
responses due to the lack of entire accessibility to all critical damaged 
areas and consideration of many simplifying assumptions. Without such 
responses, it may not be effective to use structural damage and behavior 
of civil structures after a strong ground motion for improving seismic- 
design criteria. Accordingly, the most effective and practical approach 
to dealing with these challenges is to equip civil structures in seismicity- 
prone areas with dense sensing networks [119]. The major merit of a 
seismically-sensed civil structure is that one can assess the safety and 
integrity of that structure and estimate the possible damage level after 
any earthquake. 

Deployment of a traditional sensing system for seismic SHM such as 
seismometers may be either expensive or problematic, particularly in 
buildings that are privately owned. To address these limitations, it is 
feasible to take advantage of cost-free smartphone sensing technology for 
seismic SHM projects. In particular, due to recent progress in MEMS 
sensors and wireless networks, event-triggered sensing systems have 
emerged as a new solution to seismic SHM [120]. These systems are 
designed to collect data (e.g., acceleration time histories) when a certain 
amplitude threshold is exceeded. Based on this platform without any 
hazard for people during an earthquake and loss of recording, one can 
leverage smartphone sensors and smartphone apps developed from a 
trigger recording protocol for structural response measurement during 
seismic ground motions [119]. 

Regarding the applications of smartphone sensing technology for 
seismic SHM, several researches were conducted on the measurement of 
seismic structural responses, especially for buildings. Based on the third- 
party app MyShake [53,54], Kong et al. [121] assessed different machine 
learning methods to discriminate seismic ground motions. Dashti et al. 
[122] researched into the use of smartphones to measure ground motion 
intensity parameters and to automatically transfer the recordings to a 
central server for processing and dissemination. The authors used some 
smartphones (i.e., iPhones) in a series of shaking-table tests to measure 
the consistency of acceleration responses across multiple sensors and for 
each smartphone through multiple identical shakings. It was found that 
smartphones are reliable tools for seismic hazard assessment only during 
moderate to intense earthquakes. Shrestha et al. [119] investigated the 
feasibility of MEMS accelerometers in smart devices such as smart-
phones and tablets for seismic response measurement. They originally 
developed a third-party app with three modes of single, multiple, and 
remote trigger recordings. This research was conducted on two shaking 
tables to assess some measurement factors such as the effects of different 
sampling frequencies and amplitudes based on sinusoidal and 

earthquake-wave excitation tests. The trigger recording function of the 
developed app was evaluated by a lab-scale building model mounted on 
the shaking table. Finally, the authors demonstrated the possibility of 
response measurements via the developed app to full-scale civil struc-
tures. Zhao et al. [123] proposed a smartphone sensing technique called 
GroundEye in order to develop a mobile crowdsourcing system for 
seismic response monitoring. This technique aided everyone to use 
software on any smartphone for acquiring structural response parame-
ters including acceleration, inter-story drift and strain during a seismic 
ground motion. 

Na et al. [57] conducted an automated damage assessment under 
seismic events by using the smartphone accelerometers installed in 
building floors and utilized double integrations of the measured accel-
eration responses for determining floor displacements. Using the ob-
tained displacements, the authors suggested an interstory drift ratio 
(IDR) along the building height (i.e., the difference of displacements of 
the floors above and below the story of interest normalized by the 
interstory height), which is an important metric for seismic assessment 
and an influential variable in fragility and vulnerability functions owing 
to its direct correlation with building damage. Shrestha et al. [124] 
exploited smartphone sensing technology for long-term seismic moni-
toring of a real-world bridge (i.e., the Takamatsu Bridge in Japan) by 
using smartphone accelerometers of different iPhone models, which 
were deployed at six different locations in the bridge (i.e., the fixed 
measurement system). Vega and Yu [125] proposed a seismic damage 
detection method in buildings by using the smartphone accelerometer 
and a novel recurrent fuzzy neural network of long- and short-term 
memory. The proposed damage detection method consisted of five 
steps of linear acceleration response measurement towards the hori-
zontal and longitudinal directions, data transformation in a wireless 
manner to a cloud server, data processing and reduction via principal 
component analysis, the fuzzy neural network modeling, and damage 
detection. For the acceleration measurements, they used one smart-
phone at each floor as well as the base station to measure the ground 
motion caused by earthquakes. Harirchian et al. [126] developed a 
smartphone app prototype for data collection to perform earthquake 
hazard safety assessment of buildings based on a machine learning 
method. The main purpose was to simplify and accelerate the assess-
ment process and to gather and process data online. Na et al. [127] 
attempted to deal with the problem of smartphone sensing technology 
and built-in accelerometers for stationary vibration monitoring and 
damage assessment in buildings under seismic loads. They studied the 
issue of sliding motion of the smartphone accelerometer when the 
smartphone does not fix to the ground. Zhang and Yuen [128] proposed 
a broad learning-based technique for structural seismic response clas-
sification via a time–frequency fusion feature-based incremental 
network. This network was able to automatically classify vibration sig-
nals measured by smartphones into two categories of structural normal 
response when the structure fell in its normal state and structural seismic 
response when a strong ground motion vibrated the structure of interest. 
The technical part of their research was based on converting time- 
domain responses (i.e., acceleration data) into time–frequency 
domain. In this case, a lightweight convolutional network was applied to 
take the time–frequency data and extract initial fusion features. In the 
following, these features were mapped by random weights to dynamic 
nodes. 

3.1.6. Structural comfort assessment 
Lightweight and flexible structures are susceptible to considerable 

vibrations due to low frequency and damping features. Furthermore, 
vibration intensity and amplitude of some civil engineering structures 
under ambient and human-induced excitations are relatively large and 
this affects the serviceability of such structures. In this regard, vibration 
behavior and dynamic feature extraction of flexible structures such as 
footbridges under human-induced excitations or long-span bridges 
under wind-induced excitations are important challenges for 
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serviceability limit check and design parameter modification. For these 
reasons, structural comfort assessment/analysis has become a new and 
practical topic in structural engineering, particularly for SHM applica-
tions. The other aspect of structural comfort assessment is to prevent 
catastrophic events caused by crowd behavior and mass gatherings in 
religious observations, festivals, sporting events and concerts, etc. The 
major advantage of such process is to simultaneously evaluate the health 
of the monitored structure and crowd. 

Generally speaking, the main approach to comfort assessment is 
based on structural vibration monitoring via measured data (e.g., ac-
celeration, velocity and/or displacement). On this basis, it is initially 
necessary to collect structural vibration data through sensors such as 
built-in smartphone accelerometers in an offline or online manner. 
Subsequently, one should define or employ various comfort evaluation 
metrics to analyze measured data and determine the level of human 
comfort. In most cases, acceleration intensity and modal properties such 
as vibration frequencies and damping ratios are the main features for 
comfort assessment. On the other hand, the building floors, bridge decks 
and cables are the main structural elements for this assessment. In the 
human-structure interaction and crowd safety, vertical vibration is the 
key and influential parameter. In the wind-induced excitations applied 
to long-span bridges, however, the bridge decks and cables can vibrate 
in-plane and out-of-plane vibration modes. Under such circumstances, a 
triaxial vibration measurement is essential. 

Uyttersprot and De Corte [58] analyzed pedestrian comfort on several 
web-core sandwich panel composite footbridges constructed by fiber 
reinforced polymer (FRP). Based on the concept of human-structure 
interaction, they determined some important dynamic properties 
including the first fundamental flexural frequency, damping ratio, and 
comfort class of the footbridges under heel and excitation test methods. 
The fundamental flexural frequency was identified by the peak-picking 
technique and the power spectral density of the measured acceleration 
responses, which were measured by built-in smartphone accelerometers 
and the third-party software VibSensor. The damping ratios were estimated 
directly from acceleration responses after some data processing and 
filtering at the end of the tests. The comfort analysis was carried out by 
considering the density of the pedestrian traffic, which was defined as the 
number of people present per square meter of the bridge surface. They 
concluded that it is necessary to comprehensively assess the FRP foot-
bridge resonance phenomenon when the first modal frequency under 
people walking is smaller than 4.6 Hz. Moreover, it was demonstrated that 
the damping ratios of such footbridges increases by increasing the number 
of people and this dynamic feature should also be considered to avoid 
over-conservative footbridge designs. Chen et al. [129] proposed a real- 
time smartphone-based system to assess the structural comfort caused 
by pedestrian-induced vibration. They proposed a system consisted of 
three steps of data acquisition, management, and smartphone client. 

Mustapha et al. [130] proposed a novel health monitoring frame-
work for assessing the crowd and structure safety by exploiting a hybrid 
sensing technology based on fiber optic sensors for strain data and hand- 
held smartphone accelerometers for acceleration data. They also utilized 
machine learning algorithms to estimate crowd flows and loads on 
pedestrian bridges. In the sensing portion of their work, the fiber optic 
sensors were attached on a lab-scale bridge and hand-held wearable 
sensors were moved by some volunteers as a mobile crowdsourcing 
system as shown in Fig. 12. The strain data from the fiber optic sensors 
and smartphones were transferred by an interrogator and wireless 
communications, respectively. Cao and Chen [131] studied the problem 
of structural vibration serviceability that pertains to structure vibrations 
leading to uncomfortable environment and disturb occupants. They 
aimed to address two limitations of unreal environment and limited test 
samples. A new approach was proposed to investigate the structural 
vibration serviceability by leveraging the smartphone sensing technol-
ogy, mobile internet, cloud computing, and Big Data analysis. An app 
was also designed to collect multi-source information such as vibration 
data, environmental factors, and test subject judgements and then 
measure unpleasant vibrations in civil structures. Wang et al. [132] 
studied structural comfort in flexible civil structures (i.e., a footbridge 
and a building floor) by using a smartphone accelerometer. Instead of 
vertical acceleration, they proposed to apply velocity and displacement 
responses and defined their four-power vibration dose indices, which 
were used as the comfort metrics. They attached the smartphone on the 
footbridge deck and building floor and measured acceleration, velocity, 
and displacement responses. It was concluded that the proposed comfort 
index based on acceleration data is suitable for civil structures with 
reasonable stiffness. However, the comfort indicators based on the ve-
locity and displacements perform better for structural comfort assess-
ment of highly flexible structures such as cable-stayed footbridges. 

In relation to the comfort assessment of other structures via smart-
phones, Zhang et al. [133] evaluated the elevator ride comfort moni-
toring. They designed and completed a series of validation tests under 
different running modes and loads in three different buildings and 
investigated the level of the elevator ride comfort by applying the in-
ternational organization for standardization ISO2631-1997. For these 
purposes, the smartphone accelerometer was considered to measure 
vibration signals (i.e., acceleration data) in the vertical (Z) and hori-
zontal (X) directions of elevators via the third-party app called Orion-CC. 
It was demonstrated that the ride comfort evaluation results were 
consistent with the subjective feelings of the human body and the pro-
posed methodology in conjunction with the smartphone sensing tech-
nology can aid engineers and building assets to monitor the performance 
of the elevators in a smart and cost-effective manner. Rodríguez et al. 
[134] investigated applications of smartphones and tablets to ride and 
passenger comfort and track quality by using built-in accelerometers 

Fig. 12. The hybrid sensing technology for structure-crowd monitoring framework conducted by Mustapha et al. [130].  
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inside these smart devices. They analyzed the comfort of passengers in 
terms of movement and acceleration of the vehicles and incorporated 
the vertical acceleration data for the track quality. For these objectives, a 
smart tablet (i.e., Galaxy Tab 3 Lite T113) was applied to measure ac-
celeration data with the aid of the third-party app Accelerometer 
Analyzer. 

3.2. Vision-based applications 

This section reviews the recent applications of computer vision for 
SHM in terms of response (displacement) measurement and surface 
damage assessment using smartphone sensing technology. In the first 
category, the main objective is to leverage computer vision capabilities 
and different digital image and/or video processing methods for 
extracting displacement samples in pixel coordinates from images and 
videos [135]. The second category intends detect surface damages, 
localize damaged areas, and finally estimate the damage severity via 
deep learning [136] using smartphone-taken images. Because the key 
features for the vision-based SHM applications are images and/or 
videos, the smartphone cameras are the main sensors for obtaining such 
features. 

3.2.1. Displacement measurement 
Structural displacement is an important response of a civil structure 

under static loads and dynamic excitations. Displacement is directly 
related to the strain on a point, for which it is a basic reflection of dy-
namic effects. This type of structural response is appliable to many SHM 
tasks such as system identification [137], load bearing capacity esti-
mation [138], serviceability assessment [139], damage detection [140], 
and FEMU [141]. Due to such capabilities, various techniques can be 
employed to obtain displacement data. An indirect vibration-based 
measurement of displacement by double integrating acceleration data 
is the simplest solution. However, such a numerical integration tech-
nique needs to determine initial conditions of the displacement, which 
may not be possible. A direct contact-based sensing system can offer a 
practical displacement measurement via some well-known sensors such 
as linear variable differential transformers. Nonetheless, the limitations 
of contact sensing such as installation, data communication, and 
deployment costs may hinder the use of such sensors. The other direct 
displacement measurement is based on non-contact sensors such as GPS, 
laser Doppler vibrometer, and light detection and ranging (LiDAR) 
scanner; however, their applications are still challenging due to their 
high costs. Recently, the non-contact displacement measurement via 
smartphone sensors has emerged as a new and cost-free sensing tech-
nology. This is because recent smartphone cameras can capture high 
resolution images and record videos in 60/120 frame-per-second (fps) 
under 4 K resolution [16], which are similar or close to professional 

digital cameras [142]. In general, the smartphone-based displacement 
measurement conforms to the fixed non-contact sensing system as 
shown in Fig. 13. On this basis, this system consists of five steps of (i) 
sensor deployment including smartphone, a portable support device 
such as a tripod, (ii) natural/artificial markers and region-of-interest 
(ROI) selections, (iii) image and/or video recordings and collections, 
(iv) digital image/video processing, and (v) structural displacement 
extraction. 

In 2016–2019, Min et al. [143] developed a real-time measurement 
system of dynamic displacements based on the rear camera of iPhone 6, 
Open Graphic Library (OpenGL) under the iOS environment, and two 
optical zoom lenses for long-distance and small-target measurements. 
For a real-time purpose, a user-selectable crop filter was incorporated to 
optimize the image sizes and minimize the processing time, which 
allowed them to avoid storing image and video frames in the memories. 
Zhao et al. [144] proposed a vision-based approach to measure and 
monitor vertical displacements in bridge structures. Furthermore, they 
developed an iOS app called D-Viewer for distributed displacement 
response investigation via two iPhone smartphone models (namely 
iPhone 6 and iPhone 6-Plus). A series of static and dynamic experiments 
on lab-scale and real-world bridges were considered to examine the 
performance of the proposed displacement measurement approach and 
developed app. Wang et al. [145] exploited the vision aspects of the 
smartphone sensing technology for displacement measurement via the 
third-party app D-Viewer and tracked out-of-plane horizontal and ver-
tical displacements of a scale-model suspension bridge. For these aims, 
they considered a paper sheet with a black circle placed on the deck of 
the bridge. A smartphone was attached to a supporting structure, which 
was set on the laboratory floor with a small distance above the bridge 
deck. Kromanis et al. [146] evaluated capabilities of the smartphone 
sensing technology coupled with three image processing techniques for 
measuring structural deformations. Accordingly, images and videos 
collected from structures subjected to static, dynamic, and quasi-static 
loadings were captured by three smartphones (i.e., Lenovo A806, Sam-
sung A3, and Samsung S8) to measure vertical displacements at some 
markers mounted on beam-type structures in a laboratory environment. 
They demonstrated that a high-grade smartphone (i.e., Samsung S8) 
provided better results in the dynamic tests. Zhang et al. [147] leveraged 
the smartphone sensing for multi-point displacement measurement and 
monitoring through images. A dataset with 400 images was collected 
from a specimen with a marker and a CNN was trained by this dataset to 
develop a detection model. In the following, the trained network was 
tested by validation experiments with four markers and different 
distances. 

In 2020–2021, Li et al. [148] proposed a technique for measuring 
and monitoring interstory drifts (i.e., a relative displacement between 
two consecutive floors) in building structures subjected to earthquake- 

Fig. 13. Graphical representation of the vision-based displacement measurement via smartphone sensing technology.  
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induced excitations with a smartphone and a laser device. In the test 
setup, the laser device was mounted on the ceiling, while a smartphone 
(i.e., iPhone 6) was fixed on a steel projection plate on the floor. The 
third-party app D-Viewer was also considered to perform monitoring and 
data storage. Shrestha et al. [149] proposed a bridge displacement 
measurement and monitoring system by taking advantage of some smart 
devices (i.e., two smartphones and a smart tablet from Apple Inc.) and 
digital image processing techniques. They initially validated the pro-
posed system on a shaking table test and then investigated the method 
performance into a 24-hour displacement measurement of a real in- 
service bridge. It was concluded that the measurement accuracy of the 
proposed system depended generally on some parameters such as 
camera-to-target distance, target pattern features, lightning conditions, 
camera mounting stability, and image/video processing techniques. Li 
et al. [150] measured and monitored interstory drift of building struc-
tures during an earthquake by recording a video of the ceiling with the 
front camera using a feature point matching algorithm. After that, the 
displacement samples were determined by multiplying the scaling factor 
by the pixel displacement. Yu et al. [151] proposed a low-cost and 
portable smartphone-based optical method for measuring structural 
displacements via a smartphone and a tripod (i.e., fixed measurement 
system) with the focus on alleviating difficulties in correcting measuring 
in-plane displacements when the optical axis is not perpendicular to 
surface of an object (i.e., off-axis measurement). The main smartphone 
sensors for their research were the high-resolution camera and the gy-
roscope, which the former was applied to take images from test objects/ 
structures and the latter was considered to determine relative rotation 
angles between the image and object planes. Wang et al. [152] studied 
vibration in telecom structures (i.e., high guyed masts and a high lattice 
tower) based on the computer vision technology and smartphones. In 
their research, videos with the sampling frequency of 30 fps were taken 
by smartphone cameras and processed to extract cable and antenna vi-
bration information. Kromanis and Kripakaran [153] proposed a 
smartphone-based bridge displacement measurement and monitoring 
method. The authors also investigated the possibility of an imaging 
technique for condition assessment independent of the smartphone 
camera positions. The main assumption of their research was that the 
spatial relationships between multiple structural features such as bolts 
in cast iron bridges located on the same structural plane remain 
invariant even when images of the structure are taken from different 
angles or camera positions. 

Zhang et al. [154] proposed a deep learning method with machine 
vision for static and dynamic displacement monitoring via mask regions 
with CNN (i.e., Mask R-CNN), which mainly intended extract the co-
ordinates of calibration object. A smartphone was employed to collect 
several images as training data to consider in Mask R-CNN and develop a 
monitoring model. Subsequently, the mask information was obtained 
from images to determine the coordinates of calibration object and 
structural displacements were eventually obtained by the coordinates. 
Xie et al. [155] proposed a new method for measuring strain data with 
the aids of smartphone sensing technology and machine vision algo-
rithms. In another study by Xie et al. [156], the authors evaluated the 
accuracy and sensitivity analysis of strain data obtained from a smart-
phone with a microscope and compared the mentioned sensing tech-
nique with the fiber Bragg grating (FBG) sensing system. The results 
showed that their sensing technique with the aid of the smartphone 
could record strain data in good agreement with the FBG sensing. 
Alzughaibi et al. [157] exploited the smartphone sensors to develop a 
framework that could collect crowdsource readings from distributed 
citizen-owned smart devices and convert such readings into actionable 
information after natural disasters, particularly in post-earthquake 
events. The main objectives of their research were to detect earth-
quake events, track a structure movement via smartphone cameras 
during ground motions, and upload the records to a cloud server for 
post-earthquake processing. In this regard, any damaged structure could 
be reported to the first responder officials and visualized on a publicly 

available website in the form of a disaster map, where structures were 
marked with their most likely damage states. 

For 2022–2023, Zhu et al. [158] designed a low-cost system based on 
pyramid optical flow in computer vision and smartphone sensing tech-
nology to measure dynamic displacements and identify dynamic prop-
erties of civil structures. The authors proposed some techniques for 
image denoising, edge information preservation, and displacement drift 
and tracking error reductions. A lab-scale model of a cable-stayed bridge 
was considered to verify the proposed system and also identify modal 
properties via the extracted displacement data. Zhao et al. [159] pro-
posed a target-free dynamic characteristic monitoring method for wind 
turbine structures using a portable smartphone and optical flow coupled 
with robust corner feature extraction in a ROI. The authors introduced 
the ROI clipping technology after the structural vibration video shooting 
and a threshold value was incorporated into the ROI to gain corner 
features. A high pass filtering technique combined with adaptive scaling 
factor was utilized to properly filter out displacement drifts resulting 
from shooting states of standing and slightly walking. Eventually, they 
monitored structural displacements by assembling telephoto lens on the 
smartphones (i.e., iPhone 12 and Honor X10). Du et al. [160] developed 
a non-contact vision-based structural displacement measurement by a 
smartphone in a fixed non-contact system and digital image methods 
including color and geometric feature extraction, digital image corre-
lation, feature matching, scaling factor determination. The authors 
validated the proposed measurement method by a lab-scale bridge 
model and a field experiment of a girder steel bridge with a far 
measuring distance under day/night conditions. Pan et al. [161] pro-
posed a vision-based structural vibration measurement in term of 
structural displacement using two deep neural networks (i.e., YOLOv3- 
tiny and YOLOv3-tiny-KLT) for tracking structural motions. They veri-
fied the proposed deep learning methods in a lab-scale two-story steel 
structure by recoding videos with a smartphone (i.e., iPhone Xs Max). It 
was demonstrated that the methods could reach accurate structural 
displacement measurements in good agreement with a conventional 
displacement measuring system. 

Xie et al. [162] developed a smartphone-based cooperative strain 
measurement method called micro image strain sensing containing 
smartphones, a piston-type sensor with a microscope fitted on it, and an 
Android platform with cloud computing. The proposed method was then 
compared with the conventional FBG sensor for strain measurement. It 
was demonstrated in a laboratory environment that the proposed sensing 
method could reach reasonable strain measurements with the same as the 
FBG sensor. Han et al. [163] proposed a novel vision-based deformation 
measurement technique via the concept of the first-person perspective. In 
their technique, smartphones were fixed on the body and smartphone- 
captured images were synchronized with the scene seen by operators. 
Trained CNNs were also considered to extract the contour line of the target 
component in the images directly by tracking the key points of hands. In 
this case, the authors could realize man–machine interactive operations by 
gesture detection without interruption. Du et al. [164] researched into 
short- and long-distance bridge displacement measurements focusing on 
the influence of different sizes of the ROI. They verified their proposed 
vision-based methodology by a laboratory-scale bridge model and two 
real-world bridges. Accordingly, the smartphone sensing technology was 
used to take images and videos from measurement targets. Notably, in the 
third bridge, the authors evaluated the vision-based displacement mea-
surement by a smartphone located in the short-distance (i.e., 32.4 m) and a 
surveillance camera located in the long-distance (i.e., 78.6 m) to the 
bridge. Hang et al. [165] proposed a vision-based displacement mea-
surement technique for cable-stayed bridges based on the theory of video 
motion magnification. On this basis, the authors measured the deck and 
cable dynamic displacements to verify the accuracy of their proposed 
technique in laboratory and field experiments. In both experiments, the 
smartphone cameras were used to capture videos from some targets 
considered in the selected bridge elements. 
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3.2.2. Finite element model updating 
Although vibration-based FEMU is a prevalent technique for cali-

brating the initial FE models of civil structures by using vibration re-
sponses/features such as modal properties, it is feasible to leverage 
structural features (i.e., displacements) extracted from images/videos to 
update the initial FE models [142]. In most cases, the primary task of the 
vision-based FEMU is to extract modal properties from displacement 
responses, which are obtained from the smartphone-captured images/ 
videos. These properties make the experimental features of the real 
structure. Once the initial FE model of the structure is constructed, the 
corresponding modal properties can be determined as the numerical 
features. Both the experimental and numerical features are then 
considered in a model updating algorithm to calibrate the initial FE 
model. Fig. 14 illustrates the graphical representation of the vision- 
based FEMU using the smartphone cameras. 

Martini et al. [141] proposed a computer-vision-based FEMU method 
based on displacement influence lines of bridge structures at different 
target positions. In a laboratory environment, they simulated an 
experimental bridge model with a scaled vehicle with pressurized tires 
and exploited three cameras related to a smartphone (i.e., iPhone 11 Pro 
Max), a tablet (i.e., iPad Pro), and a commercial camera device (i.e., 
Blackfly S USB3). Using the videos captured from these devices, the 
displacement influence lines from the bridge displacement responses at 
the target positions were constructed. Subsequently, the constructed 
influence lines were utilized to update structural parameters, which 
were applied to model the structure. In this regard, the FEMU process 
was based on minimizing the gap between the displacement influence 
lines estimated from computer vision and those constructed from the FE 
model. Although the authors used some smart devices for displacement 
measurements, the implementation of the proposed method on full-scale 
bridge structures by using the smartphones needs further research. Park 
et al. [166] proposed a vision-based FEMU technique using smartphone 
sensing technology and genetic algorithm. The technique begun by 
extracting structural displacement responses of a model-scale three- 
story building from video records captured by a smartphone (i.e., 
Samsung Galaxy S8) and seven different object tracking algorithms. The 
displacement responses of the building model were extracted from an 
artificial excitation source produced by a unidirectional shaking table 
with a maximum displacement of 100 mm. Subsequently, the displace-
ments were converted into frequency response functions (FRFs) in order 
to identify the building modal frequencies. In this regard, the experi-
mental and numerical dynamic features (i.e., modal frequencies) were 
fed into the genetic algorithm for the updating process. 

Ostrowski et al. [167] took advantage of computer vision capacities 
to perform a FEMU strategy for determining structural stiffness param-
eters of a laboratory-scale frame structure. For this purpose, the authors 
initially extracted dynamic displacements from video records captured 
by a smartphone (i.e., Samsung S20) with the aid of an algorithm that 
maximized a zero-normalized cross-correlation function. An OMA 
technique based on the data-based SSI algorithm was used to identify 
modal properties as the main dynamic features. An optimization-based 

FEMU technique was carried out to calibrate the FE model of the 
structure of interest. In a different study, Kong et al. [168] leveraged the 
finite element analysis and geometric model updating for three- 
dimensional damage quantification and residual bearing capacity of a 
damaged shear wall. Their proposed vision-based method included two 
steps of three-dimensional damage information extraction and geo-
metric model updating based on computer vision. The images were 
taken by a smartphone (i.e., iPhone 13 Pro) and its LiDAR scanner. A 
three-dimensional point cloud model was considered to provide three- 
dimensional information from two-dimensional images. Once the pro-
cess of damage quantification was finished, an intact FE model of the 
shear wall was constructed numerically and then updated based on the 
damage information. The fundamental idea behind the vision-based 
geometric model updating was to delete the elements that intersect 
the damaged areas in the same coordinate system. 

3.2.3. Surface damage assessment 
Images can provide visual information similar to that obtained by 

human inspectors. For this reason, surface damage detection based on 
the concept of computer vision and images has widely been adopted to 
use in SHM projects. Computer vision is a sector of artificial intelligence 
that aims to train an intelligent model (machine) for automatically 
extracting useful information from image data and interpret and un-
derstand any visual scene similar to human visual cortex [169,170]. 
Using digital images captured from cameras and various machine 
learning algorithms, the trained intelligent model can detect, classify, 
and segment objects. One of the major advantages of computer vision is 
to deal with the limitations of human-oriented visual inspection of civil 
structures and detect surface damages in images/videos remotely. The 
main surface damage patterns in this field include but are not limited to 
(i) crack, spalling, and delamination in concrete structures/elements, 
(ii) corrosion, bolt loosening, rust, and crack in steel structures/con-
nections, (iii) crack, pothole, and rutting, etc. in road pavements, and 
(iv) mold, stain, efflorescence, spalling, and crack, etc. in non-structural 
elements [170]. 

Due to advances in smartphone cameras, surface damage detection 
via smartphone-captured images has received increasing attention. 
Since 2014–2019, Cimellaro et al. [46] developed a rapid building 
damage assessment and alarming by taking advantage of the smart-
phone sensing technology rather than some classical ways such as 
printed forms filled by experts on site. To enhance this classical 
approach, they proposed an image-based damage assessment method by 
using images of damaged buildings taken by residents or volunteer fire 
corps in damaged areas without any specific skill. The proposed method 
was tested for the first time after 2012 Emilia Earthquake in Italy to 
show the method efficiency in improving the emergency response and 
comparing with previous data collection. Cha et al. [171] proposed a 
vision-based loosened bolt detection method containing three steps of 
denoising, feature extraction, and feature classification via a smart-
phone camera. In that research, after image denoising, the horizontal 
and vertical lengths of the bolt head as damage-sensitive features were 

Fig. 14. Graphical representation of the vision-based FEMU using smartphone sensing technology.  
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obtained from the Hough transform and other image processing tech-
niques. A linear SVM classifier was then trained to detect the loosened 
bolts. Zhao et al. [172] proposed a deep learning method with the aid of 
machine vision for bolt loosening angle detection in steel connections 
using the camera of a smartphone. The authors exploited a single deep 
neural network called Single Shot MultiBox Detector suitable for object 
detection tasks. Huynh et al. [173] developed a two-stage hybrid bolt 
loosening detection technique as a combination of a region-based con-
volutional neural network (R-CNN) and the Hough line transform image 
processing algorithm on a lab-scale girder connection. In the first stage, 
the authors intended to detect automatically bolts and crop possible 
bolts in images captured by a smartphone camera (i.e., iPhone 10) with 
the aid of the reginal CNN. In the second stage, the Hough line transform 
image processing algorithm was designed to automatically estimate the 
bolt angles from the cropped images. 

Ramana et al. [174] proposed a two-stage hybrid method in a com-
bination of bolt detection-localization and bolt loosening detection 
strategies. First, they suggested the Viola–Jones algorithm, which was 
trained by using images with and without bolts to detect and localize all 
bolts in the images. Second, the SVM classifier was employed to classify 
the tight and loose bolts in the cropped bolt images obtained from the 
first stage. In a different and novel research study, Wang et al. [175] 
proposed a real-time vision-based method for surface damage detection 
in historical buildings including efflorescence and spalling by smart-
phone cameras and Faster R-CNN. The authors also developed an 
Internet Protocol webcam damage detection system combined with a 
workstation in an effort to implement a real-time surface damage 
detection, especially for brick masonry buildings. In the proposed sys-
tem, there was a connection between the smartphone camera and the 
workstation by a WLAN. On this basis, videos taken by the smartphone 
were uploaded to the workstation in a real-time fashion so that the 
workstation was able to detect, compute, and store the results of surface 
damage detection. The authors also integrated the trained deep learning 
model into a smartphone based on the TensorFlow mobile API to carry 
out the real-time smartphone-based detection process on brick masonry 
walls as shown in Fig. 15. 

In 2020–2021, Ni et al. [176] studied the crack detection in concrete 
structures by taking advantage of an Android app developed from digital 
image processing algorithms. The proposed crack detection method 
included some steps such as smartphone camera calibration, image 
acquisition, image denoising, gray image transformation, morphological 
operation, binarization, and crack feature calculation. They exploited 
seven smartphones of different brands (i.e., Samsung, Xiaomi, Oppo, 
and Huawei) for the camera calibration. Using a crack with different 
widths at three locations, the Android app was considered to detect the 

crack widths under fifteen experiments. Jiang and Zhang [177] pro-
posed a novel surface crack detection methodology in walls via a robotic 
device as a wall-climbing unmanned aerial system, data transmission, a 
smartphone, and deep neural networks. In their research, when wall- 
climbing unmanned aerial system captured crack images, a CNN was 
trained to develop a crack detector. In the following, the selected de-
tector was transplanted into an Android app on a smartphone to perform 
real-time crack detection. Liu et al. [178] analyzed concrete surface 
damage based on the idea of three-dimensional multi-view image 
reconstruction. For this aim, the authors proposed surface damage 
reconstruction approaches to reproduce and extract information for 
damage volume estimation. A reconstruction method based on multi- 
view stereo was utilized to produce point cloud models and estimate 
the surface damage volume on concrete components via smartphone 
sensing technology. Perez and Tah [179] developed a deep learning- 
aided smartphone app for non-structural surface damage (defect) 
detection in building structures. The main non-structural surface dam-
ages evaluated in their work were cracks, mold, stain and paint deteri-
oration on interior building walls. On this basis, the authors exploited 
MobileNet Single Shot Detector (SDD), which is a pretrained deep neural 
network for object detection developed in TensorFlow. This detector is 
suitable for mobile device applications due to relatively small central 
processing unit (CPU) loads, low memory consumption, and high ac-
curacy. Using smartphones, a hand-held camera, copyright-free images 
from the internet, and some free images, a dataset of 875 images of the 
aforementioned non-structural damages was prepared. After data 
augmentation and annotation, the damage/defect detector was devel-
oped in three steps of configuring the deep neural network, training and 
testing the network, and converting it into a smartphone app. 

In 2022–2023, Ye et al. [180] proposed a method for rapid post- 
earthquake damage detection by leveraging non-contact sensing tech-
nology containing satellites, UAV, and smartphone as well as deep 
learning. The proposed method entailed three steps of an initial 
assessment of post-earthquake damage, recognition of structural com-
ponents and damage, and damage and safety risk level assessment. In the 
first step, the authors exploited high-resolution satellite images to 
evaluate whether civil structures collapsed. In case of collapsing, the 
structure under study was labeled as the high risk. For safe structures, 
the method implemented the second and third steps by using 
smartphone-taken images with the aid of an UAV system and a deep 
neural network (i.e., multi-task high-resolution net). Eventually, the 
safety risk level of the structure was determined based on the results of 
structural damage recognition in terms of damage type, area, and 
severity. Qi et al. [181] proposed a two-step computer vision-based 
framework for bolt loosening detection and designed an iOS 

Fig. 15. Real-time smartphone-based surface damage detection proposed by Wang et al. [175]: (a) Photography from brick masonry walls, (b) efflorescence 
detection, (c) spalling detection. 
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smartphone app to facilitate fast data communication between field 
workplace by UAV-captured images and web server related to bolt 
loosening angle quantification. In the first step of the computer vision 
framework, the authors utilized a total of 1200 UAV-taken images of 
bolted structures in order to train a Faster R-CNN for bolt detection. In 
the second step, some computer vision techniques such as Gaussian fil-
ter, perspective transform, and Hough transform were performed to 
quantify the bolt loosening angle. Long et al. [182] took advantage of 
the smartphone camera and Faster R-CNN for determining the fatigue 
crack growth rate. The authors also developed and integrated a novel 
global and local dual-scale Faster R-CNN into a smartphone app for 
predicting the crack length during an entire loading cycle. 

In addition to surface damage detection in structural and non- 
structural elements of different civil structures, it is also possible to 
leverage smartphone-captured images for road defect assessment and 
detection [183]. Ouma and Hahn [184] proposed a low-cost two- 
dimensional vision-based system for detecting potholes on asphalt road 
pavements in urban areas with the aids of some image processing and 
machine learning methods such as a priori integration of multiscale 
texture-based image filtering, wavelet transform, and fuzzy c-means 
clustering. For the pothole detection, they exploited a smartphone 
camera (i.e., Samsung Galaxy S5), which was mounted on the wind-
shield of a Toyota Hiace vehicle. Maeda et al. [185] initially prepared 
and publicly released a large-scale dataset of road damage images taken 
by a smartphone (i.e., LG Nexus 5X) vertically installed on the dash-
board of a vehicle. Using such images, they trained CNNs (i.e., Inception 
V2 and MobileNet) to develop a road damage detector. Using two types 
of images taken from a handheld smartphone and a high-speed camera 
mounted on the rear of a moving car, Mei et al. [186] proposed a deep 
learning method for crack detection in road pavements. The proposed 
method incorporated the connectivity of pixels for automatic pavement 
crack detection, for which the convolutional layers of the deep neural 
network were densely connected in a feed-forward manner to reuse 
features from multiple layers, and transposed convolution layers were 
considered for multiple level feature fusion. The other research studies 
on road damage/defect detection based on smartphone-captured images 
and different deep neural networks can be found in [187–193]. 

4. Discussions 

This article reviewed a large number of research studies on smartphone 
sensing technology for SHM applications. Due to the equipment of modern 
smartphones with some useful sensors as well as wireless data communi-
cation and local storage, there has been a boom in taking advantage of 
such ubiquitous devices and technologies in various SHM projects as an 
emerging, affordable, and effective next-generation sensing system. For 
more clarifications, Table 2 compares the advantages and disadvantages/ 
challenges of the smartphone sensing technology with the contact and 
non-contact sensing systems. In relation to the smartphone-based mea-
surement techniques, Table 3 summarizes and compares the advantages 
and disadvantages/challenges of the crowdsourcing and limited (non- 
crowdsourcing) systems. Eventually, Table 4 lists the pros and cons of the 
fixed and mobile measurement techniques related to the smartphone 
sensing technology. It should be clarified that the choice of the best 
appropriate sensing device and measurement system is relative and may 
depend on different parameters such as the main objective of an SHM 
project (i.e., modal identification, FEMU, damage assessment, etc.) and the 
applicability of a sensing technology to that objective, the duration of the 
project in terms of short- or long-term monitoring, the type and size of civil 
structures along with their geographical locations and accessibility, 
weather conditions, the population of the area under monitoring and 
people incentives for evaluating the possibility of implementing the 
crowdsourcing system, data privacy and security conditions, etc. Apart 
from the pros and cons of any sensing system, therefore, it is necessary to 
initially conduct an operational evaluation for finding the optimum 
sensing and data acquisition systems. 

In addition to the aforementioned comparisons, the investigation of a 
large number of articles evaluated in this review allows us to summarize 
the following notes:  

1) Smartphone sensing technology can be incorporated into real- 
world SHM practices as a practical, effective, and efficient sys-
tem. It has been demonstrated in various application domains 
that this technology can perform well in full-scale bridge struc-
tures and high-rise buildings.  

2) The smartphone built-in MEMS accelerometers require sensor 
validations and laboratory calibrations via tried-and-tested 
commercial accelerometers before utilizing in vibration-based 
SHM projects. For this reason, this process may need some costs 

Table 2 
The advantages and disadvantages/challenges of different sensing devices.  

Sensing 
devices 

Advantages Disadvantages/Challenges 

Smartphones (1) Ubiquity, cost-free, and 
easy-to-use 

(1) Low accuracy in old versions 

(2) Diversity in built-in sensors (2) Lack of control on 
crowdsourcing systems 

(3) Widespread applications (3) Lack of built-in sensors for 
directly measuring some 
environmental factors 

(4) Numerous well-designed 
and free third-party apps for 
data measurement, analysis, 
and visualization 

(4) Heterogeneity of the 
collected data from different 
smartphones 

(5) High suitability for 
conducting SHM projects in 
smart cities 

(5) Limited applications to 
vibration monitoring of 
extremely stiff and huge 
structures (6) Best choice for research on 

small-scale structural models/ 
elements in laboratory 
environments 

Contact 
sensors 

(1) Diversity in the market 
with various prices and 
specifications 

(1) Necessity of physical access 
to civil structures 

(2) High applicability to 
almost all civil structures with 
wired and wireless data 
communication networks 

(2) Labor-intensive and time- 
consuming sensor deployments 

(3) Suitability for performing 
long-term monitoring projects 

(3) Necessity of dense sensor 
networks and long cables in 
wired data transmission for full- 
scale structures 

(4) Possibility of measuring 
almost all structural 
parameters as well as various 
environmental and 
operational factors 

(4) Regular inspections for 
sensor malfunction assessment 
(5) Restricted battery capacities 
for wireless data 
communication 

Non-contact 
sensors 

(1) Possibility of conducting 
new SHM projects (i.e., 
displacement measurement, 
surface damage detection, 
etc.) by new data (images/ 
videos) and some prevalent 
devices (e.g., digital cameras, 
video recorders, etc.) 

(1) Sensitivity to environmental 
and lighting conditions, camera 
shaking and mounting stability, 
camera-to-target distance, and 
low resolution of recording 
devices 
(2) Difficulty in implementing 
long-term SHM projects 

(2) Lack of physical access to 
civil structures (i.e., no sensor 
attachment) 

(3) Necessity of user expertise 
and additional tools (e.g., 
tripods, UAVs, etc.) for image/ 
video recordings 

(3) Possibility of changing 
measurement points after 
video recordings 

(4) Emergence of large 
measurement errors caused by 
improper camera calibration, 
optical distortion effects, field 
view nonlinearity, data 
asynchronization among 
cameras, etc. 

(4) Feasibility of leveraging 
advanced and robust 
computational models and 
algorithms (i.e., various deep 
neural networks, computer 
vision, etc.)  
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for purchasing some commercial sensors and/or relevant data 
acquisition systems.  

3) Although the sensitivity rates of the smartphone accelerometers 
are smaller than the traditional and commercial accelerometers, 
it has been demonstrated that the use of smartphone acceler-
ometers, especially in a crowdsourcing mode, are highly suitable 
and effective for vibration measurement and monitoring of flex-
ible structures such as long-span bridges, footbridges, high-rise 
buildings, telecom towers, and flexible structural and non- 
structural elements such as cables and elevators. Furthermore, 
such sensors have succeeded in recording structural responses of 
earthquake-induced vibrations.  

4) In pavement engineering, the smartphone accelerometers and 
cameras are appropriate sensors for road damage detection such 
as cracks, potholes, and rutting in pavements.  

5) The smartphone built-in cameras are highly suitable for vision- 
based SHM projects with a short camera-to-target distance. 

Such ubiquitous sensors can be good alternatives to commercial 
or public cameras, which may be expensive or inaccessible. 

6) The vision-based applications of SHM via the smartphone cam-
eras are usually cost-free, while such cameras may need cali-
brations with some commercial digital cameras. However, some 
important factors such as camera-to-target distance, target 
pattern features, lightning conditions, and camera mounting 
stability should be incorporated to meet accurate displacement 
measurements.  

7) The vehicle weight, speed, engine vibration, and suspension 
system, road surfaces, data synchronization, and collaboration of 
participants are influential in the mobile crowdsourcing mea-
surement and drive-by monitoring (i.e., indirect bridge moni-
toring based on the vehicle-bridge interaction). 

8) In the mobile sensing scheme implemented in either crowd-
sourcing or limited/non-crowdsourcing systems, low speeds of 
the vehicles allow us to acquire longer measurement, minimize 
the effects of vehicle vibrations resulting from pavement rough-
ness or expansion joints on bridge decks.  

9) Proper installation of the smartphone in the fixed measurement 
system is an important issue. For the vibration-based applica-
tions, the use of double-sided adhesive tapes, protective shells 
with a high sticking potential, and other firm attachment can 
avoid sliding the smartphones and recording erroneous data. 
Furthermore, the smartphones should be mounted perpendicu-
larly on the surface of the structure or its elements. In the vision- 
based practices, the smartphone and its support device (e.g., a 
tripod) should be fixed properly to prevent any redundant vi-
bration and allow the smartphone to be perpendicular to the 
scene surface.  

10) To take images and/or videos from far distances, the smartphone 
can be equipped with small and lightweight zoom lens, where are 
attached on the smartphone cameras, in order to increase the 
image resolution and quality.  

11) In modal identification, the natural frequency has been the main 
modal parameter for identification. It has been demonstrated that 
the identified natural frequencies from the smartphones and 
conventional sensors are in good agreement. In some studies, the 
damping ratios and mode shapes have also been identified. 
However, spatial and temporal uncertainties in crowdsourcing 
measurement systems impede the identification of modal prop-
erties, particularly mode shapes. This is because of the lack of 
sampling uniformity and independent smartphone clocks and 
locations during the crowdsourcing measurement. In vibration- 
based SHM applications by the smartphone built-in accelerom-
eter in the crowdsourcing system, the clock imperfection caused 
by sampling period variability and jitters can degrade the reli-
ability of OMA [194]. Clock-related discrepancies in smartphone- 
aided OMA demonstrated that different mobile platforms should 
be considered to improve the accuracy of identified modal 
properties [74,78,90]. For these reasons, the smartphone-based 
modal identification with multiple sensor nodes (i.e., the 
crowdsourcing system) requires data synchronization and sam-
pling adjustment.  

12) Most of the research studies on the seismic SHM have focused on 
seismic response and interstory drift (displacement) measure-
ments by using the smartphone accelerometer and cameras. Some 
smartphone apps have been developed to record and detect 
earthquake-induced vibration. On the other hand, vision-based 
post-earthquake damage assessment via smartphone cameras 
and various deep neural networks have been active research 
fields. 

5. Remaining challenges and further research opportunities 

Despite the effectiveness and efficiency of smartphone sensing 

Table 3 
The advantages and disadvantages/challenges of different smartphone-based 
measurement techniques.  

Measurement 
techniques 

Advantages Disadvantages/Challenges 

Crowdsourcing (1) Diversity in 
measuring, collecting, 
and sharing various data 

(1) Low contributions of citizens 
or volunteers and difficulties in 
incentivizing them to 
contributions 

(2) Preparation of rich 
and different data 

(2) Data asynchronization and 
clock imperfection for vibration 
applications 

(3) Suitability for high- 
populated, easily 
accessible, and urban 
areas 

(3) Security threats to data 
privacy and integrity 

(4) Large-scale sensing (4) Possibility of collecting 
unreliable, low-quality, and 
redundant data 

Non- 
crowdsourcing 

(1) Simplicity in 
measuring, storing, and 
sharing 

(1) Data insufficiency and 
incompleteness 

(2) Suitable for low- 
populated and 
laboriously accessible 
areas 

(2) Difficulty in implementing 
long-term SHM projects 

(3) Small-scale sensing 
with high privacy 

(3) Probable requirement of 
administration, experts, skilled 
labors, etc.  

Table 4 
The advantages and disadvantages/challenges of different smartphone-based 
sensing systems.  

Sensing 
systems 

Advantages Disadvantages/Challenges 

Fixed (1) Simplicity in implementation 
and measurement 

(1) Difficulty in implementing 
long-term SHM projects 

(2) Lack of sufficient spatial 
information 

(2) Possibility of damage to 
smartphones 

Mobile (1) Possibility of implementing 
both short- and long-term SHM 

(1) Dependency on a vehicle 

(2) Provision of spatial 
information 

(2) Inaccurate measurements 
caused by various vehicle 
specifications and flaws, road 
roughness, and smartphone 
movements 

(4) High suitability for 
measurement and monitoring of 
bridge structures in urban areas 

(3) Measurement limitations in 
very short-duration testing 
during vehicle passage 
(4) Requirement of power- 
supplying and large data 
transferring in long-term 
programs  
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technology in health monitoring of civil structures, there are still 
important challenges that should be dealt with in further research 
opportunities.  

1) Smartphones are not initially designed as sensors in such a way 
that their built-in sensors have different specifications and ac-
curacy rates. On the other hand, in vibration-based applications, 
the sampling rate of the smartphone sensors may not be higher 
enough to measure vibration of an extremely stiff structure [63]. 
Therefore, further researches for enhancing the performances 
and recordings of the smartphone sensors are essential.  

2) Although accelerometers embedded in smartphones can facilitate 
vibration measurements and provide benefits for field monitoring 
of civil structures, the major challenge relates to heterogeneities 
in the collected data due to differences in manufacturers, models, 
apps, operating system characteristics, and CPU conditions. For 
this reason, the most appropriate solution is to calibrate smart-
phones by one or some tried-and-tested and inexpensive accel-
erometers in the market.  

3) The majority of research studies on smartphone-based SHM has 
been conducted on some specific types of civil structures much 
more on bridges and buildings. In this regard, the applications of 
smartphone sensing technology to other civil structures in terms 
of structural type (e.g., dams, tunnels, offshore systems, and 
space frame structures, etc.), configuration (e.g., truss, frame, 
cable, arch, and space frame structures, etc.), and material (e.g., 
stone, masonry, composite, and timber, etc.) can present novel 
and important findings for civil engineers. 

4) In most cases, smartphone-based SHM projects have been per-
formed in short-term monitoring schemes. There is no doubt that 
a long-term monitoring program can open new important chal-
lenges and also useful information. These challenges include but 
are not limited to the effects of variability in measured data 
caused by environmental (e.g., temperature, relative humidity, 
wind speed and direction, etc.) and operational (excessive loads, 
traffic, and redundant mass increases, etc.) conditions, Big Data, 
missing values, sensor malfunctions, and anomalous data. 
Although some studies implemented long-term smartphone- 
aided SHM projects [70,124], this issue requires further in-
vestigations into both vibration- and vision-based applications by 
an emphasis on addressing the major challenges of long-term 
SHM.  

5) The FEMU is an important process in SHM. Compared to the 
conventional sensing systems and also other SHM fields (see 
Fig. 2), there are not adequate researches on the smartphone- 
aided FEMU. Based on updated FE models, it is also possible to 
investigate further topics such as damage diagnosis [195], soil- 
structure interaction [196], reliability estimation and seismic 
risk assessment [89,90].  

6) Vision-based sensing via smartphone cameras and commercial 
digital cameras in market have their own limitations including 
lighting and environmental effects (i.e., rain, mist, and fog, etc.), 
vision hindrance, poor performances stemming from camera 
resolution, vibration, and far distance to a target. Regarding the 
vision-based response measurement, displacements are often 
small, in which case it may be difficult to correctly measure by 
smartphone cameras. Deep learning-based damage assessment 
requires sufficient training data that needs to prepare a large set 
of images (i.e., Big Data) and ground truth labeling. In some 
cases, sufficient training data is not available, for which deep 
neural networks may function poorly. On the other hand, in SHM, 
structural component recognition has not been explored suffi-
ciently by smartphone sensing technology.  

7) New smartphones have more strong and advanced operating 
systems and memory capacities. For an instance, the newly 
released iPhones 14 and 15 were equipped with high-sensitive 

accelerometers. Therefore, the assessment of new smartphones 
for structural response measurement for dealing with some 
challenges such as delays in sampling frequencies, errors in 
amplitude recordings compared with some conventional sensors, 
are necessary. 

8) Spatiotemporal uncertainties make a big challenge in crowd-
sourced sensing applications. This challenge is more problematic 
in the mobile crowdsourcing system when there is a significant 
uncertainty of the smartphone positions during the vehicle 
movements.  

9) In the crowdsourcing system, the well-suited contribution of 
citizens or participants for data measurement, transmission, and 
uploading is one of the major challenges that can impact on the 
quality and efficiency of the sensing process. Therefore, a 
crowdsourcing system requires a task allocation procedure that 
intends to filter inappropriate participants and irrelevant, low- 
quality, and redundant data. Generally, this procedure contains 
three steps of an employer/organization demand, citizen/ 
participant contribution, and task evaluation entities. Although 
this procedure has been investigated in different fields of engi-
neering and science [28], it is important to develop such a pro-
cedure for crowdsourced SHM applications. 

10) Although the contribution of a large number of citizens/volun-
teers is necessary for a crowdsourcing system, it is uncertain how 
many volunteers should be participated to meet the crowd-
sourcing standard. For example, it is still questionable whether 
the participation of several hundred volunteers (e.g., taxi drivers) 
in a populous city with several million people for monitoring 
highway bridges of that city can fulfil a crowdsourcing system. 
On the other hand, in contrast to some well-known crowdsourc-
ing applications such as temperature monitoring, air pollution, 
traffic analysis, parking availability, etc. [28] with well-known 
parameters for everyone (i.e., temperature, air, traffic, parking), 
it is not expected that volunteers have sufficient knowledge about 
particular and specialized projects (e.g., SHM) or applications (e. 
g., dynamics of a bridge, modal identification, FEMU, etc.). Under 
such circumstances, it may be necessary to prepare detailed 
guidance or basic training for volunteers to help them to effec-
tively take part in a specific crowdsourcing program and increase 
the reliability and accuracy of data.  

11) There is not any expectation that people take part in recording 
seismic responses during an earthquake due to its horrific nature 
for them who must initially take care themselves. On the other 
hand, most of the smartphones will not be in a specific position 
during an earthquake event (e.g., those are often in a person’s 
pocket or bag while moving) thereby recording unreliable mea-
surements. Therefore, it is necessary to propose effective and safe 
measurement methods and sensing systems for seismic SHM such 
as event-triggered sensors along with their smartphone apps.  

12) Most of the developed smartphone third-party apps for SHM are 
suitable for recording vibration and other data acquired from 
built-in sensors such as the MEMS accelerometer, gyroscope, and 
GPS, etc. Although some valuable apps have been developed to 
implement SHM tasks in terms of data measurement and analysis, 
feature extraction, and feature classification, there is great po-
tential for design more elaborate apps and enhance the current 
software, i.e., in conjunction with computer science researchers, 
by considering the tremendous capacities of different feature 
extraction approaches and various machine learning algorithms.  

13) Because vibration data from mobile sensing systems is dominated 
by vehicle characteristics such as suspension systems and speed 
as well as the pavement roughness, it is necessary to develop 
robust filtering methods to remove the negative effects of vehicle- 
and road-related features. 
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6. Conclusion 

This article has provided a state-of-the-art review on the applications 
of smartphone sensing technology to SHM. This review article has 
divided into two parts of vibration and vision categories. For the first 
category, the tri-axial MEMS accelerometer, gyroscope, and GPS have 
been the main sensors for vibration response measurements (e.g., ac-
celeration), modal identification, FEMU, damage assessment, seismic 
SHM, and structural comfort assessment. In the second category, the 
smartphone cameras and GPS have been the key sensors for the 
displacement measurement, FEMU, and surface damage detection by 
capturing images and/or videos and providing positioning, navigation, 
timing services as well as location services. Furthermore, this article has 
fully discussed the measurement techniques related to smartphone 
sensing technology including fixed and mobile systems in the single and 
crowdsourcing modes. Some published smartphone apps have been 
introduced to assist readers in better selecting credible software for 
smartphone-based SHM. In contrast to the traditional contact and some 
next-generation non-contact sensing systems, which are able to measure 
limited and specific sensing parameters, one can conclude that the 
smartphone sensing technology brings the most cost-effective and 
multipurpose system for data measurement by various built-in sensors, 
local data storage via the internal and external memories, and wireless 
data communication, all of them are integrated in one package. As the 
final conclusion, it is essential to consider an operational evaluation 
process at the beginning of any SHM project for assessing the possibility 
and suitability of a specific sensing technology. 
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