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A B S T R A C T

In recent years, there has been a growing interest in developing high-performance implementations of drug
discovery processing software. To target modern GPU architectures, such applications are mostly written in
proprietary languages such as CUDA or HIP. However, with the increasing heterogeneity of modern HPC
systems and the availability of accelerators from multiple hardware vendors, it has become critical to be able to
efficiently execute drug discovery pipelines on multiple large-scale computing systems, with the ultimate goal
of working on urgent computing scenarios. This article presents the challenges of migrating LiGen, an industrial
drug discovery software pipeline, from CUDA to the SYCL programming model, an industry standard based on
C++ that enables heterogeneous computing. We perform a structured analysis of the performance portability
of the SYCL LiGen platform, focusing on different aspects of the approach from different perspectives. First, we
analyze the performance portability provided by the high-level semantics of SYCL, including the most recent
group algorithms and subgroups of SYCL 2020. Second, we analyze how low-level aspects such as kernel
occupancy and register pressure affect the performance portability of the overall application. The experimental
evaluation is performed on two different versions of LiGen, implementing two different parallelization patterns,
by comparing them with a manually optimized CUDA version, and by evaluating performance portability using
both known and ad hoc metrics. The results show that, thanks to the combination of high-level SYCL semantics
and some manual tuning, LiGen achieves native-comparable performance on NVIDIA, while also running on
AMD GPUs.
1. Introduction

The drug discovery process is of critical importance in the medical
field and serves as a fundamental task in the identification of new
drugs. This intricate and resource-intensive endeavor encompasses var-
ious stages, including in silico, in vitro, and in vivo phases. The initial
step, known as the screening phase, marks the outset of drug discov-
ery. Here, a collection of drug candidates undergo evaluation against
specific targets. The outcome yields a subset of candidates advancing
to subsequent pipeline stages. However, the increasing cost of in vitro
and in vivo experiments constrains the number of drug candidates
that can be evaluated in the drug discovery pipeline. Recent studies
demonstrated that the introduction of an in silico stage, named virtual
screening, to select which molecule test in a drug discovery pipeline,
increases its success probability [1,2]. Unfortunately, the process of
evaluating a drug candidate is a computationally intensive task. With
candidates numbering in the millions or billions, it is necessary to run
the calculations on High-Performance Computing (HPC) systems.
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Recent years have seen a surge of interest in drug discovery, es-
pecially in light of the COVID-19 pandemic. Projects such as Exsca-
late4COV [3] or the COVID-19-HPC-Consortium [4] have emerged to
rapidly identify effective drugs. When a novel disease appears, having
fast and reliable drug discovery pipelines ready enables urgent com-
puting scenarios, where the computational power of supercomputers
around the world can be exploited immediately to respond quickly
to the disease. In order to meet urgent computing requirements, a
drug discovery pipeline needs to fully exploit modern supercomputers’
hardware heterogeneity. Among the first ten positions of the Top500
list [5], nine supercomputers are GPU-accelerated, with GPUs from
three different vendors. However, developing heterogeneous applica-
tions is challenging. Computing devices can differ in terms of execution
model, optimal access pattern, and tuning, and require proprietary pro-
gramming models (e.g., CUDA for NVIDIA GPUs, HIP for AMD GPUs,
LevelZero for Intel GPUs) that undermine application portability across
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devices, requiring multiple native implementations to target all devices.
A drug discovery software pipeline written in a native, device-specific
language is not ideal because it is not portable, drastically undermining
the ability to operate under urgent computational demands. To over-
come the portability limitation, it is necessary to build the application
source code so that it can run on a defined set of hardware without
requiring multiple device-specific implementations. Furthermore, we
also want to achieve the best performance on each of the hardware. In
this regard, the term performance portability encompasses both aspects
of portability and performance.

This work proposes a performance-portable implementation of LiGen
[6], a high-throughput virtual screening application. LiGen is an in-
dustrial drug discovery software platform that consists of several im-
plementations of the docking and scoring functionality: two main im-
plementations called latency-oriented LiGen and throughput-oriented
LiGen are provided [7], each with a C++ implementation for CPUs
and a highly optimized CUDA C++ version targeting NVIDIA GPUs.
We ported the CUDA code of both LiGen versions to SYCL 2020,
exploiting several features such as sub-groups and group algorithms. To
better understand the performance aspects of specific SYCL semantics,
we developed two SYCL variants of each version, based respectively
on the two SYCL memory models: the Unified Shared Memory and
Buffer-Accessors paradigm. The new SYCL implementation can target
multicore CPUs as well as GPUs from different vendors, and it has been
tested on a broad range of hardware, including NVIDIA V100S and
AMD MI100 GPUs.

Our work is not limited to the porting activities of the LiGen drug
discovery platform but goes further by analyzing the performance
portability of the resulting code. In particular, our analysis focuses on
understanding how performance portability is affected by the high-
level semantics provided by the SYCL programming model and how
much low-level tuning is required to achieve a level of optimization
that guarantees high performance on all target devices.

The paper makes the following contributions:

• A portable implementation of the LiGen industrial drug discov-
ery platform, based on the Khronos SYCL 2020 standard and
capable of targeting a wide range of multicore CPUs, GPUs, and
accelerators.

• A performance portability analysis of SYCL 2020 semantics, in-
cluding memory access models such as buffer-accessor and unified
shared memory, group algorithms, and sub-groups, evaluated
their impact on improving the portability of LiGen using the
well-known performance portability metrics.

• An analysis of advanced portability issues that go beyond the
SYCL language semantics such as occupancy, register pressure,
and work-group size tuning.

• An experimental evaluation of the SYCL LiGen platform on
NVIDIA V100S and AMD MI100 GPUs, performed with different
SYCL implementations and memory access semantics, and com-
pared to the manually optimized reference CUDA version. Before
this article, no performance portability analysis of LiGen have
been carried out.

The rest of this article is organized as follows. Section 2 provides
a background on the drug discovery process, SYCL, and metrics for
performance portability and roofline efficiency. The Ligen platform is
described in detail in Section 3. Sections 4 and 5 focus on the perfor-
mance portability aspects of the platform related to the SYCL language
semantics and low-level details, respectively. Section 6 presents an ex-
tensive performance evaluation of the LiGen platform, while Section 7
further discusses and analyzes LiGen performance portability. Section 8
highlights the major lesson learned that emerged from the migration
activity. Finally, Sections 9 and 10 conclude the article with related
45

work and conclusions.
2. Background

This section presents the background of the paper on its main
directions. Given the heterogeneity nature of the domain targeted,
we split the section in four: state-of-the-art on virtual screening for
drug discovery, background on SYCL, code efficiency using the roofline
model, and the main definitions of performance portability.

2.1. Virtual screening

In the context of virtual screening, a drug candidate is a small
molecule named ligand, with usually less than a hundred atoms. The
goal of a virtual screening campaign is to rank a library of ligands
according to their interaction strength against the target protein(s),
which represent the disease. Domain experts will use this information
to select which are the molecules that undergo in vitro experiments.

The evaluation of the interaction strength between a protein-ligand
pair is composed of two tasks. The first one, named molecular docking,
aims at estimating the 3D displacement of the ligand’s atoms when
they interact with a target protein. This is a complex task due to
the number of degrees of freedom involved in the problem. Since the
protein has tens of thousands of atoms, there are multiple areas of the
target protein that a ligand can use for docking. Typically, they are
cavities in the protein surface. In this article, we use the term pocket
to identify each interaction area. Moreover, the ligand is not a fixed
structure. A subset of the ligand’s bonds, named rotatable bonds, split
the molecule atoms into two disjoint sets that can rotate along the
bond axis, without altering its chemical and physical properties. In
this article, we will refer to each set of atoms derived by a rotatable
bond as fragment. A ligand can have tens of rotatable bonds, that can
be used to drastically change the molecule shape, named conformer.
The second task of virtual screening uses a scoring function to estimate
the interaction strength using the geometrical, chemical, and physical
properties of both molecules. These are two well-known problems in
literature that need to be solved for several purposes. For this reason,
there is a wide range of solutions that cover the trade-off spectrum
between performance and accuracy [8–11].

Recently, virtual screening applications have been accelerated by
the processing power of GPUs [12–17]. AutoDock [18] has been ported
in CUDA (AutoDock-GPU [19]) and deployed on the Summit super-
computer, where they docked over one billion molecules on two SARS-
CoV-2 proteins in less than two days [20]. From this experiment, they
derived a mini-app based on AutoDock-GPU to test different offloading
schemes such as HiP and Kokkos [21]. In this article, we focus on LiGen,
he virtual screening application of the EXSCALATE platform [3]. It
as been designed from scratch to target supercomputers, not only to
inge on the overall number of GPUs available [7] but also to access
he IO system efficiently [22]. Recently, LiGen has been deployed on
arconi100 at CINECA and HPC5 at ENI to virtual screen 72 billion

f ligands against 15 pockets of 12 SARS-CoV-2 proteins, performing
verall one trillion of protein-ligand evaluations in 60 h [6].

2.2. SYCL programming model

SYCL is a royalty-free, cross-platform C++ abstraction layer that
allows developers to write applications that leverage multiple hetero-
geneous devices, including CPUs, GPUs, and FPGAs, in a convenient
and performance-portable manner. SYCL extends the C++ program-
ming language by introducing abstractions for handling heterogeneous
computing within ISO C++ while striving to closely align with the core
language’s specification. While initially designed to be mapped onto
OpenCL, revision 3 of the SYCL 2020 specification has opened the doors
for additional custom backends [23], such as NVIDIA CUDA, AMD HIP,
OpenMP, and more. Currently SYCL 2020 is at its 7th revision and
it is heading towards the 8th revision by the end of 2023 [24]. The

primary implementations of SYCL include OneAPI Data-Parallel C++,
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developed by Intel [25], and AdaptiveCPP, developed at Heidelberg
University [23], with several other minor implementations actively
under development [26,27]. Furthermore, the flexibility of SYCL has
given rise to various extensions targeting specific heterogeneous use
cases, such as distributed computing [28], real-time energy optimiza-
tion [29], and approximate computing [30]. Although SYCL allows for
compiling a single-source code for multiple architectures, it does not
handle performance portability automatically, and the efficiency of the
same kernels can significantly vary across different hardware platforms.
Nevertheless, SYCL provides a robust foundation where developers can
write highly specialized code in a more accessible manner, aiming
to achieve performance portability across a wide range of hardware
architectures.

2.3. Roofline efficiency

The roofline model [31] is a two-dimensional graph that couples
together the floating-point performance, data locality, and memory
performance of an application in an intuitive way. It can tell if an ap-
plication is either compute-bound or memory-bound, allowing for fine-
grained optimizations. The roofline analysis uses the roofline model
to quantify the performance of a target application with respect to
the roofline peak performance, defined as roofline efficiency [32,33].
To compute this metric for a target application on a specific device
𝑚, one must first calculate the floating point peak ratio (𝐹𝑅𝑚) and

aximum bandwidth (𝐵𝑊𝑚). The balance point is defined as the ratio
f peak FP performance and bandwidth 𝐵𝑚 = 𝐹𝑅𝑚 ∕ 𝐵𝑊𝑚, which
epresents the transition point from a memory-bound to a compute-
ound application. When profiling the application 𝑘 targeting a device
, one must compute the number of floating point operation 𝐹𝐿𝑘
nd memory traffic 𝑇𝐿𝑘 which are used to compute the application
rithmetic intensity. 𝐴𝐼𝑘 = 𝐹𝐿𝑘 ∕ 𝑇𝐿𝑘.

This value quantifies how many floating point operations the appli-
ation does per transferred byte: a higher value (𝐴𝐼𝑘 > 𝐵𝑚) indicates
hat the application is compute-bound, otherwise (𝐴𝐼𝑘 ≤ 𝐵𝑚) its
emory-bound. Those values define the device peak floating-point
erformance 𝑃𝑘, defined as:

𝑘 = 𝑚𝑖𝑛

{

𝐹𝑅𝑚

𝐵𝑊𝑚 ∗ 𝐴𝐼𝑘
(1)

inally, the roofline efficiency 𝐸𝑘 of a specific kernel is defined as the
atio of the kernel floating point rate 𝐹𝑅𝑘 over the device floating-point
eak performance:

𝑘 =
𝐹𝑅𝑘
𝑃𝑘

(2)

The roofline efficiency allows for quantification of the application
performance on a per-hardware basis using two simple metrics: floating
point ratio and memory bandwidth.

2.4. Performance portability

HPC systems constantly evolve towards novel and different archi-
tectural designs. In particular, hardware heterogeneity has emerged as
a key point. System architects mix different devices, such as CPUs and
GPUs, to achieve the required functionality and performance. However,
applications written and tuned for a specific target architecture cannot
easily support different ones, especially with new emerging hardware
not available at the developing time. As the range of hardware in mod-
ern HPC systems increases, it is crucial to have application code that
can efficiently run on different devices. In this scenario, it is reductive
to consider the efficiency of an application only for a specific hardware.
It is essential to provide a quantitative metric that can include both
the performance attained and the variety of devices on which the
application can run. To this aim, the term performance portability has
become increasingly popular in literature and encapsulates two aspects:
46

f

Achieving some notional level of performance on the target platforms
(performance); the ability to run an application across multiple hard-
ware platforms (portability). The DoE [34] and ETP4HPC [35] have
highlighted the importance of performance portability for HPC, but
also recognized that there is not yet a universally accepted definition as
it has different meanings among different application domains. In our
study, we adopt the Pennycook et al. [36,37] performance portability
definition: ‘‘A measurement of an application’s performance efficiency
for a given task that can be run successfully on all platforms in a given
set’’. The metric to quantify performance portability is shown in Eq. (3):

PP(𝑎, 𝑝,𝐻) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∣ 𝐻 ∣
∑

𝑖∈𝐻
1

𝑒𝑖(𝑎, 𝑝)

, if 𝑖 is supported ∀𝑖 ∈ 𝐻

0, otherwise

(3)

here a 𝑎 is the application, 𝑝 the problem solved by 𝑎, and 𝐻 is the
et of target hardware. The PP metric is defined as the harmonic mean

of application performance efficiency 𝑒𝑖(𝑎, 𝑝) with respect to a given set
of hardware 𝐻 .

Pennycook et al. [38] highlight various methods for calculating
application performance efficiency, specifically: architectural efficiency,
which measures achieved performance as a fraction of peak hardware
performance; and application efficiency, which measures achieved per-
formance as a fraction of the best observed performance against the
most optimized native implementation. Determining the application’s
architectural or application efficiency can be complex, requiring the
identification of relevant bottlenecks on each hardware or an opti-
mized implementation for each platform. Interestingly, recent work
has demonstrated that roofline efficiency can successfully approximate
architectural efficiency [32]. To align the initial Pennycook et al.
definition, for the rest of the manuscript we will refer to the roofline
efficiency as 𝑒′𝑖(𝑎, 𝑝). In addition, we will use 𝑒′′𝑖 (𝑎, 𝑝) to refer to the
ative efficiency, a novel, ad-hoc efficiency metric which is introduced
n Section 7.2.

. The LiGen virtual screening application

An important feature of the virtual screening problem is that all
he evaluations of ligand-protein pairs are independent. This is true
t different levels of the processing pipeline. Given a specific protein
ocket, each ligand and ligand conformation can be processed in paral-
el. Within a protein, multiple pockets can be processed independently,
s independent could be the processing of multiple proteins and/or
rotein conformation. In fact, the embarrassingly parallel nature of
he problem provides opportunities for parallelization at various levels,
llowing for the processing of an enormous amount of data.

This section provides an overview of the three-stage processing
f the LiGen application, focusing on the two GPU implementations
ptimized for latency and batch processing, respectively.

.1. LiGen application overview

LiGen uses MPI to replicate on different nodes the same compu-
ational pipeline, where each pipeline processes its fraction of the
nput ligands [6]. It uses native threads to implement an asynchronous
ipeline that reads, parse, evaluate, and write the results in the output
iles. The writing operation introduces the only synchronization among
rocesses, to avoid overwriting each other. In this article, we focus on
he evaluation stage, which is in charge of docking and scoring a ligand
nside a target pocket. LiGen can have multiple targets, but they will be
rocessed serially, thus we can focus on the single pocket case without
osing in generality. Algorithm 1 shows the pseudo-code of the virtual
creening algorithm for evaluating the interaction strength of a ligand-
ocket pair. The LiGen’s virtual screening algorithm is composed of the

ollowing three phases:
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Algorithm 1: LiGen virtual screening algorithm
Data: num_restart, num_iterations, max_num_poses
Input: ligand, target
Output: score

1 𝑠𝑐𝑜𝑟𝑒𝑠 ← ∅, 𝑝𝑜𝑠𝑒𝑠 ← ∅;
2 for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 do
3 𝑝𝑜𝑠𝑒 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑜𝑠𝑒(𝑙𝑖𝑔𝑎𝑛𝑑, 𝑖);
4 𝑝𝑜𝑠𝑒 ← 𝑎𝑙𝑖𝑔𝑛(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
5 for 𝑛 ← 0 to 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
6 for 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 ← 𝑝𝑜𝑠𝑒.𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 do
7 𝑝𝑜𝑠𝑒 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑝𝑜𝑠𝑒, 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡);
8 end
9 end
10 𝑝𝑜𝑠𝑒 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
11 𝑝𝑜𝑠𝑒𝑠 ← 𝑝𝑜𝑠𝑒𝑠 ∪ {𝑝𝑜𝑠𝑒};
12 end
13 𝑝𝑜𝑠𝑒𝑠 ← 𝑐𝑙𝑖𝑝(𝑠𝑜𝑟𝑡(𝑝𝑜𝑠𝑒𝑠), 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑝𝑜𝑠𝑒𝑠);
14 for 𝑝𝑜𝑠𝑒 ← 𝑝𝑜𝑠𝑒𝑠 do
15 𝑠𝑐𝑜𝑟𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑐𝑜𝑟𝑒(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
16 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑠𝑐𝑜𝑟𝑒𝑠 ∪ {𝑠𝑐𝑜𝑟𝑒};
17 end
18 return 𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒𝑠)

1. Docking phase (lines 2–12): in this phase, we take as input the
target pocket and ligand, and we output 𝑛𝑢𝑚_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 alternative
poses of the ligand when it interacts with the target pocket. This
is the only step that alters the displacement of the atom poses.

2. Pose filtering (line 13): this optional phase reduces the number
of poses to score according to the 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑝𝑜𝑠𝑒𝑠 parameter.
The idea is that we want to score the most promising ones ac-
cording to a simple geometric scoring function while promoting
diversity.

3. Scoring phase (lines 14–18): The remaining poses are then
evaluated using a chemical scoring function [39]. The score of
the ligand is the maximum score among its poses.

ach ligand computation is independent, thus multiple ligands can be
omputed concurrently. Furthermore, pose computation and evaluation
ithin the docking (line 2) and scoring (line 14) phases are also

ndependent, exposing additional parallelism. In the following sections,
e will describe in more detail each of these phases.

.1.1. Docking phase
The LiGen docking algorithm is a gradient descent with multiple

estarts. The number of poses that are generated for each input ligand
epends on the number of restarts (line 2). At each restart, a pose
s initialized using a deterministic heuristic that depends on the pose
ndex (line 3). At first, LiGen aligns the pose to the target pocket
sing rigid roto-translations (line 4). Then, we take into account the
igand flexibility by optimizing all its fragments (lines 6–8). The user
an configure the number of times that this optimization process is
epeated, by setting the parameter 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. Finally, we compute
ome properties of the pose that will be used later in the filtering phase
line 10) and append the pose to the set of computed poses (line 11).

.1.2. Pose filtering phase
To reduce the computation effort of the scoring phase, LiGen keeps

nly the most promising ones, according to the 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑝𝑜𝑠𝑒𝑠 parame-
er. To reach this goal, we first sort them according to a simple custom
eometric score. Then, we keep track of the poses that have internal
umps or bump against the protein. Finally, we compute a clustering
f the poses according to their similarity. Using this information we
an sort the poses to have at lower indexes the best representative of
ach cluster. In the middle, we have all the poses that do not have any
47
ump, while we leave at higher indexes the remaining poses. When we
eed to score only a subset of the poses, we start by considering the
nes at lower indexes, which represent the most promising ones (line
3).

.1.3. Scoring phase
In this phase we compute the actual score of the poses, using the

iGen scoring function [40] (line 14,15). Even if the scoring function
valuates several chemical and physical properties, the final score of a
ose is reduced to a numerical value. The score of the ligand is equal
o the highest that we were able to measure (line 18). Since all the
lgorithms are deterministic, we can reproduce a pose on demand. For
his reason, there is no need to store the atom’s displacement of the
est pose.

.2. GPU kernel implementations

When we focus on the CUDA implementation of the virtual screen-
ng computation kernels, there are two main ways of implementing
hem. The more straightforward approach aims at spreading the com-
utation across the GPU cores, lowering the execution time. In this
rticle, we name this approach latency, and it is the one that we used
n the largest virtual screening campaign [6]. This is also the approach
sed by AutoDock-GPU [19]. When the ligand computation is not
nough to use all the resources available in a GPU card, we use multiple
oftware threads and CUDA stream to have more instances running
n parallel. As a general rule, the kernel names reported in Table 1
atch the name reported in Algorithm 1. However, a single step can be

mplemented using more than one kernel. This is because all the opera-
ions shall use a different mechanism to spread the computation across
he GPU. For reference, optimize_kernel_1 rotate a ligand’s fragment and
ompute the gradient value at different angles. Then optimize_kernel_2
erform a reduction to understand which is the best orientation, taking
nto account internal bumps among the ligand’s atoms. Finally, the
core_kernel_1 computes the hydrogen bonding contribution.

In a recent work [7], we notice how a batched implementation
ields 5𝑥 the throughput of the latency one. In this implementation,
e restrict the ligand computation to a single warp. Then, we hinge
n the GPU parallelism by evaluating a large number of them in
arallel. While this approach is the fastest, it increases the application
omplexity since we need to manage bundles of ligands. In particular,
y changing how we group ligands and how many ligands we bundle
n a batch, we impact the application performance. For this reason, we
eed to have a method to automatically handle them at runtime, using
CUDA and SYCL implementation [41]. Moreover, the kernel design

iffers between the two implementation designs. Using the batched
esign we can aggregate more computation steps in a single kernel
ince they are all computed by a single warp. Therefore, the kernel
ames in Table 2 tend to refer to the three main phases of the virtual
creening algorithm. They can be implemented using one or more
ernels, according to the data structures required to carry out the com-
utation. For reference, score_kernel_1 is the pre-processing phase that
omputes per-atom topology properties to evaluate hydrogen bonding.
he score_kernel_2 computes the actual score value for all the poses.
egarding the pose filtering phase, the filtering_kernel_1 sorts only the

ndexes of the poses, while filter_kernel_2 performs the actual memory
ovement in the internal data structures.

. Performance portability by SYCL semantics

This section presents a performance portability analysis of the LiGen
pplication based on language semantics. Specifically, we will look at
everal SYCL 2020 semantics, including memory access models such
s buffer-accessor and unified shared memory, group algorithms, and
ub-groups.
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Table 1
Register pressure (register per thread) for LiGen Latency compiled for Volta architecture (CUDA capabilities 7.0).

Compiler initialize_pose align optimize_kernel_1 optimize_kernel_2 score_kernel_1

NVCC 12.1 52 44 88 36 72
DPC++ (SYCL Accessors) 72 82 121 38 96
DPC++ (SYCL USM) 70 78 90 28 80
AdaptiveCpp (SYCL Accessors) 72 82 76 38 93
AdaptiveCpp (SYCL USM) 70 82 92 38 81
Table 2
Register pressure (register per thread) for LiGen Batch compiled for Volta architecture (CUDA capabilities 7.0). Note that since the dock kernel is specialized depending on the
ligand’s number of atoms, the register usage shown is the arithmetic mean of all kernel specializations.

Compiler dock score_kernel_2 filtering_kernel_1 filtering_kernel_2 score_kernel_1

NVCC 12.1 ∼105 103 56 63 54
DPC++ (SYCL USM) ∼159 122 40 28 44
DPC++ (SYCL Accessors) ∼169 122 48 32 56
AdaptiveCpp (SYCL Accessors) ∼163 180 40 29 76
AdaptiveCpp (SYCL USM) ∼158 140 44 32 64
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4.1. Memory access models

The SYCL programming model provides two ways of handling data:
the Buffer-Accessor and the Unified Shared Memory (USM) memory

anagement interfaces. With the former, the user wraps data in objects
alled buffers, specifying both size and dimensionality (1D to 3D).
hen a kernel needs to access these data, the user creates an accessor

hat specifies which elements of the specified buffers will be accessed
nd how that access will be performed, i.e., read-only or write-only.
he access properties of the accessors are also used by the runtime
o construct an optimized kernel task graph. USM is a lower-level
echanism in which memory allocations and deallocations follow the
alloc/free C paradigm. With USM, the user can allocate memory

xclusively on the host, on the device, or shared between the two
sing an automatic memory migration system. However, USM is an
ptional feature that may not be supported by all devices, and devices
hat support USM may not support all types of USM allocations. LiGen
ses CUDA manual memory management to handle allocations on the
evice, which can be partially directly mapped on USM with minimal
ffort. On the other hand, the Buffer-Accessors interface requires slight
ode refactoring but severely reduces code complexity, removing all the
nnecessary malloc/free, thus improving LiGen memory safety.

.2. Group algorithms

SYCL has several functions that provide functionality related to
roups of work items (such as group barriers and collective operations).
hese group functions act as synchronization points and must be en-
ountered in converged control flow by all work items in the group. If
ne work item in a group calls a group function, then all work items
n that group must call precisely the same function under the same
et of conditions. All group algorithm functions take a group as the
irst argument that defines which group of work items executes the
pecified function. Even though features like atomic, work-group local
emory, and barrier may be used to perform group algorithm functions
irectly in a program, many devices come with specialized hardware
o speed up certain group operations. Calling a built-in function will
ften perform better than writing a general-purpose implementation
ince vendor-provided group function implementations are generally
ailored for the device they are operating on, even when a device
oes not feature specialized hardware. LiGen makes heavy usage of
anually written group functions: in particular, group shifts and re-
uctions are exploited in the docking phase to measure the atoms pair
nteractions, while in the scoring phase group reductions are used to
etrieve the best-evaluated pose. SYCL group algorithms simplify the
orted code by substituting highly specialized custom functions with
tandard and well-known procedures while leveraging optimized native
48

mplementation provided by the SYCL implementations. G
.3. Sub-groups

The SYCL sub-group represents a collection of related work items
ithin a work group that executes concurrently. Combining sub-groups
ith group algorithms functions helps in building performance portable
pplications. In CUDA, threads within a thread block are divided
nto groups of 32 threads called warp, which are executed in parallel.
arallel programs often use collective communication operations, such
s broadcasts, parallel reductions, and scans. CUDA C++ supports
uch collective operations by providing warp-level primitives. SYCL
mplementations maps sub-group into CUDA warps, simplifying the
orting process. Furthermore, SYCL offers several sub-group intrinsics
hat map to CUDA collective warp functions. LiGen exploits several
UDA warp-level features, which are directly mapped to SYCL with
inimal effort. However, as the sub-group size depends on the target
ardware, which is fixed to 32 on NVIDIA hardware, LiGen’s SYCL
ernels have been refactored to handle several sub-group sizes in order
o be portable to multiple architectures. This enables for additional
ptimizations on architectures that support several sub-group sizes
e.g. Intel GPUs).

. Advanced performance portability issues

Although the high-level abstractions of SYCL 2020 help build
ortable programs, achieving high performance also requires additional
evice-specific optimization and tuning. This section focuses on some of
he performance issues we encountered while evaluating performance
ortability. In particular, we focused on the high register pressure of
he main LiGen kernels and on work group size tuning.

.1. Occupancy and register pressure

When launching a kernel, the GPU splits the threads into blocks and
istributes them to the GPU computational units. Each unit comes with
limited number of physical resources that have to be shared between

ll threads which can limit the number of threads that can run concur-
ently on the GPU. On GPUs, a metric of how much a kernel is filling
he available resources is called occupancy. It is defined as the ratio of
he number of active sub-groups per multiprocessor to the maximum
umber of possible active sub-groups.1 Although a higher occupancy
s not always synonymous with higher performance, as in some cases
ou can trade occupancy for improving kernel resource usage [42],
t gives a good overview of the kernel performance. Furthermore, a

1 SYCL sub-groups are mapped to hardware-specific thread collections. E.g.
ub-groups are mapped to warps on NVIDIA GPUs and to wavefronts on AMD
PUs.
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Table 3
Hardware used in this evaluation.

Name Vendor Core count Compute units Memory processor clock Memory clock Measured FP64 rate Measured bandwidth Release date

V100S NVIDIA 5120 80 1245 MHz 1107 MHz 6.3 TFLOP/s 1.01 TB/s 2019
MI100 AMD 7680 120 1000 MHz 1250 MHz 10.5 TFLOP/s 0.89 TB/s 2020
lower occupancy inhibits the ability to hide GPU memory latency, thus
degrading performance.

One of the features that can inhibit GPU occupancy is register
usage. Registers are small, on-chip storage locations that are accessed
exclusively by a single thread during the kernel execution. Registers
are very limited resources and GPU architectures usually put limits on
the maximum number of registers per thread. For example, the NVIDIA
Volta architecture has a register file size of 256 kB per Compute Unit,
with a limit of 255 registers per thread. When a kernel uses more
registers than the addressable one, the surplus data are stored in the
GPU’s local memory and accessed at increased latency. This process is
referred to as register spilling. Because registers bind to a single thread
and are not shared within the kernel block, they constitute a hard cap
on achievable occupancy. The amount of registers required by a kernel
is defined by the compiler and is referred to as register pressure.

In SYCL, the memory access model for handling memory allocations
an significantly impact the register pressure of the applications. While
SM employs raw pointers for handling device data, SYCL accessors
re much more complex objects that carry several pieces of information
uch as the buffer dimension, sizes, and data offsets. Holding such in-
ormation comes with a price, and thus SYCL accessors usually require
ore space than USM. In Tables 1 and 2, we show the differences in

equired registers between the CUDA implementation and the SYCL
mplementations using the USM and Buffer-Accessors memory models
n an NVIDIA Tesla V100S. We show this analysis on the 5 most time-
onsuming kernels, which take up to 95% of LiGen Latency and 98%
f LiGen Batch execution time.

In LiGen Latency, the USM implementation performs better on
ost of the kernel, allocating on average 18% fewer registers than

he buffer-accessors backend using DPC++ and ∼1% on AdaptiveCpp.
Conversely, with the optimize_kernel_1 kernel DPC++ and AdaptiveCpp
exhibit opposite behaviors, with DPC++ allocating 59% more registers
on the buffer-accessors backend. In LiGen Batch, for the smaller kernel
(filtering_kernel_1, filtering_kernel_2, and score_kernel_1) the register allo-
cation varies between CUDA and SYCL primarily because of different
allocation policies between NVCC and Clang, with the buffer-accessor
backend allocating more registers compared to USM. With dock and
score_kernel_2 kernels, the two most register-intensive kernels, CUDA
shows a better register allocation policy compared to both SYCL USM
and buffer-accessors. In particular, the SYCL implementation of the
dock kernel takes up to 60% more registers compared to the CUDA
implementation, with the buffer-accessors backend requiring 10 more
registers compared to USM.

5.2. Work group size tuning

Thread allocation can severely impact application performance
when targeting a broad range of hardware. LiGen SYCL has been
designed to target GPU systems, thus choosing a proper work group
size for each platform is required to exploit the best performance from
the underlying hardware.

LiGen Latency. In LiGen Latency, each ligand is computed individ-
ually on the GPU. Each kernel computes multiple poses, which are
distributed to the available sub-groups. LiGen Latency is composed of
several small kernels with low register requirements. Furthermore, run-
times are in the order of hundreds of nanoseconds, thus any scheduling
overhead can severely impact the overall application performance. For
those reasons, the selected approach was to schedule the maximum
amount of threads per work group. In CUDA, the block size is defined
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at runtime via a command line parameter, potentially leading to sub-
optimal resource usage. In SYCL, we query the kernel maximum work
group size for the target device using a specific descriptor2 available
from SYCL 2020 with the kernel bundle feature. This ensures the allo-
cation of as many threads as possible and reduces kernel scheduling
overhead. If the SYCL compiler does not support the kernel bundle, we
fall back to a predefined smaller work group size.

LiGen Batch. In LiGen Batch, ligands are grouped together and com-
puted concurrently on the target device. Each ligand is assigned to
a sub-group which computes all the ligand poses, with each group
computing several ligands concurrently. CUDA uses a pre-defined block
size of 256 threads. As shown earlier in this section, LiGen Batch
kernels suffer from high register pressure, and thus work group sizes
are severely limited. However, as each ligand computation within the
sub-groups is independent of each other, we do not expect significant
differences by varying the work group size. Consequently, we again
query the maximum work group size for the kernel to schedule the
maximum amount of threads possible. Furthermore, we focused on the
dock kernel and tested several work group sizes on NVIDIA Tesla V100S
to explore how different work group sizes can influence performance.
The results are shown in Section 7.

6. Performance evaluation

In this section, we present the performance evaluation of the novel
SYCL implementations of LiGen Latency and LiGen Batch. After pre-
senting the experimental setup and dataset selection, we compare LiGen
Latency with the manually optimized CUDA version; this is followed by
a comparison of the most performance-portable LiGen Batch version
with the equivalent manually-tuned CUDA version. The analyses also
investigate important performance issues such as the SYCL compilation
toolchain and register optimization.

6.1. Experimental setup

Our focus is on evaluating the performance of these implementa-
tions on various GPU architectures. Given that the baseline implemen-
tation of LiGen was designed for NVIDIA GPUs, we have chosen to
assess the performance exclusively on GPUs, omitting evaluation on
other hardware platforms such as CPUs or FPGAs. This choice aligns
with the prevalent utilization of GPU-based clusters in modern HPC
systems.

To ensure comprehensive coverage of major GPU producers, we
perform our analysis on NVIDIA and AMD GPUs. Although Intel has
recently entered the HPC scenario with dedicated GPU solutions, we
do not have access to an HPC Intel GPU so far, thus we do not include
Intel hardware in our evaluation. In this paper, we used an NVIDIA
Tesla V100S and an AMD MI100:

• NVIDIA V100S GPU node. The NVIDIA node features an Intel Xeon
Gold 5218 CPU running at 2.30 GHz with 64 cores, accompanied
by an NVIDIA Tesla V100S connected via PCI Express 4.0. The
GPU consists of 80 Streaming Multiprocessors, for a total of 5120
cores running at 1.245 GHz alongside 620 Tensor Cores. A Tesla
V100S reaches 8.2 TFLOP/s FP64, 16.4 TFLOP/s with FP32, 32.2
TFLOP/s with FP16, and 130 TFLOP/s using FP16 Tensor cores.
The GPU is equipped with 32 GB HBM2 memory that can reach
up to 1132 GB/s bandwidth, 128 kB L1 Cache per SM, 6 MB L2
Cache, and 256 Kb registers per SM.

2 sycl::info::kernel_device_specific::work_group_size.
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• AMD MI100 GPU node. The AMD node is equipped with an AMD
EPYC 7313 CPU operating at 3.7 GHz, comprising 16 × 2 cores,
and an AMD MI100 GPU connected via PCI Express 4.0. The GPU
comprises 120 compute units with 7680 cores, each running at
1.0 GHz. The MI100 can deliver up to 11.5 TFLOP/s FP64, 23.1
TFLOP/s FP32, and 184.6 TFLOP/s using FP16. It is equipped
with 32 GB HBM2 memory, reaching up to 1129 GB/s bandwidth,
16 kB L1 Cache per Compute Unit, 8 MB L2 Cache, and 256 kB
registers.

We measured the maximum flop-rate and memory bandwidth of
each GPU using the Empirical Roofline Toolkit (ERT) [43]. In Table 3
we report a summary of the hardware used in this evaluation, alongside
the computed peaks. For the evaluation of SYCL implementations, we
have utilized the OneAPI Data-Parallel C++ (DPC++) compiler (com-
mit 0e8ce8c) developed by Intel and the AdaptiveCpp (ACPP) compiler
(commit 5e9c4e5) developed at Heidelberg University. These compilers
offer native backends that facilitate targeting of NVIDIA, and AMD
GPUs. The experimental setup described above allows us to conduct
a comprehensive performance analysis of the SYCL implementations of
LiGen on different GPU architectures.

6.2. Datasets selection

We have curated a diverse set of datasets, each consisting of 100,000
ligands, with varying characteristics. The purpose of these datasets is
to comprehensively assess the performance of the LiGen implementa-
tions across different hardware platforms. To achieve this, we have
considered various combinations of atoms and fragment sizes, which
allow us to analyze performance in different operational scenarios. The
number of atoms in a ligand directly impacts the number of operations
that each sub-group must perform. We have selected four different
atom sizes: 31, 63, 74, and 89. These sizes provide a range of ligand
complexities to evaluate the implementations’ efficiency. Additionally,
the number of fragments influences the optimization rounds required
by the algorithm to analyze the ligand’s degrees of freedom. We have
included four fragment sizes: 4, 8, 16, and 20, enabling us to explore
the impact of different fragment sizes on performance. In total, we
have created 16 datasets, encompassing all possible combinations of
the selected atom and fragment sizes. This ensures a comprehensive
evaluation of the implementations’ performance while accounting for
hardware-specific characteristics. Through the rest of the article, to
refer to a dataset with a specific atom and fragment size, we will use
the signature d_atoms_fragments.

6.3. Ligen Latency vs. manually-tuned CUDA

In Figs. 1 and 2, we present the performance of the LiGen Latency
SYCL porting. The results are presented for varying the number of
atoms and fragments in the ligand. Notably, altering the number of
atoms has a milder impact on throughput reduction compared to
increasing the number of fragments. This discrepancy arises from the
fact that each additional atom heightens the workload of individual
threads, while the escalation of fragments introduces new kernel calls,
significantly reducing overall performance. The SYCL USM backend
outperforms the accessor backend on both platforms when dealing with
a small number of atoms. As the number of atoms increases, perfor-
mance tends to stabilize. This behavior can be attributed to the constant
overhead introduced by sycl::accessors due to multi-dimensional index-
ing and offsets, which are not present in the USM approach. The impact
of this overhead is more pronounced at lower atom numbers, where
kernels complete in a few nanoseconds. However, as the number of
atoms grows and threads are assigned more computation tasks, this
50

overhead becomes less prominent. L
NVIDIA Tesla V100S. The native CUDA implementation performs the
best across all implementations, achieving a median throughput of 603
ligand/s. DPC++ achieves the best performance between the SYCL
compilers, obtaining a median throughput of 408 and 446 ligand/s
with the accessors and USM backend respectively, and a maximum of
73% of the native CUDA performance. On the other hand, AdaptiveCpp
performs poorly, achieving only 252 ligand/s median throughput on
the accessor backend and 294 ligand/s using the USM one, reaching up
to 48% of the native CUDA throughput. Overall, the USM backend per-
forms slightly better than the accessor one, obtaining 9% higher median
throughput with DPC++ and 17% increment with AdaptiveCpp.

AMD MI100. AdaptiveCpp implementation shows the best perfor-
mance between the SYCL compilers, achieving a median throughput of
352.9 and 289.2 ligand/s with the USM and accessors backend. DPC++
instead performs poorly, achieving 218.6 median throughput with the
USM backend and 111 ligand/s with the accessor one.

6.3.1. DPC++ vs. AdaptiveCpp
Both SYCL backends with AdaptiveCpp perform worse than the

corresponding one built using DPC++ on NVIDIA V100S, which was
unexpected as both compilers showed similar performance on NVIDIA
hardware. To discern the reasons behind that significant performance
disparity, we performed an in-depth analysis of the two implemen-
tations using Nsight Compute, an NVIDIA tool for CUDA application
profiling. We profiled the optimze fragment kernel, which takes 90% of
the overall execution time using the accessor’s backend. Our analysis
was performed on dataset d_31_4, which is the one that exhibits the
higher performance difference, with a 1.91x slowdown. AdaptiveCpp
takes on average 220 us for one iteration of the kernel, while the
DPC++ version takes around 100 us, resulting in a 2.2x slowdown.
The memory workload analysis showed that the AdaptiveCpp performs
285% more load/store instruction on L1/TEX Cache. In particular, it
executes ∼500.000 local load and ∼250.000 local store, while DPC++
does not perform any local memory operations. We then analyzed
the generated Parallel Thread Execution (PTX) code, the NVIDIA GPU
intermediate representation, to highlight where those instructions are
issued. We found out that the AdaptiveCpp version does not inline the
kernel call, contrarily to DPC++: it creates the function stack frame by
pushing all the kernel parameters in local memory and then passes to
the actual kernel a pointer to them. This approach has the advantage
of leveraging fewer registers, as the parameters are stored in a vector
in local memory and loaded into the registers when necessary. On the
other hand, it has several drawbacks: (i) the parameter packing intro-
duces an initial overhead, which while negligible for heavy kernels,
can be expensive for short ones; (ii) because parameters are stored in
local memory as plain pointers, the compiler loose information about
which kind of memory the pointer refers to (e.g. global memory, local
memory, etc.). This forces the compiler to issue generic load and store in-
structions, which are resolved using generic addressing [44]. With this
technique, the different memory spaces (const, local, and shared) are
models as windows within the generic address space. When a generic
load/store is executed, the hardware subtracts the window base of each
memory state from the generic address and checks if it falls within that
memory space window. This introduces a pointer subtraction overhead
for each load/store operation performed; (iii) Local Memory in CUDA
is stored in the device Global Memory in a way that consecutive 32-
bit words are accessed by consecutive thread IDs to facilitate coalesced
memory accesses. However, such load increases L1 Cache traffic and
potentially affects the cache hit/miss ratio.

6.3.2. SYCL vs. manually-tuned CUDA
To discern the difference in performance between the CUDA and

SYCL versions, we analyzed the application using the Nsight Compute
profiler. Our analysis focused on the optimize fragment kernel from

iGen USM, using the dataset d_31_4, the one that shows the closest
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Fig. 1. LiGen latency throughput on NVIDIA and AMD hardware.
performance between the two versions. We found out that the SYCL
version achieves −21% L1 cache hit and +81% L2 cache hit. This
reduces memory throughput by 33% compared to the CUDA version.
In addition, +69% branch instructions are issued in the SYCL version.
We guess that the CUDA speedup is due to the use of texture memory, a
special read-only memory that resides in device memory and is cached
in texture cache, located on the same L1 cache and shared memory die,
and optimized for spatial locality. In the optimize fragment kernel, which
takes up to 90% of the overall time, LiGen CUDA stores the 3D pocket
docking space in the texture memory. LiGen SYCL does not use texture
memory as, at the time of writing, support is incomplete or absent in
current SYCL implementations. We moved the pocket docking space to
global memory and passed it to the kernel using a read-only accessor in
LiGen Accessor and a const pointer in LiGen USM. However, accessing
the pocket requires an expensive index calculation which contributes to
the increased number of branching instructions. Moreover, we lose the
data locality optimization from the texture cache, potentially increasing
cache misses. This could also explain why performance drops when
increasing the ligand’s atoms number, as more access to the pocket
space must be performed.

6.4. Ligen Batch vs. manually-tuned CUDA

In Figs. 3 and 4 we show the portability results achieved with LiGen
Batch. The Batch version outperforms the latency implementation on all
datasets, with both CUDA and SYCL backends respectively. Contrary to
LiGen Latency, varying the number of atoms has a greater impact than
increasing the number of fragments: this mostly happens because each
fragment is computed in a for-loop within the dock kernel instead of
issuing several kernel invocations. As LiGen Batch processes a higher
number of ligands per kernel, the memory access differences between
accessors and USM become minimal. Consequently, the two backends
exhibit similar performance with both SYCL compilers.

NVIDA Tesla V100S. The CUDA native implementation again performs
the best among all implementations, with a median throughput of 3043
ligands/s, achieving a 3.13x speedup compared to the corresponding
LiGen Latency implementation.

Among the SYCL compilers, DPC++ delivers the highest perfor-
mance. It achieves a median throughput of 1579.2 ligands/s with the
accessors backend and 1619.4 ligands/s with the USM backend, reach-
ing a maximum of 53% of the native CUDA performance. On the other
51

hand, AdaptiveCpp achieves 1317.1 ligands/s and 1423.8 ligands/s
Fig. 2. LiGen Latency average throughput across all datasets, on NVIDIA V100S and
AMD MI100.

median throughput on the accessors and USM backend respectively,
achieving 46% of the CUDA implementation.

AMD MI100. AdaptiveCpp again shows the best performance com-
pared to DPC++, achieving a median throughput of 1815 ligands/s
and 1832 ligands/s with the accessors and USM backend respectively.
On the other hand, DPC++ gets 1579.2 ligands/s with the accessors
backend and 1619.4 ligands/s with the USM backend. Contrary to
LiGen Latency, this version achieves better performance compared to
the corresponding one on NVIDIA hardware for each backend and
compiler, mostly due to the increased number of compute units that
allow more ligands to be computed concurrently.

6.4.1. Register optimization
The portability results obtained from the LiGen Batch and LiGen

Latency applications exhibit varying degrees of performance portability
when transitioning from CUDA to SYCL. Notably, LiGen Batch demon-
strates poor portability, achieving only 53% and 46% of the native
CUDA implementation performance.

Fig. 5 shows the runtime for the dock kernel, which takes up to
95% of the entire execution time of LiGen Batch. Dataset d_31_20
exhibits the worst performance portability, achieving only 46% of the

native implementation’s performance with DPC++. Despite the SYCL
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Fig. 4. LiGen Batch average throughput across all datasets.

Fig. 5. Execution time of a single dock kernel run on a ligand with 31 atoms and 20
ragments, using SYCL accessors backend on the NVIDIA V100S.

mplementations being up to 28% slower than the native one, these
isparities in runtime do not fully account for the substantial gap in
erformance portability. As discussed in Section 5, register pressure
mposes a hard limit on the achievable occupancy of modern GPUs.

hen considering the same dataset, the dock kernel in CUDA allocates
01 registers per thread. In contrast, the SYCL Accessors allocates 175
egisters while SYCL USM uses 161 registers using DPC++. The Tesla
100S GPU comprises 80 Shared Multiprocessors, each equipped with
52

t

65 536 32-bit registers. For the purpose of this analysis, we will not
consider shared memory capacity, as it does not affect the results.

For LiGen Batch, the default work group size is set to 128 threads,
with each sub-group computing 1 ligand (4 per work group). Based on
these parameters, the GPU can concurrently compute up to ⌊

65536
128×101 ⌋×

× 80 = 4 × 4 × 80 = 1280 ligands. However, the SYCL USM im-
lementation with DPC++, being the least register demanding among
ll SYCL compilers, can only compute ⌊

65536
128×161 ⌋ × 4 × 80 = 3 × 4 ×

80 = 960 ligands concurrently, resulting in 25% fewer ligands per
batch. This discrepancy in occupancy severely impacts SYCL perfor-
mance, as the GPU remains underutilized in comparison to the native
CUDA implementation. Fortunately, NVIDIA GPUs allow developers
to manually set an upper bound on the number of registers a kernel
can allocate through the PTX assembler ptxas. This flexibility enables
developers to make trade-offs between kernel performance and overall
occupancy, potentially mitigating the performance degradation due to
higher register allocation. Unfortunately, AMD GPUs do not allow to
manually tuning register allocation, and thus we do not include this
hardware in the analysis.

We run a hyperparameter optimization to find the best combination
of register size and work group size for the LiGen Batch SYCL backend.
We use the SYCL accessors backend together with the DPC++ compiler.
We performed a Grid Search over 120 register sizes and 5 work group
sizes, for a total number of 700 parameters. Since dock kernel is
pecialized over the ligand atoms number, we performed this analysis
ver all the kernel specializations, thus using the datasets with 31, 63,
nd 74 atoms together with all the fragment sizes. We exclude the
atasets containing ligands with 89 atoms as that kernel specialization
s covered by the dataset with 74 atoms.

In Fig. 6(a) we show the results of our optimization campaign. For
mall register size, the kernel is significantly slower compared to the
efault configuration (e.g. 27% on d_31_4 with 55 registers), but more
igands can be computed concurrently (e.g. 2560 ligands instead of
60 on d_31_4 with 55 registers). Increasing the register size speeds
p kernel time but reduces achieved occupancy. For all the datasets,
he best register size is 125 registers per thread. This size ensures the
est trade-off between kernel time and occupancy, with 1280 ligands
omputed concurrently. When computing ligands with few numbers
f atoms, smaller work group sizes tend to perform slightly better
han bigger sizes, exhibiting a maximum 5% speedup between 32 and
12 threads on dataset d_31_4. This advantage arises from the fact

hat each sub-group computes a single ligand, making all sub-group
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Fig. 6. LiGen Batch throughput on NVIDIA V100S using optimal register and work group sizes.
computations independent of each other. Utilizing small work group
sizes enables the GPU scheduler to allocate ligands on the GPU at
the smallest granularity, effectively avoiding any potential workload
imbalances that may occur when multiple ligands are computed within
the same work group. However, as the number of atoms or fragments
increases, the performance differences among various work group sizes
become less pronounced. Consequently, for ligands with greater com-
plexity, the choice of work group size becomes less critical, and the
performance tends to converge. In light of these findings, we conducted
additional experiments using LiGen Batch on the Tesla V100S, selecting
a configuration with a maximum register size of 125 and 32 threads
per work group. This particular setup consistently demonstrated better
performance across all datasets. Figs. 6(b), 6(c) displays the achieved
results. Both DPC++ and AdaptiveCpp outperform the default LiGen
Batch configuration, with a 1.66x and 1.71x speedup respectively. The
USM backend with DPC++ achieves the best results, with a median
throughput of 2581 ligands/s, reaching 83% of the native CUDA per-
formance. On the other hand, AdaptiveCpp USM reaches a throughput
of 2270 ligans/s, 74% of the native CUDA performance.

7. Performance portability evaluation

In this section, we will discuss LiGen performance portability across
the selected hardware. We split our analysis into two phases: in the for-
mer, we evaluate the SYCL application efficiency on NVIDIA hardware.
We first evaluate the SYCL application efficiency on NVIDIA hard-
ware, and later evaluate the performance portability across different
hardware.

7.1. SYCL vs. CUDA

To measure how close the SYCL implementation performances are
to the native CUDA version, we use the application efficiency : this is
defined as the ratio between the runtime of the current implementa-
tion and the runtime of the best native implementation on the same
hardware. We show this analysis on a Tesla V100S, and we repeat that
for each dataset and combination of SYCL compilers and backends.
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LiGen Latency. Fig. 7(a) shows the achieved results. Generally, the
application efficiency decreases by increasing the number of fragments:
this happens because each fragment issues a new optimize fragment ker-
nel invocation, each of them slightly slower than the CUDA native one.
DPC++ USM performs on average better than the accessor’s backend,
with a median efficiency of 67.4% and 62% respectively. DPC++ USM
outperforms the accessors backend on datasets with a low number of
atoms, with a 56% improvement on d_31_20, while it performs slightly
worse than the accessors backend on higher atoms number. Adap-
tiveCpp achieves a median efficiency of 44% and 47.8% on accessors
and USM backend respectively, which is 18% and 19.6% less efficient
than the corresponding backend using DPC++. This performance gap
is mostly due to the AdaptiveCpp inlining issue that we addressed in
the previous sections.

LiGen Batch. Fig. 7(b) shows the achieved results. As for LiGen La-
tency, the application efficiency decreases when increasing the number
of fragments of the ligands. However, in LiGen Batch this does translate
into additional kernel invocations, thus not introducing additional over-
head. SYCL accessors and USM backend with DPC++ perform similarly,
both achieving 83% median efficiency. AdaptiveCpp performs generally
worse than DPC++ on both accessors and USM, achieving 67.5% and
74.2% of median efficiency respectively. As AdaptiveCpp compiles
SYCL code using Clang CUDA without doing any major modification on
source code, we also compared AdaptiveCpp performance against LiGen
Batch built using Clang 17 CUDA backend. Because Clang CUDA allo-
cates way more registers compared to NVCC, we applied the optimal
register size found during the optimization phase. We found out that
Clang CUDA achieves a median efficiency of 80% compared to NVCC,
with AdaptiveCpp getting 92.5% and 84% median efficiency on USM
and accessor respectively compared to Clang CUDA. On the other hand,
DPC++ surprisingly outperforms Clang CUDA, probably due to a better
PTX generation compared to vanilla Clang.
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Fig. 7. LiGen application efficiency on NVIDIA Tesla V100S.
7.2. Kernel performance portability

While defining if an application is ‘‘performance portable’’ is highly
subjective, and developers have diverging opinions on the topic, hav-
ing formal metrics can help to quantify how an application performs
across several hardware. In this section, we try to quantify how well
the SYCL implementations perform on several hardware. We employ
the Performance Portability Metric ( PP) [36] to define the degree of
performance portability shown in Eq. (3). This metric is defined as
the harmonic mean of the performance efficiency over the available
platforms. However, calculating the precise performance efficiency
can be challenging, as it requires either a deep understanding of the
application performance bottleneck or an optimized native implemen-
tation for each platform. In LiGen, we have a native implementation
targeting NVIDIA GPUs but we lack a direct comparison on the AMD
platform. Furthermore, performing an in-depth bottleneck analysis for
each combination of SYCL backend and compilers on both NVIDIA
and AMD GPUs for both LiGen Latency and Batch would be extremely
time-consuming.

In a context where we do not have access to a native implemen-
tation for each hardware, to approximate architectural efficiency we
employ the roofline efficiency [32,45] analysis: it is defined as the ratio
between the measured application performance (𝐹𝐿𝑘) and the target
device peak performance (𝑃𝑘). To collect the application performance
data, we used specialized native profiling tools. For NVIDIA GPUs we
employed NVIDIA Nsight [46], and for AMD MI100 the ROCm pro-
filer [47]. While NVIDIA Nsight provides all the necessary information
out-of-the-box, this was not the case for AMD as the MI100 does not
provide a hardware flop counters. However, because LiGen Latency and
LiGen Batch SYCL implementation does not have any device-dependent
branch, the source code for both AMD and NVIDIA platforms is the
same, thus we expect the number of floating point operations to be
similar for both hardware. To estimate the kernel flop rate we employ
different techniques for the two applications. We repeat our analysis
on dataset d_31_4, which is referred to as Light, and on dataset d_89_20,
referred to as Heavy.

Because the roofline efficiency can in some cases underestimate
the application performance portability [32], we defined an ad hoc
efficiency metric called native efficiency 𝑒′′𝑖 : it is calculated as the ratio
between the target application roofline efficiency over the best native
implementation roofline efficiency. This efficiency metric corresponds
to calculating the PP metric by moving the roofline top from the device
peak efficiency to the native application peak efficiency, expressing
portability in relation to the original native implementation. The ratio
behind this efficiency metric is straightforward: because the SYCL
implementations were defined starting from a native highly-optimized
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Fig. 8. LiGen roofline models.

CUDA implementation, and the V100S and MI100 GPUs have similar
hardware features, we expect the SYCL implementation to achieve a
lower architectural efficiency compared to the native implementation.
The novel efficiency metric uses a concept similar to application ef-
ficiency: we use the distance from the roofline top as an estimation
of the application performance and then calculate the ratio between
the native application efficiency and the ported one. Therefore, little
variation is expected in the PP values between the two metrics. The
resulting formula is shown in Eq. (4):

PP′′(𝑎, 𝑝,𝐻) =
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𝑒′𝑏(𝑎𝑏, 𝑝)

𝑒′𝑖(𝑎, 𝑝)

, ∀𝑖 ∈ 𝐻

0, otherwise

(4)

where 𝑏 is the hardware on which we have the best native implemen-
tation, 𝑎𝑏 is the native application on hardware 𝑏, and 𝑒′𝑏(𝑎𝑏, 𝑝) is the
roofline efficiency of the best native implementation.

7.2.1. LiGen Latency
We focus our analysis on the optimize_kernel_1, which takes ∼90%

of the entire application time. Table 4 and Fig. 8 show the roofline
performance data.
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Table 4
LiGen Latency roofline-based performance data for optimize_kernel_1.

Dataset Hardware LiGen backend 𝐴𝐼 𝐹𝑅 (GFlop/s) Bound 𝑃 (TFlop/s) 𝑒′

Li
gh

t

NVIDIA V100S

CUDA 22.83 443 Compute 6.3 8%
DPC++ Accessors 48.96 325 Compute 6.3 5%
AdaptiveCpp Accessors 0.4 178 Memory 0.440 39%
DPC++ USM 29.6 362 Compute 6.3 5.7%
AdaptiveCpp USM 0.45 170 Memory 0.504 33%

AMD MI100 (Estimated)

DPC++ Accessors 14.15 126 Compute 10.5 1.2%
AdaptiveCpp Accessors 45.22 249 Compute 10.5 2.3%
DPC++ USM 22.57 158 Compute 10.5 1.5%
AdaptiveCpp USM 23.36 257 Compute 10.5 2.4%

H
ea

vy

NVIDIA V100S

CUDA 117 897 Compute 6.3 14.2%
DPC++ Accessors 197 520 Compute 6.3 8.2%
AdaptiveCpp Accessors 2.28 492 Memory 2.58 19%
DPC++ USM 169 668 Compute 6.3 10.6%
AdaptiveCpp USM 4.63 552 Memory 5.24 10.5%

AMD MI100 (Estimated)

DPC++ Accessors 19.53 254 Compute 10.5 2.4%
AdaptiveCpp Accessors 146 805 Compute 10.5 7.6%
DPC++ USM 32.45 357 Compute 10.5 3.4%
AdaptiveCpp USM 70.5 705 Compute 10.5 6.7%
Table 5
LiGen Batch roofline-based performance data for dock kernel.

Dataset Hardware LiGen backend 𝐴𝐼𝑘 𝐹𝑅 (GFlop/s) Bound 𝑃 (TFlop/s) 𝑒′

Li
gh

t

NVIDIA V100S

CUDA 11.1 1100 Register 6.3 17.3%
DPC++ Accessors 10.44 961 Register 6.3 15.2%
AdaptiveCpp Accessors 9.69 814 Register 6.3 12.9%
DPC++ USM 10.43 960 Register 6.3 15.2%
AdaptiveCpp USM 9.88 840 Register 6.3 13.3%

AMD MI100 (Estimated)

DPC++ Accessors 14 632 Register 10.5 6%
AdaptiveCpp Accessors 17.2 700 Register 10.5 6.6%
DPC++ USM 13.2 626 Register 10.5 6%
AdaptiveCpp USM 16 705 Register 10.5 6.7%

H
ea

vy

NVIDIA V100S

CUDA 33.04 1273 Register 6.3 20%
DPC++ Accessors 29 1098 Register 6.3 17.4%
AdaptiveCpp Accessors 25.4 890 Register 6.3 14.1%
DPC++ USM 29.7 1100 Register 6.3 17.4%
AdaptiveCpp USM 26.7 936 Register 6.3 14.8%

AMD MI100 (Estimated)

DPC++ Accessors 19.6 727 Register 10.5 7%
AdaptiveCpp Accessors 21.7 826 Register 10.5 7.8%
DPC++ USM 22.2 733 Register 10.5 6.9%
AdaptiveCpp USM 28.9 1014 Register 10.5 10%
Table 6
Roofline efficiency and performance portability metrics for LiGen Latency’s
optimize__kernel_1 and LiGen Batch’s dock kernel.

Application Dataset NVIDIA V100S AMD MI100 PP′ PP′′

LiGen Latency Light 5.7% 2.4% 3.3% 41%
Heavy 10.6% 7.6% 8.8% 61.9%

LiGen Batch Light 15.2% 6.7% 9.3% 53.7%
Heavy 17.4% 10% 12.7% 63.5%

NVIDIA V100S. The CUDA and SYCL implementations are mostly
compute-bound, except for SYCL backends with the AdaptiveCpp com-
piler. Because of the kernel inlining issue with Clang PTX backend
depicted in the previous sections, AdaptiveCpp accessor performs 285%
more L1 cache load/store and achieves 52% less L1 cache hit rate,
resulting in a 6655% higher memory throughput compared to DPC++
accessors when computing the Light dataset, thus drastically reducing
the kernel Arithmetic Intensity and the device peak performance. Sim-
ilar behavior can be observed with other SYCL backends and datasets.
Both CUDA and SYCL implementations achieve relatively low levels of
roofline efficiency on both datasets and hardware: this happens because
a single ligand does not express a sufficiently high level of parallelism to
efficiently fill the GPU resources. The only exception is AdaptiveCpp on
NVIDIA hardware, which has lower peak performance and thus exhibits
higher roofline efficiency as the roofline peak is lower than the peak
device floating point ratio. For this reason, we ignore AdaptiveCpp in
this analysis. DPC++ USM shows the best roofline efficiency between
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the SYCL implementations, with 5.7% and 10.6% on Light and Heavy
datasets respectively, achieving 71% and 74% of the native CUDA
implementation efficiency.

AMD MI100. To estimate the flop rate we follow the methodology
depicted in [32] by multiplying the flop rate of the SYCL implemen-
tation on the V100S with the ratio of the V100S over the MI100 SYCL
application runtime. The complete equation is shown in Eq. (5):

𝐹𝑅𝑘_𝑚𝑖100 = 𝐹𝑅𝑘_𝑣100𝑠 ∗
𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑣100𝑠
𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑚𝑖100

(5)

where 𝐹𝑅𝑘_𝑣100𝑠 is the flop rate of the corresponding SYCL implemen-
tation 𝑘 on NVIDIA Tesla V100S. Both SYCL backends expose very low
efficiency for the same reason we analyzed before for the V100S, as
a single ligand is way too small to fill the GPU resources. We believe
that the relatively lower performance on AMD GPUs is due to the highly
experimental backend support of both DPC++ and AdaptiveCpp, which
will improve as these compilation toolchains mature.

7.2.2. LiGen Batch
We focus our analysis on the dock kernel, which takes ∼95% of

the overall application time. We show the roofline performance data
in Table 5 and Fig. 8.

NVIDIA V100S. Both CUDA and SYCL implementations are register-
bound, severely limiting the number of ligands that can be concur-
rently computed on the GPU. The CUDA native implementation reaches
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17.3% and 20% roofline efficiency on the Light and Heavy datasets re-
spectively. The relatively low roofline efficiency is justified by the fact
that LiGen, in addition to floating-point operations makes heavy usage
of integer operations which are not captured by the roofline model,
thus increasing the gap between the application and the roofline peak.
SYCL with DPC++ is the closest to CUDA native, with both backends
achieving similar efficiency, resulting in 15.2% and 17.4% roofline effi-
ciency on the Light and Heavy dataset. On the other hand, AdaptiveCpp
∼13.2% and ∼14.5% efficiency on the two datasets, with the USM
backend performing slightly better than the accessors one. Overall,
DPC++ achieves the best roofline efficiency among the SYCL compilers,
with 87% of native CUDA implementation efficiency on both datasets.

AMD MI100. The flop-rate estimation is less straightforward than in
LiGen Latency. LiGen Batch automatically selects the best ligands batch
size to fill the GPU resources: for the NVIDIA Tesla V100S is 1280 lig-
ands, while on AMD MI100 is 1920 ligands. As each ligand is computed
by a sub-group, the SYCL implementations spawn 1280 ∗ 32 = 4096
threads on the V100S and 1920 ∗ 64 = 122880 threads on the MI100,
4x more. We now try to quantify the amount of work computed by
each sub-group. Each thread is assigned one or more atoms from the
current ligand, depending if the atom size is bigger than the sub-group
size (e.g. if the ligand has 50 atoms and the device’s sub-group size
is 32, thread 0 will have the atom 0 and 32, thread 1 will compute
atom 1 and 33, etc.), and computes them sequentially. If the sub-group
size is less than the number of atoms, 𝑠𝑢𝑏 − 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒 − 𝑛𝑢𝑚_𝑎𝑡𝑜𝑚𝑠
threads perform no useful work. Thus, the amount of work performed
within a sub-group is proportional to the number of atoms in the ligand
rather than the number of threads. As both testing datasets are uniform,
i.e. all ligands have the same properties, we can assume that the SYCL
implementations on AMD perform 1920

1280 = 1.5x more floating point
perations per batch than the corresponding NVIDIA versions. Eq. (6)
hows the complete formula:

𝑅𝑘_𝑚𝑖100 =
𝐹𝐿𝑘_𝑣100𝑠 ∗

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒𝑚𝑖100
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒𝑣100𝑠

𝑘𝑒𝑟𝑛𝑒𝑙_𝑡𝑖𝑚𝑒𝑚𝑖100
(6)

here 𝐹𝐿𝑘_𝑣100𝑠 is the number of floating point operations on the
orresponding SYCL implementation 𝑘 on NVIDIA Tesla V100S. As for
he Tesla V100S, both SYCL backends are register-bound. AdaptiveCpp
erforms the best, achieving a maximum of 6% and 10% roofline
fficiency on the Light and Heavy datasets respectively. The very low
fficiency achieved on the first dataset derives from the low ligand
umber of atoms, which results in ∼50% unused threads per sub-group

while increasing the number of atoms boosts roofline efficiency up to
49% on the Heavy dataset. On the other hand. DPC++ performs poorly,
achieving 6% and ∼7.4% application efficiency on the two datasets. It
is worth nothing that we were not able to tweak register usage as we
did for NVIDIA hardware, thus such results are greatly influenced by
Clang register allocation policies.

In Table 6 we show the performance portability values for both
LiGen Latency and Batch. We show the results using both the roofline
efficiency ( PP′) and native efficiency ( PP′′). We take the roofline effi-
ciency of the best combination of SYCL backend and compilers for each
platform and use it as an approximation of the platform’s architectural
efficiency. We do not take into account the native CUDA implementa-
tion as the analysis focuses on the SYCL kernel portability. Both LiGen
versions show a relatively low level of PP′: this is justified by the low
oofline efficiency reached by the original CUDA implementation on
hich the SYCL implementations are based , which achieves 8% and
4.2% roofline efficiency on the Light and Heavy dataset respectively
n LiGen Latency, while on LiGen Batch it stops at 17.3% and 20%
ith the same datasets.. On the other hand, they achieve good PP′′,

reaching 61.9% and 63.5% on the Heavy dataset. This means that both
iGen implementations get an efficiency close to the original native
mplementation.
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8. Lesson learned

The SYCL programming language has faced a steady evolution pro-
cess in the last few years. The last standard major release, SYCL 2020,
added several new features to enable fast and efficient portability across
a broad range of hardware. However, they lack validation of their
applicability in a real-world scenario. Moreover, different compilers
could expose very different performance and issues with the same
feature. In this section, we will provide an overview of the principal
lessons learned during the migration phase and how they impacted the
porting development.

Memory access models influence performance. The Buffer-Accessors
memory model allows to building of applications with fine-grained
control over memory transfers without worrying about synchronization
issues between kernels. Moreover, the RAII semantic frees the program-
mer from handling memory lifetime manually. However, it severely
impacts over kernel’s register pressure which can cause performance
penalties on certain kinds of applications, while USM does not intro-
duce any significant overhead. From our analysis, the buffer-accessors
memory access model can impact the performance of register-bound
applications due to its heavy register requirements, and manual register
tweaking could be necessary to achieve good performance. Moreover,
while DPC++ seems to generate code on par with USM when using
buffer-accessors, AdaptiveCpp is still not able to optimize away all the
abstractions from the memory access model, with generally worse per-
formance compared to USM. However, compilers are actively evolving
and such differences are going to shrink in the next future. The user
should be careful in choosing the right memory model, considering also
the target hardware.

Group algorithms reduce code complexity. SYCL 2020 introduces several
work group and sub-group algorithms to write performance portable
kernels without worrying about device-specific implementation details.
LiGen heavily relies on custom reductions and warp-level primitives,
written ad hoc for NVIDIA GPUs. We managed to easily map those
functions to the most appropriate SYCL algorithms, with similar per-
formance to the manually-tuned CUDA implementation and portable
across different hardware. Moreover, the resulting code exposes a
significantly lower code complexity, saving up to 22% lines of code
on kernels with intra-group and across-group reductions.

SYCL application should be compiler-portable to achieve performance porta-
bility. As building reliable and efficient compiler toolchains takes time,
SYCL compilers are still young and can expose significant performance
discrepancies depending on the chosen SYCL feature or target device.
DPC++ has shown remarkable performance on NVIDIA hardware, with
a better code generation phase compared to AdaptiveCpp. On the other
hand, the latter outperformed DPC++ on several benchmarks when
targeting AMD hardware. Overall, to achieve the best performance
portability is not only necessary to have code written in a device-
independent language, but also choosing the most appropriate compiler
for the target hardware is required. For those reasons, the SYCL appli-
cation should avoid compiler-dependent branches as much as possible
to make the code compiler-portable.

9. Related work

Modern computing systems are becoming increasingly heteroge-
neous. In this context, it is necessary to evaluate both the performance
achieved by the application on each hardware and the number of
devices on which the application can run (portability). However, the
meaning of performance portability is still controversial and there is
a lack of consensus on how to quantify performance portability [34].
Pennycook et al. define a new metric called PP metric, that evaluates
the performance portability of an application on a fixed problem size
using the harmonic mean [36–38,48,49]. As PP requirements are not
readily addressable, several studies extended it by using the roofline
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efficiency as an approximation for the architectural efficiency [45,
45,50]: this allows to estimate the application performance portabil-
ity without an in-depth analysis of the application bottleneck or an
optimized native version for each hardware. However, if the target
application is neither compute nor memory bound, the roofline effi-
ciency can underestimate the PP metric [32]. Differently, Marowka [51]
roposes a metric based on the arithmetic mean rather than the har-
onic mean. Daniel and Panetta [52] introduce a new metric that

lso considers how the performance portability of an application varies
ith the problem size. Over the past few years, various programming
odels have been defined to address the challenge of developing per-

ormance portable applications, such as Kokkos [53,54], OpenCL [55,
6], RAJA [57,58], PACXX [59], and SYCL [60,61]. Even with support
or heterogeneous programming models, there are many challenges
o developing high-performance portable applications [62,63]. The in-
reasing adoption of heterogeneous programming models to implement
erformance portable applications has led to the challenge of selecting
he programming model that best fits the specific purpose. To facilitate
his choice, several studies explore the performance portability of the
ost popular programming models across different architectures [64–
6]. To speed up migrations from vendor-agnostic programming lan-
uages, several tools have been proposed for automatic translation from
endor-specific code to portable programming models [67–69] with
romising results [70]. However, keeping the same performance while
igrating the vendor-specific code to a heterogeneous programming
odel can be very challenging as vendor-specific features cannot be

lways directly mapped onto heterogeneous programming models, re-
uiring additional manual tuning phases [71]. Solis-Vasquez et al. [72]
everage the DPC++ compatibility tool to migrate the AutoDock molec-
lar docking application from CUDA to SYCL, showing that SYCL can
each native comparable performance with ad hoc tuning. However, it
acks an in-depth analysis of several SYCL 2020 new features, together
ith custom performance portability metrics. Moreover, their analysis

s limited to the DPC++ compiler only.

0. Conclusions

In this work, we presented a performance-portable implementation
f LiGen, a drug-discovery platform written in SYCL 2020. We ported
he original CUDA implementations of two LiGen versions, specifically
iGen Latency and LiGen Batch, exploiting the most recent SYCL 2020
eatures, such as group algorithms and sub-groups, to efficiently map
he computation to a broad range of GPU architectures. We measured
ow SYCL’s memory access models, i.e. Unified Shared Memory and
uffer-Accessors, impact performance by evaluating both models on our
iGen implementations. Furthermore, we show how advanced porta-
ility issues such as work group size tuning and register pressure can
everely limit SYCL performance. The results presented show that SYCL,
ith low porting effort and without any device-dependent optimiza-

ion, can successfully run on both NVIDIA and AMD GPUs. On NVIDIA
ardware our SYCL implementations, with minimal tuning can achieve
omparable performance, with DPC++ outperforming AdaptiveCPP in
lmost every experiment. We evaluated the performance portability
f both LiGen latency and batch using the PP metric and an ad hoc

efficiency metric called native efficiency . Both LiGen implementations
show good portability, achieving good performance portability using
the native efficiency metric, and showing performance close to the best
native CUDA implementation. Finally, our results show that the LiGen
Batch version achieves the best results on all performance and perfor-
mance portability metrics compared to the LiGen Latency version.
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