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Abstract

In this paper we address the return to equilibrium problem for an ax-
isymmetric floating structure in shallow water. First we show that the
equation for the solid motion can be reduced to a delay differential equa-
tion involving an extension-trace operator whose role is to describe the in-
fluence of the fluid equations on the solid motion. It turns out that the
compatibility conditions on the initial data for the return to equilibrium
configuration are not satisfied, so we cannot use the result from [3] for the
nonlinear problem. Hence, assuming small amplitude waves, we linearize
the equations in the exterior domain and we keep the nonlinear equations
in the interior domain. For such configurations, the extension-trace op-
erator can be computed explicitly and the delay term in the differential
equation can be put in convolution form. The solid motion is therefore
governed by a nonlinear second order integro-differential equation, whose
linearization is the well-known Cummins equation. We show global in
time existence and uniqueness of the solution using the conservation of the
total fluid-structure energy.

1 Introduction

The return to equilibrium problem is a particular configuration of the floating
structure problem. It consists in releasing a partially submerged solid body in
a fluid initially at rest and letting it evolve towards its equilibrium position.
The interest of this problem is that it can easily be done experimentally and it
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is used in engineering to determine several important characteristics of float-
ing objects. More precisely, engineers assume that the solid satisfies a linear
integro-differential equation, the Cummins equation (see [4]). The experimental
data coming from the return to equilibrium problem (also called decay test) are
then used to identify the coefficients of this linear equation. John in [8] studied
the problem in shallow water in one horizontal dimension for an object with
flat bottom: he considered the linearized fluid equations for small amplitude
waves and he wrote an explicit expression for the solid motion under linear
approximation. Ursell in [18] and Maskell and Ursell [12], using like John the
linear approach, obtained an explicit solution in integral form for the vertical
displacement of the object. Still under the linear approximation Cummins in
[4] treated a general ship motion and reduced the free motion of the floating
body to an integro-differential equation. From Wehausen and Laitone [21] we
know that also Sretenskii, several years before Cummins, obtained an integro-
differential equation for the vertical displacement which he solved numerically.
The Cummins equation for the vertical displacement reads

(m + a∞) δ̈G(t) = −cδG(t)−
∫ t

0
K(s)δ̇G(t− s)ds, (1)

where δG(t) = zG(t)− zG,eq is the displacement from the equilibrium position
of the vertical position of the centre of mass, m is the mass of the structure, a∞
is the added mass at infinity frequency, c is the hydrostatic coefficient and K
is the impulse response function (also known as retardation function and fluid
memory). It appears in naval architecture and hydrodynamical engineering lit-
erature and it is used to study the motion of ships or wave energy converters.
Recently Lannes in his paper [9] on the dynamics of floating structures mod-
elled the return to equilibrium problem using a different formulation for the
hydrodynamical model with the aim to take into account nonlinear effects. He
wrote the explicit equations in the one-dimensional (horizontal) case and, con-
sidering the nonlinear shallow water model, he showed that the position of the
solid is fully determined by the nonlinear second order damped ODE

(m + ma(δG))δ̈G(t) = −cδG(t)− ν(δ̇G) + β(δG)δ̇
2
G(t), (2)

where ma(δG) is the nonlinear added mass and ν(δ̇G) is the nonlinear damp-
ing term. Numerical simulations for the one dimensional model proposed by
Lannes are made in [19].
In our recent paper [3] we dealt with the two-dimensional (horizontal) case, we
showed the local well-posedness for the axisymmetric floating structure prob-
lem in the shallow water regime for initial data regular enough, provided some
compatibility conditions are satisfied. We considered a solid, with vertical side-
walls and a cylindrical symmetry, forced to move only vertically. For such a
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configuration, the horizontal coordinates of the contact line between the air, the
fluid and the solid, are time independent. For an object with no vertical walls,
finding the horizontal coordinates of the contact line is a free boundary prob-
lem, recently solved in the one horizontal dimension case by Iguchi and Lannes
in [7] where the contact line is replaced by two contact points. The floating
structure problem for a viscous fluid in a one dimensional bounded domain is
considered in [11].
The aim of this paper is to extend the work of Lannes on the return to equilib-
rium problem to the two-dimensional case taking into account nonlinear effects
and using the same framework as in [3], which means that we consider here
the axisymmetric setting, the shallow water approximation for the fluid and a
solid with the properties we have stated before. An important change with re-
spect to the one-dimensional case is the presence of delay terms in the equation
governing the solid motion. The nonlinear coupled system can be treated in an
abstract way but, as we show here, it requires compatibility conditions that are
not satisfied in the return to equilibrium problem. For this reason, we linearize
the equations in the exterior domain but we keep the nonlinear effects in the in-
terior domain. This approach permits us to improve the classical linear model
and we get a nonlinear second order delay differential equation on the vertical
displacement of the structure. If we linearize around the equilibrium state we
get the standard linear Cummins equation, hence we can see the result of this
paper as a rigorous justification and an extension of Cummins’ work.

1.1 Outline of the paper

In Section 2 we first recall the notations for the floating structures that we have
used in [3] and we write the equations for the coupled problem. Then we show
that the differential equation for the solid motion can be written in a closed form
by introducing an extension-trace operator, which takes the boundary value of
the horizontal discharge, defined as the fluid horizontal velocity vertically inte-
grated, in the exterior domain and gives the boundary value of the fluid height
in the exterior domain. In Theorem 2.2 we solve the equation by a fixed point
argument. Finally we consider the return to equilibrium configuration, giving
the initial conditions on the fluid and solid unknowns. It turns out that the
compatibility conditions, which are necessary in order to apply the existence
and uniqueness theorem from [3], are not satisfied for these particular initial
conditions.
In Section 3 we neglect the nonlinear effects in the exterior region, but we keep
them under the object provided it does not touch the bottom of the fluid do-
main. We write a linear-nonlinear model for the floating structure problem:
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we linearize the equations in the exterior domain and we keep the nonlinear-
ities in the interior domain. Hence the equations for the fluid in the exterior
domain become the linear shallow water equations and the free surface ele-
vation in the exterior domain satisfies a wave equation. Then, by applying a
Fourier-Laplace transform argument, we can write the trace of the exterior free
surface elevation at the boundary as a convolution product between the inverse
Laplace transform of a Hankel function and the time derivative of the displace-
ment δG. Hence we have that the solid motion is described by the nonlinear
integro-differential equation

(m + ma(δG))δ̈G =− cδG − νδ̇G + c

∫ t

0
F(s)δ̇G(t− s)ds +

(
b(δ̇G) + β(δG)

)
δ̇2

G .

(3)
Differently from (2), the damping term is a linear function of δ̇G since the equa-
tions in the exterior domain are linear and it is given by a delay term due to
dispersion which does not occur in one dimension. Its linearization around the
equilibrium gives a reformulation of the Cummins equation for the vertical dis-
placement (1). We show in Theorem 3.11 the global existence and uniqueness of
its solution, provided an admissibility condition for the initial datum, using the
conservation of the total fluid-structure energy. In Section 4 we explain the nu-
merical method we use to plot the time evolution of the vertical displacement of
the structure for the return to equilibrium problem. We compare the numerical
solution to the nonlinear integro-differential equation with the solution to the
linear Cummins equation and we note that for large initial data the nonlinear
effects should not be neglected. In Appendix A we define the Hankel functions
and we show some properties and results.
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2 Nonlinear floating structure equations

Let us recall the following notations: ζ(t, r) is the elevation of the free surface,
h(t, r) = ζ(t, r) + h0 is the fluid height, q(t, r) is the horizontal discharge, i.e. the
radial component of the fluid velocity vertically integrated, P is the trace of the
pressure at the surface and ζw(t, r) is the parametrization of the bottom of the
solid. The centre of mass of the solid is G(t) = (0, 0, zG(t)) and its velocity is
UG(t) = (0, 0, wG(t)). We define δG(t) = zG(t)− zG,eq the displacement from
the equilibrium of the vertical position of the centre of mass. We denote by ρm
the density of the floating body and H its height. The fluid domain is

Ω(t) = {(r, z) ∈ R+ ×R | − h0 < z < ζ(t, r)}.

Moreover, as shown in Figure 1, the presence of the solid permits us to divide
the radial line in two regions, the interior domain (0, R) and the exterior domain
(R,+∞), whose boundary is the projection r = R of the contact line between
the fluid, the air and the body. Throughout all the paper we will note, for a
function f (r),

fi := f|r∈(0,R)
and fe := f|r∈(R,+∞)

.

We have the contact constraint in the interior domain

ζi(t, r) = ζw(t, r). (4)

As in the standard water waves theory we assume that the initial height of the
fluid in the exterior domain does not vanish, i.e. there exists hm > 0 such that

he(0, r) ≥ hm for r ∈ (R,+∞). (5)

For the sake of the problem, we suppose also that the solid does not touch
the bottom of the domain during its motion. Hence we assume that the ini-
tial height of the fluid under the solid does not vanish, i.e. there exists hmin > 0
such that

hw(0, r) ≥ hmin for r ∈ (0, R), (6)

with hw(0, r) = hi(0, r) in the interior domain due to (4).
We showed in [3] that the floating structure problem in the case of an axisym-
metric flow without swirl is described by

∂th + ∂rq +
q
r
= 0,

∂tq + ∂r

(
q2

h

)
+

q2

rh
+ gh∂rh = −h

ρ
∂rP

(7)
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ζw(t, r)
h(t, r)

z

ζ(t, r)

R r > R

ζe

ζi

Ω(t)

Rr > Rz = −h0 r < R

Figure 1: Vertical cross section of a cylindrically symmetric floating structure
with vertical side-walls.

coupled with the transition condition

qe|r=R
= qi|r=R

. (8)

We have Pe = Patm, where Patm is the constant atmospheric pressure, while Pi
is given by the following elliptic problem in the interior domain (0, R):−

(
∂r +

1
r

)(
hw

ρ
∂rPi

)
=

(
∂r +

1
r

)(
∂r

(
q2

i
hw

)
+

q2
i

rhw
+ ghw∂rhw

)
− ẇG,

Pi |r=R
= Patm + ρg(ζe − ζi)|r=R

+ Pcor,
(9)

with Pcor =
ρ

2
q2

i|r=R

(
1
h2

e |r=R

− 1
h2

i |r=R

)
. We replace hi = ζi + h0 with hw = ζw +

h0 due to the contact constraint (4). The boundary condition on the pressure
is chosen in order to have exact conservation of the energy for the fluid-solid
system (see [3]).
The free motion of the solid is described by Newton’s law for the conservation
of the linear momentum

mδ̈G(t) = −mg +
∫

r≤R
(Pi − Patm) .

Using the elliptic equation (9) we can formulate the floating structure problem
in the axisymmetric case as the following coupled problem (for details see [3]):
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• the quasilinear hyperbolic boundary problem for the fluid motion in the
exterior domain 

∂the + ∂rqe +
qe

r
= 0,

∂tqe + ∂r

(
q2

e
he

)
+

q2
e

rhe
+ ghe∂rhe = 0,

qe|r=R
= −R

2 δ̇G,

(10)

• Newton’s equation for the conservation of the linear momentum can be
put under the form

(m + ma(δG))δ̈G(t) = −cδG(t) + cζe(t, R) + (b(he) + β(δG)) δ̇2
G(t) (11)

with

c = ρgπR2, b(he) =
b

h2
e (t, R)

with b =
πρR4

8
,

ma(δG) =
ρπ

2

∫ R

0

r3

hw(δG, r)
dr,

β(δG) =
b

2h2
w(δG, R)

+
πρ

8

∫ R

0

r4

h3
w(δG, r)

∂rhw(δG, r) dr,

(12)

with hw(δG, r) = hw,eq(r) + δG(t). Due to this decomposition of hw and the
contact constraint (4), we get the boundary condition in (10) from (8) and the
explicit resolution of the first equation in (7) in the interior domain, that is

qi(t, r) = − r
2

δ̇G(t).

The term hw,eq(r) is the fluid height under the solid at the equilibrium position
and ζw,eq(r) = hw,eq(r) − h0 is the elevation of the bottom of the solid at the
equilibrium position. They both depend on the density of the fluid ρ, the den-
sity of the solid ρm, the depth h0 and the height of the solid H (see Section 3 for
the explicit expressions in the flat bottom case).

2.1 Extension-trace operator for the coupling with the exterior
domain

In this section we want to show that, in the ODE for the solid part of the coupled
system (10) - (11), we can write the coupling term ζe(t, R) (also h2

e (t, R)), the
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trace of the free surface elevation in the exterior domain at the boundary r = R,
as an extension-trace operator applied to the trace of the horizontal discharge
in the interior domain at the boundary r = R, that is −R

2 δ̇G.
We consider the exterior quasilinear hyperbolic initial boundary value problem
(10) and using u = (ζe, qe)T we can write it as

∂tu + A(u)∂ru + B(u, r)u = 0,
qe|r=R

= −R
2 δ̇G,

u(0) = u0,
(13)

with

A(u) =

 0 1

ghe −
q2

e
h2

e

2qe

he

 , B(u, r) =

 0
1
r

0
qe

rhe
,


and

u0 = (ζe,0, qe,0)
T.

We consider the functional space

Xk(T) :=
k⋂

j=0

Cj([0, T], Hk−j
r ((R,+∞)))

endowed with the norm

‖u‖Xk(T) := sup
[0,T]
‖u(t)‖Xk , ‖u(t)‖Xk =

k

∑
j=0
‖∂j

tu(t)‖Hk−j
r ((R,+∞))

,

where Hk
r := Hk(rdr) is the weighted Sobolev space. In Theorem 5.3 of [3] we

showed that, for k ≥ 2, there exists T > 0 and a unique solution u = (ζe, qe)T ∈
Xk(T) to (13), provided the initial data u0 ∈ Hk

r ((R,+∞)), the boundary datum
qe|r=R

∈ Hk((0, T)) and compatibility conditions are satisfied up to order k− 1.
Moreover u satisfies the following energy estimate:

‖u(t)‖2
Xk + ‖u|r=R

‖2
Hk((0,t)) ≤ C

(
T, ‖u0‖2

Hk
r ((R,∞))

, ‖qe|r=R
‖2

Hk((0,t))

)
(14)

for all t ∈ (0, T). Then we can define an operator B such that

B : Hk((0, T))× Hk
r ((R, ∞)) → Hk((0, T))

(δ̇G , u0) 7→ B
[
δ̇G, u0

]
= ζe|r=R

.
(15)
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We call it an extension-trace operator since it takes the trace of qe, that is −R
2 δ̇G,

the initial data u0 and it extends to the couple (ζe, qe) by solving the initial
boundary value problem (13) and then it takes the trace of ζe. One can eas-
ily note that B is nonlinear. Then, using the fact that he = ζe + h0 and assuming
u0 to be given, we can write the equation (11) for the solid motion as a second
order delay differential equation only in terms of δG, namely

(m + ma(δG))δ̈G(t)

= −cδG(t) + cB
[
δ̇G, u0

]
(t) +

(
b

(B
[
δ̇G, u0

]
(t) + h0)2

+ β(δG)

)
δ̇2

G(t).
(16)

It is a delay differential equation since we need to know δ̇G for all t′ ∈ [0, t] in
order to know the value of B

[
δ̇G, u0

]
at time t. This equation can be solved by

a standard fixed point argument. Let us recall the compatibility conditions on
the initial data (see [16]):

Definition 2.1. The data u0 ∈ Hk
r ((R,+∞)), δ0 ∈ R and δ1 ∈ R of the floating

structure coupled system (13) - (16) satisfy the compatibility conditions up to order
k− 1 if, for 0 ≤ j ≤ k− 1, the following holds:

e2 · “∂
j
tu|t=0

”|r=R
= −R

2
“

dj+1

dtj+1 δG |t=0
”,

where “u|t=0
” = u0, “ d

dt δG |t=0
” = δ1, and for j ≥ 1 “∂

j
tu|t=0

” and “ dj+1

dtj+1 δG |t=0
” are

inductively defined by formally taking j− 1 time derivatives of system (13) and of (16)
respectively, and evaluating at t = 0. For instance,

“∂1
t u|t=0

” = −A(u0)∂ru0 − B(u0, r)u0,

“
d2

dt2 δG |t=0
” =

−cδ0 + cB
[
δ̇G, u0

]
|t=0

+

(
b

(B[δ̇G,u0]|t=0
+h0)2 + β(δ0)

)
δ2

1

m + ma(δ0)
.

Then, we can state the following existence result whose proof (in the case of
a solid with a flat bottom) is detailed by the author in [3] (Theorem 5.3):

Theorem 2.2. For k ≥ 2, let u0 = (ζe,0, qe,0), δ0 and δ1 satisfy the compatibility
conditions in Definition 2.1 up to order k− 1. Assume that there exist some constants
hm, csub > 0 such that

for r ∈ (R,+∞) he,0(r) ≥ hm,

(
ghe,0 −

q2
e,0

h2
e,0

)
(r) ≥ csub,
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with he,0 = h0 + ζe,0, and that

δ0 > − inf
(0,R)

hw,eq.

Then, there exists T > 0 such that the Cauchy problem for (16) with initial data

δG(0) = δ0, δ̇G(0) = δ1,

admits a unique solution δG ∈ Hk+1((0, T)).

2.2 The return to equilibrium configuration

We want to focus now on a particular configuration of the floating structure
problem, the return to equilibrium problem. It consists in dropping the solid,
with no initial velocity, into a fluid initially at rest from a non-equilibrium po-
sition. By the definition of this particular configuration, we have specific initial
conditions for the coupled problem (10) - (11).
The initial conditions for the solid equation are

δG(0) = δ0 6= 0, δ̇G(0) = δ1 = 0,

and for the fluid equations are

he(0, r) = h0, qe(0, r) = 0,

for all r ∈ (R,+∞). In order to apply the theory of the initial boundary value
problem we need these specific initial data to satisfy the compatibility condi-
tions defined in [3]. The compatibility conditions of order 0 and 1 are respec-
tively:

• qe(0, R) = −R
2

δ1,

• − ∂r

(
q2

e
he

)
(0, R)− 1

R
q2

e
he
(0, R)− ghe(0, R)∂rζe(0, R)

= − R
2 (m + ma(δ0))

(
−cδ0 + cζe(0, R) +

(
b

h2
e (0, R)

+ β(δ0)

)
δ2

1

)
.

Due to the nature of the return to equilibrium configuration, we have

∂rζe(0, R) = 0, ζe(0, R) = 0, qe(0, R) = 0. (17)
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Therefore the compatibility condition of order 0 is satisfied but not the one of or-
der 1. Then Theorem 5.3 of [3] cannot be applied since one hypothesis required
is that the initial and boundary data must satisfy the compatibility conditions
at least up to order 1. When the compatibility conditions at order 1 are not sat-
isfied, sonic waves propagate (we refer to Métivier [13] for the existence of such
waves).

Remark 2.3. One can choose a different value for δ1 in order to satisfy the compatibility
conditions and be able to apply the results of Theorem 5.3 in [3].

3 Linear-nonlinear model for floating structures

The impossibility to apply the theory of initial boundary value problems to the
particular configuration of the return to equilibrium brings us to consider a lin-
earization of the equations (7) in the exterior domain, which describes the case
of small amplitude waves. We generalize however the works by Cummins and
other authors in the literature by keeping the nonlinear effects in the interior
domain. We only assume that the solid does not touch the bottom of the fluid
domain. In this section we introduce the linear-nonlinear model for the float-
ing structure problem, we prove the conservation of the total energy for this
model and then we show that with this linear approximation we can write the
extension-trace operator B[δ̇G, u0] (simply written B[δ̇G] from now on) as a lin-
ear convolution operator. Then the delay differential equation (16) for the solid
motion becomes a nonlinear second order integro-differential equation.

3.1 An energy conserving linear-nonlinear model

We consider the following linear-nonlinear model for the floating structure prob-
lem:

• in the exterior domain (R,+∞)∂tζe + ∂rqe +
qe

r
= 0

∂tqe + gh0∂rζe = 0
(18)

• in the interior domain (0, R)
∂thi + ∂rqi +

qi

r
= 0

∂tqi + ∂r

(
q2

i
hi

)
+

q2
i

rhi
+ ghi∂rhi = −

hi

ρ
∂rPi

(19)
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and the boundary conditions

qe|r=R
= qi |r=R

(20)

Pi |r=R
= Patm + ρg(ζe − ζi)|r=R

+ Pcor (21)

with Pcor = −ρ

2
q2

i
h2

i |r=R

. As in the full nonlinear case the condition (20) can be

written in terms of the solid vertical displacement δG and it becomes

qe|r=R
= −R

2
δ̇G. (22)

Furthermore we have the conservation of the energy for the new linear-nonlinear
model (see [3] for the conservation of the energy in the full nonlinear model):

Proposition 3.1. Let us define the shallow water fluid energy for the linear-nonlinear
shallow water equations (18) - (19)

ESW = 2π
ρ

2
g
∫ +∞

0
ζ2rdr + 2π

ρ

2

∫ R

0

qi
2

hi
rdr + 2π

ρ

2

∫ +∞

R

qe
2

h0
rdr (23)

and the solid energy (only with vertical motion)

Esol =
1
2

mw2
G + mgzG.

Then the total fluid-structure energy Etot = ESW + Esol is conserved, i.e.

d
dt

Etot = 0.

Proof. Multiplying the first equation of (18) by ρgζer, the second equation by
ρqe

h0
r and summing them together, we have local conservation of the energy, i.e.

∂teext + ∂rFext = 0, (24)

where eext is the local fluid energy in the exterior domain

eext =
ρ

2
gζ2

e r +
ρ

2
q2

e
h0

r

and Fext is the flux in the exterior domain

Fext = ρgζeqer.
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We consider the equations (19) in the interior domain. Analogously, multiplying
the first equation by ρgζir, the second equation by

ρqi

hi
r and summing them

together, we obtain
∂teint + ∂rFint = −rqi∂rPi, (25)

where eint is the local fluid energy in the interior domain

eint =
ρ

2
gζ2

i r +
ρ

2
q2

i
hi

r

and Fint is the flux in the interior domain

Fint =
ρq3

i
2h2

i
r + ρgζiqir.

For the sake of clarity we remark that, in order to derive ∂teint in (25), we have
used the following identity for the convective term:(

∂r

(
q2

i
hi

)
+

q2
i

rhi

)(
ρqi

hi
r
)
=

ρq2
i

2h2
i

r
(

∂rqi +
qi

r

)
+ ∂r

(
ρq3

i
2h2

i
r

)

= −ρq2
i

2h2
i

r∂tζi + ∂r

(
ρq3

i
2h2

i
r

)
,

where the last equality is due to the first equation in (19) and to the fact that
∂thi = ∂tζi. We integrate (24) on [R,+∞) and (25) on [0, R] and multiplying
them by 2π we obtain

d
dt

ESW − 2πρRg JζqK+ 2πρR
q3

i
2h2

i |r=R

= −2π
∫ R

0
rqi∂r (Pi − Patm) dr, (26)

where J f K is the jump of a function f at the boundary r = R defined as

J f K := fe|r=R
− fi |r=R

.

By integration by parts we get

d
dt

ESW = 2πρRg JζqK− 2πρR
q3

i
2h2

i |r=R

− 2πR (Pi − Patm)|r=R
qi|r=R

+ 2π
∫ R

0
(Pi − Patm) ∂r(rqi)dr.

(27)
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On the other hand, from the definition of Esol, we have

d
dt

Esol = mwGẇG + mgwG = wG (mẇG + mg)

= wG 2π
∫ R

0
(Pi − Patm) rdr

= 2π
∫ R

0
(Pi − Patm) ∂tζwrdr,

where we used Newton’s law for the conservation of the linear momentum and,
since the structure moves only vertically,

∂tζw = wG,

coming from standard solid mechanics. From the contact constraint (4) and the
mass conservation equation in (19) we get

d
dt

Esol = −2π
∫ R

0
(Pi − Patm) ∂r(rqi)dr. (28)

Therefore

d
dt

ESW = − d
dt

Esol + 2πρRg JζqK− 2πρR
q3

i
2h2

i |r=R

− 2πR (Pi − Patm)|r=R
qi|r=R

.

Using the expression of the interior pressure Pi on the boundary r = R in (21)
and the transition condition (20) we get the conservation of the total energy.

3.2 Linear equations in the exterior domain

In this subsection we focus on the linear shallow water equations in the exterior
domain ∂tζe + ∂rqe +

qe

r
= 0,

∂tqe + v2
0∂rζe = 0,

(29)

with v0 =
√

gh0, coupled with the transition condition

qe|r=R
= −R

2
δ̇G(t). (30)

Taking the derivative of the first equation in (29) with respect to time and re-
placing the value of ∂tqe with the expression in the second equation we find the
linear wave equation

∂ttζe − v0∆rζe = 0

14



with ∆r := ∂rr +
1
r

∂r.
We consider only positive time t (we can treat ζe as a causal function, i.e. ζe = 0
for t < 0). In the same way as John did in [8], we apply the Laplace transform

L (ζe) (r, s) =
∫ +∞

0
ζe(t, r)e−stdt for <(s) > 0

to the wave equation and we get the following Helmholtz equation with com-
plex coefficients:

s2L (ζe)− v0∆rL (ζe) = 0. (31)

We have L (∂ttζe) = s2L (ζe) + ∂tζe(0) + sζe(0) but in this configuration we
have in addition ∂tζe(0) = 0 and ζe(0) = 0 from (17). The general solution of
(31) is

L (ζe) (r, s) = a1(s)H(1)
0

(
isr
v0

)
+ a2(s)H(2)

0

(
isr
v0

)
,

where H(1)
0 and H(2)

0 are the Hankel functions of first order and second order
respectively with index 0.

Remark 3.2. Let us consider the Bessel functions of the first kind and of the second
kind, respectively Jn and Yn, solutions to

z2 d2w
dz2 + z

dw
dz

+ (z2 − n2)w = 0, z ∈ C.

The Hankel functions of first order with index n are defined as

H(1)
n = Jn + iYn,

and the Hankel functions of second order with index n as

H(2)
n = Jn − iYn.

From the asymptotic behaviour of the Hankel functions (see Appendix A) we

know that H(1)
0 (z) ∼

√
2

πz
eiz and H(2)

0 (z) ∼
√

2
πz

e−iz for large |z| and 0 <

arg z < π. Therefore for large |s|r and −π

2
< arg s <

π

2

H(1)
0

(
isr
v0

)
∼
√

2v0

πisr
e
−sr
v0 ,

H(2)
0

(
isr
v0

)
∼
√

2v0

πisr
e

sr
v0 .

15



Thus for <(s) > 0 and large r

a1(s)H(1)
0

(
isr
v0

)
est ∼ a1(s)

√
2v0

πisr
es
(

t− r
v0

)
,

a2(s)H(2)
0

(
isr
v0

)
est ∼ a2(s)

√
2v0

πisr
es
(

t+ r
v0

)
.

These terms represent respectively an outgoing progressive wave and an in-
coming progressive wave. Since in this problem we consider only outgoing
waves, we impose a2(s) = 0.
Applying the Laplace transform to the second equation of (29), we get the fol-
lowing boundary condition for the exterior Helmholtz problem:

∂rL (ζe)|r=R
= − s

v2
0
L (qe)|r=R

=
sR
2v2

0
L
(
δ̇G
)

,

using the transition condition (30). Therefore we finally have

L (ζe) (s, R) =
iRH(1)

0

(
isR
v0

)
2v0H(1)

1

(
isR
v0

)L (δ̇G
)
(s), (32)

using the relation (H(1)
0 )′ = −H(1)

1 between the derivative of H(1)
0 and the Han-

kel function of first order with index 1. From Appendix A we have
H(1)

0 (s)

H(1)
1 (s)

→ i

for large |s|. Adding and subtracting this limit we have

L (ζe) (s, R) = f (s)L
(
δ̇G
)
(s)− R

2v0
L
(
δ̇G
)
(s) (33)

with

f (s) =
iRH(1)

0

(
isR
v0

)
2v0H(1)

1

(
isR
v0

) +
R

2v0

with f (s) → 0 as |s| → +∞. It turns out that we can write f as a Laplace
transform of some function:

16



Lemma 3.3. There exists a unique function F ∈ L2 (R+) ∩ C ([0,+∞)) such that
f (s) = L (F) (s), with

F(t) = lim
v→+∞

1
2π

∫ v

−v
f (c + iω)e(c+iω)tdω,

independent of c > 0, in the sense of L2-Fourier transform and

F(t) =
1

2π

∫ +∞

−∞

[
f (c + iω)− λ

c + iω

]
e(c+iω)tdω + λ,

with λ = 1
4 , in the sense of Lebesgue integral.

Proof. We know that both H(1)
0 (is), H(1)

1 (is) are holomorphic functions on C+,

and H(1)
1 (is) 6= 0 in C+ (see [1],[5]), then f (s) is holomorphic on C+. Moreover f

is bounded in C+ since f → 0 at infinity and f is bounded around the boundary

iR (from Appendix A we have H(1)
0 (is)

H(1)
1 (is)

∼ −is log(is) for s → 0). Hence f ∈
H∞(C+). Now we want to show that f ∈ L2(iR): f is defined also in C+ if we
consider the one-valued functions H(1)

0 and H(1)
1 (considering the one-valued

logarithm in the definition of the Hankel functions in Appendix A). Moreover
we have that

f (s) =
1
4s

+ O
(

1
s2

)
(34)

as |s| → +∞, hence ∫ +∞

−∞
| f (iω)|2dω < +∞.

Therefore by the Smirnov theorem (see [14]) f ∈ H2(C+), where H2 (C+) is
the so-called Hardy space, and by the Paley-Wiener theorem (see [6, 22]) there
exists a unique function F ∈ L2 (R+) such that L (F) (s) = f (s) with

F(t) = lim
v→+∞

1
2π

∫ v

−v
f (c + iω)e(c+iω)tdω

is to be understood in the sense of L2 Fourier transforms for any c > 0. On the
other hand, from (34) we have g(s) = f (s)− 1

4s is Lebesgue integrable on the
line Res = c for any c > 0. From Lemma 3.9. of [15] there exists a function
F̃ ∈ C([0,+∞)) such that L

(
F̃
)
(s) = g(s), with

F̃(t) =
1

2π

∫ +∞

−∞

[
f (c + iω)− λ

c + iω

]
e(c+iω)tdω

17



independent of c > 0. Hence, writing f (s) = g(s) + 1
4s and using the fact that

L (λ) = λ
s for all complex constant λ, we have that L (F) (s) = f (s) with

F(t) =
1

2π

∫ +∞

−∞

[
f (c + iω)− λ

c + iω

]
e(c+iω)tdω + λ

and λ = 1
4 .

Then we can write the coupling term with the fluid motion ζe(t, R) as an explicit
function of the solid velocity δ̇G under convolution form:

Proposition 3.4. Considering the linearized shallow water equations in the exterior
domain, the following holds:

ζe(t, R) =
∫ t

0
F(s)δ̇G(t− s)ds− R

2v0
δ̇G(t) (35)

with F(t) as in Lemma 3.3.

Remark 3.5. It is easy to see that there exists a function F0 such that

F(t) = F0

(v0

R
t
)

with

L(F0)(s) =
iH(1)

0 (is)

2H(1)
1 (is)

+
1
2
=: f0(s).

Now we show the long time behaviour of F, which due to the previous re-
mark is is independent on the choice of the parameters v0 and R.

Proposition 3.6. F has a long time polynomially decaying behaviour. In particular
there exist M > 0 such that

|F(t)| ≤ M (1 + t)−2

for all t ≥ 0.

Proof. Without loss of generality we prove the lemma for F0, which is a function
independent of the parameters v0 and R. As said before, F(t) = F0(

v0
R t) and the

asymptotic behaviour of F is the same as the one of F0.
First, let us recall that F0 is defined as the inverse Laplace transform of f0 that
has a branch cut on the real negative semi-axis by choosing the value of the
complex logarithm that has a branch cut in the lower imaginary semi-axis in
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γ−L,−δ1

−ε

γδ1,L
−ε

γ−δ1

−ε,δ2

−γδ1

−ε,δ2

γ−δ1,δ1

δ2
0

−ε − iδ1

−ε + iδ1

δ2 − iδ1

δ2 + iδ1

Branch cut

c − iL−γ−L
−ε,c

γL
−ε,c

−γ−L,L
c

−ε − iL

−ε + iL c + iL

C

Figure 2: The closed curve C in the complex plane.

the series expansion of the Bessel function Yn for n = 0, 1 in Appendix A. Let us
consider the closed curve (see Figure 2)

C = γ−L,−δ1
−ε ∨ γ−δ1

−ε,δ2
∨ γ−δ1,δ1

δ2
∨−γδ1

−ε,δ2
∨ γδ1,L
−ε ∨ γL

−ε,c ∨−γ−L,L
c ∨−γ−L

−ε,c,

where

γ−L,−δ1
−ε : [−L,−δ1]→ C, y 7→ −ε + iy,

γ−δ1
−ε,δ2

: [−ε, δ2]→ C, x 7→ x− iδ1,

γ−δ1,δ1
δ2

: [−δ1, δ1]→ C, y 7→ δ2 + iy,

γδ1
−ε,δ2

: [−ε, δ2]→ C, x 7→ x + iδ1,

γδ1,L
−ε : [δ1, L]→ C, y 7→ −ε + iy,

γL
−ε,c : [−ε, c]→ C, x 7→ x + iL,

γ−L,L
c : [−L, L]→ C, y 7→ c + iy,

γ−L
−ε,c : [−ε, c]→ C, x 7→ x− iL,

with ε, δ1, δ2, L > 0 and c > 0 as in Lemma 3.3. We choose ε small enough such
that the zeros of H(1)

1 (is) lay in the left of the curve C. This can be done since
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from [5] the zeros of H(1)
1 (is) all have real part less than −α for some α > 0.

Hence f0 is holomorphic in the interior of C and by Cauchy’s integral theorem

1
2πi

∫
C

f0(s)estds = 0,

or equivalently

1
2πi

∫
γ−L,L

c

f0(s)estds =
1

2πi

∫
γ
−L,−δ1
−ε

f0(s)estds +
1

2πi

∫
γ
−δ1
−ε,δ2

f0(s)estds

+
1

2πi

∫
γ
−δ1,δ1
δ2

f0(s)estds− 1
2πi

∫
γ

δ1
−ε,δ2

f0(s)estds

+
1

2πi

∫
γ

δ1,L
−ε

f0(s)estds +
1

2πi

∫
γL
−ε,c∨−γ−L

−ε,c

f0(s)estds.

Taking the limit L→ +∞, the limit δ2 → 0+ and the limit δ1 → 0+, by definition
of the inverse Laplace transform as a Bromwich integral we have

F0(t) =
1

2πi
lim

δ1→0+

[
lim

L→+∞

(∫
γ
−L,−δ1
−ε

f0(s)estds +
∫

γ
δ1,L
−ε

f0(s)estds
)

+ lim
δ2→0+

( ∫
γ
−δ1
−ε,δ2

f0(s)estds +
∫

γ
−δ1,δ1
δ2

f0(s)estds−
∫

γ
δ1
−ε,δ2

f0(s)estds
)]

,

(36)
where we have used the fact that

lim
L→+∞

∫
γL
−ε,c∨−γ−L

−ε,c

f0(s)estds

= lim
L→+∞

(
eiLt

∫ c

−ε
f0(x + iL)evtdx− e−iLt

∫ c

−ε
f0(x− iL)extdx

)
= 0

by uniform convergence. Let us deal with the first two terms in (36). As we
did in Lemma 3.3, we write f0(s) = g0(s) + 1

4s with g0(s) integrable on the line
Re(s) = −ε. Hence we have that

lim
δ1→0+

lim
L→+∞

(∫
γ
−L,−δ1
−ε

g0(s)estds +
∫

γ
δ1,L
−ε

g0(s)estds
)

is finite and is exponentially decaying in t. We focus now on the contour inte-
gration of 1

4s . We compute that

1
2πi

(∫
γ
−L,−δ1
−ε

est

4s
ds +

∫
γ

δ1,L
−ε

est

4s
ds
)

=
e−εt

8π

(∫ −δ1

−L

eiyt

−ε + iy
dy +

∫ L

δ1

eiyt

−ε + iy
dy
)
=

e−εt

4π

∫ L

δ1

Re
(

eiyt

−ε + iy

)
dy.
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Since the integrand is even and it is bounded close to zero, we have that

lim
δ1→0+

lim
L→+∞

∫ L

δ1

Re
(

eiyt

−ε + iy

)
dy =

1
2

lim
L→+∞

∫ L

−L
Re
(

eiyt

−ε + iy

)
dy.

The integral in the right-hand side can be computed by considering the contour
integration of the associated complex-valued function along the semicircle of
radius L centered at the origin and closed on the real axis. Since the function is
holomorphic, by Cauchy’s integral theorem

0 =
∫ L

−L
Re
(

eiyt

−ε + iy

)
dy +

∫
CL

Re
(

eizt

−ε + iz

)
dz,

where CL is the arch of the semicircle. The second term vanishes as L → +∞,
hence it yields

lim
L→+∞

∫ L

−L
Re
(

eiyt

−ε + iy

)
dy = 0.

For the last three terms in (36) we have that

1
2πi

lim
δ1→0+

lim
δ2→0+

(∫
γ
−δ1
−ε,δ2

f0(s)estds +
∫

γ
−δ1,δ1
δ2

f0(s)estds−
∫

γ
δ1
−ε,δ2

f0(s)estds

)

=
1

2πi

∫ 0

−ε
lim

δ1→0+
( f0(x− iδ1)− f0(x + iδ1)) extdx,

(37)

by uniform convergence. Using the analytic continuation formulas in Appendix
A, we compute that

lim
δ1→0+

( f0(x− iδ1)− f0(x + iδ1)) =
i
2

[
3H(1)

0 (ix) + 2H(2)
0 (ix)

3H(1)
1 (ix) + 2H(2)

1 (ix)
− H(1)

0 (ix)

H(1)
1 (ix)

]

= −2
J0(ix)Y1(ix)−Y0(ix)J1(ix)

(5J1(ix) + iY1(ix))(J1(ix) + iY1(ix))
,

and using the series expansion of Jn and Yn for n = 0, 1 in Appendix A we get

lim
δ1→0+

( f0(x− iδ1)− f0(x + iδ1)) = −πix + O(x2) as x → 0. (38)
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Figure 3: Polynomial decay of F: here F(t) (full) is compared to t−2 (dash) using
two logarithmic scales, for R = 10 m and h0 = 5 m.

Therefore in (37) we have

1
2πi

∫ 0

−ε
lim

δ1→0+
( f0(x− iδ1)− f0(x + iδ1)) extdx

= −1
2

∫ 0

−ε
xextdx +

∫ 0

−ε
O(x2)extdx

=
1

2t2

∫ εt

0
σe−σdσ +

∫ ε

0
O(x2)e−xtdx =

1
2t2 + O(t−3),

which implies the statement of the lemma.

The polynomial decay of the impulse response function F given by Propo-
sition 3.6 is numerically showed in Figure 3 for a particular set of parameters.
Moreover, the kernel F satisfies the following equality, which will be used in the
proof of the Theorem 3.11:

Lemma 3.7. The convolution kernel F is such that∫ +∞

0
F(t)dt =

R
2v0

. (39)

Proof. By the definition of the Laplace transform and by Lemma 3.3,

∫ +∞

0
F(t)e−stdt =

iRH(1)
0

(
isR
v0

)
2v0H(1)

1

(
isR
v0

) +
R

2v0
for Re(s) > 0. (40)
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From Appendix A, we have that, as s→ 0,

H(1)
0 (is)

H(1)
1 (is)

∼ −is log(is)→ 0.

Hence, taking the limit s→ 0+ in (40) we get∫ +∞

0
F(t)dt =

R
2v0

, (41)

where we have used Lebesgue’s dominated convergence theorem due to Lemma
3.3 and Proposition 3.6.

3.3 Integro-differential equation for the solid motion

From now on we suppose for simplicity that the bottom of the structure is flat,
then ζw (as well as hw) does not depend on the space variable r, but Proposition
3.8 holds for a structure with non-flat bottom as well. We know from Proposi-
tion 3.4 that, considering the linear shallow water equations (18) in the exterior
domain, we can write the trace of the surface elevation ζe at the boudary r = R
as a function of the time derivative of the displacement δG. Then the nonlinear
differential equation (11) describing the solid motion can be written as a non-
linear delay differential equation.

Proposition 3.8. Considering the linear shallow water equations (29) for the fluid
motion in the exterior domain, the solid motion is described by the following second
order nonlinear integro-differential equation:

(m + ma(δG))δ̈G =− cδG − νδ̇G + c

∫ t

0
F(s)δ̇G(t− s)ds +

(
b(δ̇G) + β(δG)

)
δ̇2

G ,

(42)

with c as in (12), ν =
cR
2v0

, ma(δG) =
b

hw(δG)
, β(δG) =

b
2h2

w(δG)
. The convolution

kernel is defined by

F(t) = lim
v→+∞

1
2π

∫
v

−v

 iRH(1)
0

(
i(c + iω)R

v0

)
2v0H(1)

1

(
i(c + iω)R

v0

) +
R

2v0

 e(c+iω)tdw

for any c > 0 and

b(δ̇G) =
b(∫ t

0 F(s)δ̇G(t− s)ds− R
2v0

δ̇G(t) + h0

)2 with b =
πρR4

8
.
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Remark 3.9. In the integro-differential equation (42) ma(δG) is the time dependent
added mass, c is the hydrostatic coefficient and ν is the damping coefficient. The convo-
lution term, whose kernel F is the so-called impulse response (or retardation) function,
accounts for fluid-memory effects that incorporate the energy dissipation due to the radi-
ated waves coming from the motion of the structure. Moreover, linearizing (42) around
the equilibrium state, we get

(m + ma(0)) δ̈G(t) = −cδG(t)− νδ̇G(t) + c

∫ t

0
F(s)δ̇G(t− s)ds. (43)

This linear equation is nothing but the well-known Cummins equation for the vertical
displacement (1). Proposition 3.8 therefore provides a rigorous justification of the Cum-
mins equation and generalizes it to take into account the nonlinear effects in the interior
domain.

Remark 3.10. Recall that in Proposition 3.4 we show that

ζe(t, R) =
∫ t

0
F(s)δ̇G(t− s)ds− R

2v0
δ̇G(t). (44)

Therefore, considering the linear equations (18), the extension-trace operator (15) be-
comes a linear convolution operator, that is

B
[
δ̇G
]
(t) =

∫ t

0
K(s)δ̇G(t− s)ds, (45)

with the convolution kernel K(s) = F(s) − R
2v0

ds=0, where ds=0 is the Dirac delta

distribution.

We state now the following global existence and uniqueness result of the so-
lution to the solid motion equation in the case of linear shallow water equations
for the fluid motion. Let us recall that ρm and H denote the density and the
height of the solid, respectively.

Theorem 3.11. The Cauchy problem for the nonlinear second order integro-differential
equation (42) with initial data

δG(0) = δ0 6= 0, δ̇G(0) = 0,

admits a unique solution δG ∈ C2([0,+∞), R) provided

|δ0| < min

(
h0 −

ρmH
ρ

,

√
ρmH
ρg

h0

‖F‖L1(R+)
+ R

2v0

)
. (46)
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Remark 3.12. One needs to consider the parameters of the problem such that

hw,eq = h0 −
ρmH

ρ
> 0,

which means that the fluid height under the solid at the equilibrium position is positive.

Proof. Let us write (42) as the following first order nonlinear integro-differential
equation on x(t) = (δG(t), δ̇G(t))T:

dx(t)
dt

= F
(

t, x(t),
∫ t

0 K(t, s)x(s)ds
)

,

x(0) = (δ0, 0)T,
(47)

with K(t, s) = F(t− s). The local existence and uniqueness of the solution to (47)
can be obtained using an iterative method in the Banach space C([0, T), R2).
This integro-differential equation can also be seen as a functional differential
equation with infinite delay by extending δG and δ̇G respectively by δ0 and by 0
for t < 0. We refer to Liu and Magal [10] for the analysis of this type of delayed
equations, which would give asymptotic stability of the equilibrium position in
the case of an exponentially decaying convolution kernel.
We show here the extension of the existence interval [0, T) to [0,+∞) using the
conservation of total fluid-structure energy. First, we prove in the following
lemma that the solution is bounded.

Lemma 3.13. The displacement δG and its derivative δ̇G are both bounded.

Proof. From Proposition 3.1 we know that the energy of the coupled floating
structure system considering the linear shallow water equations for the fluid
motion

Etot(t) =
1
2

mδ̇2
G(t) + mgδG(t) + ESW(t) (48)

is conserved. Moreover, ESW(t) can be written as the sum of the fluid energy in
the interior domain,

Eint(t) =
1
2

ρg 2π
∫ R

0
ζ2

w(t)rdr− 1
2

ρg 2π
∫ R

0
ζ2

w,eqrdr +
1
2

ρ 2π
∫ R

0

q2
i (t, r)
hw(t)

rdr,

and the fluid energy in the exterior domain,

Eext(t) =
1
2

ρg2π
∫ +∞

R
ζ2

e (t, r)rdr +
1
2

ρ

h0
2π
∫ +∞

R
q2

e (t, r)rdr.
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To get the expression of the fluid energy in the interior domain we use the con-
straint (4) and we add the constant term 1

2 ρg 2π
∫ R

0 ζ2
w,eqrdr in order to have zero

energy at the equilibrium. From Archimedes’ principle we have

− ρmH − ρζw,eq = 0 (49)

and, since the bottom of the solid is flat, we have

zG,eq = ζw,eq +
H
2

.

Then

zG,eq =

(
1
2
− ρm

ρ

)
H

and
ζw(t) = zG(t)−

H
2

= δG(t) + zG,eq −
H
2

= δG(t)−
ρmH

ρ
. (50)

Using (50) and the fact that qi(t, r) = − r
2

δ̇G(t) (see Section 2), the fluid energy

in the interior domain Eint(t) becomes

Eint(t) =
1
2

gρπR2
(

δG(t)−
ρmH

ρ

)2

− 1
2

gρπR2 ρ2
mH2

ρ2 +
πρR4

16hw(t)
δ̇2

G(t).

In particular the total energy at instant t = 0 is

Etot(0) = mgδ0 +
1
2

gρπR2
(

δ0 −
ρmH

ρ

)2

− 1
2

gρπR2 ρ2
mH2

ρ2 ,

using δG(0) = δ0 and δ̇G(0) = 0. By the conservation of total energy and using
the identity m = ρmπR2H we have(

m
2
+

πρR4

16hw(t)

)
δ̇2

G(t) = mgδ0 +
1
2

gρπR2
(

δ0 −
ρmH

ρ

)2

−mgδG(t)

− 1
2

gρπR2
(

δG(t)−
ρmH

ρ

)2

− Eext(t)

=
1
2

gρπR2(δ2
0 − δ2

G(t))− Eext(t).

(51)

Consider t∗ = sup{t ∈ [0, T) | hw(s) > 0 for s ∈ (0, t)}. From condition (46) we
have hw(0) = hw,eq + δ0 > 0 , hence t∗ > 0. Suppose t∗ < T. Then, for t ∈ (0, t∗)
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the right-hand side of (51) has to be non-negative. By solving the inequality
with respect to δG(t), we have

−
√

δ2
0 −

2Eext(t)
gρπR2 ≤ δG(t) ≤

√
δ2

0 −
2Eext(t)
gρπR2 .

By the non-negativity of Eext(t) we get the bound

− |δ0| ≤ δG(t) ≤ |δ0|. (52)

Moreover, from (51) we have

m
2

δ̇2
G ≤

1
2

gρπR2δ2
0 ,

which yields the bound

|δ̇G(t)| ≤
√

ρg
ρmH

|δ0|. (53)

Using condition (46), by continuity we have hw(t∗) ≥ hw,eq − |δ0| > 0 and there
exists ε > 0 small enough such that hw(t∗ + ε) > 0, where t∗ is the maximal
time such that hw(t) > 0 for t ∈ (0, T). Then necessarily t∗ = T, which implies
that the bounds (52) - (53) hold in the existence interval (0, T).

The bounds (52) - (53) give

hw(t) = hw,eq + δG(t) ≥ hw,eq − |δ0|,

he(t, R) =
∫ 0

−∞
F(−θ)δ̇G(t + θ)dθ − R

2v0
δ̇G(t) + h0

≥ −
(
‖F‖L1(R+)

+
R

2v0

)√
ρg

ρmH
|δ0|+ h0.

We remark that F ∈ L1(R+) due to Lemma 3.3 and Proposition 3.6. The admis-
sibility condition (46) on δ0 guarantees that for all t ≥ 0

hw(t) ≥ hw,eq − |δ0| > 0, (54)

he(t, R) ≥ −
(
‖F‖L1(R+)

+
R

2v0

)√
ρg

ρmH
|δ0|+ h0 > 0. (55)

Therefore, the existence interval can be extended to [0,+∞) by iterating the
previous argument.

Remark 3.14. The conditions (54) - (55) express the physical fact that, during all the
motion, both the solid and the fluid trace at the solid walls do not touch the bottom of
domain.
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Figure 4: Time evolution of the displacement δG given by the nonlinear integro-
differential (42) (full) and by the linear Cummins equation (43) (dash) for two
different initial data.

4 Numerical method

In order to solve numerically the delay differential equation (42) we write it
under the form

dy
dt

(t) = f (t, y(t), y(d1(t)), ..., y(dk(t))) ,

with d1(t), ..., dk(t) the components of the non-constant delays vector d(t). In
our case we have chosen dk(t) = t − kdt with dt = 0.1 and k = 1, ..., N for
N = 100. Then, we implement in our code the MATLAB solver ddesd, which
integrates with the explicit Runge-Kutta (2,3) pair and interpolant of ode23. For
more details on the solver we refer to Shampine [17]. Moreover, we compute
the convolution integral applying the trapezoidal integration method follow-
ing Armesto et al. [2]. In an analogous way, we compute the convolution kernel
F for a given set of time steps n∆t with n = 1, ..., N since the influence of the
Kernel is negligible after some time t∗ = N∆t. Then, we compare the numeri-
cal result given by the nonlinear integro-differential equation (42) with the one
obtained from its linear approximation. In Figure 4 we consider h0 = 15 m,
R = 10 m, H = 10 m, ρ = 1000 kg/m3 and the volume density of the solid
ρm = 0.5 ρ. We choose two different initial data: δ0 = 1 m and δ0 = 5 m. One
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can see that for large amplitudes the nonlinear effects should not be neglected in
order to better describe the solid motion. This difference justifies the approach
to keep nonlinearities in the equation of the floating body problem in the inte-
rior domain. Moreover,one can note that the displacement goes to zero but the
structure definitely does not reach its equilibrium position: this is due to the
motion of the fluid which makes the solid constantly move.

A Hankel functions

In this appendix we show some results and properties for the Hankel functions.
Let us consider the following differential equation:

z2 d2w
dz2 + z

dw
dz

+ (z2 − ν2)w = 0, z ∈ C.

This differential equation is called Bessel equation of index ν. Solutions to this
equation are called Bessel functions. Let us consider the case when ν = n, with
n ∈ Z. Bessel functions of the first kind, denoted by Jn(z),

Jn(z) = (1
2 z)n

∞

∑
k=0

(−1)k (1
4 z2)k

k! Γ(n + k + 1)
.

are entire in z.

Bessel functions of the second kind, denoted by Yn(z)

Yn(z) =−
(1

2 z)−n

π

n−1

∑
k=0

(n− k− 1)!
k!

(
1
4 z2
)k

+
2
π

log
(

1
2 z
)

Jn(z)

− (1
2 z)n

π

∞

∑
k=0

(ψ(k + 1) + ψ(n + k + 1))
(−1

4 z2)k

k!(n + k)!
,

where ψ =
Γ′

Γ
, with Γ the Gamma function, have a branch point in z = 0. Both

Jn and Yn are real valued if z is real. Let us define

H(1)
n (z) := Jn(z) + iYn(z),

H(2)
n (z) := Jn(z)− iYn(z).

We call them respectively Hankel f unctions of first order and second order with
index n, and they are solutions to the Bessel equation. Each solution has a
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branch point at z = 0 for all n. The principal branches of H(1)
n (z) and H(2)

n (z)
are two-valued and discontinuous on the cut along the negative real axis. They
are holomorphic functions of z throughout the complex plane cut (see Chapter
9 of [1]).
Now let us show some representations of these functions useful for our prob-
lem. From [20] we have an integral representation for z = x > 0:

H(1)
n (x) =

2e−nπi/2

πi

∫ +∞

0
eix cosh(s) cosh(ns)ds

and

H(2)
n (x) = −2enπi/2

πi

∫ +∞

0
e−ix cosh(s) cosh(ns)ds,

and a series representation for large |z| and 0 < arg z < π:

H(1)
n (z) =

√
2

πz
ei(z−π

4−n π
2 )
[ p−1

∑
k=0

(−)kak(n)
zk + O(z−p)

]

H(2)
n (z) =

√
2

πz
e−i(z−π

4−n π
2 )
[ p−1

∑
k=0

ak(n)
zk + O(z−p)

]
with

a0(n) = 1,

ak(n) =
{4n2 − 12}{4n2 − 32} · · · {4n2 − (2k− 1)2)}

8kk!(i)k , k > 0.

Last we recall analytic continuation formulas for m ∈ Z (see [5]):

H(1)
n

(
zemπi

)
= (−1)mn−1((m− 1) H(1)

n (z) + m H(2)
n (z)),

H(2)
n

(
zemπi

)
= (−1)mn(m H(1)

n (z) + (m + 1) H(2)
n (z)).

H(1)
n (z) = H(2)

n (z), H(2)
n (z) = H(1)

n (z).
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