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Abstract
One of the most crucial activities related to the RSO catalogue maintenance operations segment is Initial
Orbit Determination (IOD), usually acting as last resort in this context. In this regard, the present work de-
scribes a novel development of the two-body integral-based IOD method, exploiting an Automatic Domain
Splitting technique and Differential Algebra and relieving most of the computational burden involved. Un-
certainty is included as a covariance matrix, expanded to a predefined order. The algorithm has been
tested with both simulated and real data from uncorrelated measurements of GEO optical measurements,
providing promising results in terms of accuracy and processing time.

1. Introduction

Initial Orbit Determination (IOD) acts as last resort in case the correlation process fails and a new object has to be
included among the catalogued ones. Currently, diverse methods to perform this task compose a richly populated
state of the art, from improved versions of traditional ones like Gauss,1 Laplace2 or Gooding3 methods to more recent
and robust ones such as Admissible Regions;4 nevertheless, there is an increasing drive towards optimization and
development of techniques leveraging different aspects of the problem to better suit the amount and kind of data related
to sensor observations. In this regard, the present work describes a novel development of the two-body integral-
based IOD method, used to extract orbital states from optical tracks, and previously applied to asteroids analysis.
Usually, iterative root-finding algorithms are used to obtain the solution and consequently build a first orbit estimate.
By exploiting an Automatic Domain Splitting (ADS) technique, based on a squared approximation error splitting rule,
and Differential Algebra (DA), the computational burden involved in the procedure can be considerably relieved by
assessing a suitable a priori level of approximation.

2. Fundamentals

In this section, some of the paramount tools adopted for the method development are introduced, from the two-body
integral method itself5 ,6 to the modifications and differential algebra formulation allowing the automatic domain
splitting optimizer developed for this work to overcome iteration-based ones in terms of performance. Besides, the
uncertainty propagation method is addressed, underlining its deep connection to the DA formulation on which the
whole method is based.

2.1 Two-body integral method

This technique is used to extract orbital states from optical tracks, addressing both the insertion of a new object in a
catalogue and the linkage between uncorrelated tracks by defining an orbit estimate connecting them.

The whole method is based on the two-body problem integrals of motion, so the assumption of unperturbed
Keplerian motion is deemed to hold across the observation arc (limiting applications in terms of observation time
window or orbital regime). As a consequence, the quantities employed in the problem, namely energy E, angular
momentum vector h and Laplace-Lenz vector L are conserved. A further aspect to address consists in the fact that
the measurements have to be preprocessed in the form of an attributable, given as input to the algorithm. An optical
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attributable in this case is defined as a 4D vector rearranging the observation data into two angles and two angular
rates A = (α, δ, α̇, δ̇). Through mathematical manipulation, the mentioned constants of motion can be expressed as
non-linear functions of a couple of optical attributables, leveraging their definition together with the equations linking
measurements and orbital states:

r = R + ρ s (1)

where r denotes the target position, ρ represents the range while s is defined as:

s =
(
cosα cos δ, sinα cos δ, sin δ

)
(2)

The non-linear system final form loses its dependence on range-rate thanks to a specific projection to get its
coefficients to be null, resulting in: q(ρ1, ρ2) = 0

p(ρ1, ρ2) = 0
, ρ1, ρ2 > 0 (3)

According to the formulation, p may embed the L6 or E5 residual. Then sticking to the original method, Eqn. (3)
is solved through the computation of the system resultant with respect to one of the two variables at play. To compute
the resultant an approach based on the Discrete Fourier Transform (DFT), Inverse DFT is employed.

Therefore, the obtained solution batch shall be further analyzed to select the most suitable one, verifying its
compliance to some compatibility conditions based on unexploited orbital parameters, i.e. argument of pericenter and
mean anomalies: ω1 = ω2

M1 = M2 + n(t1 − t2)
(4)

2.2 Differential Algebra

DA allows to solve analytical problems through an algebraic approach by means of the Taylor polynomials algebra.
Any deterministic function f of v variables that is C(k+1) in the domain of interest [−1, 1]v (scaled according to needs)
is expanded into its Taylor expansion up to an arbitrary order k with limited computational effort. Thus, variables
are represented as truncated power series (TPS) around an expansion point x0, instead of standard types.7 The DA
framework is implemented in a C + + computational environment through the DACE library. The key DA features
exploited are:

• The expansion of the solution of parametric implicit equations: this feature can be used to easily explore the
non-linear system solution space and bound regions of interest according to given constraints.

• The flow expansion of an Ordinary Differential Equation (ODE): this feature relieve the processing burden due
to iterative integrators embedding the whole integration scheme in a single function evaluation.

2.3 Automatic Domain Splitting

The ADS7 tool plays a fundamental role in the proposed algorithm. It firstly detects the error that quantifies how much
an n-order TPS diverges from the original function following Taylor’s theorem: it states that the approximation error
between a k + 1 times differentiable function f ∈ Ck+1 and its k-order Taylor expansion P f comply to:

| f (δx) − P f (δx)| ≤ Cδxk+1 (5)

For some constant C > 0. As a consequence, analysing the k + 1-order coefficients can lead to the upper bound
of the mentioned error.

The tool then identifies the variable across which it peaks and splits the domain along that direction by the
following re-mapping:

D1(x) =
1
2

x +
1
2

D2(x) =
1
2

x −
1
2

(6)
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Where D1 and D2 are the two subdomains across the split direction x. According to Eq. 5 this process causes the
approximation error to drop of a factor of 2. By performing a sequence of splits across different directions as a series
of function compositions lower order expansions can be used to reliably represent the original function as a piece-wise
one. The result is a mesh of domains and their corresponding TPS, the union of which corresponds to the initial DA
set.

2.4 Uncertainty

In an initial orbit determination framework, uncertainty propagation allows to assess the sensitivity of the estimation
method on the quality of sensor measurements. Concerning the present work, the differential algebra formalism enables
a smart propagation of an initial Gaussian uncertainty exploiting the DA variable structure itself. To account for non-
linearities of the statistical moments (mean and covariance in particular) in the propagation and transformations in
general, State Transition Tensor Propagation (STT) can be used.8 Leveraging Isserlis’ theorem, a distribution expressed
in terms of mean and covariance can be used to obtain them downstream of an input non-linear function, up to a given
order (closely related to the Taylor expansion one in the case at hand). More specifically, given a generic function
[y] = f ([x]) defined in a DA framework, it yields:

[y] = f ([x])

= T k(δx)

=
∑

p1,...,pn≤k

cp1,...,pn (δxp1
1 , ..., δx

pn
n )

(7)

where cp1,...,pn are the coefficients of the Taylor expansion (T k) and, in this case, coincide with the STT terms:

cp1,...,pn =
1

p1!, ..., pn!
∂p1,...,pn f
∂xp1

1 , ..., x
pn
n

(8)

As a consequence, the non linear evolution of both mean and covariance can be described as function of these
coefficients, and are consequently expanded to order k as:

µi = E{[yi]}

=
∑

p1,...,pn≤k

cµi
p1,...,pn E{δxp1

1 , ..., δx
pn
n }

Pi, j = E{([yi] − µi)([y j] − µ j)}

=
∑

q1,...,qn≤2k

cPi, j
q1,...,qn E{δxq1

1 , ..., δx
qn
n }

(9)

Where cµi
p1,...,pn are the coefficient of the expansion related to the mean value i-th component, while cPi

q1,...,qn are the
ones resulting from the evaluation of ([yi] − µi)([y j] − µ j). Being the order of expansion set a priori, it is important to
highlight that the covariance order shall be double the k one used for the polynomial map expansion in order to keep
consistent accuracy in the approximation process.

This technique represents a generalization to a given n-order of the linear projection of covariance through the
Jacobian of a transformation:

ΓY =
∂Y
∂X
ΓX
∂Y
∂X

T

(10)

where ∂Y
∂X is the Jacobian associated to the transformation.

3. Method

This section outlines how the DA-ADS based technique design process is structured (see Fig. 1). A preliminary
phase has been performed to evaluate the performance, stability and feasibility of the method with standard root-
finding algorithms. Phase I encloses the differential algebra transposition of the original method, exploiting polynomial
inversion and domain splitting to find solution efficiently. In Phase II the uncertainty propagation problem is addressed
by building a slightly different polynomial map and obtaining distributions in target domains in terms of mean and
covariance.
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Figure 1: A workflow diagram representing the algorithm structure.

3.1 Preliminary Phase

The presented IOD technique basic methodology is tested in Matlab for a preliminary feasibility analysis. It is assessed
by the generation of a synthetic Earth’s orbit, considering the Telescope Fabra-ROA at the Montsec (TFRM) as the
reference ground station providing optical measurements.

The two-body integral based IOD method is implemented in both its formulations (Energy and Lenz vector-
based) to evaluate and compare their performance. Two synthetic attributables are retrieved for the non-linear system
set up. Once assembled, the system is solved by means of Matlab fsolve routine. Different values of the input initial
guess, expressed as percentages of the correct range value, have been tested to study the technique performance. The
energy formulation shows a strong sensitivity to the initial guess selection (mainly due to numerical round-off errors)
that prevents convergence to the correct solution. Despite tuning some of fsolve parameters and reaching convergence,
the associated error would never lie below an acceptable threshold. Therefore, the system of equations to be developed
in DA, is the one including h and L scalar residuals as it shows a more promising behaviour.

3.2 Phase I : Find a solution

The DACE is configured to perform the calculations up to the prescribed order and the involved independent variables
ρi, i = 1, 2 are intialized so that an initial search space can be defined.
To equate the integrals, an approach similar to6 is adopted. Two attributables Ai at epochs ti, i = 1, 2 are considered.
In order to retrieve them, given that α̇i, δ̇i i = 1, 2 are not directly acquired by the sensor, time derivatives are com-
puted through different approaches, whether they come from synthetic measurements (using NASA SPICE kernels and
functions) or real ones (by means of forward finite difference on short enough time spans).

The procedure to define the scalar residuals TPSs corresponding to specific angular momentum h and the Lenz-
Laplace vector L follows a different path with respect to.6 Since the preliminary phase highlighted struggle for conver-
gence using the original formulation (mainly due to round-off error propagation), a more stable form of L expression
is selected. Nonetheless, an equivalent DA form of the original system formulation can be obtained:[ f1] = f 1 + T f1 (δρ1, δρ2)

[ f2] = f 2 + T f2 (δρ1, δρ2)
(11)

Once the polynomial expansions defined in the initial domain are retrieved, the ADS comes into play. It requires
an input function, defined on the original domain, that can effectively quantify the error with respect to the reference
function. In this case, instead of the standard infinite norm of the residual vector, a squared sum of the two scalar
residuals has been chosen to allow more splits in case of high errors:

g(ρ1, ρ2) = p2(ρ1, ρ2) + q2(ρ1, ρ2) (12)

In order to reduce the significant computational burden implied with the splitting procedure (especially if a
low order expansion is targeted), an upgrade to the standard ADS algorithm has been developed. Instead of splitting
the entire initial domain and then searching each single sub-domain to find the system solution, this new optimized
version discards all those domains definitely not containing a zero during the split procedure by means of a Polynomial
Bounder routine (PB). The approximate upper and lower bounds of the two nonlinear functions can be easily computed
for each subdomain being the corresponding TPS available. In this way, by virtue of the Intermediate Value Theorem,
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if the limits of both p and q residuals within each progressively generated sub-domain are not opposite in sign, the
sub-domain is discarded since it does not contain any root of the system.

Then, the final solution is searched in the set of remaining sub-domains. Starting from the polynomial expansion
of p, q within each sub-domain, the corresponding map is obtained by composing the splitting sequence with them:[

δp
δq

]
=

[
Tp

Tq

] [
δρ1
δρ2

]
(13)

They are thus inverted and evaluated for δp, δq equal to zero:[
δρ1
δρ2

]
=

[
Tp

Tq

]−1 [
δp
δq

]
(14)

Yielding δρ1, δρ2 which are the root coordinates with respect to the expansion point of the given subdomain.
Then, the obtained zero is kept or discarded depending on whether −1 < δρi < 1, i = 1, 2 (i.e., if the currently analysed
subdomain contains ρ1, ρ2).

Once the roots are retrieved, their validation is performed on Matlab by means of compatibility conditions test,
so to filter unfeasible solutions out in case of multiple ones and to validate the actual ones at the same time.

3.3 Phase II : Uncertainty

This section of the algorithm focuses on the influence of input measurement accuracy on the initial orbit estimation
process. The module aims at propagating the initial angular measurements uncertainty throughout the process to the
final state estimate.

As a first step, the Gaussian uncertainty associated with angles-only measurements, which is known and denoted
as a diagonal covariance matrix, has to be projected onto the space of the attributablesA1 andA2, whose uncertainty is
assumed Gaussian as well. The missing covariance components are the ones associated to the rotation rates. For right
ascension (RA) and declination (DEC), the known sensor accuracy is taken as standard deviationσ of the measurements
leading to a 4 × 4 diagonal covariance matrix Γη while the mean vector is η (1 × 4). To obtain the angular velocities
covariance Γη̇ a linear covariance projection is applied. By joining both matrices an overall 8 × 8 block diagonal
covariance matrix is retrieved.

The next step combines the DA technique with uncertainty propagation and works as follows:

1. The DACE is initialized with 10 variables (Phase I solution and angular measurements uncertainty)

[ρi] = ρi + δρi

[αi] = αi + δαi [α̇i] = α̇i + δαi

[δi] = δi + δδi [δ̇i] = δ̇i + δδ̇i
i = 1, 2 (15)

where ρi are the nominal values of the solution retrieved in Phase I.

2. The map defined in Eqn. (13) is expanded by inserting the angles and their derivatives as identity matrices I.
This results in a new map, which is inverted too, yielding:

δy =Mδx (16)
δy = [δρi, δαi, δδi, δα̇i, δδ̇i]
δx = [δp, δq, δαi, δδi, δα̇i, δδ̇i]
M = [Tp,Tq,Iα,Iδ,Iα̇,Iδ̇]−1

where the submatrices Tp and Tq are the maps linking p and q to the attributables and the solution uncertainties.
Perturbation terms around the nominal system root δp and δq are set to zero, so that δρi represents the problem
solution uncertainty as function of the only angles perturbations.M is employed to link initial measurements un-
certainty to the range estimates one. The input variables used as initial distribution are the angular measurements
referred to both times t1, t2.

3. Given δx characterized by µ (mean), Γ (covariance) andM (output map), uncertainty is propagated to δy. Ini-
tializing δx as a deviation from µ and substituting it into Eqn. (16), results in the kth-order Taylor expansion of y
with respect to the initial deviation from the mean value of δx, namely [y] =Mk

y(δx). Then, the mean value and
covariance of y are computed making use of STT formulation.
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Figure 2: Energy, ideal dynamics: ∆t = 2 min, contours in zero of f1 and f2 (dotted lines), true (green circle) and
calculated (pink) solutions.

In this way, the covariance that binds the angular measurements to the solution and the corresponding mean
value can be retrieved. Similarly, it is possible to link the uncertainty on angles and ranges to the states (ri, vi), i = 1, 2
at t1, t2. Having mean and covariance of (ρi, αi, δi, α̇i, δ̇i), i = 1, 2 and composing the map linking range with position,
step 3 from the previous algorithm can be repeated.

Time propagation comes as the following step. To integrate the dynamics, an initial condition between the posi-
tion vectors associated to ρ1 and ρ2 is chosen; without loss of generality, the value relative to t1 is selected. Integration is
performed until a selected final time t f yielding the required map projecting the initial deviation to the final state space.
Combining it with the information about the initial state uncertainty, step 3 is repeated to obtain the final state mean and
covariance. Subsequently, an equivalent Monte-Carlo simulation representing the actual distribution transformation is
implemented to compare and validate the results of the DA-ADS based uncertainty study.

As last step, the correlation of the computed estimate with the two measurements used to generate it is performed
through a Squared Mahalanobis Distance (SMD) based chi-squared test, to understand if the obtained values fall under
a 3σ threshold:

SMD(x) = (x − x)T (Σx + Σx)−1(x − x)

∼ χ2(x)
(17)

4. Results

Adopting the Lenz-Laplace formulation, convergence to the correct value is robust with respect to the initial condition,
unlike the orbital energy version of the method which can result in convergence to wrong local minima (as can be
noticed in Fig. 2).

Different case studies have been examined, taking different ∆t between the available data into account (few
minutes to several hours) and applying dynamics both with and without orbital perturbations. The ideal dynamics
results are not time dependent, whatever ∆t may be, the method will always converge to the correct solution. For the
perturbed case, the pure Keplerian motion on which the technique relies is no longer valid thus, the obtained solution
is different from the correct one. Nonetheless, it might be useful to define an equivalent Keplerian of the desired orbit
to have a starting point for the results refinement.

5. DA-ADS

To assess the robustness of the method with respect to the length of the arc considered, the included perturbations and
the TPS expansion order, the same case studies joined with supplementary ones are tested on C++.

The aim is the selection of a suitable expansion order to employ in all the simulations through a trade-off between
accuracy and related computational time. Two analysis have been performed:

• Ideal dynamics (Fig. 3a): The algorithm can find a solution in any of the considered cases. The error trend
between the calculated ρ1, ρ2 and the real ones, overall tends to increase with increasing expansion order (in-
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Figure 3: DA-ADS performance for, ∆t = kT, k = 1, . . . , 5 (T = orbital period), between the attributables.

Figure 4: PB improvements on DA-ADS τ

creasing non linearities and intersections between p and q). Moreover, the low orders computational time is
significantly greater because of the more generated subdomains (to comply with TPS tolerance) to scan.

• Perturbed dynamics (Fig. 3b): Similar considerations as before can be drawn. The substantial difference, is that
for some high expansion order, no solution is found. This means that, the method robustness related to the ex-
pansion point selected, is drastically reduced. Nevertheless, by slightly shifting the expansion point, convergence
to a solution can be achieved.

Figure 4, depicts the clear advantage of using the PB instead of the classical ADS implementation. The com-
putational time τ of the orders up to 4 has become competitive with that of higher orders. In turn, the benefits that
the higher order may have provided before are overtaken by their clear lack of stability. Therefore, the DACE will be
initialized to the 4th order, as its computational time is rather restrained while keeping a good level of accuracy.

6. Real Data

For the technique validation, several batches of real observations related to GEO objects and provided by a given
ground station (named STATION 1), are tested.

The outcomes of all pairs of measurements are tested to assess the results quality as the time interval and angular
span of the chosen observation segment changes. The first angular measurements of the set is taken as A1 while A2
changes at each iteration spanning the remaining values.

As the time gap between the two examined measurements increases, the results quality improves. This can be
appreciated thanks to the error analysis conducted on the orbital parameters a, e and Ω even if they are no longer
preserved in the real case (perturbations).
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The blue graphs of Fig. 5 show the derived error trend between a, e and Ω of the orbit obtained for t1 and the
correct values from a validated IOD estimate. The more the measurements are separated from each other (within a
certain limit), the fewer are the possible orbits whose geometry will be able to fit the passage for the two fixed points.

As for the red graphs instead, they report the discrepancy between the same parameters, this time derived from
the solutions of the method for t1 and t2. It can be noticed that the smaller the time interval, the smaller the effect of
the perturbations whose contribution is more and more evident for increasing ∆t, as shown by the increasing trends.

Figure 5: a, e,Ω error based on t2 selected.

6.1 Uncertainty

After a reference couple of attributables A1 and A2 is selected, their uncertainty is propagated throughout the whole
pipeline as previously outlined.

By such process, a region of orbital parameters can be defined as the one containing the initial orbit estimate, to
be progressively reduced as new tracks are correlated to the two originating attributables.
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Figure 6: DA-based uncertainty assessment on
r, v.

Figure 7: MC-based uncertainty assessment on
r, v.

Fig. 6 shows this very region (delimited by dotted lines), retrieved as an interpolation of ellipses from the DA-
based uncertainty propagation process (thus a Gaussian approximation of the actual one) that, taking measurements
uncertainty into account and propagating it through state determination and propagation of dynamics, manages to
include the reference orbit estimate obtained from the verified IOD. This domain is bounded by the 3σ confidence
region ellipses, for n = 7 reference temporal instants.

The corresponding Monte Carlo (MC) simulation validates the approximation as shown in Fig. 7. The same
approach also allowed to perform further uncertainty assessments on the employed constants of motion h and L, as
shown in Fig. 8 and Fig. 9.

Figure 8: DA-based uncertainty assessment on
h compared with its MC distribution.

Figure 9: DA-based uncertainty assessment on
rp direction compared with its MC distribution.

6.2 Compatibility

In order to prove if the orbit determination routine has succeded in giving a meaningful estimate, compatibility be-
tween the states corresponding to both observation times has to be tested. This can be done by leveraging the orbital
parameters used throughout the process itself to compute two of the remaining ones, i.e. argument of pericenter ω and
mean anomaly M that, under pure Keplerian motion assumption, are supposed to comply to:
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ω1 = ω2

M1 = M2 + n (t1 − t2)
(18)

Where n denotes the mean motion
√
µ
a3 that should be the same for both orbits as well. Specific orbital energy E

can be taken into account too as further compatibility metric. The mentioned conditions are not likely to be satisfied in a
real case scenario due to errors involving both observations and orbital perturbations between them, as shown in Fig. 10
where they are computed as function of the time difference between the two chosen observations from STATION 1.
Nonetheless, they can be used in case of multiple solutions to filter out the ones largely violating them, storing a lower
number of orbit hypotheses.

Figure 10: Residuals on ω, M and E expressed as function of time gap between observations.

A further basic test to perform is correlation with the originating measurements. To perform this task, the
Squared Mahalanobis distance is employed, enabling to define a difference between distributions to be compared with
a standard known one. In particular, the aim is to define the statistical distance between the predicted x and the true x
angular measurements related to t2:

SMD(x) = (x − x)T (Σx + Σx)−1(x − x) (19)

By comparing it with the χ2(nx) quantile, having a confidence level αL = 0.998, corresponding to 3σ, and nx = 4
degrees of freedom, correlation is confirmed if the SMD(x) is smaller than the quantile, meaning that the distance lies
inside the standard gaussian stemming from the involved uncertainties:

χ2(nx, αL) = 16.924 > SMD(x)

Tab. 1 shows a comparison between SMD obtained from both MC simulation and DA-based covariance propa-
gation, acting as further validation of both estimation and uncertainty propagation methods.

tgap [h] SMD(x)

Classic MC DA-ADS

0.91 6.812 4.536
2.78 16.524 15.852
5.57 2.915 3.784
8.31 0.2056 0.3786

Table 1: SMD values from the MC and DA-ADS simulations.
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7. Conclusions

The analysis has provided promising results in terms of accuracy and significant improvements in terms of processing
time thanks to ADS and subdomains pruning via polynomial bounder. Despite not yet being able to decrease errors if
arcs are too short, the inclusion of measurements uncertainty allows the definition of an orbit region within which the
target one should be included from the beginning. This can be used as a preliminary estimate, to be progressively shrunk
with further measurements in an Orbit Determination Refinement process. Both compatibility conditions and track
correlation have been verified with neighbour samples from available observations, leveraging an adequate covariance
propagation procedure and proving the reliability of the IOD process. It is worth mentioning that this is the first step of a
current research activity aiming at further reducing processing times by novel domain splitting and selection techniques
and extending the application of the method to higher orbital regimes, as required by the rise of an operative Cislunar
Space Environment.
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