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Abstract
Accurate modeling of blood dynamics in the coronary microcirculation is a crucial step toward the clinical application 
of in silico methods for the diagnosis of coronary artery disease. In this work, we present a new mathematical model of 
microcirculatory hemodynamics accounting for microvasculature compliance and cardiac contraction; we also present its 
application to a full simulation of hyperemic coronary blood flow and 3D myocardial perfusion in real clinical cases. Micro-
vasculature hemodynamics is modeled with a compliant multi-compartment Darcy formulation, with the new compliance 
terms depending on the local intramyocardial pressure generated by cardiac contraction. Nonlinear analytical relationships 
for vessels distensibility are included based on experimental data, and all the parameters of the model are reformulated based 
on histologically relevant quantities, allowing a deeper model personalization. Phasic flow patterns of high arterial inflow 
in diastole and venous outflow in systole are obtained, with flow waveforms morphology and pressure distribution along the 
microcirculation reproduced in accordance with experimental and in vivo measures. Phasic diameter change for arterioles 
and capillaries is also obtained with relevant differences depending on the depth location. Coronary blood dynamics exhibits 
a disturbed flow at the systolic onset, while the obtained 3D perfusion maps reproduce the systolic impediment effect and 
show relevant regional and transmural heterogeneities in myocardial blood flow (MBF). The proposed model successfully 
reproduces microvasculature hemodynamics over the whole heartbeat and along the entire intramural vessels. Quantification 
of phasic flow patterns, diameter changes, regional and transmural heterogeneities in MBF represent key steps ahead in the 
direction of the predictive simulation of cardiac perfusion.
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Abbreviations
CAD	� Coronary artery disease
CBF	� Coronary blood flow
cCTA​	� Coronary computed tomographic 

angiography
FFR	� Fractional flow reserve
LAD	� Left anterior descending
MBF	� Myocardial blood flow
NS	� Navier–Stokes
RCA​	� Right coronary artery
stress-CTP	� Stress computed tomographic perfusion

List of symbols
pi	� Pore pressure in Darcy compartment i
Ki	� Permeability of Darcy compartment i
�i	� Fluid volume fraction of Darcy compartment 

i
�i,j	� Inter-compartment conductance between 

Darcy compartments i and j
PLV	� Pressure in the left ventricular chamber
Pim	� Intramyocardial pressure
�i	� Mass source/sink term in Darcy compart-

ment i
�	� Conductance of venous circulation
pra	� Right atrium pressure
(nL)i	� Vessels length density of Darcy compartment 

i
Ai	� Average cross section of vessels in Darcy 

compartment i
Ci	� Compliance of vessels in Darcy compart-

ment i
�	� Blood dynamic viscosity
�	� Specific permeability of cardiac tissue to 

blood flow
�i	� Morphometry conductance factor of Darcy 

compartment i

1  Introduction

Cardiac blood perfusion is the central physiological process 
that guarantees the metabolic sustenance of the heart mus-
cle, requiring a dedicated circulatory system known as the 
coronary circulation. Defective perfusion is generally caused 
by a narrowing or blockage of a coronary artery, a condition 
known as coronary artery disease (CAD), and leads to major 
consequences such as myocardial ischemia, infarction and 
heart failure. Large clinical studies have shown that the com-
bined knowledge of pressure drop in the large coronaries and 
myocardial blood flow (MBF) at the tissue level leads to the 
best management of patients suffering from CAD (Pontone 
et al. 2019; Baggiano et al. 2020). At present, however, this 
knowledge can be achieved only through multiple imaging 

examinations, often including radiation exposure and poten-
tially invasive procedures (Knuuti et al. 2019).

In this context, mathematical models and computational 
simulations of coronary hemodynamics integrating blood 
flow in the large coronary arteries and myocardial perfu-
sion hold great potential to provide clinically relevant infor-
mation, especially when tailored to a specific subject using 
in vivo radiological images. Still, an accurate mathematical 
description of coronary hemodynamics remains a challenge 
because of two main reasons: Firstly, the coronary circula-
tion spans over a broad range of length scales (from few 
millimeters to few microns of vessel diameter), making it 
impossible to run even 1D fluid dynamics simulations in 
the fully resolved tree; secondly, cardiac contraction deeply 
affects coronary flow, mainly through the well known sys-
tolic impediment effect (Chilian and Marcus 1982), which is 
challenging to model in an effective way. To address the first 
issue, previous works have proposed either a focus on large 
coronaries with outflow conditions, surrogating microvas-
culature, based on lumped parameter models (Olufsen et al. 
2000; Anselmi et al. 2021) or on extended Murray’s law 
(Guerciotti et al. 2017); or multiscale models, often treating 
blood dynamics in the microcirculation through a homog-
enized porous medium approach [Darcy equations, Michler 
et al. (2013)], coupled with a 1D (Papamanolis et al. 2021) 
or 3D (Zingaro et al. 2023) description of fluid dynamics in 
the large coronaries. This has been further extended with 
the proposal of multi-compartment Darcy formulations to 
account for the different length scales in the microcirculation 
(Huyghe et al. 1989, 1989; Gregorio et al. 2021; Di Gregorio 
et al. 2022).

To cope with cardiac contraction, previous approaches 
relied on poromechanics as a way to model flow through 
a saturated porous medium subjected to mechanical acti-
vation (Huyghe et al. 1992; Vankan et al. 1997; Chapelle 
et al. 2009), possibly coupled with coronary arterial net-
works (Lee et al. 2015; Richardson et al. 2021; Barnafi Wit-
twer et al. 2022). In a previous work (Pelagi et al. 2024), we 
proposed an effective inlet pressure condition for the large 
coronaries to surrogate the effects of cardiac contraction in a 
multiscale coupled model of cardiac perfusion. However, the 
first models are difficult to personalize and have never been 
applied to real clinical scenarios, whereas what proposed in 
Pelagi et al. (2024) does not provide a sufficient accuracy for 
the distribution of blood flow at the tissue level.

In this work, to overcome these limitations, we start from 
the multiscale perfusion model presented in Gregorio et al. 
(2021) and we propose: 

1.	 A new mathematical formulation of the multi-compart-
ment Darcy model to account for cardiac mechanics and 
microvasculature compliance;
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2.	 A new, data-driven calibration of the Darcy model 
parameters in view of simulations of hyperemic coro-
nary flow in real clinical cases.

This new model for microvascular hemodynamics is cou-
pled with 3D fluid dynamics equations for the blood dynam-
ics in the large coronaries to run an integrated analysis (at 
all levels of the coronary tree) in subjects whose heart and 
coronary geometries have been reconstructed from in vivo 
CT images.

To the best of our knowledge, this is the first computa-
tional model, incorporating details along all the coronary 
tree and effects of cardiac contraction on perfusion, which 
has been calibrated for an application to real clinical cases. 
We believe that this work is a crucial step toward a predictive 
application of perfusion modeling in a clinical setting and 
the use of computational methods to reproduce functional 
imaging of stress computed tomographic perfusion (stress-
CTP) (Pontone et al. 2019).

2 � Methods

In Sect. 2.1, we introduce the new mathematical formula-
tion for the multi-compartment Darcy model in a domain 
subjected to a cyclic mechanical stress caused by cardiac 
contraction. In Sects. 2.2 and 2.3, we provide an overview 
of the new parameters introduced together with our choices 
leading to the surrogating contraction model and we pro-
pose a data-driven approach for their calibration, whereas 
in Sect. 2.4, we detail how we model the intramyocardial 
pressure. In Sect. 2.5 we detail the coupling of the proposed 
multi-compartment Darcy model with the hemodynamics 
in the epicardial coronaries. Section 2.6 includes the details 
regarding the time discretization and linearization of the 
proposed model, while in Sect. 2.7 we describe how we 
generate the computational domain as well as the general 
setup used for the numerical simulations, together with the 
fixed-point strategy used to manage the coupled problem.

2.1 � Model of microcirculation hemodynamics

When the coronary arteries penetrate the myocardial surface, 
they progressively branch into smaller vessels in a tree-like 
structure known as the intramural circulation. Given the 
huge number of vessels, a homogenized approach where 
hemodynamics is described as a flow through a porous 
medium is well suited to describe hemodynamics in this 
part of the coronary tree (Huyghe et al. 1992; Vankan et al. 
1996; Michler et al. 2013).

To account for the different length scales (diameters from 
d ≃ 5 μm , capillaries, up to d ≃ 500 μm , small arteries) as 
well as for the mechanical activity of the heart, we start from 
the three-compartment primal Darcy formulation presented 
in Gregorio et al. (2021), Michler et al. (2013) and we gener-
alize it with the addition of a compliance term resulting from 
vessels distensibility. For the compartments, we consider the 
following subdivision: small arteries (comp. 1, d between 
100 and 500 μm ), arterioles (comp. 2, d between 8 and 100 
μm ), capillaries (comp. 3, d between 4 and 8 μm ). The strong 
formulation for a generic compartment i = 1, 2, 3 reads:

where, for each compartment i, pi is the unknown intralu-
minal blood pressure, Ki is the permeability (considered 
as a scalar field), �i,j is the mass exchange coefficient with 
compartment j; �i is a distributed mass source/sink term 
accounting both for the mass source in compartment 1 that 
represents the flow coming from the large arteries (for exam-
ple provided by the solution of a Navier–Stokes problem, 
see Gregorio et al. (2021); Di Gregorio et al. (2022) and 
Sect. 2.7) and for the mass sink in compartment 3 repre-
senting the venous return, i.e., �3 = −�(p3 − pra) , pra being 
the right atrium pressure. Notice that the equations related 
to each compartment are solved in the same computational 
domain Ω , that is the left ventricular free wall reported in 
Fig. 1a, meaning that we assume each compartment of intra-
mural vessels to coexist in the same volume.

The new compliance term ��i

�t
 represents the time varia-

tion of the fluid volume fraction �i (i.e., the porosity of the 
i th compartment), which we model with a suitable set of 
functions fi representing the relationship between compart-
ment porosity, the intraluminal pressure pi and the given 
intramyocardial pressure Pim , generated within the cardiac 
tissue by the heart contraction. A schematic representation 
of the intraluminal/extraluminal spaces with their pressures 
is reported in Fig. 1b, while in Sect. 2.4 we propose a spe-
cific treatment for the computation of Pim , with the main 
modeling assumption that Pim is considered independent of 
the intraluminal blood pressure and prescribed as a given 
datum.

Considering the Darcy compartments as networks of 
cylindrical vessels (as schematized in Fig. 1d), the local fluid 
volume fraction of compartment i in a given homogenization 
volume V can be written, by definition, as:

(1)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−∇ ⋅ (Ki∇pi) +
��i

�t
+

3�
j=1

�i,j(pi − pj) = �i in Ω,

�i = fi(pi,Pim) in Ω,

�pi

�n
= 0 on �Ω,
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where Ni is the total number of vessels belonging to com-
partment i, Li is the average vessel length and Ai is the aver-
age vessel cross section. The ratio ni =

Ni

V
 is the local density 

of vessels belonging to compartment i, whereas the product 
(nL)i is often denoted as the vessel length density. Given that 
the intramural vessels are modeled as cylinders with a rela-
tively thin wall, we assume that cardiac contraction affects 
exclusively the cross-sectional area, whereas the vessels den-
sity and length remain constant. Further, we assume that 
vessels cross section explicitly depend on the transluminal 
pressure difference (pi − Pim) , as supported by experimental 

�i =
Vf ,i

V
=

NiLiAi

V
= (nL)iAi,

measures (Spaan 1985). Under these hypotheses, the time 
derivative of the fluid volume fraction becomes:

where

represents the distensibility of vessels in compartment i, 
which is, in general, dependent on the transluminal pres-
sure difference (pi − Pim).

(2)

��i

�t
= (nL)i

�Ai

�(pi − Pim)

�(pi − Pim)

�t
= (nL)iCi

�(pi − Pim)

�t
,

(3)Ci =
�Ai

�(pi − Pim)

Fig. 1   a Computational domain Ω (consisting of the left ventricular 
free wall, in orange) for the microcirculation model. Aortic root, epi-
cardial coronary tree and right ventricular chamber (shaded) are also 
displayed but not a part of Ω . b Schematic representation of the coex-
istence of intramural vessels and myocardial tissue within the left ven-
tricular free wall (adapted from Duncker and Bache (2008)). c Ex vivo 
cryomicrotome image of coronary intramural circulation showing the 
organization of vessels within the ventricular wall (reproduced from 

Spaan et  al. (2008)). d Schematic visualization of the hierarchical 
organization of the intramural network within a homogenization vol-
ume V: coloring represents the belonging of a vessel to a specific class 
(i.e., small arteries, arterioles or capillaries) which corresponds to a 
specific Darcy compartment in our model. Vessels cross section Ai and 
average length Li are indicated for the first compartment, with vessels 
density ni =

Ni

V
 for each compartment i 
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By substituting eq. (2) in (1), we obtain the final formu-
lation of the compliant multi-compartment Darcy model:

for i = 1, 2, 3 . Notice that parameters Ki , �i,j and Ci in (4) are 
dependent on the transluminal pressure difference (pi − Pim) 
and are computed using the methods exposed in the follow-
ing two sections.

2.2 � Constitutive relations for vessel distensibility

As seen by its definition (3), vessels distensibility Ci rep-
resents the variation of cross-sectional area with respect 
to variations in transluminal pressure difference. Since the 
histological structure of coronary microvessels changes 
depending on their diameter, the constitutive relationships 
we used for Ci are compartment-specific and their choice 
is driven by experimental data. It is important to note that, 
since we are interested in hyperemic coronary flow, we used 
data related only to a vessel condition of maximal vasodila-
tion, ruling out the effects of vascular tone and autoregu-
lation mechanisms. This is motivated by the fact that, at 
maximal hyperemia, these mechanisms are exhausted and 
the vessel wall can be modeled as a fully passive structure.

For the compartment-specific constitutive relationships 
we consider what follows: 

(4)

⎧
⎪⎪⎨⎪⎪⎩

−∇ ⋅ (Ki∇pi) + (nL)iCi

�(pi − Pim)

�t
+

3�
j=1

�i,j(pi − pj) = �i in Ω,

�pi

�n
= 0 on �Ω.

1.	 Small arteries (comp. 1) have a relatively thick wall 
structure consisting of collagen and smooth muscle 
cells, and thus we consider these vessels as rigid and 
we set 

 where the specific value chosen for A1 corresponds to a 
diameter d = 150 μm, which we consider as mean diam-
eter for vessels of this class.

2.	 Arterioles (comp. 2) have been found to be much more 
distensible than the small arteries during in vivo obser-
vations in animal experiments (Hiramatsu et al. 1998; 
Yada et al. 1993). Also, experimental measures of arteri-
oles have shown a highly nonlinear relationship between 
transluminal pressure and cross-sectional area (Spaan 
1985). To capture this behavior, we fitted an analyti-
cal relationship on data from isolated arterioles (Spaan 
1985) (see Fig. 2); a logarithmic expression is chosen 
as best fit of the data. Since we have at disposal data 
only for p2 − Pim > 0 , we extend this curve through a 
sigmoid function in the negative region. The analytical 
expression is given by: 

(5)A1[mm2] = 0.07,

C1 = 0;

(6)A2 [ mm2] =

⎧

⎪

⎨

⎪

⎩

0.0030 + 0.0050

(1 + e−3.02∗10−4 (p2−Pim ))
if p2 − Pim < 0;

0.0011 ln[1.2(p2 − Pim) + 3500] − 0.0033 if p2 − Pim ≥ 0;

Fig. 2   Constitutive curves relating vessels cross section and transluminal pressure for arterioles and capillaries
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 Coefficients for the logarithmic fit in the positive region 
of (6) are computed with a least-square method applied 
to data reported in Spaan (1985). Regarding the sig-
moidal extension in the negative region, we assume an 
asymptotic minimum value of A2 = 0.003mm2 , whereas 
the remaining three coefficients are computed to ensure 
continuity and continuity of first and second derivatives 
at the junction point ( p2 − Pim = 0 ). From (3), we obtain 
the expression for the arteriolar compliance C2 : 

C2

�
mmHg ⋅ Pa−1

�
=

⎧
⎪⎨⎪⎩

1.51 ∗ 10−6e−3.02∗10
−4(p2−Pim)

(e−3.02∗10
−4(p2−Pim) + 1)2

if p2 − Pim < 0;

0.0013

1.2(p2 − Pim) + 3500
if p2 − Pim ≥ 0.

3.	 Capillaries (comp. 3) do not have any muscle cells, hav-
ing only a single layer of endothelial cells. However, 
experimental observations have shown that they are sur-
prisingly resistant to systolic compression, exhibiting a 
relatively low change in diameter between the diastolic 
( d ≃ 5.4 μm ) and systolic ( d ≃ 4.3 μm ) phases (Toyota 
et al. 2002). Differently from the case of arterioles, there 
are no experimental data relating capillary cross section 
and transluminal pressure. We assume as a modeling 
abstraction a curve for the capillary cross section built 
from the values of systolic/diastolic diameter in Toyota 
et al. (2002) with a sigmoid shape similar to A2 (see 
Fig. 2b). Its analytical expression is given by: 

 Due to the low amount of data, coefficients in (7) are 
difficult to determine. Since the only available experi-
mental observations are related to the systolic/diastolic 
diameters, we perform a first estimate by guessing the 
transluminal pressure difference across capillaries in the 
two phases and assuming an asymptotic minimum value 
of A3 = 1 μm2 . Coefficients are later fine tuned through 
a trials-and-errors approach to obtain the most physi-
ological results. From (3), we obtain the expression for 
the capillary compliance C3 : 

2.3 � Estimation of Darcy parameters

For permeabilities Ki , we assume a direct proportionality with 
the porosity, which coincides with the fluid volume fraction 
(the porous medium is saturated):

(7)A3 [mm2] = 1 ∗ 10−6 +
2.4 ∗ 10−5

(1 + e−3∗10
−4(p3−Pim)−0.5)

,

C3

[
mmHg ⋅ Pa−1

]
=

7.2 ∗ 10−9e−3∗10
−4(p3−Pim)−0.5

(e−3∗10
−4(p3−Pim)−0.5 + 1)2

.

where � is the specific permeability of the fluid/matrix sys-
tem, considered as independent of the Darcy compartment, 
and � is the blood dynamic viscosity; see the Discussion 
section for such choices.

The conductance coefficients �i,j mediate mass transfer 
between compartments, so for their formulation we start 

(8)Ki =
�

�
�i =

�

�
(nL)iAi,

considering each vessel as a Poiseuille-like resistor with con-
ductance (PFITZNER 1976):

then we extend this formula to the whole compartment, by 
considering it as a network of conductances in series and 
parallel, which is motivated by the tree-like structure of 
vessels networks. The conductance of the whole network 
is proportional to the one of the single vessels and to the 
vessels density ni:

 Thus, exploiting (9), we obtain:

where �∗
i
 is a coefficient to account for the specific morpho-

metry of the network. While length densities (nL)i are just a 
measure of the total length of vessels belonging to a certain 
class (normalized by volume), morphometry factors measure 
how these vessels are hierarchically arranged in space, incor-
porating information such as bifurcation/trifurcation ratio, 
fraction of vessel segments connected in series, and branch-
ing asymmetry in radii. While, in principle, these informa-
tion can be extracted from detailed topological data (Kassab 
et al. 1993; Schwarz et al. 2020), such operation would not 
be straightforward, also requiring a clustering of vessels to 
discrete compartments. For this reason, we compute these 
parameters through a calibration procedure exposed in 
Sect. 2.7. To reduce the number of parameters, we group the 
geometry-related parameter Li and the viscosity � into the 
final morphometry factor �i =

�∗
i

8��L2
i

 . This formulation allows 
us to have an explicit dependency of the conductance 

(9)�vessel,i =
A2
i

8��Li
;

�i ∝ ni�vessel,i.

(10)�i = �∗
i
ni

A2
i

8��Li
= �i(nL)iA

2
i
,



1869Modeling cardiac microcirculation for the simulation of coronary flow and 3D myocardial…

coefficients �i,j on the length densities (nL)i , which are the 
most used parameters to describe the degree of vasculariza-
tion and can, in principle, be space-dependent.

Since we can assume that mass exchanges between com-
partments depend on the conductances of both the upstream 
and downstream networks, we finally take as inter-compart-
ment conductance �i,j the expression:

Parameters � in eq. (8) and �i in eq. (11) are difficult to esti-
mate from data, so for their computation we rely on a cali-
bration procedure exposed in Sect. 2.7, alongside a list of all 
the other parameters used in the simulations (see Table 1).

(11)�i,j =
�i + �j

2
=

(nL)i�iA
2
i
+ (nL)j�jA

2
j

2
.

2.4 � Estimation of the intramyocardial pressure

The knowledge of the intramyocardial pressure Pim is funda-
mental to build curves Ai and Ci as well as the compliance term 
��i

�t
 in (1). It allows to include the effect of cardiac mechanics 

on microcirculation hemodynamics. According to previous 
studies (Algranati et al. 2010), most of the experimental obser-
vations related to coronary hemodynamics can be explained 
by considering cyclic changes in Pim induced by and closely 
following the pressure PLV generated inside the ventricular 
chamber. Other mechanisms, such as the shortening-induced 
intracellular pressure, were found to play a role only in the case 
of specific states of altered contractility.

Given these findings, we consider for the temporal wave-
form of Pim the left ventricular pressure PLV , obtained from 

Fig. 3   a Time waveform of the pressure in the left ventricular cham-
ber, obtained with an electromechanics simulation (Fedele et  al. 
2023). b Transmural modulation of intramyocardial pressure Pim in 

the left ventricular free wall. c 3D representation of the transmural 
modulation displayed at systolic peak

Fig. 4   a Segmented domain used for the solution of the 3D hemody-
namics problem. b Segmented domain, with mesh detail, used for the 
solution of the multi-compartment Darcy problem. c Representation 

of the coupling coupling between the two problems: Each coronary 
outlet Γk is coupled with a corresponding perfusion territory Ωk
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an electromechanics simulation (Fedele et al. 2023). Starting 
from the base waveform, we obtain personalized PLV curves 
by matching the systolic interval to the one of the patient and 
the peak PLV pressure to the peak of the patient’s aortic pres-
sure. The personalized PLV curve is reported in Fig. 3a, which 
includes also a comparison with the aortic pressure.

Since experimental findings pointed out that intramyocar-
dial pressure decreases almost linearly from the subendocar-
dium to the subepicardium (Baird et al. 1970), we include a 
linear transmural modulation of Pim such that:

which is in accordance with the quantitative experimental 
data in Baird et al. (1970), Heineman and Grayson (1985). 
A representation of this transmural modulation is reported at 
the systolic peak in Fig. 3b, together with a left ventricular 
distribution (see Fig. 3c). The final Pim imposed, therefore, 
has a time evolution that follows the one of the pressure in 
the left ventricular chamber PLV and it is modulated in space 
according to (12), decreasing linearly from the endocardium 
to the epicardium. This means also that each perfusion terri-
tory is subjected to the same intramyocardial pressure.

(12)
{

Pim = 0.9PLV at �Ωendocardium,

Pim = 0.3PLV at �Ωepicardium,

2.5 � Coupling with hemodynamics in epicardial 
coronaries

The new multi-compartment Darcy problem (4) with the 
parameters choices described in Sects. 2.2 and 2.3 is cou-
pled with large epicardial coronaries hemodynamics, where 
a 3D fluid dynamics problem given by the incompressible 
Newtonian Navier-Stokes equations is considered (Gregorio 
et al. 2021) (see Fig. 4a). At the two coronary inlets �Ωin

C
 , we 

prescribe patient-specific pressure waveforms, that are built 
in a personalized way from patients’ measures of brachial 
pressure and heart rate, using the methodology we developed 
in Pelagi et al. (2024). Downstream, the epicardial coronar-
ies are coupled with the Darcy model, representing micro-
circulation hemodynamics solved in the left ventricular free 
wall (Fig. 4b).

To couple the two subproblems, each coronary outlet Γk 
is associated with a perfusion territory Ωk in the myocar-
dium (see Fig. 4c). Interface conditions representing force 
balance are prescribed at each coronary outlet based on the 
mean pressure of Darcy compartment 1 p1 in the correspond-
ing perfusion territory and on the coronary hemodynamic 
quantities pC , uC . As proposed in Gregorio et al. (2021), 
this results in the following defective boundary condition, 

Table 1   List of parameters used for the simulations. Calibration refers to a trials-and-errors procedure on patient P1 to recover experimental data

Parameter Value [compartments] Source

Length density (nL)i [0.5 ; 15 ; 8000] mm mm−3 Tomanek et al. (1991), Dedkov et al. (2006), 
Schwarz et al. (2020)

Specific permeability � 1.75 × 10−10 m −1 Michler et al. (2013), Papamanolis et al. (2021)
Coupling coefficient � 3 × 10−10 m 3 s −1 Pa−1 Pelagi et al. (2024)
Morphometry factor �i [0.005 ; 0.05 ; 10] mm−1 s −1 Pa−1 Calibration
Veins conductance � 8 × 10−6 s −1 Calibration
Right atrium pressure pra 2 mmHg
Blood density � 1063 Kg m −3

Blood viscosity � 0.0035 Pa s
Peak brachial pressure (P1) 140 mmHg Measure
Heart rate at rest (P1) 63 bpm Measure
Derived period T (P1, stress) 0.714 s Pelagi et al. (2024)
Peak brachial pressure (P2) 130 mmHg Measure
Heart rate at rest (P2) 55 bpm Measure
Derived period T (P2, stress) 0.782 s Pelagi et al. (2024)
Time discretization Δt 2 × 10−3   s
Space discretization hNS 0.4 mm Sens. analysis
Space discretization hDarcy 1.5 mm Sens. analysis
Tolerance � 1 × 10−10

Relaxation factor � 0.1 Convergence test
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completed with homogeneous tangential Neumann condi-
tions for the NS problem:

where uC is the coronary velocity unknown, |Ωk| is the vol-
ume of the perfusion territory Ωk and � is the coupling con-
ductance, whose value is reported in Table 1.

Interface conditions representing mass conservation 
are prescribed in the Darcy problem through the following 
source terms �i:

In the expression for �1 from (14), which represents the mass 
source in the first Darcy compartment, N is the total number 
of coronary outlets, the term ∫

Γk uC ⋅ n is the flow through 
the coronary outlet Γk and �k is a characteristic function 
ensuring that each perfusion territory receives blood only 
from the corresponding coronary outlet Γk . Notice also the 
expression for �3 (14), representing the mass sink in the third 
Darcy compartment due to the venous return and featur-
ing the constant parameters � (conductance of the whole 
coronary venous circulation) and pra (right atrium pressure), 
whose values are reported in Table 1.

Myocardial partitioning and the association between feed-
ing arteries and a specific perfusion territory are performed 
with the following distance approach: 

1.	 The barycenter of each coronary outlet Γk is projected 
onto the ventricular geometry. In this step, we find the 
points Qk in the myocardium that are closest to the cor-
responding coronary outlet;

2.	 For each projected outlet, we compute a distance dk 
through the solution of an eikonal problem in the ven-
tricular geometry: 

 where rk is the radius of the coronary outlet Γk . The dis-
tances dk found this way, therefore, represent modified 
distances with respect to the euclidean ones, to take into 
account the radius of the feeding arteries;

3.	 Myocardial partitioning is performed exploiting the 
Voronoi tessellation algorithm, assigning each point in 
the myocardium to a specific perfusion region Ωk (so the 

(13)
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1 if x ∈ Ωk,

0 if x ∈ Ωk,

�2 = 0,

�3 = −�(p3 − pra).

(15)

{
|∇dk| = 1

rk
in Ω,

dk = 0 on Qk,

corresponding outlet points Qk ) if the modified distance 
dk is the minimum across all the modified distances 
computed this way.

In comparison with the approach based on euclidean dis-
tance proposed in Gregorio et al. (2021), the previous pro-
cedure is able, owing to the inclusion of the radius informa-
tion, to generate larger perfusion regions from large feeding 
arteries, and vice-versa.

2.6 � Time discretization

Parameters Ki , �i,j and the compliance term Ci , computed 
with the data-driven approach described in Sects. 2.2-2.3, 
introduce significant nonlinearities in the compliant multi-
compartment Darcy model (4). To cope with this issue, we 
rely on a linearized version of (4) obtained with a first-order 
finite difference discretization for the time derivatives and a 
semi-implicit treatment for the unknowns. Given a function 
v(t), we introduce a partition of time domain based on dis-
crete instants tn = nΔt, n = 0, 1,… , with Δt being the time 
discretization parameter, and we denote the approximated 
quantity as vn ≃ v(tn).

Accordingly, the time-discretized multi-compartment 
Darcy model reads:

where Pim is the given intramyocardial pressure.

2.7 � Geometry reconstruction, numerical solution 
and simulation setup

Coronary blood flow (CBF) and perfusion simulations in 
hyperemic conditions (CBF-Perfusion simulations) performed 
on two patients from Centro Cardiologico Monzino in Milan. 
These patients are chosen among subjects with the following 
characteristics: 

1.	 No history of previous major cardiac adverse events;
2.	 Symptoms of coronary artery disease including angina 

pectoris;
3.	 No actual anatomical signs of coronary artery disease 

(ruled out by imaging examinations), including coronary 
stenoses and atherosclerotic plaques.

These patients are therefore representative of a population of 
high-risk, symptomatic subjects that, however, have shown no 
sign of obstructive CAD or inducible myocardial ischemia.

(16)
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Fig. 5   Left: total left arterial 
inflow and venous outflow 
over time for patient P1 (a) 
and P2 (b) as compared with a 
Doppler intracoronary veloc-
ity measure reproduced from 
Abe et al. (2000) (c). Right: 
average-in-space pressure in the 
Darcy compartment and aortic 
pressure over time for patient P1 
(d) and P2 (e). f Averaged (both 
in space and in time) pressure 
values for both patients com-
pared to experimental measures 
reported in Chilian et al. (1989). 
Straight blue lines only for 
visualization purposes

Table 2   List of flow-related 
ratios computed by our model 
as compared to the in vivo 
Doppler measures reported in 
Marcus et al. (1999)

Ratio P1: LAD-RCA​ P2: LAD-RCA​ Measure: LAD-RCA​

Systolic/Diastolic peak flow ratio 0.35–0.38 0.31–0.31 0.37–0.97
Systolic/Diastolic mean flow ratio 0.35–0.39 0.28–0.29 0.22–0.85
Mean flow/Peak flow (Systole) 0.45–0.48 0.75–0.74 0.32–0.38
Mean flow/Peak flow (Diastole) 0.75–0.78 0.81–0.81 0.57–0.46
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For both patients, the left ventricular and coronary geom-
etries are segmented from contrast-enhanced coronary com-
puted tomographic angiography (cCTA) images, under the 
supervision of expert cardiologists. Coronary epicardial trees 
are segmented through a semi-automated procedure based on 
the colliding fronts algorithm in the VMTK software suite 
(Antiga et al. 2008): For each branch, lower and upper thresh-
olds are chosen based on the local gray levels, whereas, for 
the algorithm parameters, default values are used. The left 
ventricular free wall is segmented using the fully automated 
tool TotalSegmentator (Wasserthal et al. 2023). Since the main 
interest is on perfusion of the left ventricle, coronary branches 
of the right coronary artery (RCA) perfusing the right ventricle 
are pruned from the segmentation. Geometries are meshed 
using VMTK: An example of the computational domains 
obtained is reported in Fig. 4.

For the numerical managing of the coupled problem, after 
time discretization we rely on a loosely coupled scheme: Time-
discretized Navier–Stokes (see Gregorio et al. (2021)) and 
Darcy (16) problems are solved sequentially following a fixed-
point iterative strategy with relaxation, by exchanging at each 
iteration s the coupling conditions (14) and (13). The corre-
sponding iterations are reported in Algorithm 1, where the 
index n + 1 for the current time instant is omitted for clarity, � 
is a given tolerance and � is the relaxation parameter. As a 
stopping criterion, we consider the normalized difference 
between consecutive iterations diffx =

‖x(s)−x(s−1)‖
‖x(s)‖  for each 

unknown x; the norm has to be intended as [H1]3 for velocities 
and L2 for pressures.

Algorithm 1   Solution of the time-discretized perfusion 
problem

Fig. 6   a–c Arteriolar and capillary flow over time at three sample points in the mid-anterior wall at different depth locations. d Localization of 
the three sample points used for the flow and diameter computation. e, f Arteriolar and capillary diameters over time at the same sample points
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Each subproblem is therefore solved independently with a separate solver. The fluid problem is solved using GMRES 
method with SIMPLE preconditioner (Deparis et al. 2014), whereas the compliant Darcy problem is solved using conjugate 
gradient method with a block Jacobi preconditioner.

Table 1 reports a list of the values for all the physical and numerical parameters used alongside an indication on how they 
are chosen. In particular, parameters � and �i are calibrated on a single patient (patient P1) with two targets: 

1.	 Reproduce a distribution of pressure, along the micro-
vasculature, matching experimental data from Chilian 
et al. (1989);

2.	 Reproduce an in-space average MBF, taken as the time-
averaged capillary flow, matching the value obtained 
from the stress-CTP examination.

The same parameters are then used also for another patient 
P2, which represents, therefore, a validation case.

All the simulations are run using the software ����� , a 
high performance library for Finite Elements simulations of 
multiphysics, multiscale and multidomain problems devel-
oped at MOX - Dipartimento di Matematica, in cooperation 
with LaBS - Dipartimento di Chimica, Materiali e Ingeg-
neria Chimica, both at Politecnico di Milano (Africa 2022; 
Africa et al. 2024).

3 � Results

Simulations results are analyzed in Sect. 3.1 in terms of the 
following outputs: 

1.	 Time evolution of the epicardial coronary flow, com-
puted from the Navier–Stokes (NS) model, and of the 
venous outflow computed from the Darcy model;

2.	 Time evolution of the in-space average pressure within 
the Darcy compartments (intramural blood pressure);

3.	 Time evolution of arteriolar flow, capillary flow and ves-
sel diameter at the subendocardium, mid-myocardium 
and subepicardium, computed from the Darcy model;

4.	 3D distribution of capillary flow (from Darcy) and 3D 
velocity patterns in the epicardial arteries (from NS) 
along the whole heartbeat.
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Fig. 7   a–c 3D epicardial coronary pressure and capillary flow, com-
puted as in the second line of 17, and d–f detail of the blood velocity 
in the left anterior descending artery, at three selected instants of the 

cardiac cycle. Notice that the scales for the coronary pressure are dif-
ferent at the three time instants to better highlight the key features. 
Patients P1 (top) and P2 (bottom)
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All the analyzed outputs are compared with in vivo human 
measurement or experimental data, when available. In 
Sect. 3.2, we report a comparison of the results with the 
outcomes of the model in the rigid case, i.e., vessels compli-
ance is set to zero, whereas in Sect. 3.3 we report a sensitiv-
ity analysis with respect to the new parameters introduced 
with the proposed model.

3.1 � Analysis of hemodynamics results

Figure 5a, b reports the time evolution of the arterial inflows 
and venous outflow (computed as the in-space average of �3 
as defined in (14)) for patients P1 and P2.

The physiological phasic pattern of high diastolic inflow 
and high systolic outflow can be clearly seen; moreover, 
we find an excellent accordance of arterial waveforms with 
in vivo experimental measures reported in Abe et al. (2000), 
Sunyecz et al. (2018) and depicted in Fig. 5c.

Table 2 summarizes some relevant quantities regarding 
the morphology of the flow waveform as compared with the 
in vivo Doppler measurements in rest conditions reported in 
Marcus et al. (1999). We report an excellent agreement in 
terms of the systolic/diastolic flow ratio in the left anterior 
descending (LAD) artery, whereas this ratio is underesti-
mated in the case of the RCA. This is in agreement with our 
geometric model choices, which do not include the RCA 
branches perfusing the right ventricle, where the flow fol-
lows the aortic pressure waveform, thus featuring its peak 
during systole. Our computed peak/mean flow ratios show 
a slight underestimation compared to the measures, which 
could be due to small mismatches in the timing between 
the aortic and intramyocardial pressure waveforms used as 
input, resulting in a smoothed early diastolic flow peak.

Figure  5d, e reports the time evolution of the (in-
space averaged) Darcy pressure for all the compartments, 

Table 3   Summary of hemodinamically relevant results computed 
for patients P1-P2. Velocities are averaged on the cross-section land-
marks reported in Fig. 8, and diameters and flow rates are computed 
at the same landmarks

Artery Quantity P1 P2 Average

LAD Cross-section avg. peak velocity 
cm s −1

39 44 41.5 ± 1.5

Flow rate ml min−1 258 110 184 ± 74
Diameter mm 5.4 3.4 4.4 ± 1

LCX Cross-section avg. peak velocity 
cm s −1

32 36 34 ± 2

Flow rate ml min−1 44 66 55 ± 11
Diameter mm 3.0 3.6 3.3 ± 0.3

RCA​ Cross-section avg. peak velocity 
cm s −1

19 16 17.5 ± 2.5

Flow rate ml min−1 105 60 82.5 ± 22.5
Diameter mm 4.8 4.1 4.45 ± 0.35

Fig. 8   Velocity magnitude at 
the diastolic flow peak for the 
main artery branches: LAD, 
Left Circumflex artery, RCA 
for patient P1 (a, b) and P2 (c, 
d), with indication of the cross 
section used to find the peak 
velocity values. All the cross 
sections are placed in the most 
proximal segments of the cor-
responding artery, i.e., segment 
1 for RCA, segment 6 for LAD 
and segment 11 for LCX
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compared with the aortic pressure curve for patients P1 
and P2. We can see that only small arteries follow the 
waveform of the aortic pressure, whereas arteriolar pres-
sure is dominated by the intramyocardial pressure gener-
ated by contraction, with increasing pressure during dias-
tole likely caused by the vessel filling with blood. The 
curves show blood pressurization due to contraction in 
systole. We report an in-time mean value of the Darcy 
pressures of 82.2, 60.4, and 45.0 mmHg (patient P1) 
and 84.9, 63.1 and 51.3 mmHg (patient P2) for the small 
arteries, arterioles and capillaries, respectively. All these 
findings reproduce what experimentally measured and 
reported in Chilian et al. (1989) and depicted in Fig. 5f. 
Notably, we do not observe any retrograde flow in the 

early systole, whose absence may be due to the hyperemic 
conditions.

Figure 6a–c reports the arteriolar and capillary blood 
flow waveforms over time (patient P1), both computed at 
three sample points in the mid-anterior left ventricular wall 
located at different depths: subepicardium (1 mm below epi-
cardial surface), mid-myocardium (in the middle), and sub-
endocardium (1 mm below endocardial surface). The used 
sample points are depicted in Fig. 6d. For the computation 
of the arteriolar and capillary flows, we use the standard 
expressions:

(17)
{

Arteriolar flow rate = �1,2(p1 − p2),

Capillary flow rate = �2,3(p2 − p3).

Fig. 9   Comparison between arterial inflow and venous outflow flow 
rates (a) and pressures (b) over time for the compliant (C) and rigid 
(R) microcirculation models; arterial inflow and venous outflow are 

identical in case R. c–e 3D epicardial coronary pressure and capil-
lary flow, computed as in (17), at three selected instants of the cardiac 
cycle. Simulation R for patient P1
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From the waveforms of Fig. 6a–c, we can observe cyclic 
patterns of flow also in the microvasculature, similar to 
what obtained in the epicardial arteries (see Fig. 5a, b) with 
wider oscillations going from the epicardium to the endo-
cardium. These oscillations are lower in the capillary rather 
than arteriolar flow, suggesting a dampening effect of the 
microcirculation similar to what is observed in the periph-
eral circulation as a response to the pulsatility of the aor-
tic pressure. This effect is observed to an increasing extent 
from the subendocardium to the subepicardium, and it is also 
characterized by a time delay of the waveforms because of 
the compliance of the vessels wall.

Figure 6e, f reports the diameters of arterioles and capil-
laries computed from the pressures through relations (6)–(7) 
at the same sample points.

Substantial differences are observed for both arterioles 
and capillaries at the various depths: slight increase in 
diameter at the subepicardium, slight decrease at the mid-
myocardium and marked decrease at the subendocarium. 
This behavior, as well as the increasing flow oscillations, 
is consistent with the increase of the intramyocardial pres-
sure from the epicardium to the endocardium and shows 
good agreement with experimental data of phasic diameter 
change in the arterioles (systolic/diastolic diameter change 
of ≃ −20% to ≃ +2% from endocardium to epicardium, 
as reported in Algranati et al. (2010) from various animal 
measures).

Figure 7 reports the 3D results for coronary flow, coro-
nary pressure and capillary flow at three key time instants 
over the cardiac cycle in the two patients. Consistently with 
the flow waveforms reported in Figs. 5, 6, we observe that 

Fig. 10   Effect of � in the range (5 × 10−10−5 × 10−8)m−1 : total arterial inflow (a) and average-in-space arteriolar pressure (b) waveform over 
time. c–e 3D distribution of time-averaged capillary flow (MBF) over the myocardium
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Fig. 11   Effect of (nL)i values scaled homogeneously in the range 
0.75x–2x w.r.t. the values reported in Table 1: waveforms over time 
of total arterial inflow (a) and arteriolar pressure (b). c, d 3D distri-
bution of time-averaged capillary flow (MBF) normalized over the 

mean value to highlight the distribution; e) logarithmic fit built on the 
dependence of in-space averaged MBF vs the relative values of (nL)i 
w.r.t. the ones reported in Table 1

Fig. 12   Effect of different combinations of (nL)i values on flow and pressure waveforms. The base scenario refers to the parameters reported in 
Table 1, whereas the other two scenarios represent relative scaling (as indicated) with respect to the base parameters
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the diastolic flow is much higher than the systolic one both 
at the level of the capillaries and, in particular, of the epi-
cardial arteries, despite the upstream pressure in the aorta 
being higher at the systolic peak. Also, we found a much 
higher pressure drop along the epicardial arteries at the early 
diastole ( Δp ≃ 9−15 mmHg) rather than at systolic peak 
( Δp ≃ 4−5 mmHg), which is a consequence of the higher 
diastolic flow. At the systolic onset (Fig. 7b), the aortic pres-
sure is at its lowest since the aortic valve is still closed; how-
ever, ventricular contraction is generating a high intramyo-
cardial pressure which is the responsible of the inversion of 
the pressure gradient along the epicardial coronaries. This 
leads to a disturbed coronary flow (see representations in 
Fig. 7b) at the proximal bifurcations, featuring vortexes and 
regions of recirculation. However, this never results in a 
retrograde flow, most likely due to inertial effects and the 
brevity of this phase. Lastly, we observe that capillary flow 
distribution shows high regional heterogeneity in diastole, 
whereas it exhibits predominantly transmural heterogeneities 

in systole, when local hemodynamics is dominated by the 
intramyocardial pressure.

Figure 8 reports the blood velocity at diastolic flow peak 
computed in the three main arteries, whereas Table 3 reports 
a summary of the most hemodynamically relevant quantities 
obtained from the simulations, for both patients P1-P2. The 
obtained velocities in the LAD and LCX (left circumflex) 
arteries are in good agreement with the in vivo Doppler 
measures reported in Wieneke et al. (2005) for hyperemic 
conditions (48.8 ± 14.3 cm s−1 and 43.9 ± 11.5 cm s−1 for the 
LAD and LCX). Compared to these measures, our velocity 
results are on the lower side due to our two cases showing 
no anatomical lesions in the coronary arteries, while the data 
reported in Wieneke et al. (2005) refer to a mixed popula-
tion which includes also stenotic arteries where velocities 
may be much higher. In the case of the RCA, we observe an 
underestimation of blood velocity with respect to the meas-
ures ( 42.4 ± 12.4 cm s−1 ) which is due to the absence, in our 
model, of the blood flow perfusing the right ventricle.

Fig. 13   Effect of �i values scaled homogeneously in the range 0.75x–
2x w.r.t. the values reported in Table 1: waveforms over time of total 
arterial inflow (a) and arteriolar pressure (b). c, d 3D distribution of 
time-averaged capillary flow (MBF) normalized over the mean value 

to highlight the distribution. e Logarithmic fit built on the depend-
ence of in-space averaged MBF vs the relative values of �i w.r.t. the 
ones reported in Table 1
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Considering how inter-patient variability in the anat-
omy affects the hemodynamics, we find that the diameter 
of large coronaries has a substantial impact on the flow 
rate with negligible effect on blood velocity. Indeed, we 
see that the flow rate in a specific branch scales roughly 
with the cross-sectional area, whereas velocities tend to 
remain constant. We also observe a significant variability 
regarding the LAD-LCX flow subdivision, with values of 
85–15% for patient P1 and 62–38% for patient P2, which 
is consistent with the LAD/LCX diameter ratio (1.80 and 
0.944 for patient P1 and P2, respectively). This variabil-
ity in flow subdivision can also be related to the myo-
cardial mass perfused by each branch. Specifically, our 
patient P1 exhibits a high caliber first diagonal branch 
that originates from the proximal segment of the LAD 
and perfuses much of the territories normally perfused 
by the circumflex artery, which in this patient shows 
a much lower diameter. Conversely, in patient P2 the 
two branches have approximately the same caliber and a 
perfused myocardial mass much more balanced between 
them, resulting in a flow rate more evenly distributed. 
These results suggest that the specific anatomy plays a 
major role in flow subdivision and thus cannot be over-
looked in computational frameworks that need an explicit 
prescription of such subdivision.

3.2 � Comparison with rigid microcirculation model

To highlight the importance of using a compliant formu-
lation for the coronary microcirculation, we report here a 
comparison of the main model outcomes with respect to a 
scenario of rigid microvasculature.

In such scenario, vessels compliances Ci in (4) are set 
to zero and vessels cross sections Ai are constant in time, 
leading to constant Darcy parameters Ki , �i,j that we set 
according to our previous study (Pelagi et al. 2024). Figure 9 
reports a comparison of the arterial inflow/venous outflow 
over time, as well as the 3D results of coronary pressure and 
capillary flow in the diastolic and systolic phases.

As we see from Fig. 9a, using a rigid model for the micro-
circulation results in an in-phase flow for the arterial and 
venous side of the coronary circulation, where the total 
arterial inflow is identical to the venous outflow. Unlike in 
the compliant case reported in Fig. 7, the systolic impedi-
ment effect is completely absent and the highest flows is 
obtained in systole. This can be seen also from the 3D results 
of Fig. 9e, where the capillary flow shows the highest values, 
along with the highest pressure drop in the epicardial coro-
naries, at the systolic peak. All of these outcomes, for the 
rigid model, are in contrast with the experimental observa-
tions and in vivo measures of coronary flow and pressure.

3.3 � Parameter sensitivity analysis

All the results presented in Sect. 3.1 are obtained using val-
ues for vessels length densities (nL)i (reported in Table 1) 
computed from literature morphometric studies. For the 
small arteries, the length density is obtained computing 
the total length of vessels with diameter d > 100 μm in the 
dataset from Schwarz et al. (2020) and dividing by the total 
volume of perfused myocardium reported in the same study. 
Values for the arteriolar and capillary length density are 
taken from Dedkov et al. (2006) and Tomanek et al. (1991), 
respectively, and adjusted to be representative of classes 
of vessels with a (albeit narrow) distribution of diameters 
rather than a single diameter value. Specific permeability 
� is computed through eq. (8) so that the resulting Darcy 
permeabilities Ki are in line with previous computational 
studies (Michler et al. 2013; Papamanolis et al. 2021). Since 
inter-patient variability of these parameters could be rel-
evant for predictive applications, we report here a sensitivity 
analysis performed to quantify how and to what extent these 
parameters , alongside the morphometry factors �i , affect 
the results.

Figure  10 reports the results of the sensitivity 
analysis on the specific permeability � in the range 
(5 × 10−10−5 × 10−8)m−1 . This affects the Darcy perme-
abilities Ki (see (8)). For all the three values considered, we 
observe no relevant changes in the waveforms of arterial 
flow and in-space average arteriolar pressure over time (a-b) 
and in the overall time-averaged capillary flow (MBF, c-e). 
Regarding the latter quantity, we notice an increased hetero-
geneity in MBF regional distribution as � decreases. This 
can be interpreted in the following way: The mass source 
term in the first Darcy compartment ( �1 in (14)), representing 
blood flow in the different perfusion regions coming from 
the associated feeding arteries, is piecewise constant and 
shows discontinuities at the borders of the perfusion regions. 
However, these regions are not independent from each other, 
since spatial fluxes regulated by Darcy permeabilities Ki lead 
to blood diffusion across the borders, smoothing the discon-
tinuities resulting from the blood supply at the epicardial 
level. This smoothing effect among regions increases for 
higher values of � . Physically, this means that � regulates 
how independent each perfusion territory is from the sur-
rounding ones, with lower values associated with a more 
compartmentalized perfusion. Since the range of values ana-
lyzed is quite large (two orders of magnitude), we conclude 
that our model, in terms of in-space average quantities, has 
a rather low sensitivity toward �.

Figure 11 reports the results of the sensitivity analysis 
on the vessels length density (nL)i when the values associ-
ated to each Darcy compartment are scaled all by the same 
factor, in the range 0.75x–2x w.r.t. the values reported in 
Table 1. From the waveforms in Fig. 11a, b, we can see 
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that the coronary flow and arteriolar pressure show a high 
sensitivity toward these parameters, which is not surpris-
ing given the direct proportionality between them and the 
inter-compartment Darcy conductances �i,j (see (11)). We 
notice also that the systolic flow is much less affected than 

the diastolic one, which is likely due to the fact that ves-
sels length densities (nL)i affect also the compliance term 
in (4), leading to the balance of opposite contributions. 
Since diastolic flow is instead highly dependent on (nL)i , 
we observe an overall logarithmic dependence of in-space 

Fig. 14   Comparison between simulated MBF ( MBFsim ) and stress-CTP map ( MBFCTP ) for patients P1 and P2. Left block: anterior view; right 
block: posterolateral view. a, b continuous MBF; c, d region-averaged MBF
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average MBF vs (nL)i , with the analytical fitted relation-
ship reported in Fig. 11e. Other effects include higher 
arteriolar pressures (higher conductances in the Darcy 
model means that there is a higher pressure jump between 
the capillary compartment and the veins) and negligible 
effects on MBF distribution, which is mostly regulated by 
Darcy permeabilities Ki . Even if Ki are directly propor-
tional to (nL)i (see (8)), the range analyzed for this param-
eter is too narrow, compared to the sensitivity we found 
for � , to lead to relevant differences.

Since the model may show different responses to varia-
tions in single compartment length densities, for example 
due to the different constitutive relationships implemented 
for arterioles and capillaries, we also run simulations where 
(nL)i is changed non-uniformly in the three compartments. 
Figure 12 reports the results in terms of total arterial inflow 
and pressure in small arterioles and arterioles in the two 
following scenarios (base refers to Table 1),: 

1.	 (nL)1 doubled (w.r.t. base), (nL)2 halved, (nL)3 base,
2.	 (nL)1 doubled, (nL)2 base, (nL)3 halved;

We can see that the flow waveform is predominantly affected 
by the capillary length density, with an increased oscillation 
in systolic flow and a slight decrease in diastolic flow in sce-
nario 2. Pressure in the small arteries relatively unaffected in 
both scenarios, whereas diastolic arteriolar pressure shows a 
moderate ( ≃ 5 mmHg) and relevant ( ≃ 10 mmHg) increase 
in scenarios 1 and 2, respectively.

Figure 13 reports the results of the sensitivity analysis on 
the morphometry factors �i when the values associated to 
each Darcy compartment are scaled all by the same factor, 
in the range 0.75x–2x w.r.t. the values reported in Table 1. 
Similarly to what observed in the case of length densities, 
we report a high influence of �i on diastolic flow and overall 
in-space average MBF, but with negligible effect on MBF 
distribution.

From this analysis on the changes of the most relevant 
parameters, we can conclude that: 

1.	 � mainly regulates the sharpness in the MBF gradients 
between adjacent perfusion regions. Higher values of 
� lead to smoother gradients and a more homogenized 
perfusion.

2.	 Parameters (nL)i regulate the pressure jumps between 
compartment i and its adjacents. We also observe that 
(nL)i has a relevant effect on diastolic flow, which greatly 
increases as (nL)i increase, while its effects on systolic 
flow is negligible. Out of all the Darcy compartments, 
the capillary length density (nL)3 shows the highest 
impact on the results.

3.	 Parameters �i have an effect similar to (nL)i , with a great 
increase of diastolic flow as �i increase.

4 � Discussion

Precise and effective modeling of coronary hemodynamics 
and cardiac perfusion is a daunting task due to the complex-
ity of physical phenomena occurring during the heartbeat. 
The multiscale nature of the coronary circulation and the 
presence of a cyclic mechanical activation of the muscle 
represent key features that have a deep impact on the hemo-
dynamics at the different scales. Several clinical studies 
demonstrated that the quantification of blood flow at the 
capillary level and over the various regions of the cardiac 
muscle adds significant prognostic value in the management 
of patients suffering from coronary artery disease (Pontone 
et al. 2019; Baggiano et al. 2020; Pelletier-Galarneau et al. 
2019; do AH de Souza 2022). In these studies, in vivo func-
tional imaging techniques such as nuclear imaging (positron 
emission tomography - PET, single photon emission com-
puted tomography-SPECT) or stress-CTP are used to extract 
a 3D map of myocardial perfusion based on the radiotracer 
signal (in the nuclear imaging tests) or the time-attenuation 
curves of the contrast agent over the heartbeat. In all the 
cases, the myocardial blood flow is quantified using both 
diastolic and systolic flow values, so the development of 
models able to accurately capture both the diastolic and sys-
tolic 3D microcirculatory hemodynamics is of paramount 
importance.

In this work, we present a fully distributed, 3D mathemat-
ical model of coronary hemodynamics from the epicardial 
arteries (Navier–Stokes formulation) to the intramural vas-
cular beds (multi-compartment Darcy formulation), that also 
includes for the first time the compliance of the microvessels 
and the presence of a cyclic external pressure representing 
the effects of cardiac contraction. The Darcy flow approach 
is a popular choice as it allows to describe microcirculation 
hemodynamics in a computationally efficient way without 
the need to solve 1D fluid dynamics equations in the full 
microvascular network, which is unfeasible due to its high 
computational cost (Chapelle et al. 2009; Papamanolis et al. 
2021). Also, the multi-compartment formulation allows to 
take into account histological differences between intramu-
ral vessels of different diameter through vessel clustering 
into discrete classes (compartments) (Michler et al. 2013; 
Gregorio et al. 2021). As an alternative, there is also the pos-
sibility to couple Kirchhoff’s current law to discrete network 
(representing conservation of mass at the bifurcations) with 
Poiseuille law for the conductance of each segment, treated 
as a cylindrical element up to the arterioles (Schwarz et al. 
2020): This approach has the advantage of being closer to 
the actual anatomy, considering a gradual reduction of the 
diameters as vessels progressively branch. However, the 
inclusion of the smallest arterioles and capillaries in such 
framework remains a challenge due to their huge number, 



1884	 G. Montino Pelagi et al.

and the assumption of Poiseuille law limits its applicability 
to steady flow conditions, neglecting cardiac contraction.

In our model, we include nonlinear constitutive relation-
ships for microvessels compliance that we built on experi-
mental data and we propose a new formulation for the Darcy 
parameters based on histologically relevant quantities, e.g., 
the local length density of vessels. This aspect is particu-
larly relevant since such direct link can be exploited for a 
robust and precise calibration of the model, potentially tun-
ing these parameters among the various myocardial regions, 
for example to distinguish between more and less vascular-
ized territories.

Our model, applied to the simulation of hyperemic coro-
nary flow in real clinical cases with geometries segmented 
from CT images, is successful in reproducing the phasic 
coronary flow pattern of high diastolic arterial inflow and 
systolic venous outflow, showing excellent agreement with 
experimental literature data with respect to the shape of the 
flow and pressure curves, the time evolution of diameters of 
microvessels and the differences at the various depths in the 
cardiac muscle.

As we show in Sect. 3.2, the use of a compliant model 
for the microcirculation is crucial to capture these features 
of the coronary circulation, since rigid models fail to cor-
rectly reproduce the physiology. This has also important 
consequences from a clinical standpoint, since an unphysi-
ological systolic flow leads to the overestimation of the total 
myocardial perfusion and of the mean pressure loss along 
the epicardial coronaries. To account for the systolic impedi-
ment effect while still using a rigid microcirculation model, 
one may consider the use of an "effective" inflow boundary 
condition (as we did in Pelagi et al. (2024)) or on a modu-
lation of the downstream vascular pressure (Zingaro et al. 
2023), even though these choices are less representative of 
the actual physiology.

Finally, we notice that the calibration of the Darcy param-
eters seems to be robust with respect to the patients. Indeed, 
we use only limited information about P1 hemodynamics 
(namely the in-space average MBF) for the calibration and 
this leads to consistent results also for patient P2. For a more 
personalized setup, perfusion data from dynamic CTP acqui-
sition at rest could also be used to calibrate the microcircula-
tion parameters related to the topology of the vasculature, 
i.e., the length densities (nL)i and morphometry factors �i 
over the myocardium. In this setting, the constitutive rela-
tionships (5), (6), (7) (determining vessel area) would need 
to be replaced with suitable expressions representative of 
the rest state. The model can be then used to make predic-
tions on perfusion relative to a virtual hyperemic scenario, 
using values for (nL)i and �i calibrated with rest perfusion 
data but with the constitutive relationships for Ai relative to 
the hyperemic state, which incorporate the effects of maxi-
mal vasodilation. The biggest challenge for such framework 

is finding the correct expressions for Ai at rest in patients 
affected by CAD. Indeed, in these cases, the autoregulation 
mechanisms are very likely to induce some degree of vaso-
dilation in the microcirculation also at rest, to compensate 
the pressure loss due to the lesions in large vessels. Unlike 
in the hyperemic conditions, where maximal vasodilation 
is assumed for every patient, it can be difficult to assess 
the amount of vasodilation at rest, making the estimation 
of the Ai curves a daunting task. Nonetheless, this approach 
holds great potential for fully personalized simulations, so 
addressing such challenges would be of high interest for 
future studies.

From a clinical perspective, our study provides an impor-
tant contribution in view of the development of a tool to pre-
dict the whole hemodynamics in the coronary tree. To this 
regard, in Pelagi et al. (2024) we have shown that our model 
is successful in predicting fractional flow reserve (FFR), 
along the lines of previous works (Taylor et al. 2013; Tang 
et al. 2020; Pontone and Rabbat 2017; Ko et al. 2017; Lucca 
2024), and in providing information on global Myocardial 
Blood Flow (MBF). Here, we instead focus on microcir-
culation, providing information on hemodynamics also at 
the tissue level. With this aim in mind, we remark that our 
model specifically adopts a fully distributed description of 
microvasculature hemodynamics and over the whole heart-
beat, making it possible to quantify regional distribution of 
MBF over the myocardium. This will allow us in principle 
to include in our model the specific effects of other patholo-
gies such as left ventricular hypertrophy and scenarios of 
altered contractility.

In the direction of developing a tool which is able to 
predict also MBF distribution, we present here some fur-
ther (preliminary) results on the comparison of our simu-
lated MBF maps with those provided by the stress-CTP 
imaging acquisition, according to the protocol performed 
at Monzino Cardiology Centre. Figure 14 reports such 
comparison, where we report the continuous MBF over 
the whole myocardium and the MBF averaged over the sin-
gle perfusion regions, both for patients P1 and P2. Notice 
that the computational domains are the same considered 
in the previous sections and reconstructed as described in 
Sect. 2.7.

From the results of Fig. 14a, b, we notice that perfusion 
maps from stress-CTP imaging show higher heterogenei-
ties and sharper fluctuations in MBF if compared with 
simulated perfusion maps, which exhibit smoother and 
more homogeneous values. This can be due to the presence 
of some noise in the in vivo measurement, as well as to 
the limited number of perfusion regions that we adopt for 
myocardial subdivision. Considering the region-averaged 
MBF values in Fig. 14c and d, however, we can see that 
our model is able to reproduce the MBF distribution in 
both the analyzed patients, obtaining values in reasonable 
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accordance with the clinical perfusion maps. Notably, we 
do not observe any region with MBF < 150 ml/min/100 g, 
which is the critical threshold for the detection of regions 
susceptible to inducible ischemia. This is in accordance 
with the outcomes of the stress-CTP examination, and 
thus we do not report any false-positive region in the two 
patients, despite the high heterogeneity in MBF values 
across the various regions.

When comparing numerical results with in vivo measures, 
particular attention needs to be paid to boundary conditions. 
To impose a hyperemic inflow conditions at the aortic root, 
we adapt the rest pressure measures following the methodol-
ogy we proposed in Pelagi et al. (2024), where we validated 
our method by means of a comparison based on the hyper-
emic flow; thus, we believe that the comparison reported in 
Fig. 14 is meaningful. However, we are aware that a more 
fair comparison against hyperemic pressure measures will 
be mandatory for future studies. In any case, given that aor-
tic pressure drives the total coronary flow but not how it is 
distributed across the different branches, our adaptation of 
the aortic pressure is expected to introduce an uncertainty 
which does not affect MBF spatial distribution. Regarding 
the imposed intramyocardial pressure Pim , instead, we com-
pute it starting from the left ventricular pressure given by an 
electromechanics simulation in another (albeit anatomically 
accurate) ventricular geometry. Although we do not expect 
this choice to have an influence on the results in patients 
with a structurally normal heart (as the ones analyzed in 
this study), such influence may be significant in the case of 
structural abnormalities, e.g., left ventricular hypertrophy or 
myocardial fibrosis. To account for this, one may consider a 
modulation of the intramyocardial pressure across the differ-
ent subdomains, based on subdomain structural characteris-
tics such as volume, average wall thickness and presence of 
fibrotic tissue. Running an electromechanics simulation on 
the specific patient is another option, allowing to compute 
the active stress across the cardiac muscle in a personalized 
fashion and extract a continuous field for the intramyocardial 
pressure. The main disadvantage is the computational cost 
associated with this additional simulation.

From Fig.  14, we can see that, in some perfusion 
regions, there may be relevant discrepancies between 
MBFavg

comp
 and MBF

avg

CTP
 . Such differences may be due to 

different reasons, for example inaccuracies in the segmen-
tation of the coronary tree and incorrect association 
between feeding arteries and myocardial mass resulting 
from the myocardial partitioning strategy we employ. In 
addition, we use constant values for the Darcy parameters 
all over the myocardium, overlooking the presence of het-
erogeneities in the myocardial properties. This heteroge-
neities are very likely related also to the specific anatomy 
of the epicardial tree, suggesting that a robust way to link 

anatomical features to microcirculation properties is a key 
aspect to include to correctly reproduce MBF distribution 
in a personalized way.

This work presents some limitations. Firstly, we are aware 
that two patients are not enough to conclude that our model 
can consistently predict the absence of perfusion defects in 
a given patient, i.e., assess the model specificity in a robust 
way. However, this is not a statistical study, rather a mecha-
nistic one aimed at predicting hemodynamics, so that the 
number of patients is necessarily not high. Also, even though 
the analyzed subjects are symptomatic patients (as specified 
in Sect. 2.7), we do not examine any subjects with obstruc-
tive coronary artery disease, so we cannot assess the sen-
sitivity of the model in the prediction of the presence and 
localization of perfusion defects. Further studies applied to 
a large and mixed population would be highly desirable to 
these aims. Still, we believe that the agreement we found 
in the MBF distribution between our simulations and the 
clinical maps (see Fig. 14) represents a very strong starting 
point in this direction.

Other limitations involve modeling choices and clinical 
applicability: 

1.	 We do not include any branches of the RCA perfusing 
the right ventricle, which is motivated by the interest 
focusing on left ventricular perfusion. However, this 
likely impacts the hemodynamics in the proximal part 
of the RCA, leading to an underestimation of flow. 
Future studies should address this issue by considering 
right ventricular branches alongside appropriate outflow 
boundary conditions, such as calibrated Windkessel 
models.

2.	 We consider constant values along the whole vascula-
ture (i.e., independent of the Darcy compartment) for 
both the viscosity � and the specific permeability � ; see 
(8). These choices are motivated by noticing that both 
fluid-matrix interaction and rheology, although they 
may change along the vasculature, do not have an influ-
ence in recovering the right qualitative behaviors of the 
quantities of interest (phasic flow, systolic impediment, 
etc.). However, we believe that a deeper investigation of 
the quantitative influence of these parameters should be 
in order for future studies. For example, one may con-
sider the influence of the Fåhraeus-Lindqvist effect on 
blood viscosity by modifying the expressions for perme-
abilities and conductances ((8) and (10), respectively), 
including a direct dependence on vessel diameter.

3.	 We do not consider transmural differences in the vessels 
properties. For example, it has been found that capillary 
density and diameter are higher at the subendocardium 
rather than at the subepicardium (Smith et al. 2014). 
Also, our model does not take into account that the intra-
mural vessels (small arteries and microvessels) have a 
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precise course into the cardiac muscle, that is a trans-
mural course with increasing ramifications moving from 
the epicardium to the endocardium. Although we do 
not expect these features to have a relevant influence on 
phasic flow and regional distribution of MBF, they can 
substantially affect the transmural distribution of flow 
and should be taken into account for a more detailed 
study of blood perfusion across the myocardial wall. To 
this aim, one could consider a transmural modulation of 
vessels properties (length densities, morphometry fac-
tors), and a replacement of the permeability scalar fields 
Ki with permeability tensors, featuring higher values in 
specific directions, such as the transmural one for small 
arteries or the one of the myofibers for capillaries. Since 
these directions change in space, this would require the 
definition of a moving reference frame in all points of 
the myocardium.

4.	 From a clinical standpoint, correct association between 
feeding arteries and perfusion territories is a key point. 
In this study, this is done generating perfusion regions 
starting from each coronary outlet at disposal. Given that 
the epicardial coronary trees we used are not limited to 
the main branches but include also smaller, transversal 
vessels (for example arising from diagonal and marginal 
branches) that become outlets in our segmentations, we 
consider this approach a reasonable strategy. However, 
according to morphometric data of a human coronary 
tree (Schwarz et al. 2020), many of the smaller pen-
etrating vessels, branching from the main epicardial 
coronaries, may have a diameter lower than 0.5mm 
and are likely to be missed in CT-based segmentations. 
The inclusion of such penetrating vessels may signifi-
cantly affect the partitioning of the myocardium, lead-
ing to substantial differences in the association between 
myocardial mass and feeding arteries, thus represent-
ing a key point in the identification of coronary lesions 
responsible for perfusion defects. For these reasons, 
a more sophisticated partitioning strategy, including 
detailed morphometric data, will be an interesting topic 
for future development of this work.

5.	 For applications in clinical practice, an extended analysis 
with validation on a large and mixed population should 
be in order. This would require to strongly address the 
issue of the model calibration, potentially including 
space-dependent, personalized microcirculation prop-
erties. However, detailed microcirculation data can be 
acquired only through ev vivo experimental procedures, 
which obviously cannot be applied to living subjects. 
Also, the available data on human hearts are very lim-
ited and are representative of a specific anatomy, so they 
cannot be easily generalized to other subjects. Robust 
tools to couple the patient-specific anatomy of the epi-

cardial arteries (visible from in vivo medical images) 
to specific characteristics of the downstream intramural 
vascular bed would be highly desirable. To this aim, the 
use of algorithms for the generation of synthetic vascular 
trees, informed by statistical distributions extracted from 
detailed topological data (Schwarz et al. 2020) and with 
a subsequent estimation of Darcy parameters from the 
generated networks, could represent valuable tools for a 
full personalization of the perfusion model.

6.	 Finally, for successful predictions of absolute MBF 
in patients with obstructive CAD, remodeling effects 
induced on microvasculature located downstream 
chronic occlusions and critical stenoses should be con-
sidered. These include arteriogenesis, representing 
enlargement of pre-existing collateral arteries, and angi-
ogenesis representing sprouting of new capillary vessels. 
While angiogenesis can be modeled by increasing the 
length density of capillaries in the affected regions, col-
lateral pathways could be, in principle, included through 
the source terms of the Darcy problem ( �1 in the first 
compartment, see (14)). Specifically, regions located 
downstream an occlusion could receive a fraction of the 
outflow of the nearby, healthy epicardial vessels. The 
identification of the determinants of these mechanisms, 
i.e., which regions benefit from them and their quan-
tification, remains an open issue. Still, the distributed 
perfusion model we propose in this work can be applied, 
in combination with perfusion data from stress-CTP, to 
patients affected by obstructive CAD with the aim of 
exploring and quantifying these phenomena.
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